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Mesh Neural Networks for SE(3)-Equivariant
Hemodynamics Estimation on the Artery Wall

Julian Suk, Pim de Haan, Phillip Lippe, Christoph Brune, Jelmer M. Wolterink

Abstract—Computational fluid dynamics (CFD) is a valuable asset for patient-specific cardiovascular-disease diagnosis and
prognosis, but its high computational demands hamper its adoption in practice. Machine-learning methods that estimate blood flow in
individual patients could accelerate or replace CFD simulation to overcome these limitations. In this work, we consider the estimation of
vector-valued quantities on the wall of three-dimensional geometric artery models. We employ group-equivariant graph convolution in
an end-to-end SE(3)-equivariant neural network that operates directly on triangular surface meshes and makes efficient use of training
data. We run experiments on a large dataset of synthetic coronary arteries and find that our method estimates directional wall shear
stress (WSS) with an approximation error of 7.6% and normalised mean absolute error (NMAE) of 0.4% while up to two orders of
magnitude faster than CFD. Furthermore, we show that our method is powerful enough to accurately predict transient, vector-valued
WSS over the cardiac cycle while conditioned on a range of different inflow boundary conditions. These results demonstrate the
potential of our proposed method as a plugin replacement for CFD in the personalised prediction of hemodynamic vector and scalar
fields.

Index Terms—Graph convolutional networks, group-equivariance, computational fluid dynamics, wall shear stress, coronary arteries.
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1 INTRODUCTION

COMPUTATIONAL fluid dynamics (CFD) is ubiquitous
in science and engineering. In medicine, it allows

for patient-specific, non-invasive estimation of functional
quantities related to blood flow from static cardiac com-
puted tomography (CT) [1] or magnetic resonance imaging
(MRI) [2]. Hemodynamic scalar or vector fields (e.g. pres-
sure or velocity) computed by CFD are valuable biomarkers
for diagnosis [3], prognosis [4], or treatment planning in
patients with cardiovascular disease [5]. For instance, the
pressure drop after a stenosis, quantified as fractional flow
reserve (FFR), can be calculated from CFD simulations
and used as an indication for the need of percutaneous
intervention [6]. Similarly, CFD simulation can be used
to compute localised quantities on the artery wall. Wall
shear stress (WSS), i.e. the force exerted by the blood flow
on the artery wall in tangential direction, is a highly lo-
calised physical quantity that has been shown to correlate
with local atherosclerotic plaque development and arterial
remodelling in patients suffering from atherosclerosis [7].
Patient-specific local WSS values could be used to assess
atherosclerosis risk in healthy, diseased, and stented arter-
ies [8].

While CFD has a strong potential as an in-silico replace-
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ment for in-vivo measurement of hemodynamic fields, it also
has some practical drawbacks. High-quality CFD simula-
tions require fine discretisation of the spatial and temporal
domains, leading to long computation times [1]. The time-
intensive nature of high-fidelity CFD simulations limits their
applicability in practice, e.g. for virtual surgery planning or
shape optimisation of medical devices [9]. There is a practi-
cal need for fast but accurate estimation of hemodynamics.

Efforts to speed up CFD have focused on several di-
rections. For example, model order reduction for fluid dy-
namics [10] can significantly speed up CFD simulation by
reformulating the governing equations to an extent that pre-
serves a satisfactory accuracy while enabling fast numerical
solution. However, existing workflows have to be signifi-
cantly altered to apply these methods, which requires con-
siderable effort and expertise and hinders wide-spread ap-
plicability and acceptance. Alternatively, lumped-parameter
models for the quantification of vascular hemodynamics
have been proposed, e.g. for coronary circulation [11]. These
replace parts of the spatial domain with 1D physical net-
works of resistance and capacitance that provide satisfactory
local accuracy for the global flow. Such a method has the
drawback that no localised information on the artery wall
(e.g. WSS) is obtained.

Recent works have shown that there is great potential in
machine learning to accelerate and improve cardiovascular
biomechanics modelling [12]. In particular, deep neural net-
works can be used for hemodynamic scalar or vector field
estimation. In contrast to CFD simulation, in which multiple
systems of equations have to be iteratively solved online for
each new artery, machine learning approaches move these
time-consuming computations offline. To generate training
data for a neural network, high-accuracy CFD simulations
are run on geometric artery models. Once a neural network
has been trained, hemodynamics estimation in a new artery
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only requires a single forward pass through the network,
leading to significant speed-up.

Machine learning methods for hemodynamic parameter
estimation can be subdivided into three categories. First, pa-
rameterisation and projection methods that re-parameterise or
project the 2D artery-wall manifold from 3D to a Cartesian
1D or 2D domain and use multilayer perceptrons (MLP)
or convolutional neural networks (CNN) on this domain.
Second, 3D point-cloud methods that use MLPs on points
representing the artery wall. Third, mesh-based methods that
use graph convolutional network (GCN) architectures and
incorporate information on artery-wall structure.

In the category of parameterisation and projection meth-
ods, Itu et al. [13] have used MLPs to estimate (scalar) FFR
along the artery centerline based on shape descriptors, Su et
al. [14] have used CNNs to estimate (scalar) WSS magnitude
based on uniform shape sampling, Gharleghi et al. [15],
[16] have used CNNs to estimate (scalar) time-averaged and
transient WSS magnitude based on a cylindrical parametri-
sation of the vessel wall, and Ferdian et al. [17] have used
CNNs to estimate vector-valued WSS based on a cylindrical
parameterisation plus uniformly sampled projections of the
velocity field at several distances from the artery wall of
the aorta reconstructed from 4D flow MRI. Parameterisa-
tion and projection methods have the disadvantage that
they cannot necessarily be adapted to more complex artery
shapes and might fail in cases with severe pathology (e.g.
aneurysms).

In contrast, point-cloud methods operate on native ge-
ometric representations of the artery. Point-cloud methods
have been widely used for classification, detection, and
segmentation tasks [18]. In hemodynamic field estimation,
Liang et al. [19] used MLPs to estimate pressure and vector-
valued velocity fields on 3D point clouds. Li et al. [20] es-
timated vector-valued hemodynamic fields using a method
similar to PointNet [21] based on uniformly sampled points
inside the cardiovascular lumen from CFD results. Even
though point-cloud methods excel at learning spatial rela-
tions from geometric data, they disregard an important part
of information that is available in surface representations of
arteries: the surface connectivity and curvature.

Mesh-based approaches incorporate additional local ge-
ometry information from the mesh in addition to the point
coordinates. Morales Ferez et al. [22] used the surface nor-
mal vector and connectivity to construct input features to a
GCN predicting (scalar) endothelial cell activation potential
on the left atrial appendage surface. A shortcoming of this
approach is that the network predictions depend on the
embedding of the mesh vertex normals in 3D Euclidean
space but the quantity of interest only depends on the
intrinsic shape of the mesh. Thus, predictions are sensitive
to orientation of the input and shape alignment is required.

In this work, we propose a mesh-based approach that
processes signals intrinsically on the artery wall (Fig. 1). The
proposed method is informed by mesh properties and does
not depend on the embedding of local geometry descriptors
in 3D. Instead, it is invariant to translations and equivariant
to rotations of the mesh. This means that vector-valued
quantities like WSS rotate with the artery wall. This is
data-efficient, as a single training sample covers all possible
rotations and shifts of that artery and no data augmentation

Fig. 1. Overview. We propose a gauge-equivariant mesh-graph convo-
lutional network (GEM-GCN) to estimate discrete hemodynamic fields
mapped to the vertices of a surface mesh of the artery wall. The
GCN is powered by anisotropic (spatially-oriented) gauge-equivariant
mesh (GEM) convolution with high filter expressivity. The combination of
GEM convolution with appropriate input features leads to an end-to-end
SE(3)-equivariant neural network.

is required during training. Furthermore, our method is
informed by anisotropic spatial interactions on the mesh,
giving our filters high expressive capacity.

