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Abstract. We introduce a formal language for specifying dynamic up-
dates for Software Defined Networks. Our language builds upon Network
Kleene Algebra with Tests (NetKAT) and adds constructs for synchro-
nisations and multi-packet behaviour to capture the interaction between
the control- and data-plane in dynamic updates. We provide a sound and
ground-complete axiomatisation of our language. We exploit the equa-
tional theory and provide an efficient method for reasoning about safety
properties. We implement our equational theory in DyNetiKAT – a tool
prototype, based on the Maude Rewriting Logic and the NetKAT tool,
and apply it to a case study. We show that we can analyse the case study
for networks with hundreds of switches using our tool prototype.

Keywords: Software Defined Networks · Dynamic Updates · Dynamic
Network Reconfiguration · NetKAT · Process Algebra · Equational Rea-
soning.

1 Introduction

Software-Defined Networking (SDN) is an approach to networking that enables
the network to be centrally programmed. There is a spectrum of mathematically
inspired network programming languages that varies between those with a small
number of language constructs and those with expressive language design which
allow them to support more networking features. Flowlog [16] and Kinetic [12]
are points on the more expressive side of the spectrum, which provide support
for formal reasoning based on SAT-solving and model checking, respectively.
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NetKAT [3,10] is an example of a minimalist language based on Kleene algebra
with tests that has a sound and complete equational theory. While the core of
the language is very simple with a few number of operators, the language has
been extended in various ways to support different aspects of networking such as
congestion control [9], history-based routing [6] and higher-order functions [20].

Our starting point is NetKAT, because it provides a clean and analysable
framework for specifying SDNs. The minimalist design of NetKAT does not cater
for some common (failure) patterns in SDNs, particularly those arising from dy-
namic reconfiguration and the interaction between the data- and control-plane
flows. In [13], the authors have proposed an extension to NetKAT to support
stateful network updates. The extension embraces the notion of mutable state
which is in contrast to the pure functional nature of the language. The pur-
pose of this paper is to propose an extension of NetKAT to support dynamic
and stateful behaviours. On the one hand, we preserve the big-step denotational
semantics of NetKAT-specific constructs enabling, for instance, handling flow
table updates atomically, in the spirit of [17]. On the other hand, we extend
NetKAT in a modular fashion, to integrate concurrent SDN behaviours such as
dynamic updates, defined via a small-step operational semantics. To this end,
we pledge to keep the minimalistic design of NetKAT by adding only a few new
operators. Furthermore, our extension does not contradict the nature of the lan-
guage. DyNetKAT is a conservative extension [2] of NetKAT that enables reusing
in a modular fashion frameworks previously developed for NetKAT. Examples
include the NetKAT axiomatisation in [3], for instance.

A number of concurrent extensions of NetKAT have been introduced to date
[11,18,21]. These extensions followed different design decisions than the present
paper and a comparison of their approaches with ours is provided in Section 2;
however, the most important difference lies in the fact that inspired by earlier
abstractions in this domain [17], we were committed to create different layers
for data-plane flows and dynamic updates such that every data-plane packet
observes a single set of flow tables through its flight through the network. This
allowed us, unlike the earlier approaches, to build a layer on top of NetKAT
without modifying its semantics. Although our presentation in this paper is
based on NetKAT, we envisage that our concurrency layer can be modularly (in
the sense of Modular SOS [14]) used for other network programming languages
in the above-mentioned spectrum. We leave a more careful investigation of the
modularity on other network languages for future work.

Running Example. To illustrate our language concepts, we focus on modelling
with DyNetKAT an example of a stateful firewall that involves dynamically
updating the flow table. The example is overly simplified for the purpose of
presentation. Towards the end of this paper and also in the extended version [7],
we treat more complex and larger-scale case studies to evaluate the applicability
and analysability of our language.

A firewall is supposed to protect the intranet of an organisation from unau-
thorised access from the Internet. However, due to certain requests from the
intranet, it should be able to open up connections from the Internet to intranet.

