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Abstract: Over the last three decades, traffic crashes have been one of the leading causes of fatalities
and economic losses in the U.S.; compared with other age groups, this is especially concerning for
the youth population (those aged between 16 and 24), mostly due to their inexperience, greater
inattentiveness, and riskier behavior while driving. This research intends to investigate this issue
around selected Florida university campuses. We employed three methods: (1) a comparative
assessment for three selected counties using both planar Euclidean Distance and Roadway Network
Distance-based Kernel Density Estimation methods to determine high-risk crash locations, (2) a crash
density ratio difference approach to compare the maxima-normalized crash densities for the youth
population and those victims that are 25 and up, and (3) a logistic regression approach to identify the
statistically significant factors contributing to young-driver-involved crashes. The developed GIS
maps illustrate the difference in spatial patterns of young-driver crash densities compared to those for
other age groups. The statistical findings also reveal that intersections around university areas appear
to be significantly problematic for youth populations, regardless of the differences in the general
perspective of the characteristics of the selected counties. Moreover, the speed limit countermeasures
around universities could not effectively prevent young-driver crash occurrences. Hence, the results
of this study can provide valuable insights to transportation agencies in terms of pinpointing the
high-risk locations around universities, assessing the effectiveness of existing safety countermeasures,
and developing more reliable plans with a focus on the youth population.

Keywords: young-driver-involved crashes; geographic information systems; spatial density analysis;
kernel density estimation; logistic regression model

1. Introduction

The increasing trend of urbanization and rapid population growth results in increased
numbers of vehicles on the roadways. This, unfortunately, causes more crashes, which
leads to more injuries and loss of lives as well as other political, economic, and societal
costs. Based on a World Health Organization (WHO) report, the estimated total cost of
road traffic injuries in 2018 was USD 518 billion worldwide [1]. The main focus of this
article is traffic crashes involving young drivers, in particular college students. Roadway
crashes are especially concerning for young roadway users, mostly due to their relative
inexperience [2] and greater inattentiveness [3] while driving. A road safety study was
conducted by the European Union in 2018 and revealed that youths aged 15 to 24 years
accounted for approximately 17% of driver fatalities, while they represented only 11%
of the whole population [4]. In the U.S., Canada, and the European Union, roadway
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crashes are known to be one of the leading causes of fatalities and injuries among the youth
population [5,6]. Moreover, approximately 20% of novice young drivers in Great Britain
in 2008 are known to have a self-reported crash in their first 6 months of driving [7]. The
most significant factors that influence the crash occurrence of younger drivers are speeding,
driving under the influence, distraction, and other risky behaviors [8]. Moreover, previous
research studies confirm that intersections appear to be significantly problematic compared
to other network facilities for roadway users of all age groups [9,10]. However, the existing
gap in the literature inspires us to assess the assumption that safety countermeasures within
campus areas are noticeably effective in improving safety conditions in terms of severity
and frequency of young-driver-involved crashes.

In 2020, Hasan and Younos investigated the overall safety level in university campuses
using paper-based structured questionnaires filled in by students and concluded that
the safety attitude and awareness are not satisfactory enough [11]. However, they did
not specifically focus on young-driver-involved crashes that occurred in the proximity
of university areas. Thus, we defined and included a binary variable predictor in the
logistic regression models that represents if the young-driver-involved crashes occurred
in the vicinity of campuses or not. In this article, we propose an innovative geospatial
analysis methodology to study the influence of college campus locations and roadways and
the intersections around them on the frequency of young-driver traffic crashes and their
patterns. First, a statewide GIS-based assessment is performed to determine the high-risk
locations in the State of Florida using the planar kernel density estimation (KDE) approach.
This is followed by a more detailed comparative assessment for three selected counties
of Florida using both planar Euclidean Distance (ED) and roadway network distance
(RND)-based KDE methods: Alachua, Duval, and Leon. A deeper analysis is performed
with the network distance-based KDE that enables us to assess an unbiased distribution
of the crashes. In addition, a crash density ratio difference approach is adopted in order
to compare the maxima-normalized crash densities for the youth population (16–24) and
those that are 25 and up in the selected locations. Following the spatial analysis, a more
detailed interpretive statistical analysis is conducted using logistic regression models
to identify the relationship between young-driver traffic crashes and their contributing
factors. Accordingly, a regressor, named the “5-mile buffer zone” has been defined around
university campus areas to develop logistic regression models. The 5-mile buffer zone
includes the campuses as well as their immediate peripheries which include the major
arterials and access points to each campus. Additionally, it is selected as a reasonable proxy
for a typical trip length travelled by a personal vehicle [12]. A 5-mile (~8 km) radius is
roughly consistent with the assumption of a 15 min driving distance from the crash location,
accounting for the effects of traffic signals and possible delays on roadways depending on
the roadway and traffic characteristics [13].

Given the limitations of existing crash studies focusing on young-driver-involved
crashes that occurred around university campus areas, this paper examines the spatial
patterns of the youth generation-involved crashes using a Geographical Information Sys-
tems (GIS)-based methodology, with the following objectives: (a) to visualize the clustering
pattern of young-driver-involved crashes on given roadway networks, (b) to compare the
ED and RND-based results while illustrating the hotspots around campus areas, and (c)
to identify the significant predictors that contribute to the probability of young-driver-
involved crashes around the campus areas and the intersections located in their proximity.
According to previous research that revealed a significant positive correlation between
intersection presence and crash occurrence [9], the current study proposes a statistical
GIS-based analysis to examine if there is a noticeable difference between young-driver-
involved crash densities at intersections located around university campuses and the ones
outside these areas in different study areas. Note that due to the choice of the study area
location, most of the young drivers involving in these crashes consist of potential students
enrolled in colleges and universities. An earlier study considered a county-level crash risk
analysis in Florida based on higher traffic intensity, population density, and a higher level
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of urbanization; however, they did not specifically focus on colleges and universities [14].
Previous research validates the distinguishing features of college-oriented areas. For in-
stance, Koloushani et al. recently investigated the impacts of the COVID-19 pandemic on
crash frequency to evaluate the effectiveness of curfew in areas with different sociodemo-
graphics and revealed the significant correlation between the noticeable presence of a youth
population in college-oriented areas and crash count reduction during the pandemic [15].