A preliminary version of this method was presented
in [23], where we estimated steady-flow WSS with
fixed boundary conditions. However, temporally multi-
directional WSS acts as clinical biomarker for coronary
plaque development [24] and different patients have distinct
coronary blood flow which influences the WSS. Here, we
substantially extend our method to also estimate pulsatile-
flow WSS and to adapt its estimation based on a given
boundary condition. We present results indicating that our
GCN can perform some mild extrapolation beyond boundary
conditions contained in the training data. Furthermore, we
formally prove the empirical result that our method is end-
to-end equivariant under rotation and translation, provide
thorough experimental analysis on the influence of receptive
field and sensitivity to remeshing, and include additional
baseline experiments.

2 DATA

We propose a general method for hemodynamic field es-
timation on artery walls and demonstrate its value in
coronary arteries, which are a key application domain for
CFD. We synthesise two distinct classes of representative
3D models with different topology (Fig. 2) for training and
validation of our GCN. The first class consists of idealised,
single-outlet arteries with stenoses at random locations. The
second class consists of bifurcating arteries and is used to
demonstrate the versatility of our method for more complex
geometries as may be encountered in real-life.

2.1 Single arteries

Emulating the shapes used in [14], we generate synthetic
coronary arteries with a single inlet and a single outlet
(Fig. 2). The artery centerline is defined by control points
spaced at fixed increments along the horizontal axis and
random uniform increments along the vertical axis in a fixed
2D plane embedded in 3D. The resulting 3D models are
symmetric to that plane. We assume that the lumen contour
is circular and sample its base radius r from a uniform
distribution r ∼ U(1.25, 2.0) mm, roughly corresponding
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Fig. 2. Artery datasets. We develop and evaluate our method using
two distinct classes of geometric models: synthetic single arteries (left)
and bifurcating arteries modelled after the left main bifurcation of the
coronary artery tree (right). The single arteries contain flow extensions
to let the flow fully develop from a uniform inflow boundary condition.
The bifurcating arteries are simulated with parabolic inflow and thus
without flow extensions. They consist of the proximal main vessel (PMV)
that branches into distal main vessel (DMV) and side branch (SB). Each
bifurcation can be described by the angles β and β′.

to [14]. We randomly introduce up to two stenoses which
consist of a randomly determined narrowing of up to 50 %
of the diameter, asymmetrically distributed between the top
and the bottom vessel wall. The generated lumen contours
are then lofted to create a watertight polygon mesh. The
mesh is refined proportionally to the vessel radius along the
artery centerline to give flow-critical regions finer spatial
resolution for fluid simulation. Analogously to [14], we
add flow extensions to the inlet and outlet, whose length
is five times the vessel diameter. The shape synthesis is
implemented using SimVascular [25].

2.2 Bifurcating arteries

We construct the bifurcating artery models using an atlas
of coronary shape statistics [26], [27]. In the left main coro-
nary bifurcation, the proximal main vessel (PMV) splits up
into distal main vessel (DMV) and side branch (SB). The
bifurcation can be fully described by the angles β between
centerlines of the branches DMV and SB and β′ between
the bisecting line of the bifurcation and the centerline of
SB (Fig. 2). We sample angles and lumen diameters from the
atlas and use them to construct lumen contours. Appendix B
provides a detailed overview of this process. Subsequently,
the generated lumen contours are lofted to create a solid
polygon model, merged, and meshed. After blending of the
bifurcation region to produce a more natural transition, the
final surface mesh is created in a refining meshing step. The
entire shape synthesis is implemented with the SimVascular
Python shell.

2.3 Blood-flow simulation

For each triangluar surface mesh (Sec. 2.1, Sec. 2.2), a tetra-
hedral volume mesh is created with five tetrahedral bound-
ary layers (Fig. 2). We simulate steady and pulsatile blood
flow in these meshes using the SimVascular solver for the
three-dimensional, incompressible Navier-Stokes equations

%

(
∂u

∂t
+ (u · ∇)u

)
= −∇p+ µ∆u

∇ · u = 0

where u : Ω → R3 is the fluid velocity and p : Ω → R is
the pressure in the spatial domain Ω of the artery. Dynamic
viscosity and blood density are assumed to be µ = 0.04

g
cm·s and % = 1.06 g

cm3 , respectively. We model the blood
vessel as rigid and apply a no-slip boundary condition,
i.e. the velocity is zero at the lumen wall at all times. The
inlet velocity profile is uniform for the idealised arteries
and parabolic for the bifurcating arteries and follows a
pulsatile waveform, scaled so that the coronary blood flow
agrees with measurements in female and male patients
(myocardial perfusion [28] times myocardial mass [29]). A
constant heart rate of 80 1

s is used across all simulations. We
model the artery outlets of the bifurcating arteries as an RCR
(“Windkessel”) system consisting of proximal and distal
resistances and intermediate capacitance. The total applied
resistance and capacitance is tuned to agree with realistic
values for pressure. The simplified boundary conditions for
the steady simulations are uin = 20 cm

s for the idealised
and uin = 11.8 cm

s for the bifurcating arteries as well as a
pressure of pout = 100 mmHg ≈ 13.332 kPa weakly applied
at the outlet, i.e. controlled by an outlet resistance.

The Reynolds number for the fluid flow is Re ≈ 700
suggesting laminar flow. The WSS, which we denote as τ ,
is defined as the force exerted on the lumen wall ∂Ω by
the blood flow in tangential direction and can be computed
from the resulting velocity field near the lumen wall. It
linearly depends on fluid velocity u, assuming blood to be
a Newtonian fluid:

τ :

{
∂Ω→ T∂Ω

x 7→ µ Ju(x)~n(x)|⊥~n

where T∂Ω denotes the tangent bundle of ∂Ω, Ju the
Jacobian of u, ~n : ∂Ω → R3 the unit surface normal on the
lumen wall and ·|⊥~n the perpendicular projection to ~n.

The single-artery surface meshes have around 8,000 ver-
tices and 17,000 triangular faces and the bifurcating artery
surfaces meshes have around 17,000 vertices and 32,000
triangular faces. For an individual artery, steady-flow sim-
ulations take 10 to 24 min on an Intel Xeon Gold 5218 (16
cores, 22 MB cache, 2.3 GHz) and pulsatile-flow simulations
take up to 1.6 h parallelised over 128 threads on a high-
performance computing cluster. The resulting steady-flow
datasets contain simulations for 2000 single arteries as well
as 2000 bifurcating arteries. In addition, we generate a
dataset of pulsatile-flow simulations in 731 single arteries.
Note that the boundary conditions are fixed across samples
and thus inherently encoded in these datasets. Therefore, we
also generate pulsatile-flow datasets with varying boundary
conditions, containing 187 and 117 geometric models for
single and bifurcating arteries, respectively. In this set, sim-
ulations for each artery are run with five random-uniform
coronary blood flow values from the interval [1.87, 4.36]
ml
s . We run additional simulations with two values from

[0.63, 1.87] ml
s and [4.36, 5.61] ml

s , respectively, for 19 single
arteries. In total, our simulation data encompasses 5,035
CFD simulations with a total elapsed runtime of ca. 2800
h.
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Fig. 3. Network architecture. Our mesh-based GCN outputs time-discretised, pulsatile hemodynamic fields fout : V → RT×cout , where |V| = N ,
subject to a (scalar) coronary blood flow parameter, given an input consisting of artery-wall mesh and vertex-wise geodesic distance to the artery
inlet. A large receptive field is efficiently obtained using a three-level pooling scheme. To enable deep networks, we employ residual blocks consisting
of two convolution modules and skip connection. The per-vertex colour of the signal before and after residual blocks corresponds to the scalar
activation mapped to the vertices.