DyNetKAT: An Algebra of Dynamic Networks 185



SwitchHost int ext

Fig. 1: Stateful Firewall

An example is when a user within the intranet requests a secure connection to a
node on the Internet; in that case, the response from the node should be allowed
to enter the intranet. The behaviour of updating the flow tables with respect to
some events in the network such as receiving a specific packet is a challenging
phenomenon for languages such as NetKAT.

Figure 1 shows a simplified version of the stateful firewall network. Note that
we are not interested in the flow of packets but interested in the flow update.
In this version, the Switch does not allow any packet from the port ext to int
at the beginning. When the Host sends a request to the Switch it opens up the
connection.
Our Contributions. The contributions of this paper are summarised as fol-
lows. (a) We define the syntax and operational semantics of a dynamic exten-
sion of NetKAT that allows for modelling and reasoning about control-plane
updates and their interaction with data-plane flows (Sections 2.3, 2.4). (b) We
give a sound and ground-complete axiomatisation of our language (Section 3).
(c) We devise analysis methods for reasoning about flow properties using our ax-
iomatisation, apply them on examples from the domain and gather and analyse
evidence of applicability and efficiency for our approach (Sections 4, 5, 6).

2 Language Design

In what follows, we provide a brief overview of the NetKAT syntax and seman-
tics [3]. Then, we motivate our language design decisions, we introduce the syn-
tax of DyNetKAT and its underlying semantics, and provide the corresponding
encoding of our running example.

2.1 Brief Overview of NetKAT

We proceed by first introducing some basic notions used throughout the paper.

Definition 1 (Network Packets.) Let F = {f1, . . . , fn} be a set of field nam-
es fi with i ∈ {1, . . . n}. We call network packet a partial function in F → N that
maps field names in F to values in N. We use σ, σ′ to range over network packets.
We write, for instance, σ(fi) = vi to denote a test checking whether the value of
fi in σ is vi. Furthermore, we write σ[fi := ni] to denote the assignment of fi to
vi in σ. A (possibly empty) list of packets is defined as a partial function from
natural numbers to packets, where the natural number in the domain denotes
the position of the packet in the list such that the domain of the function forms
an interval starting from 0. The empty list is denoted by ⟨⟩ and is defined as
the empty function (the function with the empty set as its domain). Let σ be a
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packet and l be a list, then σ :: l is the list l′ in which σ is at position 0 in l′,
i.e., l′(0) = σ, and l′(i+ 1) = l(i), for all i in the domain of l.

NetKAT Syntax:
Pr ::= 0 | 1 | f = n | Pr + Pr | Pr · Pr | ¬Pr
N ::= Pr | f ← n | N +N | N ·N | N∗ | dup

NetKAT Semantics:

J1K(h) ≜ {h}
J0K(h) ≜ {}

Jf = nK (σ::h) ≜
{
{σ::h} if σ(f) = n
{} otherwise

J¬aK (h) ≜ {h} \ JaK (h)
Jf ← nK (σ::h) ≜ {σ[f := n]::h}

Jp+ qK (h) ≜ JpK (h) ∪ JqK (h)

Jp · qK (h) ≜ (JpK • JqK) (h)
Jp∗K (h) ≜

⋃
i∈N F i (h)

F 0 (h) ≜ {h}
F i+1 (h) ≜ (JpK • F i) (h)

(f • g)(x) ≜
⋃
{g(y) | y ∈ f(x)}

JdupK (σ::h) ≜ {σ::(σ::h)}

Fig. 2: NetKAT: Syntax and Semantics [3]

In Figure 2, we recall the NetKAT syntax and semantics [3]. The predicate
for dropping a packet is denoted by 0, while passing on a packet (without any
modification) is denoted by 1. The predicate checking whether the field f of a
packet has value n is denoted by (f = n); if the predicate fails on the current
packet it results on dropping the packet, otherwise it will pass the packet on.
Disjunction and conjunction between predicates are denoted by Pr+Pr and Pr ·
Pr , respectively. Negation is denoted by ¬Pr . Predicates are the basic building
blocks of NetKAT policies and hence, a predicate is a policy by definition. The
policy that modifies the field f of the current packet to take value n is denoted by
(f ← n). A multicast behaviour of policies is denoted by N+N , while sequencing
policies (to be applied on the same packet) are denoted by N ·N . The repeated
application of a policy is encoded as N∗. The construct dup simply makes a
copy of the current network packet.

