
Performance Evaluation :=
(Process Algebra + Model Checking)

× Markov Chains

Holger Hermanns and Joost-Pieter Katoen

Formal Methods and Tools Group
Faculty of Computer Science, University of Twente
P.O. Box 217, 7500 AE Enschede, The Netherlands

Abstract. Markov chains are widely used in practice to determine sys-
tem performance and reliability characteristics. The vast majority of
applications considers continuous-time Markov chains (CTMCs). This
tutorial paper shows how successful model specification and analysis
techniques from concurrency theory can be applied to performance eval-
uation. The specification of CTMCs is supported by a stochastic pro-
cess algebra, while the quantitative analysis of these models is tackled
by means of model checking. Process algebra provides: (i) a high-level
specification formalism for describing CTMCs in a precise, modular and
constraint-oriented way, and (ii) means for the automated generation
and aggregation of CTMCs. Temporal logic model checking provides: (i)
a formalism to specify complex measures-of-interest in a lucid, compact
and flexible way, (ii) automated means to quantify these measures over
CTMCs, and (iii) automated measure-driven aggregation (lumping) of
CTMCs. Combining process algebra and model checking constitutes a
coherent framework for performance evaluation based on CTMCs.

1 Introduction

What is performance evaluation? Performance evaluation aims at analysing
quantitative system aspects that are related to its performance and dependabil-
ity – what is the frequency of anomalous behaviour?, or, is correct and timely
packet delivery guaranteed in at least 92% of all cases? Major performance
evaluation approaches are measurement-based and model-based techniques. In
measurement-based techniques, controlled experiments are performed on a con-
crete (prototypical) realisation of the system, and gathered timing information
is analysed to evaluate the measure(s) of interest such as time-to-failure, system
throughput, or number of operational components. In model-based performance
evaluation, an abstract (and most often approximate) model of the system is
constructed that is just detailed enough to evaluate the measure(s) of interest
with the required accuracy. Depending on modelling flexibility and computa-
tional requirements, either analytical, numerical or simulative techniques are
used to evaluate the required measure(s). We focus on model-based performance
evaluation and their numerical analysis.

K.G. Larsen and M. Nielsen (Eds.): CONCUR 2001, LNCS 2154, pp. 59–81, 2001.
c© Springer-Verlag Berlin Heidelberg 2001



60 H. Hermanns and J.-P. Katoen

Models and measures. Continuous-time Markov chains (CTMCs) are a widely
used performance evaluation model. They can be considered as labelled tran-
sition systems, where the transition labels – rates of exponential distributions
– indicate the speed of the system evolving from one state to another. Using
specification techniques such as queueing networks [19], stochastic Petri nets [1]
or stochastic networks [42], CTMCs can be described in a quite comfortable
way. Typical performance measures of CTMCs are based on steady-state and
transient-state probabilities. Steady-state probabilities refer to the system be-
haviour on the “long run”, i.e., when the system has reached an equilibrium.
Transient-state probabilities consider the system at a fixed time instant t. State-
of-the-art numerical algorithms allow the computation of both kinds of probabil-
ities with relative ease and comfortable run times, and in a quantifiable precise
manner. Several software-tools are available to support the specification and
analysis of CTMCs.

Performance evaluation and concurrency theory: A couple? Given the success of
CTMCs and their wide industrial applications, it is stunning that these models
have received scant attention in concurrency theory for a long time: where proba-
bilistic aspects have come into play, they were mostly of a purely discrete nature.
This is even more remarkable, as model specification and analysis techniques –
key ingredients of performance evaluation methodology – are first class examples
of the success of formal methods for concurrent or reactive systems. Moreover, in
modern systems many relevant functionalities are inextricably linked to perfor-
mance aspects and the difference between functional and performance properties
has become blurred. While formal methods for concurrency have mainly been fo-
cused on functional features, we believe that these methods have finally reached
a state in which performance aspects should play a larger rôle. As a – to our
opinion – promising example of the cross-fertilisation of concurrency theory and
performance evaluation, this paper surveys a formal framework for the specifica-
tion and analysis of CTMCs. The proposed methodology is based on appropriate
extensions of process algebra for the description of CTMCs and model checking
techniques for their analysis.

Stochastic process algebra. Stochastic process algebras are extensions of process
algebras such as ACP, CCS and CSP in which actions can be delayed according
to some negative exponential distribution. A mapping from algebraic terms onto
CTMCs is obtained by a formal semantics in traditional SOS-style. The pro-
cess algebraic setting provides a specification formalism for describing CTMCs
in a precise, and modular way, resembling the hierarchical nature of most mod-
ern systems. In this setting, strong bisimulation coincides with lumpability, a
notion central to the aggregation of Markov chains. The computation of this
bisimulation equivalence can be performed using small adaptations of existing
algorithms for computing strong bisimulation without an increase of their worst-
case complexity. This provides means to minimise CTMCs (w.r.t. lumpability) in
an efficient and fully automated way – a result that was unknown in performance
evaluation. The congruence property of bisimulation allows this minimisation to



Performance Evaluation 61

be carried out in a compositional fashion, i.e., component-wise, thus avoiding an
a priori generation of the entire (and possibly huge) state space. An appropriate
choice of the basic algebraic operators supports:

– an orthogonal extension of traditional process algebra, yielding a single
framework for the description of both functional and performance aspects;

– the specification of exponential and non-exponential distributions such as
the rich class of phase-type distributions;

– the constraint-oriented specification of stochastic time constraints, i.e., with-
out modifying existing untimed specifications;

– variants of weak bisimulation congruences (and their algorithms) that com-
bine lumpability and abstraction of sequences of internal actions.

Model checking. The process algebraic specification of the performance model
can be complemented by a specification of the performance measure(s)-of-
interest in a stochastic variant of the branching-time temporal logic CTL. This
logic is formally interpreted over CTMCs and allows to express quantifiable cor-
rectness criteria such as: in 99% of the cases no deadlock will be reached within
t time units. The logic-based method provides ample means for the unambigu-
ous and lucid specification of requirements on steady-state and transient-state
probabilities. Besides, it allows for the specification of path-based properties,
measures that in performance evaluation are described informally in an ad-hoc
manner and mostly require a manual tailoring of the model. To check the va-
lidity of formulas, model checking algorithms are adapted. They are enriched
with appropriate numerical means, such as simple matrix manipulations and so-
lution techniques for linear systems of equations, to reason about probabilities.
Probabilistic timing properties over paths are reduced to computing transient-
state probabilities for CTMCs, for which dedicated and efficient methods such as
uniformisation can be employed. The use of temporal logic and model checking
supports:

– the preservation of the validity of all formulas under lumping ;
– automated means to analyse state-based and path-based measures over

CTMCs;
– automated measure-driven aggregation of CTMCs;
– hiding specialised algorithms from the performance engineer;
– a means to specify both functional and performance properties in a single

framework.

Organisation of the paper. This paper gives a flavour of the approaches men-
tioned above. A more detailed treatment of the process algebra part can be
found in [28,31,29]; the model checking part is described in full detail in [7,5].
For a broader overview and introduction into formal methods and performance
evaluation we refer to [13]. The paper is organised as follows. Sec. 2 presents
some introductory material on CTMCs. Sec. 3 surveys stochastic process alge-
bras and indicates the main issues involved, such as synchronisation, abstraction
and interleaving. Sec. 4 discusses the temporal logic approach and some of the



62 H. Hermanns and J.-P. Katoen

model checking algorithms. Sec. 5 concludes the paper and discusses some future
research directions.