3 LEARNING ON 3D SURFACE MESHES

We propose a neural network that can estimate hemody-
namic fields in the data described in Sec. 2. At the core
of our approach is the hypothesis that hemodynamics, in
the laminar regime, depend in good approximation on local
artery-wall curvature, flow direction, and flow boundary
conditions. As is common in CFD (see also Sec. 2), we repre-
sent the artery wall as a triangular surface mesh. Let Ω ⊂ R3

be the arterial lumen and ∂Ω its 2-dimensional boundary,
the artery wall. The surface mesh M is a discretisation of
∂Ω that can be fully described by a tuple of vertices and
facesM = (V,F). We use the same meshM from the CFD
simulation to construct input features to a GCN which in
turn outputs a scalar or vector for each vertex in the mesh,
making use of local spatial interactions on the mesh M
(Fig. 1).

3.1 Network architecture
We propose a mesh-based GCN that takes as input a
scalar or vector field of features mapped to the vertices
f in : V → Rcin and outputs scalar or vector-valued predic-
tions fout : V → Rcout mapped to the same vertices. Fig. 3
visualises the network architecture used in our experiments.
The GCN is composed of convolution and pooling layers.
To enable the flow of long-range information across the
manifold ∂Ω, we opt for an encoder-decoder architecture
with three pooling levels and “copy & concatenate” con-
nections between corresponding layers in the contracting
and expanding pathway. To prevent vanishing gradients,
we use residual blocks consisting of two convolution layers
and a skip connection. We use ReLU activation functions
and employ batch normalisation before each activation.

3.2 Convolution layer
Convolution operators on meshes transform scalar or vector
fields mapped to the mesh vertices V . We define signals
f : V → Rc with channel size c. For ease of notation, we
compactly denote the set of all fields mapping from V to

Rc as X (V,Rc) so that we can write f ∈ X (V,Rc). As
a central building block of our neural network, we define
convolution layers on M via message passing [30]. Let ci
and ci+1 denote the channel size before and after the layer.

(φ ∗ f) :

{
X (V,Rci)→ X (V,Rci+1)

f 7→ γ(φ(p, f)) ∀p ∈ V.

The messages φ aggregate information from the neighbour-
hood Br(p) ∩ V , where Br(p) consists of all vertices that
are contained in the ball in Euclidean space with radius r
around p ∈ V . The update function γ creates the signal up-
date from these messages. Alternatively, the neighbourhood
could be defined by a 1-ring neighbourhood on the meshM
or by a geodesic ball on the manifold ∂Ω. Our definition is
an approximation to these options that is robust to varying
mesh resolutions and scalable to large meshes. We construct
convolution layers with kernel K : V × V → Rci×ci+1 by
choosing the messages

φ(p, f) :=
∑

q∈Br(p)∩V

K(p, q)ρ(p, q)f(q) (1)

We refer to a neural network containing the aforemen-
tioned convolution layer as mesh-based GCN with the
following rationale. The neighbourhood of a mesh vertex
induces a set of graph edges E by connecting p to all q ∈
Br(p) ∩ V . With this “latent” graph structure (V, E) we can
make use of efficiently implemented graph deep-learning
libraries (like PyG) to realise our layers. Additionally, this
GCN can be mesh-based by explicitly incorporating face
information in the message passing φ = φ(V,F).

We distinguish between isotropic and anisotropic con-
volution layers based on kernel K(p, q) and aggregation
matrix ρ(p, q) : V ×V → Rci×ci . Intuitively, isotropic convo-
lution filters process all signals mapped to the surrounding
vertices in a neighbourhood in the same manner, while
anisotropic filters process them distinctly.

Definition 1 (Anisotropy). We call bivariable functions
G : p, q 7→ G(p, q) with p ∈ V and q ∈ Br(p) ∩ V isotropic,
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if G(p, q) is constant in q. We call G anisotropic, if G(p, q) is
not constant in q for all q ∈ Br(p)∩V . Consequently, we call
a layer anisotropic, if it contains any anisotropic function.

3.2.1 Gauge-equivariant mesh convolution
Defining general anisotropic kernels K(p, q) on meshes is
difficult due to the lack of a local canonical orientation on
the mesh: there is no obvious choice of reference vertex
q ∈ Br ∩ V in the filter support that canonically orients the
local filter at p for all p ∈ V . To address this, we implement
anisotropic kernels using gauge-equivariant mesh (GEM)
convolution [31]. The idea behind GEM convolution is to
recognise that possible kernel orientations are related by
group actions of the symmetry group of planar rotations
SO(2) and use this insight to spatially orient kernels “along”
its group elements.

To achieve this, the signal f ∈ X (V,Rc) is composed of a
linear combination of irreducible representations (“irreps”)
of the symmetry group SO(2), resulting in so-called SO(2)
features. We can then choose an invertible parallel transport
matrix

ρ(p, q) = ρ(p, q)(V,F)

composed of group action representations that can rotate
signals f using mesh information. Specifically, the tangential
plane at each vertex can be determined from the surround-
ing triangles and geodesic shortest paths between vertices
can be found from adjacent faces [32]. Parallel transport
refers to transporting signals along the manifold ∂Ω while
maintaining a fixed angle to the shortest geodesic curve. It
provides a unique and thus canonical transformation that
allows linearly combining vector fields f ∈ X (V,Rc) at a
vertex p ∈ V on the mesh. This is required for our notion of
convolution Eq. (1).

On 2D manifolds ∂Ω embedded in 3D Euclidean space,
picking a kernel orientation amounts to picking a locally
tangential coordinate system (“gauge”). This choice can, on
general manifolds, only be made arbitrarily. To prevent this
to arbitrarily affect the outcome of the convolution, GEM
convolution imposes an equivariance relation between layer
input and output. Let P and P ′ be representations of the
same (linear) gauge transformation that rotates the feature
vector. GEM convolution requires message passing Eq. (1) to
be equivariant under such transformations. Since all other
variables in Eq. (1) are fixed, this imposes a linear constraint
on the kernel K(p, q) with solutions

{K(p, q) | P ′φ(p, f)
!≡ φ(p, Pf)}

A detailed derivation can be found in [31].

3.3 Pooling
Hemodynamics are characterised by long-range interac-
tions across the artery wall ∂Ω and the lumen Ω. Cap-
turing these by stacking convolution layers, i.e. linearly
increasing the receptive field, becomes infeasible for large
and finely discretised surfaces. In contrast, pooling layers
can exponentially increase the network’s receptive field.
Here, we use the mesh’s “latent” computation graph (V, E)
to implement pooling. Similar to the procedure used by
Wiersma et al. [33], we sample a hierarchy of vertex subsets

(V = V0) ⊃ V1 ⊃ · · · ⊃ Vn and construct according r-radius
graph edges Ei encoding the filter support Bri(p)∩Vi for all
p ∈ Vi. Additionally, we find disjoint partitions of clusters⋃

p∈Vi+1

C(p) = Vi,
⋂

p∈Vi+1

C(p) = ∅

that relate fine-scale vertices to exactly one coarse-scale
vertex. This can be done with k-nearest neighbours (k = 1)
by finding for each p ∈ Vi the nearest vertex in Vi+1. Using
these, a pooling operator can be defined as

ψpool :

X (Vi,Rc)→ X (Vi+1,Rc)
f 7→ 1

|C(p)|
∑

q∈C(p)

ρ(p, q)f(q) ∀p ∈ Vi+1

We implement unpooling by simply transporting signals f
back to their respective cluster locations:

ψunpool :

{
X (Vi+1,Rc)→ X (Vi,Rc)
f 7→ ρ−1(C−1(p), p)f(C−1(p)) ∀p ∈ Vi

3.4 Input features

We construct input features f in : V → Rcin with cin channels
that describe the local shape of ∂Ω as well as global prop-
erties and are computed from the mesh M. In particular,
we compute a surface normal for each vertex p ∈ V from
adjacent mesh faces. We then construct three matrices that
describe the local neighbourhood q ∈ Br(p)∩V by, for each
neighbour q, taking the outer products of

• the vector from p to q with itself,
• the surface normal at q with itself, and
• the vector from p to q with the surface normal at q

For each of the three resulting sets of (3 × 3)-matrices, we
take the average over the neighbourhood. Two of these
matrices are symmetric by construction, so we can drop
entries without losing information. The radius r of the
local neighbourhood balls is a hyperparameter and must be
chosen based on the structure of the input meshes, so that
no neighbourhood is disconnected, i.e. consists of a single
vertex. We chose the same radius that is used to construct
the mesh’s “latent” computation graph (V0, E0).