In [3], lists of packets are referred to as histories. Let H stand for the set of
packet histories, and P(H) denote the powerset of H. More formally, the denota-
tional semantics of NetKAT policies is inductively defined via the semantic map
J−K : N → (H → P(H)) in Figure 2, where N stands for the set of NetKAT
policies, h ∈ H is a packet history, a ∈ Pr denotes a NetKAT predicate and
σ ∈ F → N is a network packet.

For a reminder, the equational axioms of NetKAT include the Kleene Algebra
axioms, Boolean Algebra axioms and the so-called Packet Algebra axioms that
handle NetKAT networking specific constructs such as field assignments and
dup. In this paper, we write ENK to denote the NetKAT axiomatisation [3].

2.2 Design Decisions

Our main motivation behind DyNetKAT is to have a minimalist language that
can model control-plane and data-plane network traffic and their interaction.
Our choice for a minimal language is motivated by our desire to use our lan-
guage as a basis for scalable analysis. We would like to be able to compile major
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practical languages into ours. Our minimal design helps us reuse much of the
well-known scalable analysis techniques. Regarding its modelling capabilities,
we are interested in modelling the stateful and dynamic behaviour of networks
emerging from these interactions. We would like to be able to model control mes-
sages, connections between controllers and switches, data packets, links among
switches, and model and analyse their interaction in a seamless manner.

Based on these motivations, we start off with NetKAT as a fundamental and
minimal network programming language, which allows us to model the basic
policies governing the network traffic. The choice of NetKAT, in addition to
its minimalist nature, is motivated by its rigorous semantics and equational
theory, and the existing techniques and tools for its analysis. This motivates
our next design constraint, namely, to build upon NetKAT in a hierarchical
manner and without redefining its semantics. This constraint should not be
taken lightly as the challenges in the recent concurrent extensions of NetKAT
demonstrated [11, 18, 21]. We will elaborate on this point, in the presentation
of our syntax and semantics. We can achieve this thanks to the abstractions
introduced in the domain [17] that allow for a neat layering of data-plane and
control-plan flows such that every data-plane flow sees one set of flow-tables in
its flight through the network.

We introduce a few extensions and modifications to cater for the phenomena
we desire to model in our extension regarding control-plane and dynamic and
stateful behaviour, as follows. (a) Parallel composition and synchronisation : we
introduce a basic mechanism for parallel composition based on handshake syn-
chronisation with the possibility of communicating a network program (a flow
table). The point of adding parallel composition is to have parallel controllers
and switches as separate syntactic entities: controllers trigger reconfigurations
and switches accept different types of reconfiguration and change their continu-
ation accordingly. (b) Guarded recursion: we introduce the concept of recursion
to model the (persistent) dynamic changes that result from control messages
and stateful behaviour. In other words, recursion is used to model the new state
of the flow tables. An alternative modelling construct could have been using
“global” variables and guards, but we prefer recursion due to its neat algebraic
representation. We restrict the use of recursion to guarded recursion, that is a
policy should be applied before changing state to a new recursive definition, in
order to remain within a decidable and analyse-able realm. A natural extension
of our framework could introduce formal parameters and parameterised recur-
sive variables; this future extension is orthogonal to our existing extensions and
in this paper, we go for a minimal extension in which the parameters are coded
in variable names. (c) Multi-packet semantics : we introduce the semantics of
treating a list of packets, which is essential for studying the interaction between
control- and data plane packets. This is in contrast with NetKAT where a single-
packet semantics is introduced. The introduction of multi-packet semantics also
called for a new operator to denote the end of applying a flow-table to the cur-
rent packet and proceeding with the next packet (possibly with the modified
flow-table in place). This is our new sequential composition operator, denoted
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by “;”. Inspired by the abstractions in the software defined networking commu-
nity [17], we assume each packet is processed either using the configuration in
place prior to the update, or the configuration in place after the update, but
never a mixture of the two.