The proposed methodology has important practical applications. Transportation
officials can adapt our methodology to analyze the youth population-specific spatial char-
acteristics of the crashes. This can help identify the possible reasons behind the risks
associated with the high-risk locations. Using this approach, more effective preventive
measures and reduction strategies can be developed by transportation officials around the
universities. The following sections will describe the methodological approach in detail.

2. Literature Review
2.1. Youth Population Involvement in Crashes

Based on the U.S. Census Bureau survey in 2019, college students make up a prominent
subpopulation of the United States, with 18 million students enrolled at any one time [16].
Based on the report provided by the Center for Disease Control and Prevention, the leading
cause of mortality among college students is unintentional fatal crashes [17]. Previous
research conducted spatial analysis to improve pedestrian [18] or bicyclists [19] safety
around the university. Moreover, research conducted by Nickkar et al., (2019) revealed
that university campuses are a multimodal network with very high levels of vehicular
activity in conjunction with walking and biking [20]. Furthermore, offering low-cost or
free-of-charge parking in most US university campuses encourages students to use personal
vehicles more [21]. Reliability of travel time is also among the main reasons that convince
students to use personal vehicles to arrive on time in class [22].

Many researchers have recognized the need to study the severity and frequency of
young-driver roadway crashes and the relevant geometric, roadway, behavioral and traffic-
related factors. For example, young drivers (aged 16 to 25) were found to be at greater risk of
being involved in a crash that leads to casualties compared with other age groups, and this
greater danger was usually related to their propensity to take risks while driving [23] and
lacking enough experience to handle critical adverse conditions while driving in various
type of crashes [24]. Previous researchers have suggested that the most critical factor for
young drivers’ injuries and fatalities is risky driving behavior [25]. Aggressive violations,
in-vehicle distractions [26], and demographic characteristics were also found to be other
significant factors affecting 16–17-year-old drivers’ involvement in at-fault crashes [27].
Fifty percent of crashes involving young drivers were also found to be due to intentional
risky behavior and decisions [5]. Young drivers’ beliefs, perceptions, and decision-making
processes that may determine their willingness to engage in risky driving behaviors have
also been examined in the literature [23,28]. This excessive risk-taking among young drivers
was mainly due to failing to perceive hazardous situations compared to more experienced
drivers [29]. On the basis of the research conducted by Deery in 1999, young drivers
usually overestimate their own driving skills compared to experienced drivers [30]. The
most important risk-taking behaviors that are found to affect the decision-making of young
drivers include the following: sleepiness, recklessness, distraction, using cell phones [31,32],
following the vehicle in front very closely [33], failure to yield [34], and drug and alcohol
use [35]. Young drivers also showed higher risks associated with speeding compared to
other age groups, which led not only to more crashes but also to an increase in the injury
severity [36]. Another research evaluated the performance of distracted young drivers who
text while driving and revealed that texting causes a statistically significant increase in
the mean reaction time in urban and rural road environments [37]. A survey study on the
influence of using cell phones while driving among young drivers reported that 70% of
young drivers initiated texts, and 81% replied to texts while driving [38]. Moreover, the
combinations of various crash-related factors were investigated by Rolison and Moutari



Sustainability 2022, 14, 696 4 of 27

concerning single and multiple-vehicle crashes in Great Britain. This study revealed the
significant contribution of slippery road condition to the higher risk for young drivers [39].
The possible correlation between campus influence area and young-driver-involved crashes
still remains unsolved, even though this research considers combinations of crash-related
factors. In addition to the above-mentioned studies, which mainly assess the contributing
factors of young-driver-involved crashes, Islam and Singh conducted a temporal analysis
to examine the seasonal factors that affect the severity of crashes and concluded that
older drivers and younger drivers are affected differently, both in summer and winter [40].
However, they did not include the campus influence area and university-related factors in
the analysis.

The extensive review of the literature has highlighted the significant contribution of
young roadway users to crash occurrences. However, to the authors’ knowledge, no study
in the literature provided a systematic methodology to investigate the risk factors affecting
the occurrence of young-driver-involved crashes that occurred around universities. This
proposed GIS-based spatial statistical methodology aims to provide a better understanding
of the contributing factors associated with young-driver-involved crashes, particularly to
those that occurred in college-oriented cities.

2.2. Geospatial Crash Analysis

The effectiveness of the GIS-based methods in the spatial analysis of traffic collisions
has been widely assessed in previous literature [41]. GIS has also been used by many agen-
cies to identify those roadway segments and intersections that pose a high crash risk [42].
Visual illustrations of crash clusters on GIS maps have provided valuable information to
these agencies. There are plenty of clustering methods found in the literature, including
Getis-Ord (Gi*) statistics [43], latent class clustering [44], and many other techniques to
identify the density of high crash occurrence locations called hotspots. One of the common
methodology used for such a spatial analysis is kernel density estimation (KDE), which has
been widely used in previous studies [45]. There are two major approaches to conduct KDE
analysis: planar Euclidean distance (ED)- and roadway network distance (RND)-based
KDE. The planar method utilizes the Euclidean distances between crash points, whereas the
latter one utilizes the actual roadway network distance. At a higher level, when viewing a
whole state or city, for example, it is generally appropriate to use planar methods. However,
at a local level, while looking at specific corridors and intersections, the RND approach
does not suffer as badly from overestimating risk in denser network spaces, as does the ED
kernel density estimation approach. This is because crashes actually occur on the roadway
network, where distances between two points are not necessarily Euclidean. The SANET
(Spatial Analysis on a NETwork) toolbox, which is a series of tools based on the roadway
network-based distance calculations, solves this problem, and therefore provides more
accurate hotspots at a local level. This toolbox was first developed by Okabe et al. [46] as
one of the first implementations of the roadway network-based KDE approach and has been
applied successfully by several researchers [47,48]. In this research, an RND-based KDE
method, as a tool available in SANET, provided an unbiased distribution of the crashes
along with the networks.