The motivation behind these input features is that they
define meaningful local surface descriptors that are not
SO(2)-invariant, a precursor to employing GEM convolu-
tion [31]. In contrast, the vanilla surface normal would
simply be constant in any coordinate system induced by the
surface normal. Since the surface normal describes the local
surface (orientation) in an infinitesimally small neighbour-
hood Br→0(p), i.e. the precise local curvature of the artery
wall ∂Ω, it is the preferred input feature for conventional
message passing formulations.

We can extend the per-vertex features with any scalar or
vector field. Since we assume that hemodynamics depend
on flow direction, we append the shortest geodesic distance
from each vertex p to the inflow surface, which we compute
with the vector heat method [34]. Moreover, we add global
parameters such as blood-flow boundary conditions as a
constant scalar field over the vertices.
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Fig. 4. Filter comparison. Isotropic, attention-scaled, and GEM con-
volution use kernels, in comparison to PointNet++ message passing.
While attention-scaled convolution and PointNet++ both learn to dis-
tinguish neighbouring vertices through an attention mechanism, GEM
convolution is equipped with a notion of direction.

3.5 Network output

We predict vector-valued hemodynamic quantities arising
from transient, pulsatile flow by discretising a full cardiac
cycle at T points in time and let our neural network output a
vector field fout ∈ X (V,R3T ). Alternatively, we can predict
hemodynamic fields under steady flow by setting T = 1.

3.6 SE(3) equivariance

We model hemodynamics without the influence of grav-
ity. Therefore, rigid rotation (or translation) of the domain
should have no influence on the magnitude of the flow
quantities and only change their direction. More precisely,
our problem exhibits equivariance under SE(3) transforma-
tion. Inducing this symmetry in our neural network makes
it oblivious to particular transformations which reduces
the problem’s complexity. We do so in the form of GEM
convolution.

Proposition 1. (Informal) Composition of rotation-
equivariant and translation-invariant input features with a
gauge-equivariant mesh (graph) convolutional neural net-
work (GEM-GCN) is end-to-end SE(3)-equivariant.

GEM convolution layers define message passing intrin-
sically on the mesh M without dependence on the em-
bedding in the ambient space, such as Euclidean vertex
coordinates. SO(2) features can be expressed in ambient
coordinates, which is done at the network output. Since
tangential planes by definition rotate with the geometric
model of the artery, the GEM convolution operator (K ∗ f)
preserves SE(3) equivariance if the tangential input features
move along with the surface.

Our input features f in are equivariant under rotation and
invariant under translation of the meshM by construction.
Furthermore, our pooling and unpooling operators ψpool
and ψunpool preserve SE(3) equivariance because they do
not depend on the embedding of M in ambient space.
Consequently, neural networks composed entirely of GEM
convolution and pooling layers yield an end-to-end SE(3)-
equivariant operator together with our input features f in

(proof in Appendix A).

3.7 Baseline models

We perform ablation studies to investigate the influence
of the anisotropic aggregation matrix ρ(p, q) and the
anisotropic kernel K(p, q) on prediction accuracy. To this

end, we define two additional types of convolution (Fig-
ure 4): one fully isotropic and one with a learned anisotropic
aggregation matrix. Additionally, we compare our method
to another baseline model, PointNet++ [21], a point cloud
method without explicit convolution kernels.

3.7.1 Isotropic convolution
We construct purely isotropic convolution by choosing

ρ(p, q) = ρ := I

K(p, q) = K(p) :=
1

|Br(p) ∩ V|
W

in Eq. (1) where I is the identity matrix and W ∈ Rci×ci+1

are trainable weights.

3.7.2 Attention-scaled convolution
We construct anisotropic convolution with an isotropic ker-
nel via a learned neighbourhood-attention mechanism by
choosing:

ρ(p, q) := σ((f(q)− f(p)) · w)I

K(p, q) = K(p) :=
1

|Br(p) ∩ V|
W

in Eq. (1) where σ(·) is the element-wise softmax activation
and W ∈ Rci×ci+1 as well as w ∈ Rci are trainable
weights. This is equivalent to a graph attention layer [35]
with separate weights and no LeakyReLU activation in the
attention mechanism. Note that here, the message passing is
not mesh-based and only depends on the vertices: φ = φV .

In our definition of pooling in Sec. 3.3 we require the
inverse of ρ for the unpooling step. Since for attention-
scaled convolution, ρ may be ill-conditioned with diagonal
elements close to zero, we fall back to using I for pooling.

3.7.3 PointNet++
We compare kernel-based graph convolution to Point-
Net++ [21], a popular point cloud method consisting of
message passing layers that redefine Eq. 1 by

φk = max
q∈Br(p)∩V

Θk(f(q), vp→q)

where k ≤ ci+1 denotes the k-th component, vp→q the Eu-
clidean vector pointing from p to q, and Θ: Rci×R3 → Rci+1

an MLP of arbitrary depth. PointNet++ uses sampling
and grouping operations that hierarchically sub-sample the
graph vertices in the contracting pathway and interpolate in
the expanding pathway. Note that, for PointNet++, choosing
the same pooling architecture as for the kernel-based GCNs
does not lead to the same level of accuracy, since the con-
volution paradigms are fundamentally different. Thus, we
lay out PointNet++ separately, to achieve the best possible
performance.

3.8 Quantitative evaluation
Quantitative results for WSS estimation are reported in
terms of mean absolute error of the elements of 4, nor-
malised by the maximum ground truth magnitude across
the test split (“NMAE”) and approximation error ε :=
‖4‖2/‖L‖2. 4 is a vector whose elements are vertex-
wise L2-normed differences between the network output
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Fig. 5. Steady-flow WSS estimation of GEM-GCN on arteries of the
held-out test splits of the single (left) and bifurcation artery (right)
datasets.

fout ∈ X (V,Rcout ) and ground truth label l ∈ X (V,Rcout )
so that the i-th element of vector 4i = ‖fout(pi) − l(pi)‖2
and Li = ‖l(pi)‖2 for pi ∈ V . Additionally, we report the
maximum and mean vertex-wise difference, i.e. 4max =
max{4i}i and 4mean = (

∑
i4i)/|V| as well as the mean

of the label statistics max{Li}i and median{Li}i over the
test set for scale.