2 Continuous-Time Markov Chains

This section introduces exponential distributions, continuous-time Markov
chains and their behaviour. This is done in an informal way, we refer to [29,
27] for details.

2.1 Exponential Distributions

A probability distribution (function) is a function that assigns a probability (a
real value between 0 and 1) to each element of some given set. This set is usually
called the sample space, and is often interpreted as time, of either discrete (N) or
continuous (R�0) nature. A specific continuous probability distribution function
F : R�0 �→ [0, 1] defined by F (t) = 1 − e−λt is depicted below.

F (t)

0 1 2 3 4 5 6
0

1

t

Intuitively, F (t) is the probability Prob(D � t) that a duration D has finished at
time t the latest. This specific distribution is called an exponential distribution
with rate λ ∈ R�0. Evidently, a rate uniquely characterises an exponential dis-
tribution. Note that F (0) = 0 (the duration surely does not finish in zero time),
and limt→∞ F (t) = 1 (the duration eventually finishes).

The class of exponential distributions has some important properties that
explain their prominent rôle in contemporary performance evaluation. We try
to summarise them here. First, we note that the mean value of an exponential
distributed duration is the reciprocal 1/λ of its rate λ. Secondly, an exponential
distribution of rate λ is the most appropriate approximation1 of a random phe-
nomenon of which only the mean value (1/λ) is known. Furthermore, exponential
distributions possess the so-called memory-less property: If D is exponentially
distributed then Prob(D � t+t′ | D > t) = Prob(D � t′). This means that if we
observe that D is not finished at time t, and are interested in F (t+ t′) under this
condition, then this is just F (t): The distribution is invariant under the passage
of time. In this sense, it does not possess memory. In fact, the exponential distri-
bution is the only continuous probability distribution function that possesses this
property. Other relevant properties of exponential distributions for this paper
are closure properties of exponentially distributions with respect to maximum
1 In information theoretic jargon, such an approximation maximises the entropy.



Performance Evaluation 63

and minimum. If we are waiting for several durations to finish, then we are essen-
tially waiting for the maximum of these durations. Exponential distributions are
not closed under maximum; the maximum of several (pairwise stochastic inde-
pendent) exponentially distributed durations is a phase-type distribution. If, on
the other hand, we are only waiting for one out of several competing durations,
the situation is different. Awaiting the minimum of several (pairwise stochastic
independent) exponentially distributed durations Di (with rate λi, i ∈ {0..n}) is
itself exponentially distributed. Its rate parameter is the sum of the individual
rates

∑n
i=1 λi. In this case the probability that a specific Dj finishes first in the

race is given by λj/
∑n

i=1 λi.

2.2 Continuous-Time Markov Chains

For the purpose of this paper, a continuous time Markov chain can be viewed as
a finite state machine, where transitions are labelled with rates of exponential
distributions. Intuitively, such state machines evolve as follows. Whenever a state
is entered, a race starts between several exponentially distributed durations,
given by the (rate labels of) transitions leaving this state. As soon as some
durationDj finishes, the state machine moves to the target state of the transition
belonging to this Dj (labelled by λj). Clearly, a certain successor state is chosen
with probability λj/

∑n
i=1 λi, and the time until this happens is exponentially

distributed with rate
∑n

i=1 λi.
The memory-less property carries over from the distributions to the Markov

chain2: If we know that the chain has been in the current state for some time
already (or that it was in a specific state at a specific time in the past), then this
knowledge is irrelevant for its future behaviour. The chain’s behaviour is history
independent, only the identity of the state currently occupied is decisive for the
future behaviour.

Usually, a CTMC is characterised by its so-called generator matrix Q and its
initial distribution. The entries of the generator matrix Q specify the transition
rates: Q(s, s′) denotes the rate of moving from state s to state s′, where s�=s′.

Definition 1. (Generator matrix) For some finite set of states S, a square ma-
trix Q of size |S| × |S| is the (infinitesimal) generator matrix of a CTMC iff,
for all s ∈ S, Q(s, s′) � 0 (s �= s′), and Q(s, s) = −∑

s′ �=s Q(s, s′).

While the off-diagonal entries of this matrix specify individual rates of entering
a new state, the diagonal entries specify the converse, a cumulative rate of leav-
ing the current state, so to speak. Together with an initial state (or an initial
probability distribution on states) the generator matrix gives all the necessary
information to determine the transient and steady-state probabilistic behaviour
of the chain.

2 The standard definition of CTMCs proceeds in the reverse way, i.e., it defines a
memory-less discrete-state continuous-time stochastic process, and derives from this
that exponential distributions need to govern its behaviour.



64 H. Hermanns and J.-P. Katoen

Example 1. In the leftmost column of Fig. 1 we have depicted the generator
matrix of a CTMC by means of the usual state-transition representation, where
s and s′ are connected by a transition labelled λ iff Q(s, s′) = λ > 0. The
initial state is coloured black. In order to illustrate how the probability mass
spreads over states as time passes, we represent it as pie-charts of black colour.
All black colour is initially (at time 0) in state s0. From left to right the figure
depicts snapshots at different times, where the pie-charts indicate the amount of
probability πs′(s0, t) of being in state s′ at time t. The rightmost column depicts
the limits of these probabilities as t → ∞.

λ

λ
2λ

λ

λ

λ
2λ

λ

λ

λ
2λ

λ

λ

λ
2λ

λ

s0

s1

s3

s2

Fig. 1. Transient and steady-state behaviour of a CTMC (from left to right: transient
probabilities π(s0, 0), π(s0, ln(4/3)/(2λ)), π(s0, ln(2)/(2λ)), and steady-state probabil-
ity π(s)).

The vector π(s, t) = (πs′(s, t))s′∈S is the transient probability vector at time
t if starting in state s at time 0. The vector π(s) = (limt→∞ πs′(s, t))s′∈S is
called the steady-state probability vector. Such a limit exists for arbitrary finite
CTMCs, and may depend on the starting state. Efficient numerical algorithms
exist to compute steady-state as well as transient probability vectors [27].

Lumpability. We conclude this section by a remark on an important concept that
allows one to aggregate states of a CTMC without affecting transient and steady-
state probabilities. This concept, called lumpability is defined as follows [40,15].

Definition 2. (Lumpability.) For S = {S1, . . . , Sn } a partitioning of the state
space S of a CTMC, the CTMC is lumpable with respect to S if and only if for
any partition Si ⊆ S and states s, s′ ∈ Si:

∀0 < k � n.
∑

s′′∈Sk

Q(s, s′′) =
∑

s′′∈Sk

Q(s′, s′′).

That is, for any two states in a given partition the cumulative rate of moving
to any other partition needs to be equal. Under this condition, the performance
measures of a CTMC and its lumped quotient are strongly related. First, the



Performance Evaluation 65

quotient stochastic process (defined on a state space S) is a CTMC as well. In
addition, the probability of the lumped CTMC being in the quotient state Si

equals the sum of the probability of being in any of the original states s ∈ Si

in the original chain. This correspondence holds for transient and steady-state
probabilities.

3 Process Algebra for CTMCs

In this section we discuss various issues one faces when designing a process
algebraic formalism for CTMCs. We only summarise the crucial considerations,
and refer to [29,12] for more elaborate discussions.

3.1 CTMC Algebra

To begin with we introduce a small, action-less process algebra to generate
CTMCs.