2.3. Statistical Analysis of Correlated Factors

Several studies have used statistical analyses to investigate the predictor variables
that could significantly affect roadway crashes and their severity [49,50]. In the literature,
several studies have shown that different environmental, roadway- and driver-related
predictor variables have different effects on the probability of crash involvement with
regard to various age groups [51]. Scanning the literature, many studies have applied
logistic regression in the context of crash studies. For example, Kong and Yang used
logistic regression to investigate the relationship between speed and pedestrian casualty
in vehicle-pedestrian collisions in China [52]. Elsewhere, Fitzpatrick et al. developed
logistic regression models to identify which crashes truly were or were not considered as
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speeding-related crashes, given the crash narratives [53]. More broadly, logistic regression
models have been used widely as the binary choice models in the literature, such as in cases
of choices between the probability of crash occurrence and interacting predictors [54,55].
Ye and Lord [56] conducted a Monte-Carlo approach based on simulated and observed
crash data to compare three different models, including multinomial logit, ordered probit,
and mixed logit models to identify the required sample size for crash severity modeling.
The results indicated that the mixed logit model and the ordered probit model required the
highest and lowest sample size, respectively [56]. Additionally, Alam and Spainhour [2]
implemented a binary logit model in order to investigate the association between at-fault
drivers’ age with fatal crashes on highways and state roadways in Florida. The findings
indicated that the probability of fatal crashes is higher for younger (≤24 years) and older
drivers (65–74 and ≥75) than other age cohorts. Recently, Se et al. [57] employed the hier-
archical binary logit technique to compare driver injury severity and found that roadside
safety features (guardrails) significantly reduce fatal crashes among young drivers, but
they did not expand the result around university campus areas specifically. Ulak et al. [48]
also applied a three-step spatial analysis on three urban counties in northwest Florida to
investigate crashes involving aging drivers. They developed a statistical analysis to identify
the predictor variables that are statistically significant in crashes involving aging drivers.
The results of this study revealed different spatial and temporal patterns for aging-involved
crashes compared to other age groups. However, none of these studies specifically focused
on young-driver-involved crashes that occurred in the proximity of university areas using
GIS-based models and statistical methods.

3. Methodology

The main objective of this research is to develop a GIS-based methodology that can
be used to spatially analyze young-driver-involved roadway crashes and determine if
university campus locations are prone to more young-driver-involved crashes or not.
The paper focuses specifically on the crashes that involve youth populations in order to
systematically determine the most hazardous locations associated with those crashes. By
the hazardous location analysis, we mean identifying the youth population-involved hot
spots and crash clusters on the given roadway network and evaluating the hypothesis that
roadways around universities are among the highest-risk areas with respect to young-driver
crash densities in the selected counties with distinguishing college-oriented characteristics.
Moreover, logistic regression model findings statistically confirm the visual conclusions
obtained by GIS in the following sections. A descriptive flowchart displaying the overall
spatial-statistical analysis methodology is provided in Figure 1. This methodology was
applied to three urban counties in Florida: Alachua, Leon, and Duval. Leon and Alachua
counties are homes to two college towns, Tallahassee and Gainesville, respectively, whereas
Duval County is one of the most highly populated counties of Florida, with a high university
student population. We intend to assess how different types of counties have impacted
young-driver crash density patterns.

One of the most common methodologies used for a GIS-based spatial clustering
analysis is kernel density estimation (KDE). KDE is used to identify the density of high
crash occurrence locations called hotspots [45]. There are two major approaches to conduct
the KDE analysis: planar Euclidean distance (ED)- and roadway network distance (RND)-
based. The planar method utilizes the Euclidean distances between crash points, whereas
the latter one utilizes the actual roadway network distance. At a higher level, when looking
at a whole state or county, for example, it may be appropriate to use planar methods
generally. However, at a local level, while looking at specific corridors and intersections,
the ED method will identify all the roadways and intersections that reside in the peak
density region as ‘high crash’ risk locations. This is critical because it may cause the
following problems: (a) Overestimation: Some roadways that do not actually possess high
risk are shown to be as such, (b) Underestimation: Because multiple roadways are shown
as critical locations rather than the actual roadways that have high crash risk, one may
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not give the needed attention to the actual high-risk locations. The SANET toolbox, which
is based on roadway network-based distance calculations, solves the overestimation and
underestimation problems associated with the ED kernel density estimation approach and
therefore provides more accurate hotspots at a local level.
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The selection of bandwidth values is also critical for the KDE approaches. This is
mainly owing to the fact that considering extremely small bandwidths might discard the
critical clusters by diminishing connections between points, whereas very large band-
widths might fail to identify local clusters by averaging out the effect of closely connected
points [58]. Hence, as an example, bandwidths can be selected based on trial-and-error for
the ED approach [59]. A research study conducted by Okabe et al. suggests a bandwidth
ranged from 100–300 m. for applying the network-based KDE, especially in urban areas.
Therefore, in this paper, a 200 m. bandwidth has been selected for both ED and RND
approaches based on trial-and-error within the range provided in previous research for
urban networks [60]. Moreover, the SANET needs another input named cell-width value,
which was taken as equal to 20 [47] (one-tenth of the bandwidth).
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In addition, we applied a crash Density Ratio Difference (DRD) measure to evaluate
the difference between normalized crash intensity ratios for two age groups: 16–24 and
25 and over. The DRD is a useful index to identify and investigate hotspots, which was
developed in a research conducted by Ulak et al. in 2017 [48]. This comparative crash
density analysis was conducted to evaluate the spatial patterns of crashes that involve the
youth population and compared hotspots between different age groups. In this paper, DRD
represents the difference between the maxima-normalized crash densities for the following
crash drivers: 16–24 and 25 and over. The formula of DRD is shown in Equation (1).

DRDij =
Di

max(Di)
−

Dj

max
(
Dj

) (1)

where DRDij is the density ratio difference between the compared maps I and j, whereas
Di and Dj are the density values of the corresponding roadway sections, and max (Di)
and max (Dj) are the maximum crash density values of the compared maps, respectively.
Based on this approach, the highest value of normalized density for each age group is
equal to 1, whereas the lowest value of normalized density is equal to 0. Based on the
calculation of normalized crash densities, the crash density map of the 16–24 (map i) age
group is subtracted from the crash density map of 25 and over (map j) drivers individually.
Therefore, the DRD index reveals the relatively different locations in the area, which
provides even more explicit visual results in terms of geo-spatial differences between the
two different age groups.