4 EXPERIMENTS AND RESULTS

We evaluate to what extent GEM-GCN can predict direc-
tional wall shear stress on the artery models described in
Sec. 2. All datasets are split 80:10:10 into training, validation,
and test splits, respectively. Network width and depth are
set so that each neural network has around 1.02× 106 train-
able weights. All neural networks are trained by stochastic
L1-loss regression using an Adam optimiser with batches
of 12 samples and a learning rate of 1× 10−3 on ground
truth values obtained by CFD. All experiments are run on
NVIDIA A40 (48 GB) GPUs. Parallelisation over two GPUs
was necessary to fit batches of 12 bifurcating artery models
into memory. Inference for a previously unseen artery wall
takes less than 5 s including geometric pre-processing. Our
open-source implementation in PyTorch and PyG using the
vector heat method [34] can be found online.1

4.1 Steady-flow WSS estimation
We train GEM-GCN as well as the isotropic GCN (IsoGCN),
the attention-scaled GCN (AttGCN), and PointNet++
(Sec. 3.7) to perform WSS estimation in the steady-flow
single and bifurcating artery datasets. Fig. 5 shows examples
of directional WSS prediction by GEM-GCN in a single
and a bifurcating artery. The examples suggest that there
is good agreement between ground truth and prediction.
In particular, flow vorticity is captured well in the single
artery model. The quantitative results in Table 1 show that
GEM-GCN strictly outperforms IsoGCN and AttGCN on
both the single and the bifurcating artery dataset. Moreover,
the learned anisotropic convolution filters used in AttGCN
achieve better performance than the isotropic filters used in
IsoGCN. GEM-GCN and PointNet++ perform similarly in
accuracy on the bifurcating artery dataset while GEM-GCN
performs marginally better on the single arteries. Details to
convergence and training time can be found in Appendix D.

1github.com/sukjulian/coronary-mesh-convolution

Fig. 6. Mean approximation error εmean over the test split for different
training set sizes on the steady-flow single-artery dataset. GEM-GCN
weights are updated for ca. 10,000 iterations, PointNet++ weights for
ca. 80,000 iterations.

To investigate how much data is required to train our
neural network, we evaluate how the amount of training
data affects performance of GEM-GCN, as well as Point-
Net++ for comparison. Fig. 6 shows mean approximation
error εmean as a function of the number of training samples.
For each training set size, GEM-GCN is trained from scratch
on the single artery dataset, for a number of epochs chosen
so that it receives ca. 10,000 gradient-descent updates. Since
PointNet++ requires more epochs to converge we train it for
80,000 gradient-descent updates for comparison. The results
in Fig. 6 indicate that both architectures can reach good
accuracy with ca. 1000 training samples.

4.2 SO(3) equivariance

GEM-GCN only depends on relative vertex features and is
trivially invariant to translation. To empirically verify SO(3)
equivariance of GEM-GCN, we perform predictions on ran-
domly rotated test samples. For this we use the neural net-
work trained on the original, canonically oriented samples.
The results in Table 1 show that rotation does indeed not
affect performance of GEM-GCN. All quantitative metrics
are nearly identical to those on the non-rotated samples
up until numerical errors originating from discretisation of
the kernels and activation function [31]. In contrast, results
show that for PointNet++ (the best-performing baseline
model) rotation of test samples drastically reduces predic-
tion accuracy: performance drops from a mean NMAE of
0.5 % to 10.1 % for the single and 0.6 % to 7.8 % for the
bifurcating artery dataset, respectively. This is expected as
PointNet++ – like previously published models [19], [20],
[22] – depends on the embedding of the mesh vertices in
Euclidean space.

In order to make PointNet++ account for differently
rotated samples, we re-train it with data augmentation
by batch-wise, randomly sampling rotation matrices and
applying them to the training samples. This is a common
strategy for methods that lack rotation equivariance. Results
show that training with this augmentation approximately
recovers PointNet++’s accuracy to 0.7 % and 0.6 % mean
NMAE for single and bifurcating arteries, respectively. This
is slightly lower than before for the single arteries. However,
training time until convergence is roughly 1.5 times longer,
going from 20:48 [h] to 31:29 [h] and 35:01 [h] to 57:16 [h]
for single and bifurcating arteries, respectively.
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TABLE 1
Quantitative evaluation of prediction error for steady-flow WSS on synthetic single and bifurcating coronary arteries. The columns list the mean,
median, and 75th percentile of NMAE, approximation error ε, maximum absolute error ∆max, and mean absolute error ∆mean over the held-out test
splits. Maximum and median WSS magnitude per dataset are indicated as Lmax and Lmedian, respectively. We additionally evaluate PointNet++ and

GEM-GCN on randomly 3D-rotated test samples with previous training on canonically oriented samples (†). In the rotated case we additionally
present accuracy metrics for PointNet++ for training on rotationally augmented data (‡).

NMAE [%] ε [%] 4max [Pa] 4mean [Pa]

mean median 75th mean median 75th mean median 75th mean median 75th

Single
arteries

oriented

IsoGCN 0.9 0.9 1.2 15.7 15.2 19.3 5.93 5.88 7.96 0.45 0.45 0.60

Lmax = 22.53 [Pa]
Lmedian = 2.07 [Pa]

AttGCN 0.6 0.6 0.8 10.1 9.7 11.9 4.33 3.78 6.38 0.31 0.30 0.41
PointNet++ 0.5 0.4 0.7 8.6 8.2 11.0 4.67 3.87 7.14 0.25 0.21 0.34
GEM-GCN 0.5 0.4 0.6 7.8 7.6 9.1 4.10 3.55 6.13 0.23 0.23 0.31

rotated
PointNet++† 10.1 10.0 11.9 154.4 141.1 180.6 31.18 28.7 41.73 5.14 5.09 6.04
PointNet++‡ 0.7 0.6 1.0 12.3 11.4 15.9 6.17 5.41 8.97 0.36 0.32 0.49
GEM-GCN† 0.5 0.4 0.6 7.7 7.5 9.2 4.10 3.50 5.79 0.23 0.22 0.31

Bifurcating
arteries

oriented

IsoGCN 1.0 0.9 1.0 16.9 15.3 17.4 3.64 3.34 4.24 0.19 0.17 0.20

Lmax = 7.16 [Pa]
Lmedian = 1.37 [Pa]

AttGCN 0.7 0.6 0.7 12.6 11.3 13.0 3.50 3.34 4.07 0.14 0.12 0.14
PointNet++ 0.6 0.5 0.6 11.2 10.5 12.1 3.29 2.96 4.01 0.12 0.10 0.13
GEM-GCN 0.6 0.6 0.7 11.9 11.3 13.0 3.38 3.25 3.92 0.13 0.11 0.13

rotated
PointNet++† 7.8 7.6 11.0 114.6 124.7 153.9 7.81 7.98 9.52 1.56 1.52 2.18
PointNet++‡ 0.6 0.6 0.7 12.3 11.5 13.5 3.48 3.28 4.01 0.13 0.11 0.14
GEM-GCN† 0.6 0.6 0.7 12.1 11.3 13.2 3.42 3.25 3.91 0.13 0.12 0.14
† trained on canonically oriented samples
‡ trained under data augmentation (random rotation in 3D)

Fig. 7. Pulsatile WSS predictions for a single artery. GEM-GCN returns a vector field for each discrete point in time over one cardiac cycle.

Fig. 8. Pulsatile single-artery WSS prediction error across the test split
over time. NMAE is normalised by the maximum WSS magnitude over
all samples in the test set over time (indicated in yellow) which follows a
pulsatile waveform.

4.3 Pulsatile-flow WSS estimation

We train GEM-GCN for pulsatile-flow WSS estimation in
single arteries with the modifications described in Sec. 3.5.
Fig. 7 illustrates predictions of GEM-GCN on test sam-
ples for each discrete point in time in a cardiac cycle. In
these experiments, WSS is dependent on both space and
time. Therefore, we present estimation accuracy as time-
dependent distributions in Fig. 8. The pulsatile-flow NMAE
over time is comparable to the steady-flow NMAE, suggest-
ing generally accurate predictions. However, the pulsatile-
flow NMAE depends on the maximum WSS, which fluctu-
ates over the cardiac cycle. As a consequence, the NMAE
fluctuates as well and follows the pattern of the maximum
WSS (indicated in yellow).
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Fig. 9. Conditional, pulsatile single-artery WSS prediction accuracy,
subject to changing coronary blood flow boundary condition. Scatter plot
(top) shows NMAE over the boundary condition value. Bland-Altman
plot (bottom) shows the difference between neural-network prediction
and ground-truth reference over their average, collapsed into a scalar
value per artery by taking the mean over xyz-components, time, and
mesh vertices. The mean of the difference is denoted by µ and the
standard deviation by σ. GEM-GCN is trained on boundary conditions
in [1.87, 4.36] ml

s . Beyond, neural-network predictions are extrapolated.