2.3 DyNetKAT Syntax

As already mentioned, NetKAT provides the possibility of recording the indi-
vidual “hops” that packets take as they go through the network by using the
so-called dup construct. The latter keeps track of the state of the packet at
each intermediate hop. As a brief reminder of the approach in [3]: assume a
NetKAT switch policy p and a topology t, together with an ingress in and
an egress out . Checking whether out is reachable from in reduces to checking:
in · dup · (p · t · dup)∗ · out ̸≡ 0 (see Definition 2 and Theorem 4 in [3]). Fur-
thermore, as shown in [10], dup plays a crucial role in devising the NetKAT
language semantics in a coalgebraic fashion, via Brzozowski-like derivatives on
top of NetKAT coalgebras (or NetKAT automata) corresponding to NetKAT
expressions.

We decided to depart from NetKAT in this respect, due to our important
constraint not to redefine the NetKAT semantics: the dup expression allows for
observable intermediate steps that result from incomplete application of flow-
tables and in concurrency scenarios, the same data packet may become subject
to more than one flow table due to the concurrent interactions with the control
plane. For this semantics to be compositional, one needs to define a small step
operational semantics in such a way that the small steps in predicate evaluation
also become visible (see our past work on compositionality of SOS with data
on such constraints [15]). This will first break our constraint in building upon
NetKAT semantics and secondly, due to the huge number of possible interleav-
ings, make the resulting state-space intractable for analysis.

In addition to the argumentation above, note that similarly to the approach
in [3], we work with packet fields ranging over finite domains. Consequently, our
analyses can be formulated in terms of reachability properties, further verifiable
by means of dup-free expressions of shape: in · (p · t)∗ · out ̸≡ 0. Hence, we
chose to define DyNetKAT synchronisation, guarded recursion and multi-packet
semantics on top of the dup-free fragment of NetKAT, denoted by NetKAT−dup.

The syntax of DyNetKAT is defined on top of the dup-free fragment of
NetKAT as:

N ::= NetKAT−dup

D ::= ⊥ | N ;D | x?N ;D | x!N ;D | D ||D | D ⊕D | X
X ≜ D

(1)

We write p ∈ NetKAT, p ∈ NetKAT−dup or, respectively, p ∈ DyNetKAT in
order to refer to a NetKAT, NetKAT−dup or, respectively, DyNetKAT policy p.

The DyNetKAT-specific constructs are as follows. By ⊥ we denote a dummy
policy without behaviour. Our new sequential composition operator, denoted by
N ;D , specifies when the NetKAT−dup policy N is applicable to the current
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packet has come to a successful end and, thus, the packet can be transmitted
further and the next packet can be fetched for processing according to the rest
of the policy D.

Communication in DyNetKAT, encoded via x!N ;D and x?N ;D, consists of
two steps. In the first place, sending and receiving NetKAT−dup policies through
channel x are denoted by x!N , and x?N . In an expression such as x?N ;PN , the
combination of the channel name x and the update type N , determine how the
continuation process PN , considering N as a placeholder in PN , enables defining
compositional and compact parameterised DyNetKAT specifications. Secondly,
as soon as the sending or receiving messages are successfully communicated, a
new packet is fetched and processed according to D. The parallel composition
of two DyNetKAT policies (to enable synchronisation) is denoted by D ||D .

As it will become clearer in Section 2.4, communication in DyNetKAT guar-
antees preservation of well-defined behaviours when transitioning between net-
work configurations. This corresponds to the so-called per-packet consistency
in [17], and it guarantees that every packet traversing the network is processed
according to exactly one NetKAT−dup policy.