Note that there is an extensive amount of research literature available on the gener-
alized linear regression models. Logistic regression, which is also known as logit model
or logit regression, is used as a statistical analysis to predict the probability of an event
happening given the available data. Logit regression is a suitable regression model when
the dependent variable is binary [61]. In this paper, we present three separate logistic
regression models for each county in order to estimate the effects of these factors on young-
driver-involved crashes and test their level of significance. The model includes a binary
predictor variable that indicates whether a crash occurred around university campuses or
not. To define this variable, we added a binary attribute to the crash dataset, coded as 1,
indicating a crash occurrence within a 5-mile buffer around campus, and zero for otherwise.
The response variable (a crash involving a young driver or not) utilized in the model is
also binary; hence, a binary choice model was developed in this study. In order to estimate
the coefficients of the predictor variables of the logit model, we maximized the following
log-likelihood function:

lnL(δβ) = ∑n
i=1{Yi ∗ [ψ(Xiβ)] + (1− Yi) ∗ [1−ψ(Xiβ)]} (2)

where Yi is the binary response variable (0 or 1) that denotes the occurrence of a young-
driver crash, Xi is the row vector for the values of the predictor variables for ith observation,
β is the vector of coefficients of the predictor variables, n is the number of data points (crash
or non-crash) observed in the study region, and ψ(Xiβ) is the cumulative distribution
function of the logistic function. In this study, the response variable Yi is equal to 1 if the
crash involved a young driver, or 0 otherwise.

In the current study, a subset of predictor variables has been considered based on the
Pearson correlation coefficients, forward selection method, literature review, and authors’
prior knowledge to develop the logistic regression models for all three counties, namely
Alachua, Duval, and Leon. Table 1 lists the predictor variables along with their descriptions.
The fitted logistic regression models for the three counties and the discussion of these
results is provided in the Results Section. The glm command in R has been used to fit the
logistic regression models.
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Table 1. Description of predictor variables.

Predictor Variable Description

Estimated Vehicle Speed (mph) The vehicle’s speed at the time of the crash
AADT (Divided by 1000) Average Annual Daily Traffic divided by 1000
Weekend The crash occurred on Friday, Saturday, or Sunday
At Peak Hours The crash occurred during peak hours (6–9 a.m. & 4–7 p.m.)
Alcohol-Drug Abuse One or more drivers were under the influence of alcohol/drugs
Intersection Presence Intersection involvement for the crash
Weather Conditions The crash has not occurred during clear weather conditions
Light Conditions The crash has not occurred during daylight conditions
Speeding Violation Speeding involvement for the crash
Aggressive Driving Aggressive driving by one or more of the drivers
Fatality or Incapacitating Injury Fatality or Incapacitating injury has occurred
Distracted Driver One or more drivers were distracted at the time of the crash
Single Driver Single-Driver crash (No passenger)
Within University Area The crash occurred within a 5-mile buffer around the university

In Table 1, the first two predictor variables are continuous, and the others are defined
as binary variables, meaning that 1 stands for “Yes” and 0 otherwise.

4. Study Area and Data Description

This research intends to examine the correlating factors associated with young-driver-
involved crashes that occurred around campuses of junior colleges, colleges, universities,
or professional schools. To follow this purpose, we focus on the youth-age (16–24) drivers
involved in crashes occurring in the whole state of Florida, and three selected Florida
counties namely Alachua, Duval, and Leon, in detail. The Florida Department of Motor
Vehicles (DMV) issues a restricted license to teenagers between 15 and 17 once they complete
the required courses and tests [62]. A teenager must have a learner permit for one year
while practicing their driving skills with an adult. After 12 months with a learner permit,
he/she can then take the driving test to obtain a full Florida driver’s license [62]. In this
study, therefore, we screened the crashes where the driver was aged between 16 to 24. We
will use the term “young-driver-involved crashes” to represent this type of crash in this
paper. The above-mentioned age group is associated with the youth population who attend
junior colleges, colleges, universities, or professional schools based on National Center for
Education Statistics (NCES) suggestions [63].

According to the U.S. Census estimates, as of 2019, Duval County is the seventh
most populated county in Florida and contain 15 universities and other higher education
institutions. Alachua and Leon County, on the other hand, are considered mid-size counties
based on their populations [16]. The crash data is composed of points dispersed along the
roadway network, and each point represents a vehicle crash with the associated driver
information. This dataset was obtained from the FDOT Safety Office in the format of
GIS shapefiles and their respective databases and includes 4 years of data from 2011 to
2014 [64]. These shapefiles were extracted and mapped onto the GIS using the longitudes
and latitudes of each crash data point. Roadway network, on the other hand, was obtained
from the TIGER Geodatabase of the U.S. Census Bureau [16]. Table 2 shows the number
of crashes for the whole state as well as each county separately. It should be mentioned
that separate datasets including local roadway and highway system crashes were merged
in order to obtain one aggregated crash dataset that includes all the crashes that occurred
during the years from 2011 to 2014.
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Table 2. Overview of Crash data in Florida Counties between 2011 and 2014.

Year

2011 2012 2013 2014 Total

Local
Roadway

Florida 100,220 113,514 133,605 157,229 504,568
Alachua 1340 1396 1346 1255 5337
Duval 3731 7888 8827 8567 29,013
Leon 2405 2387 2611 2774 10,177

Highway
System

Florida 145,517 169,310 194,456 214,968 724,251
Alachua 3473 3568 3812 3301 14,154
Duval 8269 16,723 17,584 17,279 59,855
Leon 2756 2797 2934 3205 11,692

Figure 2 illustrates the overview of the study area, including university locations
in each county. Leon and Alachua counties are home to two college towns, Tallahassee
and Gainesville, respectively, whereas Duval County is one of the most highly populated
counties of Florida, with a high university student population. Alachua and Leon are
among the highest college-oriented counties, with a great number of students enrolled at
junior colleges, colleges, universities, and professional schools (See Table 3).
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Table 3. Overview of the Universities, and Number of Crashes around University.