4.4 Incorporating boundary conditions

We re-train GEM-GCN on the dataset of pulsatile-flow
WSS in single and bifurcating arteries, subject to varying
coronary blood flow boundary conditions. We investigate
interpolation between and extrapolation to different bound-
ary conditions outside the limits of the training distribution:
As described in Sec. 2, values in [1.87, 4.36] ml

s are contained
in the training data and neural-network predictions subject
to boundary conditions within this domain require interpo-
lation. Values in [0.63, 1.87] ml

s and [4.36, 5.61] ml
s require

extrapolation, as GEM-GCN is not trained on simulations
subject to these inflow values. However, GEM-GCN can
perform WSS prediction based on an arbitrary boundary
condition. Here, we restrict our analysis to a discrete set of
boundary conditions from a continuous range for which we
have performed CFD simulation (Sec. 2).

Fig. 9 quantifies the prediction error for varying bound-
ary conditions in two ways: First, we plot (mean) NMAE
over coronary blood flow from which we observe the fol-
lowing: within the training range, the infimum of the NMAE
displays a linear dependence on the boundary condition.
The NMAE values corresponding to boundary conditions
higher than this training range stay below this slope, while
the NMAE values corresponding to lower values go above
it. Second, we show a Bland-Altman plot comparing neural-
network prediction and ground-truth reference. This plot
shows that GEM-GCN overestimates WSS for low aver-
age magnitude and underestimates WSS for high average
magnitude. A large amount of data points corresponding
to extrapolation fall within the upper and lower bounds
of the distribution of interpolated data points. From these
two plots we conclude that GEM-GCN extrapolates to some
extent to boundary condition values higher than those in

Fig. 10. Sensitivity to remeshing. GEM-GCN (left column) and
PointNet++ (right column) trained on the original CFD mesh and eval-
uated on a differently remeshed artery wall ∂Ω.

the ground-truth distribution.

4.5 Sensitivity to remeshing

Recent works suggest that mesh neural networks might
overfit to mesh connectivity [36]. For the problem of estimat-
ing hemodynamics on polygonal surface meshes this means
that predictions are not independent of the sampling of
vertex positions on the underlying manifold. To investigate
the susceptibility of our models to overfitting, we let the
trained GEM-GCN and PointNet++ networks described in
Sec. 4.1 estimate WSS fields on three kinds of remeshed
versions of the same surface ∂Ω of a sample from the test
set of the single arteries:

1) We randomly sample vertices from ∂Ω and ap-
ply Poisson surface reconstruction, followed by an
isotropic meshing procedure. This relaxes the mesh
refinement around the stenoses and leads to approx-
imately equidistant vertex spacing.

2) We globally refine the original mesh M so faces F
have smaller edge lengths, while maintaining pro-
portionally higher resolution around the stenoses.

3) We randomly sample mesh vertices from ∂Ω, com-
pletely randomising vertex placement beyond re-
finement or coarsening. GEM-GCN extracts mesh
information from the vertices and corresponding
surface normals, which are well-defined here. Thus,
we can do without an explicit mesh in this particular
case.

The results in Fig. 10 suggest that GEM-GCN is still able
to identify regions of interest on the surface ∂Ω: in the
equidistant mesh, it predicts high WSS magnitude in the
stenosed area even with different mesh connectivity. How-
ever, GEM-GCN does overfit, to some extent, to mesh con-
nectivity: regions of high vertex density, especially in the
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Fig. 11. Influence of receptive field. We train three GEM-GCN archi-
tectures with two, one, a no pooling layers on ground-truth pressure for
two samples of the steady-flow single-artery dataset. For the sample in
the left column, the theoretical receptive field is visualised.

refined mesh, are predicted to have high WSS magnitude
and vice versa. This might be because the training data
has higher resolution around stenoses and WSS values are
typically highest in stenotic regions. Thus, the network
learns that high resolution corresponds to high WSS. The
predictions on randomly sampled vertices show artifacts of
this behaviour in the form of arbitrary peaks, caused by
high local vertex density. This conditioning on resolution
may be due to the aggregation scheme (see Equation (1))
used by GEM convolution: the filters sum over the vertex
neighbourhoods, as opposed to e.g. taking the maximum.
PointNet++ seems more robust to remeshing and random
surface sampling, perhaps due to its maximum-aggregation
(see Equation (3.7.3)) scheme.

4.6 Influence of receptive field

We use pooling and unpooling layers to access long-range
information across the artery wall. Here, we investigate to
what extent the resulting receptive field affects hemody-
namics estimation in single arteries. WSS is a relatively local
phenomenom: it mostly depends on the local geometry,
and to a lesser extent on upstream morphology. Therefore,
we expect that the effect of the receptive field will be less
pronounced for WSS. In contrast, hemodynamic pressure is
a global phenomenom: a stenosis in an artery will result
in reduced pressure in all downstream locations. Thus,
we consider pressure here, which is available from the
same fluid simulations (Sec. 2). Note that since we apply a
pressure boundary condition at the artery outlet, the outlet
pressure is the same across simulations. Stenoses affect the
upstream pressure rather than the downstream pressure in
this simulated case.

Fig. 11 shows pressure predictions by three different
GEM-GCN networks: the three-level architecture with two
pooling layers and two unpooling layers described in
Sec. 3.1, a two-level architecture with only one pooling and
one unpooling layer, and a one-level architecture consisting
solely of stacked convolution layers. All of these have the
same number of convolution layers and ca. 1.02× 106,
0.99× 106, and 0.95× 106 trainable parameters, respec-

Fig. 12. WSS prediction for patient-specific left main coronary bifurca-
tion. Ground truth (left) versus GEM-GCN prediction (right). To produce
these results, GEM-GCN is trained purely on the synthetic (steady-
flow) bifurcating-artery dataset. Note that the colourbars are in different
scales to facilitate qualitative comparison. The colour and size of the
WSS vectors scale with magnitude.

tively, due to the decreased channel size in absence of
“copy & concatenate” connections. We train all models until
convergence. The shown samples are chosen because they
nicely display the effect that the receptive field can have
on the neural-network prediction. For one of the samples,
we visualise the theoretical receptive field that arises by
recursively adding the filter support of each layer starting
from a seed vertex. Quantitatively, we find that omitting
the pooling levels results in mean approximation error ε of
0.5 % and mean NMAE of 0.3 %. Using two pooling levels
reduces these values to 0.4 % and 0.2 %, respectively. Our
original architecture with three pooling levels achieves the
lowest errors, at 0.1 % and 0.1 %, respectively. Considering
Fig. 11 we conclude, since stenoses strongly influence the
hemodynamic pressure locally, a large receptive field is
necessary to convey this information upstream. When two
stenoses occur in sequence, this effect overlays and we can
observe a near-instant drop in accuracy where the receptive
field fades.