Non-deterministic choice of DyNetKAT policies is denoted by D ⊕ D. For
a non-determinstic choice over a finite domain P , we use the syntactic sugar
⊕p∈PP

′, where p appears as “bound variable” in P ′; this is interpreted as a sum
of finite summand by replacing the variable p with all its possible values in P .

Finally, one can use recursive variables X in the specification of DyNetKAT
policies, where each recursive variable should have a unique defining equation
X ≜ D. For the simplicity of notation, we do not explicitly specify the trailing
“;⊥” in our policy specifications, whenever clear from the context.

In Figure 3 we provide the DyNetKAT formalisation of the firewall in Ex-
ample 1. In the DyNetKAT encoding, we use the message channel secConReq to
open up the connection and secConEnd to close it. We model the behaviour of
the switch using the two programs Switch and Switch ′.

Switch≜
(
(port = int) · (port← ext)

)
;Switch⊕(

(port = ext) · 0
)
;Switch⊕

secConReq?1 ;Switch′

Switch ′≜
(
(port = int) · (port← ext)

)
;Switch ′⊕(

(port = ext) · (port← int)
)
;Switch ′⊕

secConEnd?1 ;Switch

Host≜secConReq!1 ;Host⊕
secConEnd!1 ;Host

Init≜Host ||Switch

Fig. 3: Stateful Firewall in DyNetKAT

2.4 DyNetKAT Semantics

The operational semantics of DyNetKAT in Figure 4 is provided over configu-
rations of shape (d,H,H ′), where d stands for the current DyNetKAT policy, H
is the list of packets to be processed by the network according to d and H ′ is the
list of packets handled successfully by the network. The rule labels γ range over
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(cpol✓;)
σ′ ∈ JpK(σ::⟨⟩)

(p; q, σ :: H,H ′)
(σ,σ′)−−−−→ (q,H, σ′ :: H ′)

(cpolX)
(p,H0, H1)

γ−→ (p′, H ′
0, H

′
1)

(X,H0, H1)
γ−→ (p′, H ′

0, H
′
1)

X ≜ p

(cpol ⊕)
(p,H0, H

′
0)

γ−→ (p′, H1, H
′
1)

(p⊕ q,H0, H
′
0)

γ−→ (p′, H1, H
′
1)

(cpol ||)
(p,H0, H

′
0)

γ−→ (p′, H1, H
′
1)

(p||q,H0, H
′
0)

γ−→ (p′||q,H1, H
′
1)

(cpol•)
(x • p; q,H,H ′)

x•p−−→ (q,H,H ′)
• ∈ {?, !}

(cpol♣♠)
(q,H,H ′)

x♣ p−−−→ (q′, H,H ′) (s,H,H ′)
x♠ p−−−→ (s′, H,H ′)

(q||s,H,H ′)
rcfg(x,p)−−−−−−→ (q′||s′, H,H ′)

♣ =? ♠ =!
or

♣ =! ♠ =?

γ ::= (σ, σ′) | x!q | x?q | rcfg(x,q)
Fig. 4: DyNetKAT: Operational Semantics (relevant excerpt)

pairs of packets (σ, σ′) or communication/reconfiguration-like actions of shape
x!q, x?q or rcfg(x,q), depending on the context.

Note that the DyNetKAT semantics is devised in a “layered” fashion. Rule
(cpol✓;) in Figure 4 is the base rule that makes the transition between the
NetKAT denotations and DyNetKAT operations. More precisely, whenever σ′

is a packet resulted from the successful evaluation of a NetKAT policy p on σ,
a (σ, σ′)-labelled step is observed at the level of DyNetKAT. This transition
applies whenever the current configuration encapsulates a DyNetKAT policy of
shape p; q and a list of packets to be processed starting with σ. The resulting
configuration continues with evaluating q on the next packet in the list, while σ′

is marked as successfully handled by the network.