County Total Population Total # of Crashes
Total # of
Young-Driver-Involved
Crashes (% to Total)

Total # of Young-Driver-Involved
Crashes Around the University
(% to Young-Driver
-Involved Crashes)

Junior Colleges, Colleges, Universities, and
Professional Schools Enrollment

Alachua 269,000 19,491 8177 (42%) 7191 (88%)

University of Florida 51,475
Santa Fe College 14,796
Dragon Rises College of Oriental Medicine 36
City College Branch Campus 272
Academy for Five Element Acupuncture 32

Duval 957,000 88,868 27,930 (31%) 24,365 (87%)

University of Phoenix-North Florida Campus 1126
University of North Florida 14,982
Trinity Baptist College 300
Stenotype Institute of Jacksonville Inc. 293
Remington College—Jacksonville Campus Online
Jones College—Jacksonville 558
Jacksonville University 3418
ITT Technical Institute—Jacksonville 552
Heritage Institute—Jacksonville 388
Florida Technical College of Jacksonville Inc. 204
Florida Community College at Jacksonville 25,686
Florida Coastal School of Law 1498
Everest University—Jacksonville 438
Edward Waters College 840
Concorde Career Institute 587

Leon 293,000 21,869 8833 (40%) 7166 (81%)

Tallahassee Community College 14,048
Florida State University 38,717
Florida Agricultural and Mechanical University 11,672
Flagler College—Tallahassee 454

All # signs indicate numbers.
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Moreover, in Table 3, we observe that a considerable percentage of drivers involved
in crashes that occurred in these counties are those that are between the ages of 16 and 24,
as expected. Using the GIS query tool, crash data for the age group of 16–24 and 25 and
over were separated. Note that crash data include the required information associated with
drivers involved in a crash. These data do not include crashes occurring at parking lots,
on private property, and on private roadways. The roadway network, on the other hand,
is obtained from the TIGER Geodatabase of the Census Bureau [16]. We also consider the
locations of all junior colleges, colleges, universities, and professional schools within three
selected counties in Florida, obtained from the U.S. Geological Survey [65].

This study examined the crash spot-residence location distances based on the occupant
residential ZIP code centroid. The results of this study imply that if there is a crash around
a facility, it is more likely that the crash is closer to the residential ZIP code of the crash
occupants. We focus on those crashes that are in the vicinity of the campus locations
(selected based on a 5-mile buffer). Based on previous studies, the 5-mile buffer zone radius
is selected as a reasonable proxy for a typical trip length traveling by a personal vehicle [66].
Moreover, a 5-mile radius is roughly consistent with the assumption of a 15-min driving
distance from the crash location, accounting for the effects of traffic signals and possible
delays on roadways depending on the roadway and traffic characteristics [13]. For these
reasons, a 5-mile radius is selected as a representative measure for the crash locations in
the three studied counties. Based on Table 3, it is also worth mentioning that a noticeable
percentage (>80%) of young-driver-involved crashes occurred around universities within
the selected 5-mile buffer.

5. Results
5.1. GIS-Based Visual Illustrations

The kernel density estimates of the crash counts of the three counties were computed
in ArcGIS and the SANET toolbox. Figure 3 shows the results obtained from the ED
application for the State of Florida as well as the selected counties. Note that the dark
red areas in Figure 3 indicate the high-crash-risk locations around university campuses
with respect to young-driver-involved crashes. For the whole state, it is clear that many
metropolitan regions have higher crashes involving young people. This study, on the other
hand, focuses on two counties that include college towns (Tallahassee and Gainesville),
namely Leon and Alachua counties, where high-risk locations are clustered around the
universities (See Figures 3 and 4). The third county selected is Duval County, which is a
larger metropolitan area including the City of Jacksonville. Based on this county selection,
at the county level, the DRD methodology was applied using the ED approach, and the
results can be seen in Figure 4.

Based on Figure 4, the normalized crash intensity ratio differences between those aged
16–24 and those that are over 25 seem to occur mostly in the vicinity of the University of
Florida and Florida State University in Leon and Alachua counties, respectively. The dark
red areas indicate that the 16–24 age group crash intensities increase around universities,
particularly in Leon County. In Duval County, on the other hand, there are no distinguished
patterns, possibly due to the higher urbanization of the region. The hotspots shown as
dark red are located to the north of the 5-miles university area (including Jacksonville
University, Florida Technical College of Jacksonville, Concorde Career Institute, and Jones
College-Jacksonville) in Duval County. There are no clear differences between crashes
involving 16–24 vs. the 25 and up populations around the University of North Florida and
Florida Community College. This may be linked to the high population and urbanization
of the city itself.
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Figure 3. ED-based KDE application for the State of Florida and the selected counties.

The ED approach has been implemented at the county level in Figure 3. However,
in order to estimate the extent of the high-risk locations more accurately at a local level,
the RND approach is applied to those regions around the universities that seem to pose
a high risk for youth populations (see Figures 5–7). Based on what is shown in Figure 3,
at a state level, it may be appropriate to use ED-based methods. However, at a local level,
while looking at specific corridors and intersections, the ED method will identify all the
roadways and intersections that reside in the peak density region as hotspot locations. This
is critical because it may cause overestimation or underestimation. Therefore, the exact
hotspot locations that require an appropriate safety improvement countermeasure remain
unidentified. The proposed two-stage approach is aimed at achieving computational effi-
ciency. This is achieved through the SANET method and is shown in Figures 5a, 6a and 7a.
Taking this approach, it becomes possible to detect the roadways that have a high number
of young-driver-involved crashes where every distance between the crashes is calculated
based on the actual roadway (network) distance. The 3D maps of Figures 5b, 6b and 7b
were created based on the SANET method and represent those distributions of the RND
approach. The 3D maps of Figures 5b, 6b and 7b present the ED-based KDE displayed as a
blue to a red color ramp on the plane, and the RND-based KDE outputs have been plotted
above the ED-based KDE in perspective 3D view in white to the red color ramp.
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As stated earlier, Figure 3 represents the ED-based results for Alachua, Duval, and
Leon counties, and shows the crash hotspots located in the 5-mile buffer around the
university campuses. The RND approach, represented in Figures 5–7, on the other hand,
enables us to identify the exact locations of the most critical hotpot corridors. As such, the
drawbacks of the planar KDE approach are more visible in the 3D visualization of crash
density maps of the counties. For example, some parts of the university region, which is
shown as a critical hotspot in the ED-based maps in Figure 3, do not have the highest peak
(highest crash risk) in the 3D maps created using the RND approach (Figure 5 through
Figure 7).