Syntax. Let X be drawn from a set of process variables, and I drawn from a set
of finite sets of indices. Furthermore let λi ∈ R�0 for i ∈ I. The syntax of the
algebra MC is

P ::=
∑
i∈I

(λi) . P | X | recX.P

The term recX.P defines a recursive process X by P , that possibly contains
occurrences of X. If I consists of two elements we use binary choice +, if I is
empty we write 0. The meaning of summation is as follows: For I a singleton
set, the term (λ) . P denotes a process that evolves into P within t time units
(t � 0) according to an exponential distribution of rate λ. That is, it behaves
like P after a certain delay D that is determined by Prob(D � t) = 1−e−λt for
positive t.3 In general, the term

∑
i∈I (λi) . Pi offers a timed probabilistic choice

among the processes Pi. As in a CTMC, a race is assumed among competing
delays. Intuitively, a successor state Pj is entered with probability λj/

∑
i∈I λi,

and the time until this happens is exponentially distributed with rate
∑

i∈I λi.
We restrict MC to closed expressions given by the above grammar.

Semantics. The structured operational semantics of MC is presented below. The
inference rules define a mapping of this algebra onto CTMCs (as we will see).

∑
i∈I

(λi) . Pi
λj�−→j Pj (j ∈ I) P{ recX.P/X } λ�−→i P

′

recX.P
λ�−→i P

′

3 The prefix (λ) . P can be considered as the probabilistic version of the timed prefix
(t) . P that typically occurs in timed process algebras, like in TCCS [44] or in Timed
CSP [50].



66 H. Hermanns and J.-P. Katoen

The rule for recursion is standard; we just recall that P{Q/X } denotes term P
in which all (free) occurrences of process variable X in P are replaced by Q. The
rule for choice requires some explanation. Consider

∑
i∈I (λi) . Pi. At execution,

the fastest process, that is, the process that is enabled first, is selected. This
is reflecting the race condition described above. The probability of choosing a
particular alternative, Pj say, equals λj/

∑
i∈I λi, assuming that summands with

distinct indices are distinct.
The transitions are decorated with an auxiliary label indicated as subscript of

the transition relation. It is used to distinguish between different deduction trees
of a term. In absence of such mechanism, we would, for instance, for (λ1) . P +
(λ2) . P , obtain two distinct transitions, except if λ1 = λ2. In that specific case
we would obtain two different deduction trees for the same transition labelled
λ1 (or λ2); this, however, does suggest that P can be reached with rate λ1 (or
λ2), whereas this should be rate λ1+λ2. A similar mechanism is rather standard
in probabilistic process calculi like PCCS [24].

The above operational semantics maps a term onto a transition system where
transitions are labelled by rates. It is not difficult to check that by omitting self-
loops and replacing the set of transitions from s to s′ by a single transition with
the sum of the rates of the transitions from s to s′, a CTMC is obtained.

Example 2. The leftmost CTMC in Fig. 1 is generated from the semantics of

(λ) .0+ (λ) . recX.(λ) . (2λ) . X

Lumping equivalence. Lumping equivalence is defined in the same style as
Larsen-Skou’s probabilistic bisimulation [41] and Hillston’s strong equiva-
lence [36]. Let {| . . . |} denote multi-set brackets.

Definition 3. (Lumping equivalence.) An equivalence relation S on MC is a
lumping equivalence iff for any pair (P,Q) ∈ MC × MC we have that (P,Q) ∈ S
implies for all equivalence classes C ∈ MC/S :

γ(P,C) = γ(Q,C) with γ(R,C) =
∑

i

{|λ | R λ�−→i R
′, R′ ∈ C |}.

Processes P and Q are lumping equivalent, denoted P ∼ Q, if (P,Q) ∈ S with
S a lumping equivalence.

Here, we use MC/S to denote the set of equivalence classes induced by S over MC.
Stated in words, P and Q are lumping equivalent if the total rate of moving to
equivalence class C under ∼ is identical for all such classes. As the name suggests,
this bisimulation-style definition is in close correspondence to the concept of
lumpability on CTMCs (cf. Def. 2). As first pointed out by Buchholz [16] and
Hillston [36] (in settings similar to ours) P ∼ Q if and only if their underlying
CTMCs can be partitioned into isomorphic lumpable partitionings.



Performance Evaluation 67

Example 3. The term (λ) .0+ (λ) . recX.(λ) . (2λ) . X is equivalent to the chain

(λ) .0+ (λ) . recX.

((
1
3
λ

)
. (2λ) . X +

(
2
3
λ

)
. (2λ) . (λ) . (2λ) . X

)

To illustrate this, both chains are depicted in Fig. 2. Let S be the equivalence
relation containing (exactly) those pairs of states in Fig. 2 that are shaded with
identical patterns. It is easy to check that S is a lumping equivalence, and it
equates the initial states. Thus, the latter can be lumped into the former.

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

������
������
������
������

������
������
������
������

������
������
������
������

������
������
������
������

���
���
���
���

���
���
���
���

���
���
���
���
���
���

���
���
���
���
���
���

λ

λ
2λ

λ

λ

1
3 λ

2λ

λ

2λ

λ

2
3 λ

Fig. 2. Lumping equivalence classes.

The fact that lumpability is nowadays known to have a bisimulation-style (coin-
ductive) definition is a prime example for cross-fertilisation from concurrency
theory to performance evaluation. In particular, partition refinement algorithms
for bisimulation can be adapted to carry out the best possible lumping on finite
CTMCs [35]. This improves performance evaluation of large CTMCs, where the
question of how to determine a lumpable partitioning of the state space (let
alone the best possible one) was for a long time based on modeller’s ingenuity
and experience.

Equational theory. Since it can be shown that lumpability is a congruence with
respect to the operators of MC, we may strive for a sound and complete axioma-
tisation of ∼ for MC. Such an axiomatisation facilitates the lumping of CTMCs
at a syntactic level. The axioms for sequential finite terms are listed as (B1)
through (B4) below.

(B1) P +Q = Q+ P (B2) (P +Q) +R = P + (Q+R) (B3) P + 0 = P

(B4) (λ+ µ) . P = (λ) . P + (µ) . P

The axioms (B1) through (B3) are well known from classical process calculi.
Axiom (B4) is a distinguishing law for our calculus and can be regarded as a
replacement in the Markovian setting of the traditional idempotency axiom for
choice (P + P = P ). Axiom (B4) reflects that the resolution of choice is mod-
elled by the minimum of (statistically independent) exponential distributions.



68 H. Hermanns and J.-P. Katoen

Together with standard laws for handling recursion on classical process calculi
these axioms can be shown to form a sound and complete axiomatisation of MC.

Interleaving. To illustrate another feature of CTMCs from the concurrency the-
oretical perspective, we add a simple parallel composition operator to our calcu-
lus, denoted by || . Intuitively, the term P ||Q can evolve while either P evolves
or Q evolves independently from (and concurrently to) each other. Due to the
memory-less property of CTMCs, the behaviour of parallel CTMCs can be inter-
leaved. This is different from a deterministic time setting where parallel processes
typically are forced to synchronise on the advance of time, as in TCCS [44]. The
operational rules are:

P
λ�−→i P

′

P ||Q λ�−→(i,∗) P ′ ||Q
Q ||P λ�−→(∗,i) Q ||P ′.