The remaining rules in Figure 4 define non-deterministic choice ⊕, synchro-
nisation || and recursion X in the standard fashion. Note that synchronisations
leave the packet lists unchanged. Moreover, we choose not to hide the channel
x and the policy p being communicated (as it is usually the case in ACP), but
rather keep this information visible outside the SDN being modelled, by means of
the label rcfg(x,p). Due to space limitation, we omitted the explicit definitions
of the symmetric cases for ⊕ and ||. The full semantics is provided in [7].

In Figure 5 we depict a labelled transition system (LTS) encoding a pos-
sible behaviour of the stateful firewall in Example 1. We assume the list of
network packets to be processed consists of a “safe” packet σi travelling from
int to ext (i.e., σi(port) = int) followed by a potentially “dangerous” packet
σe travelling from ext to int (i.e., σe(port) = ext). For the simplicity of no-
tation, in Figure 5 we write H for Host, S for Switch, S ′ for Switch ′, SCR
for secConReq and SCE for secConEnd . Note that σe can enter the network
only if a secure connection request was received. More precisely, the transition
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labelled (σe, σi) is preceded by a transition labelled SCR?1 or rcfg(SCR,1):

n2
SCR?1, rcfg(SCR,1)−−−−−−−−−−−−−→ n3

(σe,σi)−−−−→ n4.

n0 : (H||S, σi::σe::⟨⟩, ⟨⟩)

n1 : (H||S′, σi::σe::⟨⟩, ⟨⟩)

n2 : (H||S, σe::⟨⟩, σe::⟨⟩ n3 : (H||S′, σe::⟨⟩, σe::⟨⟩

n4 : (H||S′, ⟨⟩, σi::σe::⟨⟩

n5 : (H||S, ⟨⟩, σi::σe::⟨⟩

SCE!1,

SCR!1

SCR!1,
rcfg(SCR,1)

SCE!1,SCR!1

SCE!1,

rcfg(SCE,1)

(σi, σe)
(σi, σe)

SCE!1,SCR!1
SCR!1,

rcfg(SCR,1)

SCE!1,rcfg(SCE,1)

(σe, σi)

SCE!1,SCR!1

SCE!1,

SCR!1

SCE!1,

rcfg(SCE,1)

SCR!1,

rcfg(SCR,1)

SCE!1,SCR!1

Fig. 5: Stateful Firewall LTS

3 Semantic Results

In this section we define bisimilarity of DyNetKAT policies and provide a cor-
responding sound and ground-complete axiomatization. We start with strong
bisimilarity because it lends itself to a neat theory. Once we establish a theory
for strong bisimilarity, a theory for other notions of equivalence in the linear-
time and branching-time spectrum can be obtained by adding a specific set of
axioms following a standard recipe for each notion. We use this approach to
reason about safety properties that are about traces.

Bisimilarity of DyNetKAT terms is defined in the standard fashion:

Definition 2 (Bisimilarity (∼)) A symmetric relation R over DyNetKAT
policies is a bisimulation whenever for (p, q) ∈ R the following holds:

If (p,H0, H1)
γ−→ (p′, H ′

0, H
′
1) then exists q′ s.t. (q,H0, H1)

γ−→ (q′, H ′
0, H

′
1) and

(p′, q′) ∈ R, with γ ::= (σ, σ′) | x?r | x!r | rcfg(x, r).
We call bisimilarity the largest bisimulation relation. Two policies p and q are
bisimilar (p ∼ q) iff there is a bisimulation relation R such that (p, q) ∈ R.

Semantic equivalence of NetKAT−dup policies is preserved by DyNetKAT.