4.7 Generalisation to real-life patient data

While we develop and evaluate our method on synthetic
data, clinical application would be on anatomies extracted
from individual patients. To assess generalisation to such
data, we use the same GEM-GCN trained on the bifur-
cating arteries from Sec. 4.1 and let it predict WSS in a
left main coronary bifurcation geometry extracted from a
cardiac CT angiography scan [37]. We simulate blood flow
with the same boundary conditions as in Sec. 2 to obtain
ground-truth WSS which takes ca. 30 min. Fig. 12 shows
the ground truth and estimated WSS vectors. As previously,
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prediction and geometric pre-processing take less than 5 s.
Even though GEM-GCN is trained exclusively on synthetic
arteries, it produces a qualitatively plausible prediction.
However, there is a considerable quantitative error which
can be explained by the highly nonlinear dependence of
blood flow on lumen wall shape: even small differences in
morphology between the synthetic and real-life arteries can
influence hemodynamics to an extent that cannot be easily
extrapolated by GEM-GCN. Nevertheless, Fig. 12 suggests
that GEM-GCN is able to qualitatively transfer the relation
between local surface curvature and WSS.

5 DISCUSSION AND CONCLUSION

We have presented an SE(3)-equivariant GCN for the pre-
diction of hemodynamic fields, operating on high-resolution
surface mesh representations of the artery wall. Our re-
sults show that our method can learn to accurately pre-
dict vertex-wise, vector-valued, steady as well as pulsatile
WSS in single and bifurcating, synthetic coronary arter-
ies. Furthermore, results suggest that models can learn to
inter- and extrapolate between and beyond coronary blood
flow boundary conditions in the training set. Once trained,
evaluation on unseen shapes takes less than 5 s, including
geometric pre-processing. Our neural network is robust and
flexible enough to be applied to a wide variety of different
surface meshes. Fast estimation of physical quantities on
meshes could benefit biomedical engineering applications
where simulation data is abundant due to iterative fast
prototyping, e.g. stent placement, but remains largely un-
used beyond a particular iteration. In this context, deep
neural networks could estimate quantities of interest (e.g.
oscillatory shear index (OSI)) for prototyping sub-iterations
or supply initialisation for numerical solvers to speed up
convergence of simulations.

While previous works on hemodynamics estimation
using deep learning employed parameterisation and pro-
jection methods [13], [14], [15], [16], [17], our method
operates natively on the geometric representation of the
artery. In contrast to previous works featuring point-cloud
methods [19], [20], we incorporate surface connectivity and
curvature of the artery wall in our message passing. Fur-
thermore, our method does not depend on the embedding
of the mesh in Euclidean space, in contrast to previous
work on mesh-based methods [22]. We have demonstrated
in Sec. 3 how to exploit rotational and translational sym-
metry in our problem by an end-to-end SE(3)-equivariant
neural network. We leverage the control that kernel-based
convolution, as compared to PointNet++ message passing,
adds to the layers in gauge-equivariant convolution. In
contrast, PointNet++ (Sec. 3.7) operates in 3D Euclidean
coordinate space in which the geometric artery models are
expressed. Thus, PointNet++ is implicitly conditioned on
the embedding of the input mesh. The only way to correct
for this in non-equivariant neural networks is to perform
data augmentation during training, effectively adding re-
dundancy. We have demonstrated in Sec. 4.2 that recovering
the same accuracy as on registered input meshes requires
longer training times and leads to lower accuracy. In fact,
initial accuracy may never be fully recovered. Thus, when
dealing with symmetric problems, GEM-GCN removes the

need for roto-translational data augmentation and can lead
to improved accuracy and data efficiency.

Data-driven estimation of hemodynamic fields on the
artery wall requires large amounts of training data [12].
To learn how geometry and hemodynamic fields relate,
the neural network needs access to a sufficiently large and
representative dataset. In Sec. 4.1, we have quantified this re-
quirement for GEM-GCN. Neural networks have previously
been found to do well at interpolating, but poorly at extrap-
olating training data [12]. However, we have demonstrated
in Sec. 4.4 that our method can to some extent extrapolate
to different coronary blood flow boundary conditions. Our
quantitative results have all been obtained on synthetic
artery shapes and we have only provided preliminary re-
sults on a patient-specific artery in this work. Nevertheless,
we have found that our method mildly generalises to real-
life patient data. In future work, we aim to perform further
validation on patient data with neural networks trained on
synthetic data, which we can easily synthesise.

Additionally, we have investigated an important limi-
tation of our method: accurate predictions require similar
mesh connectivity, i.e. our method is sensitive to remeshing
of the input surface. We hypothesise that this limitation
can be alleviated by data augmentation. We find that Point-
Net++ is more robust to remeshing, so it can be an option
if heterogeneous mesh size is more important than SE(3)
symmetry. Furthermore, we see this as an opportunity for
discretisation-independent neural networks, e.g. [36].

Our method is based on the observation that WSS and
pressure, in the laminar regime, depend in good approxi-
mation on artery wall shape and boundary conditions only.
This imposes a limitation on our work: in the turbulent
regime, this hypothesis may be violated and thus our
method would not be applicable. Furthermore, as in recent
work by Gharleghi et al. [16], we let our neural network
output hemodynamic fields over a complete cardiac cycle
discretised into fixed time steps simultaneously rather than
iterating from one time step to the next, since the cardiac
cycle is periodic and clinically relevant in its entirety. This
is limiting if we want temporally finer resolved WSS esti-
mation. Extending our approach to volumetric meshes and
time-step simulation in future works could enable us to
incorporate physical relations based on fluid velocity as
additional inductive bias.

Even though we have collected a large dataset of hemo-
dynamic simulations in arteries, we had to be selective with
the types of simulations to run. We did not include pulsatile-
flow fixed-inflow simulations for the bifurcating arteries,
due to their extensive computational demand. In future
work we could add them, but for now we already have
pulsatile-flow varying-inflow simulations for the bifurcating
arteries and fixed-inflow simulations would have limited
additional value.

In conclusion, we have shown that our proposed method
can be a feasible plugin replacement for CFD for the task of
fast, personalised estimation of hemodynamic quantities in
high resolution on the artery wall.
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APPENDIX A
PROOF OF SE(3) EQUIVARIANCE (PROP. 1)

An SO(3) representation (Rc, ρ) is a vector space Rc with an
SO(3) action ρ : SO(3) → Rc × Rc. Let SO(2) ⊂ SO(3) be
the subgroup that leaves the z-axis invariant. The function
ρ : SO(3) → Rc × Rc can be restricted ρ|SO(2) : SO(2) →
Rc × Rc to give a representation of SO(2).

Proposition. Choose input and output SO(3) features
(Rcin , ρin) and (Rcout , ρout), which are also SE(3) represen-
tations that are invariant to translations. Choose a neural
network consisting of GEM convolution, the pooling de-
fined in Sec. 3.3, gauge-equivariant activation functions [31],
and parameters such that the input and output SO(2)
features are (Rcin , ρin

∣∣
SO(2)

) and (Rcout , ρout|SO(2)). For a
mesh M = (V,F) including a choice of gauge, let FM :
X (V,Rcin)→ X (V,Rcout) denote the neural network.

For a transformation g ∈ SE(3), denote by gM the mesh
where all the vertex positions are moved by the translation
and rotation of g, and the normals and gauges are rotated
by the rotation of g.

For vertex p ∈ V , let wM,p ∈ SO(3) be the rotation that
maps the z-axis of (the ambient space) R3 to the normal
vector of vertex p and maps the x and y axes of R3 to the
x and y axes on the tangent plane of vertex p, expressed in
the choice of gauge. This is a basis transformation that maps
from the global basis to a local basis at point p, consistent
with the choice of gauge on the tangent plane. Applying
this transformation for all vertices in SO(3) representation
(ρ,Rc) gives an orthogonal linear transformation ρ(wM) :
X (V,Rc) → X (V,Rc). Now define the composition F̃M =
ρout(wM)−1 ◦ FM ◦ ρin(wM) : X (V,Rcin) → X (V,Rcout).
This composition is equivariant:

ρout(g) ◦ F̃M = F̃gM ◦ ρin(g) ∀g ∈ SE(3) (2)

Proof. The network only depends on the mesh through
the intrinsic quantities of the parallel transport and the
logarithmic map, which are equal in gM andM expressed
in the respective gauges. In particular, g preserves distances
and angles, so the neighbourhoodsN(p) remain fixed under
g. Thus, the network is invariant FM = FgM. Furthermore,
as the gauge rotates with the transformation, if r is the
rotational part of g, then wgM,p = wM,pr

−1 and thus
ρ(wgM) = ρ(wM) ◦ ρ(g−1). Filling this in leads to

F̃gM = ρout(g)◦ρout(wM)−1 ◦FM ◦ρin(wM)◦ρin(g−1)

Remark. In the above, we chose the gauge of the trans-
formed mesh gM to equal the rotated gauge of the original
mesh M. By construction, GEM-GCN is equivariant to the
choice of gauge, so any argument that holds for this case
extends to the general case as well.