(Notice that we create new auxiliary labels of the form (i, ∗) and (∗, i) in order to
obtain a multi-transition relation.) To understand the meaning of the memory-
less property in our context consider the process (λ) . P || (µ) . Q and suppose that
the delay of the left process finishes first (with rate λ). Due to the memory-less
property, the remaining delay of Q is determined by an exponential distribution
with (still!) rate µ, exactly the delay prior to the enabling of these delays before
the delay of the first process has been finished. Therefore, the parameters of
transitions do not need any adjustment in an interleaving semantics. One of the
consequences of this independent delaying is that an expansion law is obtained
rather straightforwardly. For P =

∑
i (λi) . Pi and Q =

∑
j (µj) . Qj we have:

P ||Q =
∑

i

(λi) . (Pi ||Q) +
∑

j

(µj) . (P ||Qj).

3.2 Interaction in CTMCs

The algebra MC is lacking any notion of action, and hence provides only a
restricted way of specifying CTMCs in a compositional way. For instance, in-
teraction between different parallel chains cannot be adequately described. Two
different approaches can be identified when it comes to the integration of actions
into CTMC algebra. One way [25,36,10] is to combine delays and actions in a
single compound prefix (a, λ) . P . The intuitive meaning of this expression is
that the process (a, λ) . P is ready to engage in action a after a delay determined
by an exponential distribution with rate λ and afterwards behaves like P . We
refer to [12] for a discussion of this approach. Here we focus on a different, or-
thogonal approach [28,11] where the action prefix a . P known from standard
process algebra is added to CTMC algebra, to complement the existing delay
prefix (λ) . P with separate means to specify actions.



Performance Evaluation 69

Syntax. We equip this new algebra, called IMC (Interactive Markov Chains)
with a TCSP-style parallel composition operator parametrised with a set A of
synchronising actions. Accordingly we have:

P ::=
∑
i∈I

ai . P +
∑
i∈I′

(λi) . P | X | recX.P | P ||A P

Semantics. The semantics is given by the rules listed for MC (where || is now un-
derstood as ||A for an arbitrary set A of actions) plus the standard rules known
from process algebra: (In mixed summations like a . P + (λ) . Q the respective
summation rules are applied elementwise.)

∑
i∈I

ai . Pi
aj−→ Pj (j ∈ I)

P{ recX.P/X } a−→ P ′

recX.P
a−→ P ′

P
a−→ P ′

P ||A Q
a−→ P ′ ||A Q

Q ||A P
a−→ Q ||A P ′

(a �∈ A)
P

a−→ P ′, Q a−→ Q′

P ||A Q
a−→ P ′ ||A Q′ (a ∈ A)

Equational theory. Since the calculus extends both standard process algebra and
CTMC algebra, it is possible to integrate bisimulation and lumping equivalence.
This can be done for strong, weak and other bisimulation equivalences [28];
we omit the operational definitions here for brevity. Instead we characterise
the resulting equational theory for weak (lumping) bisimulation congruence by
the set of axioms satisfied by finite expressions. It is given by the axioms (B1)
through (B4) listed for CTMC algebra, and the following additional laws.

(B5) a . P = a . P + a . P (P1) (λ) . P + τ .Q = τ .Q

(τ1) τ . P = P + τ . P (τ2) a . (P + τ .Q) = a . (P + τ .Q) + a .Q
(τ3) a . P = a . τ . P (τ4) (λ) . P = (λ) . τ . P

Axiom (B5) replaces the traditional idempotence axiom for choice (P +P = P )
which is not sound for delay prefixed expressions (cf. axiom (B4)). The (P1)
axiom realises maximal progress: A process that has something internal to do
will do so, without letting time pass. No time will be spent in the presence of
an internal action alternative. The axioms (τ1) through (τ3) are well known
for weak bisimulation on standard process algebra [43], and (τ4) extends (τ3)
to delay prefixed expressions. Together with additional laws to handle recursion
(and divergence [34]), this set gives rise to a sound and complete axiomatisation
for finite state IMC, illustrating that process algebra smoothly extends to this
orthogonal union of CTMC algebra and process algebra. We refer to [28] for
further discussion.



70 H. Hermanns and J.-P. Katoen

3.3 Time Constraints and Phase-Type Distributions

In this section, we illustrate two important features of IMC. We show how more
general continuous probability distributions can be embedded into the calcu-
lus, and we illustrate how such general distributions can be used to constrain
the behaviour of an IMC in a modular, constraint-oriented style. The approach
presented here is detailed out in [31].

Phase-type distributions. Phase-type distributions can be considered as matrix
generalisations of exponential distributions, and include frequently used distri-
butions such as Erlang, Cox, hyper- and hypo-exponential distributions. Intu-
itively, a phase-type distribution can be considered as a CTMC with a single
absorbing state (a state with Q(s, s′) = 0 for all s). The time until absorption
determines the phase-type distribution [45]. In terms of CTMC algebra, phase-
type distributions can be encoded by explicitly specifying the structure of the
CTMC using summation, recursion, and termination (0), as in the MC term Q̃
given by (λ) . recX.(µ) . (µ) . X + (λ) .0. The possibility of specifying phase-type
distributions is of significant interest, since phase-type distributions can approx-
imate arbitrary distributions arbitrarily close [45] (i.e., it is a dense subset of
the set of continuous distributions). In other words, MC and IMC can be used to
express arbitrary distributions, by choosing the appropriate absorbing Markov
chain, and (mechanically) encoding it in MC.

Time constraints. In IMC, phase-type distributions can govern the timing of
actions. The main idea is to intersperse action sequences (such as a . b .0) with
specific phase-type distributions (such as the above Q̃) in order to delay the
occurrences of the actions in the sequence appropriately, such as delaying the
occurrence of b after a by Q̃. This can be achieved by explicitly changing the
structure of the process into a . (λ) . recX.(µ) . (µ) . X + (λ) . b .0, but this ap-
proach will be cumbersome in general.

To enhance specification convenience, we introduce the elapse operator that
is used to impose phase-type distributed time constraints on specific occurrences
of actions. The elapse operator facilitates the description of such time constraints
in a modular way, that is, as separated processes that are constraining the be-
haviour by running in parallel with an untimed (or otherwise time-constrained)
process. To introduce this operator, we use much of the power of process alge-
bra, since the semantics of the operator is defined by means of a translation into
the basic operators of IMC. Due to the compositional properties of IMC, impor-
tant properties (congruence results, for instance) carry over to this operator in
a straightforward manner.

We shall refer to a time constraint as a delay that necessarily has to elapse
between two kinds of actions, unless some action of a third kind occurs in the
meanwhile. In order to facilitate the definition of such time constraints, the
elapse operator is an operator with four parameters, syntactically denoted by
[on S delay D by Q unless B]:



Performance Evaluation 71

– a phase-type distribution Q (represented as an MC term) that determines
the duration of the time constraint,

– a set of actions S (start) that determines when the delay (governed by Q)
starts,

– a set of actions D (delay) which have to be delayed, and
– a set of actions B (break) which may interrupt the delay.

Thus, for instance, [on {a} delay {b} by Q̃ unless ∅] imposes the delay of Q̃
between a and b. We claim that a wide range of practical timing scenarios can
be covered by this operator (in particular if non-empty intersections between the
action sets are allowed). This is illustrated in [31] where this operator is used
to impose various time constraints on an existing, untimed process algebraic
specification (of more than 1500 lines of LOTOS code) of the plain ordinary
telephone system.

Semantically, the intuition behind this operator is that it enriches the chain Q
with some synchronisation potential, that is used to initialise and reset the time
constraint in an appropriate way. The time constraint is imposed on a process
P by means of parallel composition, such as in

P ||S∪D∪B [on S delay D by Q unless B].