With a focus on Figure 5, considering Alachua County, the RND approach does not
show any critical hotspots in some parts of NW 31st Ave., W Newberry Rd., SW 34th St., or
NW 6th St., which are identified as being important by the ED approach. This indicates
that ED-based KDE overestimates the crash density along these roadways. Although this
may not be entirely visible from the 2D maps, they are typically identifiable by the high
surface peaks in the three-dimensional (3D) view of crashes (Figure 5).
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Similarly, with regard to the results presented in Figure 3, almost the entire area
around Florida Technical College of Jacksonville and Concorde Career Institute appear to
be critical due to their dark red color; however, the whole area is not actually a hotspot, but
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rather certain roadways have higher crash rates than others in that particular area. This is
more precisely shown through using the SANET results shown in Figure 6. Other similar
examples include Cesey Blvd., Rogero Rd., and Townsend Blvd (Figure 6).

The same overestimation is observed in Leon County (Figure 7). Although the whole
area around Florida State University is shown in dark red and identified as hotspots in the
ED approach, some segments are critical hotspots identified by the RND approach, such as
W Call St. intersection with Stadium Dr. N Woodward Ave., S Adams St., and W 7th Ave.,
on the other hand, are not as critical as W Call St. intersection with Stadium Dr. based on
the RND approach. However, those locations are also shown to possess a high risk based on
the ED approach (Figure 7). Thus, RND-based KDE leads us to a more detailed assessment
of young-driver-involved crashes, and this approach allows us to observe high-crash-risk
locations more clearly and accurately.

Based on analyzing the high peaks in Alachua County in Figure 5b, there appears to
be two major hotspots around the university area: the intersection of SW 20th Ave and NW
62nd St. and SW 20th Ave and W. University Ave. These locations are in the vicinity of
the University of Florida. Similarly, the intersection of W Tharpe St. and San Luis Rd., the
intersection of W Tharpe St. and Ocala Rd., and the intersection of W Tharpe St. and High
Rd. in Leon County are among the most critical hotspot associated with youth-involved
crashes (Figure 7b). Figure 6b also clearly shows that the highest young-driver crash density
in Duval County is found at the Townsend Blvd. and Merril Rd. intersection.

5.2. Regression Analysis

In order to develop the logistic regression models, we considered a subset of predictor
variables for the regression analysis, selected based on the Pearson correlation coefficients
(see Figure 8), literature review, and the authors’ prior knowledge. This approach enables
us to remove the ones with the high correlation value to develop a more accurate regression
model and avoid multicollinearity and inflation while predicting the probability of occur-
rence of young-driver-involved crashes. The correlation matrices shown in Figure 8 yield
the results needed to examine the influence of predictor variables on each other. Based
on the correlation matrix shown for Duval County (Figure 8b), there is a high correlation
between “Estimated Vehicle Speed” and “Average Annual Daily Traffic” that leads to
collinearity. This indicates that considering both predictor variables in logistic regression
models will cause some regression coefficients to have a wrong sign and inflate the vari-
ance of the estimated regression coefficients. Thus, we removed the “Estimated Vehicle
Speed” from the model for Duval County. We also developed another logistic regression
model with “Estimated Vehicle Speed” and without “AADT” to check their influence on
the results.

The results of statistical analyses for the selected three counties, namely Alachua,
Duval, and Leon, are provided in Table 4. In the table, the “β” coefficients show the positive
or negative contribution of predictor variables on the response variable, relatively. “SE”
values, which stand for Standard Error, estimate the standard deviation of the coefficients
in the model. That is, it measures the precision of the model. Additionally, “p” values reveal
the significance level of different predictor variables on the binary response variable, and
these values have been used to examine whether a predictor variable has significance at 90%
or higher per the logistic regression model used for each county. It is worth mentioning that
the predictors have been added to the models based on a step forward selection method
one at a time [61]. Variable Inflation Factor (VIF) has also been examined to ensure the
selected predictors are not mutually correlated and hence do not cause inflation of the
estimation uncertainty. The forward selection approach along with VIFs allowed us to keep
all the selected crash-related factors in the logistic regression models and distinguish the
differences between the associated significant levels for each county.
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We found that “Estimated Vehicle Speed” has a positive effect on the response variable
at a 99% level of significance, similar to the other two counties. This indicates that the
higher estimated vehicle speed increases the probability of youth involvement in crashes.
It is also worth mentioning that there are negative correlations between “Estimated Vehicle
Speed” and “Within University Area” for all these three counties (See Figure 8). That is,
the vehicles involved in the crashes occurring around campus areas (within 5-miles buffer)
have lower speed estimation at the time of crash, mainly due to the lower speed limit in
these areas. Thus, it could be concluded that the lower speed limits around campus area
do not necessarily prevent young-driver crash occurrence despite their effectiveness in
decreasing vehicle speed. Note that all three logistic regression models are thoroughly
checked for possible multicollinearity issues between predictors based on the VIF and
correlation matrices provided in Figure 8.

Statistical results obtained by logistic regression models also reveal that “Distracted
Driver”, “Intersection Presence”, and “Within University Area” variables have statistically
significant increasing effects on the probability of young-driver-involved crashes for all
these counties. The positive estimated coefficient for “intersection presence” indicates
higher young-driver crash probabilities at intersections. Furthermore, Figure 8 illustrates
positive correlations between “Within University Area” and “Intersection Presence” vari-
ables in all three counties. This shows that most of the problematic intersections are located
around universities. These statistical findings confirm the soundness of results obtained
by the RND-based KDE method that illustrated those intersections in dark red as hotspot
areas with noticeable young-driver crash densities (see Figure 5 through Figure 7). Based
on the crash data considered in the current study, 10,305 crashes occurred at intersections
in Alachua County. Among these, 4623 crashes were young-driver-involved crashes, which
is approximately equal to 45% of the total number of crashes occurring at intersections. It is
also worth mentioning that, among the 1937 crashes occurring at intersections where the
driver was distracted, 1015 (about 52%) of them involved young drivers. Duval County
and Leon County also follow a similar pattern (Table 5).
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Table 4. Logistic regression analysis results, (a) Alachua County, (b) Duval County, (c) Leon County.