Corollary. GEM-GCN together with input features defined
in Sec. 3 is SE(3)-equivariant.

Proof. The input features defined in Sec. 3.4 can be expressed
vertex-wise as a 3 · 3 · 3 dimensional SO(3) representation,

given by the elements of three (3× 3) matrices:

m1
M(p) =

∑
Br(p)∩V

~vp→q~v
T
p→q

m2
M(p) =

∑
Br(p)∩V

~nq~n
T
q

m3
M(p) =

∑
Br(p)∩V

~vp→q~n
T
q

where ~vp→q ∈ R3 is the vector pointing from p to q and ~nq
is the vertex normal at q. Combined, these form a feature
mM ∈ X (V,R27) with a SO(3) representation that acts on
each matrix by conjugation: ρ(g)(m) = gmgT . This feature
is equivariant: mgM = ρ(g)mM. When this feature is used
as an input to the network, the output is equivariant by
Prop. 1:

F̃gM(mgM) = ρout(g)(F̃M(mM))



14

APPENDIX B
BIFURCATING ARTERY SYNTHESIS

The artery centerline of the parent vessel, PMV followed by
DMV, is developed along seven control points and branches
off into the child vessel SB at the fourth control point.
The control points are evenly distanced 4 [mm] apart. We
construct the bifurcation in the y-z plane of a generic 3D
coordinate system and sample two angles from the atlas [26]
which together fully describe the bifurcation:

• β ∼ N (µβ , σ
2
β) with mean µβ = 78.9◦ and standard

deviation σβ = 23.1◦ which is the angle between
centerlines of the branches DMV and SB and

• β′ ∼ N (µβ′ , σ2
β′) with mean µβ′ = 61.5◦ and

standard deviation σβ′ = 21.5◦ which is the angle
between the bisecting line of the bifurcation and the
centerline of SB.

The angle β′ describes how much the bifurcation is skewed
towards the child branch (Fig. 2). We place the control points
so that the angle between the line connecting the fourth
and fifth point and the z-axis is β′ for SB and β − β′ for
DMV. For a more realistic curvature, the angles between
the lines connecting the other control points and the z-axis
are linearly inter- and extrapolated starting from zero at the
origin. To add curvature in x-direction, we sample a third
angle γ from the atlas:

• γ ∼ N (µγ , σ
2
γ) with mean µγ = 9.5◦ and standard

deviation σγ = 21.5◦ which is the angle at which the
PMV centerline enters the bifurcation plane.

We place the control points so that the angle between the
line connecting the third and fourth point and the z-axis is
γ while linearly inter- and extrapolating the angles between
the lines connecting the other control points and the z-axis,
starting from zero. To avoid unrealistic curvature, none of
these angles must exceed 90◦. The same (constant) curvature
extends to both DMV and SB. It is anatomically unlikely for
the LCX to curve upwards, so we restrict the SB to curve
downwards. To arrive at the final centerline, the branching
centerline path is smoothed using non-uniform rational
basis splines (NURBS).

We model the vessel lumen with ellipse contours that
are arbitrarily oriented in the plane normal to the centerline-
curve tangent. The lumen radii are drawn from the coronary
atlas [26]:

• rPMV ∼ N (µrPMV , σ
2
rPMV

) with mean µrPMV =
1.75 [mm] and standard deviation σrPMV = 0.4 [mm]

• rDMV ∼ N (µrDMV , σ
2
rDMV

) with mean µrDMV =
1.6 [mm] and standard deviation σrDMV = 0.35 [mm]

• rSB ∼ N (µrSB , σ
2
rSB

) with mean µrSB = 1.5 [mm] and
standard deviation σrSB = 0.35 [mm]

Medrano-Gracia et al. empirically show that the measured
lumen diameters coincide best, i.e. at the lowest root mean
square error ε across samples, with a bifurcation law of the
form

(dPMV)a = (dDMV)a + (dSB)a + ε

where a = 2.4 [27]. As threshold we use the empirical root
mean square error ε = 0.165 for the Huo-Kassab bifurcation
law a = 7

3 , since it is the bifurcation law with the closest

value a reported in [27]. Accordingly, we choose values so
that ε ≤ 0.165 with the constraints that

• rPMV < rDMV or rDMV < rSB, based on the intuitions
that the parent vessel should be larger than the child
vessel and should not grow after a bifurcation and

• rSB
rDMV

< 0.4 according to empirical evidence from the
atlas.

We observe that vessel diameter decreases approximately
linearly with vessel length in the relevant interval and
linearly decrease it towards the end to 87.5 % its initial
size. To give the lumen a more realistic, non-smooth texture,
we draw the contour ellipses’ semi-minor and semi-major
axes from a uniform noise distribution U(r− δ, r+ δ) where
δ = rη and η = 5 %.

APPENDIX C

TABLE 2
Dataset overview. We run CFD simulations for synthetic single and

bifurcating arteries for steady flow with fixed boundary condition,
pulsatile flow with fixed boundary condition, and pulsatile flow with

variable boundary conditions.

Single arteries Bifurcating arteries

Steady flow X X

Pulsatile X

Conditional X X
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APPENDIX D

TABLE 3
Training time until convergence measured in number of epochs and

wall-clock time of parallelised training on two NVIDIA A40 GPUs.

# epochs Wall-clock time [h]

single bifurcating single bifurcating

IsoGCN 1145 270 10:03 6:13
AttGCN 1470 660 31:18 30:48

PointNet++ 3920 1600 20:48 35:01

GEM-GCN 700 165 22:24 15:57
PointNet++‡ 6735 3330 31:29 57:16
‡ trained under data augmentation (random rotation in 3D)

Table 3 lists the number of epochs and the wall-clock
time required for convergence, indicated by a plateau in
training and validation loss, of GEM-GCN and PointNet++
on the full training set. We find that GEM-GCN converges
in considerably fewer epochs than PointNet++. In terms of
wall-clock time, GEM-GCN takes slightly longer than Point-
Net++ and considerably more time than IsoGCN for the sin-
gle arteries, while AttGCN takes the most time. GEM-GCN
has the highest ratio of wall-clock time to epochs because
its message passing contains high-order tensor products
(details in [31]) which require a lot of computational work.
However, the included group symmetry acts as loss regular-
isation that accelerates the convergence in terms of epochs.
We find that PointNet++ and AttGCN are disproportionally
harder to train on the bifurcating artery dataset compared to
GEM-GCN and IsoGCN. We have no proper explanation for
this but hint at the fact that both PointNet++ and AttGCN
work with neighbourhood attention scaling which seems to
harmonise better with the single artery dataset.

APPENDIX E

Fig. 13. Conditional, pulsatile single (top) and bifurcating (bottom)
artery WSS prediction error across the test split over time. Five bound-
ary conditions per artery are contained as separate data points. Maxi-
mum WSS magnitude is indicated in yellow.

Fig. 14. Conditional, pulsatile single-artery WSS prediction. GEM-
GCN is conditioned on coronary blood flow and maps boundary con-
ditions to according wall shear stress.
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