The elapse operator is an auxiliary operator that can be defined using sequential
composition and disrupt, LOTOS-operators that can be easily added to IMC [31].
For instance, the semantics of a . b .0 ||{a,b} [on {a} delay {b} by Q̃ unless ∅]
agrees with a . (λ) . recX.(µ) . (µ) . X + (λ) . b .0 up to weak bisimulation.

3.4 Compositional Aggregation

Interactive Markov chains can be used to specify CTMCs, but due to the pres-
ence of nondeterminism (inherited from standard process algebra), the model
underlying IMC is richer, it is the class of continuous time Markov decision
chains [49], a strict superset of CTMCs. Nondeterminism is one of the vital
ingredients of process algebra and hence of IMC, though it appears as an addi-
tional hurdle when it comes to performance evaluation, because the stochastic
behaviour may be underspecified. In order to eliminate nondeterminism – and
to aggregate the state space – we have developed a general recipe leading from
an IMC specification to a CTMC:

1. Develop a specification of the system under investigation using the operators
provided by IMC. A possible approach is to start from an existing process
algebraic specification and to enrich the specification by incorporating time
constraints. The elapse operator is convenient for this purpose.

2. Close the specification by abstracting from all actions using the standard
abstraction (encapsulation) operator of process algebra.

3. Apply weak bisimulation congruence to aggregate (lump) the state space,
to eliminate action transitions, and to remove nondeterminism. Due to the



72 H. Hermanns and J.-P. Katoen

congruence property, this aggregation step is preferably done composition-
ally, by applying it to components of the specification prior to composition.
In this way, the state space explosion problem can be diminished [31].

If the aggregated, minimal transition system does not contain action tran-
sitions, it trivially corresponds to a lumped CTMC. If, on the other hand, the
resulting transition system still contains action transitions the stochastic process
is under-specified, it is a continuous time Markov decision chain, because non-
determinism is present. The above recipe has been exercised in practice success-
fully [31]. The necessary algorithms for state space generation, and efficient ag-
gregation are implemented [30,17], and compositional aggregation is supported.

4 Model Checking CTMCs

Once a CTMC has been generated, the next step is to evaluate the measure(s)
of interest such as time to failure, system throughput or utilisation, with the
required accuracy. In this section, we use temporal logic to express constraints
(i.e., bounds) on such measures and show how model checking techniques can be
employed for the automated analysis of these constraints. We only summarise
the crucial considerations, and refer to [7,5] for more elaborate discussions.

4.1 CTMC Temporal Logic

To specify performance and dependability measures as logical formulas over
CTMCs, we assume the existence of a set AP of atomic propositions with a ∈ AP
and extend CTMCs with a labelling function L : S → 2AP which assigns to each
state s ∈ S the set L(s) of atomic propositions that are valid in s. These labelled
CTMCs can be viewed as Kripke structures with transitions labelled by rates.

Syntax. CSL (Continuous Stochastic Logic) is a branching-time temporal logic
à la CTL [23] based on [4] that is interpreted on CTMCs. Let p be a probability
(p ∈ [0, 1]) and ✂ a comparison operator, i.e., ✂ ∈ {�,� }. CSL state-formulas
are constructed according to the following syntax:

Φ ::= a | ¬Φ | Φ ∨ Φ | S✂p(Φ) | P✂p(ϕ)

The two probabilistic operators S and P refer to the steady-state and transient
behaviour, respectively, of the CTMC being studied. Whereas the steady-state
operator S refers to the probability of residing in a particular set of states (spec-
ified by a state-formula) on the long run, the transient operator P allows us
to refer to the probability of the occurrence of particular paths in the CTMC,
similar to [26]. The operator P✂p(.) replaces the usual CTL path quantifiers ∃
and ∀. In fact, for most cases (up to fairness) ∃ϕ can be written as P>0(ϕ) and
∀ϕ as P�1(ϕ). For instance, P>0(✸a) is equivalent to ∃✸a and P�1(✸a) stands
for ∀✸a given a fair interpretation of the CTL-formula ∀✸a.



Performance Evaluation 73

For I an interval on the real line (I ⊆ R�0), the syntax of CSL path-
formulas is

ϕ ::= X I Φ | Φ UI Φ.

The operators X I and UI are the timed variants of the usual next-operator and
until-operator, respectively. Similar timed variants of these operators appear in
timed CTL [2].

Semantics. State-formulas are interpreted over the states of a CTMC; for s a
state of the CTMC under consideration and Φ a state-formula, s |= Φ, if and only
if Φ is valid in s. The semantics of the Boolean operators is standard (i.e., s |= a
iff s ∈ L(s), s |= ¬Φ iff s �|= Φ, and s |= Φ1 ∨ Φ2 iff s |= Φ1 ∨ s |= Φ2.)
The state-formula S✂p(Φ) asserts that the steady-state probability for the set of
Φ-states meets the bound ✂p:

s |= S✂p(Φ) if and only if
∑

s′|= Φ

πs′(s) ✂ p

where we recall that πs′(s) equals limt→∞ πs′(s, t), where πs′(s, t) denotes the
probability to be in state s′ at time t when starting in state s. Finally, P✂p(ϕ) as-
serts that the probability measure of the paths satisfying ϕ meets the bound ✂p.
Let Prob(s, ϕ) denote the probability of all paths satisfying ϕ when the system
starts in state s. (The probability measure Prob is formally defined in [7].) Then:

s |= P✂p(ϕ) if and only if Prob(s, ϕ) ✂ p

A path σ in a CTMC is an alternating sequence of the form s0 t0 s1 t1 . . . where
ti ∈ R�0 indicates the amount of time stayed in state si.4 Let σ[i] denote the
(i+1)-state in σ and let σ@t denote the state occupied by σ at time t. The
satisfaction relation for the path-formulas is defined as follows. The path-formula
X I Φ asserts that a transition is made to a Φ-state at some time point t ∈ I:

σ |= X I Φ if and only if σ[1] |= Φ ∧ δ(σ, 0) ∈ I

where δ(σ, 0) = t0, the duration of staying in the initial state s0 of σ. The path-
formula Φ UI Ψ asserts that Ψ is satisfied at some time instant in the interval I
and that at all preceding time instants Φ holds:

σ |= Φ1 UI Φ2 if and only if ∃t ∈ I. (σ@t |= Φ2 ∧ ∀u ∈ [0, t). σ@u |= Φ1) .

The usual (untimed) next- and until-operator are obtained as X Φ = X [0,∞) Φ,
and ΦU Ψ = Φ U [0,∞) Ψ . Other Boolean connectives are derived in the usual way
(e.g. Φ ∨ Ψ = ¬(¬Φ ∧ ¬Ψ)). Temporal operators like ✸I (“eventually in I”) and
✷I (“always in I”) are derived by, for example: P✂p(✸I Φ) = P✂p(tt UI Φ) and
P�p(✷I Φ) = P�1−p(✸I ¬Φ).
4 For simplicity, we assume all paths to be infinite.