Regressors
Alachua County Duval County Leon County

β SE p VIF β SE p VIF β SE p VIF

Intercept −1.319 0.060 ≈ 0 −0.865 0.026 ≈ 0 −0.933 0.053 ≈ 0
Estimated Vehicle Speed 0.005 0.001 ≈ 0 1.41 0.016 0.001 ≈ 0 1.13
AADT/1000 0.002 0.001 0.04 1.16 0.002 0.000 ≈ 0 1.05 −0.002 0.001 0.02 1.20
Weekend −0.031 0.015 0.04 1.03
At Peak Hour 0.047 0.015 ≈ 0 1.05 −0.093 0.031 0.01 1.04
Alcohol/Drug Abuse 0.393 0.109 ≈ 0 1.01 0.206 0.124 0.09 1.03
Intersection Presence 0.185 0.031 ≈ 0 1.10 0.115 0.015 ≈ 0 1.04 0.199 0.031 ≈ 0 1.18
Weather Condition 0.057 0.032 0.07 1.03 0.058 0.015 ≈ 0 1.03
Light Condition 0.053 0.016 ≈ 0 1.05 −0.169 0.031 ≈ 0 1.08
Speeding Violation 0.373 0.050 ≈ 0 1.04 0.532 0.070 ≈ 0 1.07
Aggressive Driving −0.748 0.168 ≈ 0 1.01 0.179 0.085 0.03 1.03 −0.238 0.120 0.05 1.04
Fatality/Incapacitating −0.215 0.073 ≈ 0 1.03 −0.114 0.039 ≈ 0 1.01 −0.331 0.083 ≈ 0 1.02
Distracted Driver 0.387 0.039 ≈ 0 1.01 0.351 0.021 ≈ 0 1.00 0.477 0.040 ≈ 0 1.00
Single Driver 0.068 0.030 0.02 1.05 −0.337 0.015 ≈ 0 1.02 −0.358 0.029 ≈ 0 1.01
Within University Area 0.718 0.046 ≈ 0 1.24 0.067 0.022 0.002 1.02 0.371 0.037 ≈ 0 1.09

N: 19,491, df: 19,480 N: 88,868, df: 88,855 N: 21,869, df: 21,856
χ2 = 526, p ≈ 0 χ2 = 1130, p ≈ 0 χ2 = 893, p ≈ 0

Generalized linear regression model: logit (y) ~ 1 + x1 + x2 + x3 + x4 + x5 + x6 + x7 + x8 + x9 + x10 + x11 + x12 + x13
+ x14. y ~ Probability of a crash to involve a young driver (16–24). Binary variables: “Weekend” (1: Weekend, 0:
Weekday), “At Peak Hour” (1: Yes, 0: No), “Alcohol/Drug Abuse” (1: Yes, 0: No), “Intersection Presence” (1: Yes,
0: No), “Weather Condition” (1: Otherwise, 0: Clear), “Light Condition” (1: Otherwise, 0: Daylight), “Speeding
Violation” (1: Yes, 0: No), “Aggressive Driving” (1: Otherwise, 0: Clear), “Fatality or Incapacitating injury” (1: Yes,
0: No), “Distracted Driver” (1: Yes, 0: No), “Single Driver” (1: Yes, 0: No), “Within University Area 5-mile buffer
zone” (1: Yes, 0: No). Continuous Variables: “Estimated Vehicle Speed”, “AADT”. Abbreviations: β: estimated
coefficient, SE: standard error, p: p-value, N: number of observations, df: degrees of freedom, χ2: Chi2 statistics
vs. constant model. Note: The models merely include the independent variables with at least a 90 percent level
of significance.

Table 5. Number of crashes involving intersection and distracted driver.

County Total # of Crash Total # of Intersection
Involvement Crash

Young-Driver
Intersection Crash

Total # of Distracted
Driver at Intersection

Involvement Crash

Distracted Young
Driver at

Intersection

Alachua 19,491 10,305 (53%) 4623 (45%) 1937 (10%) 1015 (52%)
Duval 88,868 36,476 (41%) 12,031 (33%) 5015 (6%) 1994 (40%)
Leon 21,869 9362 (43%) 4037 (43%) 1422 (7%) 742 (52%)

Note: Italic percentage values in parentheses indicate the percentage of the total number of crashes. Underlined
values indicate the percentage of the number of crashes with specific characteristics. All # signs indicate numbers.

Note that other age group populations may also have relatively more crashes at inter-
sections [67]; however, the current research reveals that those intersections located around
university campuses are prone to more young-driver-involved crashes. This problem was
also evidenced in research conducted by Kidando et al. in 2018, where the youth popula-
tions were found to have 85.1% of all crashes on intersections on the Mahan Corridor of
Leon County [68]. Because redesigning a roadway intersection would be very costly to
transportation agencies, it can be more appropriate to maintain and operate the current
intersections in a better and smarter way, especially in regions that have high youth popu-
lation activities, such as the counties studied in this paper. Some effective interventions,
including installing speed humps and intelligent traffic video surveillance, a higher level of
police enforcement, and higher penalties for speeding violations alongside enacting more
strict regulations could be utilized around universities to reduce young-driver-involved
crashes. Intelligent Transportation System (ITS)-based safety improvement strategies im-
plementations have also been studied in previous research, and they have the potential
to yield better signalization, signing, and communication through IT-based systems. For
instance, the application of an interactive in-vehicle tool, namely a “riskometer”, can be
used to enhance the safety of young drivers [69].

The noticeable percentage of distracted young drivers at intersections indicates that
this issue needs urgent attention to prevent the occurrence of these crashes. The effects of
state-of-the-art technologies to improve the attentiveness of young drivers while driv-
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ing and provide them with modern onboard devices to avoid distraction have been
studied [70–72]. For instance, the connected vehicle (CV) and driving assistance (DA)
technologies have the ability to reduce 94% of crashes in the U.S. that are due to either
human error or bad/wrong decisions [73]. These technologies include, but are not limited
to, the following: lane departure warning (LDW), intersection movement assist (IMA),
forward collision warning (FCW), and adaptive cruise control system (ACC). For example,
FCW can mitigate approximately 17 to 70% of rear-end crashes [74], while LDW has the
ability to reduce about 17 and 33% of crashes if the application is fully operational [75].