Proposition 1 (Semantic Layering). Let p and q be NetKAT−dup policies.
The following holds: JpK = JqK iff (p; d) ∼ (q; d) for any DyNetKAT policy d.
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for p, q, r ∈ DyNetKAT and z, y ∈ NetKAT−dup

for a ::= z | x?z | x!z | rcfgx,z

0 ; p≡ ⊥ (A0)

(z + y) ; p≡ z ; p ⊕ y ; p (A1)

p ⊕ q≡ q ⊕ p (A2)

(p ⊕ q) ⊕ r≡ p ⊕ (q ⊕ r) (A3)

p ⊕ p≡ p (A4)

p ⊕ ⊥≡ p (A5)

p || q≡ q || p (A6)

p || ⊥≡ p (A7)

p || q≡ pTq ⊕ qTp ⊕ p | q (A8)

⊥Tp≡ ⊥ (A9)

(a ; p)Tq≡ a ;(p || q) (A10)

(p ⊕ q)Tr≡ (pTr) ⊕ (qTr) (A11)

(x?z ; p) | (x!z ; q)≡ rcfgx,z ;(p || q) (A12)

(p ⊕ q) | r≡ (p | r) ⊕ (q | r) (A13)

p | q≡ q | p (A14)

p | q≡ ⊥ [owise] (A15)

for at ::= α · π | x?z | x!z | rcfgx,z :

δL(⊥)≡ ⊥ (δ⊥)

δL(at ; p)≡ at ; δL(p) if at ̸∈ L (δ;)

δL(at ; p)≡ ⊥ if at ∈ L (δ⊥; )

δL(p ⊕ q)≡ δL(p) ⊕ δL(q) (δ⊕)

for n ∈ N :

π0(p)≡ ⊥ (Π0)

πn(⊥)≡ ⊥ (Π⊥)

πn+1(at ; p)≡ at ;πn(p) (Π;)

πn(p ⊕ q)≡ πn(p) ⊕ πn(q) (Π⊕)

p ≡ q if ∀n ∈ N : πn(p) ≡ πn(q) (AIP)

ENK

Fig. 6: The axiom system EDNK (including ENK)

Proof sketch. This follows according to ∼ and (cpol✓;) in Figure 4. ■

We further provide some additional ingredients needed to introduce the
DyNetKAT axiomatisation in Figure 6. First, note that our notion of bisimilarity
identifies synchronisation steps as in (cpol♣♠) in Figure 4. At the axiomatisa-
tion level, this requires introducing corresponding constants rcfgx,z defined as:

(rcfgx,z; p,H0, H1)
rcfg(x,z)−−−−−−→ (p,H0, H1)

.

In accordance with standard approaches to process algebra (see, e.g., [1, 4])
we consider the restriction operator δL(−) with L a set of forbidden actions
ranging over x?z and x!z as in (1). In practice, we use the restriction opera-
tor to force synchronous communication. We also define a projection operator
πn(−) that, intuitively, captures the first n steps of a DyNetKAT policy. πn(−)
is crucial for defining the so-called “Approximation Induction Principle” that en-
ables reasoning about equivalence of recursive DyNetKAT specifications. Last,
but not least, in our axiomatisation we employ the left-merge operator (T) and
the communication-merge operator (|) utilised for axiomatising parallel compo-
sition. Intuitively, a process of shape pTq behaves like p as a first step, and then
continues as the parallel composition between the remaining behaviour of p and
q. A process of shape p | q forces the synchronous communication between p
and q in a first step, and then continues as the parallel composition between the
remaining behaviours of p and q. The full description of these auxiliary operators
is provided in [7].
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From this point onward, we denote by DyNetKAT the extension with the
operators δL(−), πn(−) and rcfgx,z:

N ::= NetKAT−dup

De ::= ⊥ | N ;D | x?N ;De | x!N ;De | rcfgx,N ;De |
De ||De | De ⊕De | δL(De) | πn(De) | DeTDe | De|De | X
X ≜ De, n ∈ N, L = {c | c ::= x?N | x!N}

(2)

Bisimilarity is defined for DyNetKAT terms as in (2) in the natural fashion.

Lemma 3 For DyNetKAT, bisimilarity is a congruence.