74 H. Hermanns and J.-P. Katoen

Expressiveness. Besides standard state-based performance measures such as
steady-state and transient-state probabilities, the logic-based approach allows
one to specify bounds on the occurrence probability of certain (sets of) paths.
We exemplify the type of properties that one can express using CSL by consider-
ing a simple re-configurable fault tolerant system. The system can be either Up
or Down, and it may (or may not) be in a phase of (initial or re-)configuration
(Config). Thus we consider AP = { Up,Down,Config }.
Example 4. Assume that the states of the CTMC in Fig. 1 are labelled – from
top to bottom – by { Down }, { Up,Config }, { Up }, and { Down,Config }. For
instance, L(s0) = { Up,Config }.
As an overview of some well-known performance and dependability measures [51]
and their formulation in terms of CSL we list the following CSL formulas:

(a) steady-state availability S✂p(Up)
(b) transient configuration probability at time t P✂p(✸[t,t]Config)
(c) instantaneous availability at time t P✂p(✸[t,t]Up)
(d) distribution of time to failure P✂p(Up U [0,t] Down)

Measure (a) expresses a bound on the steady-state availability of the system and
(b) expresses a bound on the transient-state probability of (re-)configuring the
system at time t. Measure (c) states (a bound on) the probability to be in a
non-failed state at time t, i.e., the instantaneous availability at time t and (d)
expresses, indirectly, the time until a failure, starting from a non-failed state.
That is, evaluating this measure for varying t, gives the distribution of the time
to failure.

The above standard transient measures are expressed using only simple in-
stances of the P-operator. However, since this operator allows an arbitrary path-
formula as argument, much more general measures can be described and nested.

Example 5. An example of an interesting non-standard measure is the probabil-
ity of reaching a certain set of states provided that all paths to these states obey
certain properties. For instance,

¬Config ⇒ P�0.99(Up U [0,20] Config)

states that the probability to turn from a non-configuring state into a reconfigu-
ration in no more than 20 time units without any system down time on the way
is more than 99%. As another example, we may require that in the steady-state,
there is a chance of at most 10% that a down time is likely (that is, has more
than half of the probability) to occur within 5 and 10 time units from now.

S�0.1(P>0.5(✸[5,10]Down))

Lumpability revisited. In the same spirit as the relations between bisimulation
and CTL (and CTL∗) equivalence [14] and between Larsen-Skou’s probabilistic
bisimulation and PCTL-equivalence [3], there exists a relation between lumping
equivalence and CSL-equivalence. This is illustrated by means of a slight variant
of the earlier treated notion of lumping equivalence, cf. Def. 2.



Performance Evaluation 75

Definition 4. (F -Lumpability.) For S = {S1, . . . , Sn } a partitioning of the
state space S of a CTMC and F a set of CSL state-formulas, the CTMC is
F -lumpable with respect to S if and only if for any partition Si ⊆ S and states
s, s′ ∈ Si:

∀0 < k � n.
∑

s′′∈Sk

Q(s, s′′) =
∑

s′′∈Sk

Q(s′, s′′)

and
{Φ | s |= Φ } ∩ F = {Φ | s′ |= Φ } ∩ F.

That is, for any two states in a given partition the cumulative rate of evolving
to another partition (like before) must be equal, and the set of formulas in F
that are fulfilled must coincide. Clearly, if a CTMC is F -lumpable with respect
to some partitioning of its state space, then it is also lumpable. A CTMC and
its lumped quotient are strongly related with respect to the validity of CSL
formulae. In particular, a (state in a) CTMC and its (quotient state in the)
AP-lumped quotient – obtained by the above notion where the set F equals the
set of atomic propositions – satisfy the same CSL-formulas [5]. This result can
be exploited by aggregating the CTMC as far as possible during checking the
validity of CSL-formulas, or prior to this process by considering its quotient with
respect to the coarsest AP-lumping.

4.2 CTMC Model Checking

There are two distinguishing benefits when using CSL for specifying constraints
on measures-of-interest over CTMCs: (i) the specification is entirely formal such
that the interpretation is unambiguous, and (ii) it allows the possibility to state
performance and dependability requirements over a selective set of paths (similar
to [47]) through a model. These features are paired with the (practically most
relevant) possibility to check CSL-formulas in a completely automated manner.
This can be done by combining model checking techniques with numerical solu-
tion techniques. The basic procedure is as for model checking CTL: in order to
check whether state s satisfies the formula Φ, we recursively compute the sets
Sat(Ψ) = {s′ ∈ S | s′ |= Ψ} of all states that satisfy Ψ , for the subformulas
Ψ of Φ, and eventually check whether s ∈ Sat(Φ). For atomic propositions and
Boolean connectives this procedure is exactly the same as for CTL. Next and (un-
bounded) until-formulas can be treated in a similar way as in the discrete-time
probabilistic setting [26]. Checking steady-state properties reduces to solving a
system of linear equations combined with standard graph analysis methods [7].

Fixed-point characterisation. Most interesting (and complicated) though is the
handling of time-bounded until-formulas, as their treatment require to deal with
the interplay of timing and probabilities. For the sake of simplicity, we treat the
case I = [0, t]; the general case is a bit more involved, but can be treated in a
similar way [5]. Let ϕt = Φ U [0,t] Ψ . We have from the semantics that

s ∈ Sat(P✂p(ϕt)) if and only if Prob(s, ϕt) ✂ p



76 H. Hermanns and J.-P. Katoen

The probability Prob(s, ϕt) is the least solution of the following set of equations:

Prob(s, ϕt) =




1 if s ∈ Sat(Ψ)
0 if s �∈ Sat(Φ) ∪ Sat(Ψ)∫ t

0

∑
s′∈S

T(s, s′, x) · Prob(s′, ϕt−x) dx otherwise

where T(s, s′, x) denotes the density of moving from state s to state s′ in x
time-units and can be derived from the matrix Q. The first two cases are self-
explanatory; the last equation is explained as follows. If s satisfies Φ but not
Ψ , the probability of reaching a Ψ -state from s within t time-units equals the
probability of reaching some direct successor state s′ of s within x time-units
(x � t), multiplied by the probability to reach a Ψ -state from s′ in the remaining
time-span t−x.

This recursive integral characterisation provides the theoretical basis for
model checking time-bounded until-formulas over CTMCs in the same way as the
fixed-point characterisations for CTL provide the basis for the model checking
algorithms for usual until-formulas [18].

Algorithmic procedure. To illustrate how performance evaluation recipes can be
exploited for model checking purposes, we now sketch an efficient and numer-
ically stable strategy for model checking the time-bounded until-formulas [5].
As lumping preserves the validity of all CSL-formulas, a first step is to switch
from the original state space to the (possibly much smaller) quotient space un-
der lumping. Next, prior to computing the exact set of states that satisfy ϕt,
the states fulfilling the (fair) CTL-formula ∃(ΦU Ψ) is determined. For states
not in this set, the respective probabilistic until-formula will have probability 0.
In a similar way, the set of states satisfying ∀(ΦU Ψ) (up to fairness, cf. [8]) is
computed; these states satisfy ϕt with probability 1. As a result, the actual com-
putation of the system of Volterra integral equations needs to be done only for the
remaining states. How to do this? The basic idea is to employ a transformation
of the CTMC and the formula at hand, such that a transient analysis problem
is obtained for which well-known and efficient computation techniques do exist.
This idea is based on the observation that formulas of the form P✂p(✸[t,t]Φ)
characterise transient probability measures, and their validity (in some state
s) can be decided on the basis of the transient probability vector π(s, t). This
vector can be calculated by transient analysis techniques. For P✂p(Φ U [0,t] Ψ)
the CTMC M under consideration is transformed into another CTMC M′ such
that checking ϕt = Φ U [0,t] Ψ on M amounts to checking ϕ′

t = ✸[t,t]Ψ on M′; a
transient analysis of M′ (for time t) then suffices. The question then is, how do
we transform M in M′? Concerning a (Φ ∧ ¬Ψ)-state, two simple observations
form the basis for this transformation:

– once a Ψ -state in M has been reached (along a Φ-path) before time t, we may
conclude that ϕ holds, regardless of which states will be visited afterwards.
This justifies making all Ψ -states absorbing.