The “Weekend” variable has a large negative coefficient for Duval County, which
indicates that the probability of occurrence of young-driver-involved crashes during the
weekdays is higher in comparison to the one for weekends. However, this variable does
not have a significant influence in Leon and Alachua Counties, mainly as a result of the
uniform temporal distribution of crashes during a week due to the college-oriented nature
of these counties. Logit regression models reveal that the “Alcohol/Drug Abuse” variable
has a different pattern with regards to its significant positive impact on the probability of
young-driver-involved crashes in Alachua and Leon counties. On the other hand, it is not
statistically significant for Duval County. This shows that driving under the influence of
alcohol or drugs significantly increases the probability of young-driver-involved crashes in
Alachua and Leon counties. This variable for Duval County, which is noticeably higher
than the other two counties, on the other hand, does not have a significant contribution to
the regression model. Table 6 shows this insignificant impact, which could be due to the
low percentage of alcohol/drug and young-driver-involved crashes to the total number of
alcohol/drug crashes.

Table 6. Number of Distracted or DUI young drivers.

County Total #
of Crash

Youth Involved
Crash

Total # of
Alcohol/Drug

Crash

Young-Driver
Alcohol/Drug

Crash

Total # of
Distracted

Driver

Young-Driver
Distracted

Driver

Alachua 19,491 8177 (42%) 328 147 (45%) 3366 1696 (50%)
Duval 88,868 27,930 (31%) 1350 413 (31%) 11,553 4436 (38%)
Leon 21,869 8833 (40%) 290 131 (45%) 2982 1522 (51%)

All # signs indicate numbers.

The “Aggressive Driving” predictor has a high level of significance in all three counties;
however, it is worth mentioning that it has a different pattern for Duval County. That is, for
Leon and Alachua counties, aggressive drivers do not belong to the 16–24 age group, and
the “Aggressive Driving” factor has a decreasing effect on the probability of occurrence of
young-driver-involved crashes due to the negative sign of this variable. On the contrary,
for Duval County, “Aggressive Driving” increases the probability of a crash having young
drivers involved. Thus, it can be concluded that in college-oriented cities, young drivers
tend to drive less aggressively in comparison with larger cities. It is also worth mentioning
that the “Aggressive Driving” predictor is a binary variable in FDOT crash reports filled
by a police officer. Thus, this difference between these three counties could result from
the officers’ attitude toward young drivers involved in a crash. This indicates that, in
larger cities such as Jacksonville, the police officers incriminate young drivers (i.e., those
aged between 16 and 24) to aggressive driving in a more hasty manner compared to
college-oriented cities such as Tallahassee and Gainesville. Based on logit regression
findings, the “Fatality/Incapacitating” predictor variable is statistically significant at the
significance level of 99% given its small p-value. The current study particularly intends
to assess this assumption that young-driver-involved crashes are mostly categorized as
less severe crashes, mainly because of their higher physical strength compared to other
age groups, including aging roadway users (e.g., seniors). This binary variable has been
defined based on another attribute in a crash report entitled the “highest level of injury”,
which categorized crashes into KABCO scales. The negative coefficient for this predictor
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variable reveals a lower probability of youth being involved in crashes with fatalities and
incapacitating injuries. This indicates that young drivers are usually less prone to fatal and
incapacitating crashes compared to other age groups.

6. Conclusions and Practical Applications

This study utilized a GIS-based spatial and statistical methodology in order to examine
young-driver-involved crash (those aged between 16 and 24) patterns and contributing
factors affecting the probability of these crashes around selected universities in Florida.
The findings of the spatial analysis indicate the better performance of the network distance-
based KDE when there is a localized focus, and there are different spatial patterns of
young-driver-involved crashes compared to those for other age groups. The results also
show several patterns, including the following: (a) a noticeable number of young-driver-
involved crashes occur in the vicinity of universities, regardless of the differences in the
general perspective of the characteristics of the selected counties, (b) the hotspots for young-
driver crash densities appear to be different than those of other age groups, (c) intersections
are the most problematic locations for youth populations, and (d) decreasing speed limits
around universities does not necessarily decrease young-driver crash probability.

In order to identify the significant factors behind the occurrence of young-driver-
involved crashes, three separate logistic regression models have been developed. The
findings of statistical analyses demonstrate the significant contribution of intersection
presence on young-driver-involved crashes, which is also visually illustrated in KDE maps.
The results indicate that young drivers aged between 16 and 24 have a noticeable potential
of being distracted during driving, which results in crashes at intersections. This can
help researchers better understand the prominent reasons explaining these crashes, and
focus deeper on young-driver behavior, and evaluate the effectiveness of ITS strategies to
improve young-driver safety and prevent young-driver-involved crashes. Investigating
these distinct patterns thoroughly can lead to better transportation plans and policies and
thereby reduce the number of youth-related crashes as well as the risk associated with
them. The findings of this study can provide valuable insights to transportation agencies
in pinpointing high-risk intersections around universities, developing safety plans, and
imposing more restrictions. Examples of such restrictions may include more stringent
seat belt laws, lower blood alcohol content laws, and more comprehensive motorcycle
helmet laws. More effective parking strategies (e.g., costly parking fees) and improving
public transport facilities could also be considered as alternative plans that could lead to a
decrease in using private vehicles while traveling in and around campus areas.

7. Limitations and Future Work

There are several limitations to the study. First, some findings of this research may
be site-specific. Therefore, another interesting area of research is to expand this research
to other counties of Florida. Additionally, there is a need for age stratification to evaluate
the effect of age on crash involvement. The current study specifically intended to evaluate
the contribution of campus influence areas on the probability of young-driver-involved
crashes. There are more possible correlated factors (e.g., different types of land use [76], the
proportion of young drivers, and seasonal effects) that could increase the probability of
young-driver-involved crashes, and this requires further investigation as a future work.
The proposed approach can be applied to the selected counties using a more advanced
methodology, such as the two-step catchment model rather than selecting buffer zones.
Moreover, some other contributing factors, including driver’s fault and action at the time
of the crash, are potentially available in detail as part of the crash reports, so we could
extract them in order to develop more reliable models using them as descriptive variables in
future studies. Statistically more advanced models, such as Bayesian hierarchical regression
models [77], could also be applied in future work to observe and account for heterogeneity.
The effectiveness of driver education, especially through supervised practice [78] before
independent driving licensure and licensing policies are two primary preventive counter-
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measures that may help decrease young-driver crash risks, which is a good direction for
future work. The results of the current research also enable us to accommodate risk factors
identified through regression models to RND KDE-based hotspot analysis in future work.
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