Performance Evaluation 77

– once a state has been reached that neither satisfies Φ nor Ψ , ϕ is violated
regardless of which states will be visited afterwards. This justifies making
all ¬(Φ ∧ Ψ)-states absorbing.

It then suffices to carry out a transient analysis on the resulting CTMC M′ for
time t and collect the probability mass to be in a Ψ -state (note that M′ typically
is smaller than M):

ProbM(s, Φ U [0,t] Ψ) = ProbM′
(s,✸[t,t]Ψ) =

∑
s′|= Ψ

πs′(s, t).

In fact, by similar observations it turns out that also verifying the general UI -
operator can be reduced to instances of (a two-phase) transient analysis [5].

Example 6. In order to check one of the above mentioned requirements on the
CTMC of Fig. 1, one needs to check s2 |= P�0.99(Up U [0,20] Config). To decide
this, it is sufficient to compute π(s2, 20) on a CTMC where state s0 and s3 (as
well as s1) are made absorbing, and to check πs0(s2, 20) + πs3(s2, 20) � 0.99.

The transformation of the model checking problem for the time-bounded until-
operator into the transient analysis of a CTMC has several advantages: (i) it
avoids awkward numerical integration, (ii) it allows us to use efficient and nu-
merically stable transient analysis techniques, such as uniformisation [38], and
(iii) it employs a measure-driven transformation (aggregation) of the CTMC.
The fact that a dedicated and well-studied technique in performance evaluation
such as uniformisation can be employed for model checking is a prime example
for the cross-fertilisation from performance evaluation to concurrency theory.

Efficiency. The worst-case time complexity of model checking CSL is

O(|Φ|·(M ·q·tmax +N2.81))

where M is the number of non-zero entries in Q, q is the maximal diagonal entry
of Q, tmax is the maximum time bound of the time-bounded until sub-formulas
occurring in Φ, and N is the number of states. If we make the practically often
justified assumption that M < kN for a constant k then the space complexity
is linear in N using a sparse matrix data structure. The space complexity is
polynomial in the size of the CTMC. The model checking algorithms have been
implemented both using sparse matrix data structures [32] and using BDD-based
data structures [39].

5 Research Perspectives

This paper has presented how two important branches of formal methods for
reactive systems – process algebra and model checking – can be exploited for
performance and dependability modelling and analysis. The stochastic process



78 H. Hermanns and J.-P. Katoen

algebra approach is a prominent example of cross-fertilisation of formal speci-
fication techniques and performance modelling techniques, whereas the quanti-
tative model checking approach is a promising combination of computer-aided
verification technology and performance analysis techniques. We believe that the
developments in these areas mark the beginning of a new paradigm for the mod-
elling and analysis of systems in which qualitative and quantitative aspects are
studied from an integrated perspective. We hope that the further work towards
the realisation of this goal will be a growing source of inspiration and progress
for both communities. Examples of issues for future work in this direction are:

– Specification: in order to bridge the gap towards (performance) engineers,
and to obtain a better integration into the design cycle, efforts should be
made to the usage of (appropriate extensions of) specification languages
such as UML and SDL for the description of performance models. Similarly,
the usage of temporal logic by performance engineers needs to be simplified,
for instance, using dedicated specification patterns [22].

– Verification: similar to the development of model checking techniques, smart
improvements of both algorithms and data structures are needed to make
the verification approach more successful. Initial investigations show that
symbolic data structures (such as multi-terminal BDDs) and tailored vari-
ants of existing techniques (“backwards” uniformisation) yield a substantial
efficiency improvement [39]. Promising alternative techniques, such as Kro-
necker representations [21], and/or refinement techniques for probabilistic
systems as recently proposed in [20] could be beneficial in this context as
well.

– Extensions: several extensions of the process algebra and model checking
techniques are worthwhile to investigate. For instance, Markov reward mod-
els – an important extension of CTMCs with costs – are not yet satisfactorily
treated in a process algebraic or logic-based setting, although some initial
attempts have been made [6,9]. In addition, the application of model check-
ing to non-memoryless models, such as (generalised) semi-Markov processes,
remains an interesting topic for further research. Initial work in this direction
is reported in [37].

Finally, we highlight two gaps between the process algebraic and model check-
ing approach we discussed: (i) whereas the formal model specifications are
behaviour-oriented (i.e., action based), the temporal logic approach is state-
based, and (ii) the semantic model of the process algebra may contain non-
determinism, whereas the verification is based on a fully probabilistic model.
The first problem can be handled by considering an action-based variant of
CSL. Although it turns out that a transformation of this logic into CSL (à la
the relationship between CTL and its action-based variant [46]) is possible, it
is more beneficial to use direct model checking techniques – basically a tailored
version of the CSL model checking algorithms. Details are in [33]. This yields a
combination with stochastic process algebras that treat actions and stochastic
delays as a single compound entity [10,25,36]. In order to close the gap w.r.t.
our process algebra IMC that strictly distinguishes between action occurrences



Performance Evaluation 79

and time delays, we are currently investigating model checking procedures for
continuous-time Markov decision chains.

Acknowledgements. Ed Brinksma (Univ. Twente) and Ulrich Herzog (Univ.
Erlangen) have contributed to the work on stochastic process algebra reported
here. The model checking research reported in this paper has been developed
in collaboration with Christel Baier (Univ. Bonn) and Boudewijn Haverkort
(RWTH Aachen). The first author is supported by the Netherlands Organisation
of Scientific Research (NWO).

References

1. M. Ajmone Marsan, G. Balbo, G. Conte, S. Donatelli, and G. Franceschinis. Mod-
eling with Generalized Stochastic Petri Nets. John Wiley & Sons, 1995.

2. R. Alur, C. Courcoubetis, and D. Dill. Model-checking in dense real-time. Infor-
mation and Computation, 104(1):2–34, 1993.

3. A. Aziz, V. Singhal, F. Balarin, R. Brayton and A. Sangiovanni-Vincentelli. It
usually works: the temporal logic of stochastic systems. In CAV’95, LNCS 939:155–
165. Springer, 1995.

4. A. Aziz, K. Sanwal, V. Singhal and R. Brayton. Model checking continuous time
Markov chains. ACM Transactions on Computational Logic, 1(1): 162–170, 2000.

5. C. Baier, B. Haverkort, H. Hermanns, and J.-P. Katoen. Model checking continuous
time Markov chains by transient analysis. In CAV 2000, LNCS 1855:358–372.
Springer, 2000.

6. C. Baier, B.R. Haverkort, H. Hermanns, and J.-P. Katoen. On the logical char-
acterisation of performability properties. In ICALP 2000, LNCS 1853:780–792.
Springer, 2000.

7. C. Baier, J.-P. Katoen, and H. Hermanns. Approximate symbolic model checking of
continuous-time Markov chains. In CONCUR’99, LNCS: 1664:146–162. Springer,
1999.

8. C. Baier and M. Kwiatkowska. Model checking for a probabilistic branching time
logic with fairness. Distributed Computing, 11:125–155, 1998.

9. M. Bernardo. An algebra-based method to associate rewards with EMPA terms.
In ICALP’97, LNCS 1256:358–368. Springer, 1997.

10. M. Bernardo and R. Gorrieri. A tutorial on EMPA: a theory of concurrent processes
with nondeterminism, priorities, probabilities and time. Theoretical Computer Sci-
ence, 202:1–54, 1998.

11. H.C. Bohnenkamp and B.R. Haverkort. Semi-numerical solution of stochastic pro-
cess algebra models. In ARTS’99, LNCS 1601:228–243. Springer, 1999.

12. E. Brinksma and H. Hermanns. Process algebra and Markov chains. In [13].
13. E. Brinksma, H. Hermanns, and J.-P. Katoen, editors. Lectures on Formal Methods

and Performance Analysis, LNCS 2090. Springer, 2001.
14. M. Brown, E. Clarke, O. Grumberg. Characterizing finite Kripke structures in

propositional temporal logic. Theoretical Computer Science, 59: 115–131, 1988.
15. P. Buchholz. Exact and ordinary lumpability in finite Markov chains. Journal of

Applied Probability, 31–75:59–75, 1994.
16. P. Buchholz. Markovian Process Algebra: composition and equivalence. In U. Her-

zog and M. Rettelbach, editors, Proc. of PAPM’94, Arbeitsberichte des IMMD,
Universität Erlangen-Nürnberg, 1994.



80 H. Hermanns and J.-P. Katoen

17. M. Cherif, H. Garavel, and H. Hermanns. bcg min – Minimization of normal,
probabilistic, or stochastic labeled transitions systems encoded in the BCG format.
http://www.inrialpes.fr/vasy/cadp/man/bcg min.html.

18. E. Clarke, E. Emerson and A. Sistla. Automatic verification of finite-state concur-
rent systems using temporal logic specifications. ACM Transactions on Program-
ming Languages and Systems, 8: 244–263, 1986.

19. A.E. Conway and N.D. Georganas. Queueing Networks: Exact Computational Al-
gorithms. MIT Press, 1989.

20. P.R. D’Argenio, B. Jeannet, H.E. Jensen, and K.G. Larsen. Reachability analysis of
probabilistic systems by successive refinements. In PAPM/PROBMIV’01, LNCS.
Springer, 2001. To appear.

21. M. Davio. Kronecker Products and Shuffle Algebra. IEEE Transactions on Com-
puters, C-30(2):116–125, 1981.

22. M.B. Dwyer, G.S. Avrunin, and J.C. Corbett. Property specification patterns for
finite-state verification. In Formal Methods in Software Practice. ACM Press, 1998.

23. E.A Emerson and E.M. Clarke. Using branching time temporal logic to synthesize
synchronization skeletons. Science of Computer Programming, 2: 241–266, 1982.

24. R.J. van Glabbeek, S.A. Smolka, and B. Steffen. Reactive, generative, and stratified
models of probabilistic processes. Information and Computation, 121:59–80, 1995.

25. N. Götz, U. Herzog, and M. Rettelbach. Multiprocessor and distributed system
design: The integration of functional specification and performance analysis using
stochastic process algebras. In Tutorial Proc. of PERFORMANCE ’93, LNCS
729:121-146. Springer, 1993.

26. H. Hansson and B. Jonsson. A logic for reasoning about time and reliability. Formal
Aspects of Computing 6: 512–535, 1994.

27. B. Haverkort. Markovian models for performance and dependability evaluation. In
[13].

28. H. Hermanns. Interactive Markov Chains. PhD thesis, Universität Erlangen-
Nürnberg, September 1998. Arbeitsberichte des IMMD 32/7.

29. H. Hermanns, U. Herzog, and J.-P. Katoen. Process algebra for performance eval-
uation. Theoretical Computer Science, 2001. To appear.

30. H. Hermanns, U. Herzog, U. Klehmet, M.Siegle, and V. Mertsiotakis. Composi-
tional performance modelling with the TIPPtool. Performance Evaluation, 39(1-
4):5–35, 2000.

31. H. Hermanns and J.-P. Katoen. Automated compositional Markov chain generation
for a plain-old telephony system. Science of Computer Programming, 36(1):97–127,
2000.

32. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser, and M. Siegle. A Markov chain
model checker. In TACAS 2000, LNCS 1785:347–362, 2000.

33. H. Hermanns, J.-P. Katoen, J. Meyer-Kayser and M. Siegle. Towards model check-
ing stochastic process algebra. In IFM 2000, LNCS 1945:420–439. Springer, 2000.

34. H. Hermanns and M. Lohrey. Priority and maximal progress are completely ax-
iomatisable. In CONCUR’98, LNCS 1466:237–252. Springer, 1998.

35. H. Hermanns and M. Siegle. Bisimulation algorithms for stochastic process algebras
and their BDD-based implementation. In ARTS’99, LNCS 1601:244–264. Springer,
1999.

36. J. Hillston. A Compositional Approach to Performance Modelling. Cambridge
University Press, 1996.

37. G.G. Infante-Lopez, H. Hermanns, and J.-P. Katoen. Beyond memoryless distri-
butions: model checking semi-Markov chains. In PAPM/PROBMIV’01, LNCS.
Springer, 2001. To appear.



Performance Evaluation 81

38. A. Jensen. Markov chains as an aid in the study of Markov processes. Skand.
Aktuarietidskrift, 3: 87–91, 1953.

39. J.-P. Katoen, M. Kwiatkowska, G. Norman, and D. Parker. Faster and symbolic
CTMC model checking. In PAPM/PROBMIV’01, LNCS. Springer, 2001. To ap-
pear.

40. J.G. Kemeny and J.L. Snell. Finite Markov Chains. Springer, 1976.
41. K. Larsen and A. Skou. Bisimulation through probabilistic testing. Information

and Computation, 94(1):1–28, September 1991.
42. J.F. Meyer, A. Movaghar and W.H. Sanders. Stochastic activity networks: struc-

ture, behavior and application. In Proc. Int. Workshop on Timed Petri Nets, pp.
106–115, IEEE CS Press, 1985.

43. R. Milner. Communication and Concurrency. Prentice Hall, London, 1989.
44. F. Moller and C. Tofts. A temporal calculus for communicating systems. In

CONCUR’90, LNCS 458:401–415. Springer, 1990.
45. M.F. Neuts. Matrix-geometric Solutions in Stochastic Models–An Algorithmic Ap-

proach. The Johns Hopkins University Press, 1981.
46. R. De Nicola and F.W. Vaandrager. Action versus state based logics for transition

systems. In Semantics of Concurrency, LNCS 469: 407–419, 1990.
47. W.D. Obal andW.H. Sanders. State-space support for path-based reward variables.

Performance Evaluation, 35: 233–251, 1999.
48. B. Plateau and K. Atif, Stochastic automata networks for modeling parallel sys-

tems. IEEE Transactions on Software Engineering, 17(10): 1093–1108, 1991.
49. M.L. Puterman. Markov Decision Processes: Discrete Stochastic Dynamic Pro-

gramming. John Wiley & Sons, 1994.
50. S. Schneider. An operational semantics for timed CSP. Information and Compu-

tation, 116:193–213, 1995.
51. R.M. Smith, K.S. Trivedi and A.V. Ramesh. Performability analysis: measures, an

algorithm and a case study. IEEE Trans. on Comp., 37(4): 406–417, 1988.


	Introduction
	Continuous-Time Markov Chains
	Exponential Distributions
	Continuous-Time Markov Chains

	Process Algebra for CTMCs
	CTMC Algebra
	Interaction in CTMCs
	Time Constraints and Phase-Type Distributions
	Compositional Aggregation

	Model Checking CTMCs
	CTMC Temporal Logic
	CTMC Model Checking

	Research Perspectives