Proof sketch. The result follows from the fact that the semantic rules defined
in this paper comply to the congruence formats proposed in [15]; the notion of
bisimilarity used in our paper coincides with the notion of stateless bisimilarity
in [15] and hence, the lemma follows. ■

In Figure 6, we introduce EDNK – the axiom system of DyNetKAT, including
the NetKAT axiomatisation ENK. Most of the axioms in Figure 6 comply to the
standard axioms of parallel and communicating processes [4], where, intuitively,
⊕ plays the role of non-deterministic choice, ; resembles sequential composition
and ⊥ is a process that deadlocks. An interesting axiom is (A7) : p || ⊥ ≡ p
which, intuitively, states that if one network component fails, then the whole
system continues with the behaviour of the remaining components. This is a
departure from the approach in [11], where recovery is not possible in case of a
component’s failure; i.e., e || 0 ≡ 0. Additionally, (A12) “pin-points” a commu-
nication step via the newly introduced constants of form rcfgx,z. Axiom (A0)
states that if the current packet is dropped as a result of the unsuccessful eval-
uation of a NetKAT policy, then the continuation is deadlocked. (A1) enables
mapping the non-deterministic choice at the level of NetKAT to the setting of
DyNetKAT.

The axioms encoding the restriction operator δL(−) and the projection op-
erator πn(−) are defined in the standard fashion, on top of DyNetKAT normal
forms later defined in this section. Intuitively, normal forms are defined induc-
tively, as sums of complete tests and complete assignments α · π, or commu-
nication steps x?q, x!q and rcfgx,q, followed by arbitrary DyNetKAT policies.
Complete tests (typically denoted by α) and complete assignments (typically
denoted by π) were originally introduced in [3]. In short: let F = {f1, . . . , fn}
be a set of fields names with values in Vi, for i ∈ {1, . . . , n}. We call complete
test (resp., complete assignment) an expression f1 = v1 · . . . · fn = vn (resp.,
f1 ← v1 · . . . · fn ← vn), with vi ∈ Vi, for i ∈ {1, . . . , n}. Last, but not least, ax-
iom (AIP ) corresponds to the so-called “Approximation Induction Principle”,
and it provides a mechanism for reasoning about the equivalence of recursive
behaviours, up to a certain limit denoted by n.

In what follows, we show that the axiom system EDNK is sound and ground-
complete with respect to DyNetKAT bisimilarity.
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Lemma 4 (NetKAT−dup Normal Forms) We call a NetKAT−dup policy q
in normal form (n.f.) whenever q is of shape Σα·π∈Aα·π with A = {αi·πi | i ∈ I}.
ENK is normalising for NetKAT−dup.

Proof sketch. The result follows from Lemma 4 in [3] stating that the stan-
dard semantics of every NetKAT expression is equal to the union of its minimal
nonzero terms. In the context of NetKAT−dup and packet values drawn from
finite domains (as is the case in [3]), this union can be equivalently expressed
as a sum of complete tests and complete assignments. I.e., ⊢ r ≡ Σi∈Iαi · πi for
every NetKAT−dup expression r. ■

Definition 5 (DyNetKAT Normal Forms) We call a DyNetKAT policy in
normal form (n.f.) if it is of shape

Σ⊕
i∈I(αi · πi); di ⊕Σ⊕

j∈Jcj ; dj (⊕⊥)

where di, dj range over DyNetKAT policies and cj ::= x?q | x!q | rcfgx,q with q

denoting terms in NetKAT−dup.

Definition 6 (Guardedness) A DyNetKAT policy p is guarded if and only if
all occurrences of all variables X in p are guarded. An occurrence of a variable
X in a policy p is guarded if and only if (i) p has a subterm of shape p′; t such
that either p′ is variable-free, or all the occurrences of variables Y in p′ are
guarded, and X occurs in t, or (ii) if p is of shape y?X; t, y!X; t or rcfgX,t.

Note that guarded DyNetKAT policies are finitely branching. In what follows,
we assume DyNetKAT policies are guarded.

Lemma 7 (DyNetKAT Normalisation) EDNK is normalising for DyNetKAT.

Proof sketch. The proof follows from Lemma 4 and (A1), by structural in-

duction. Base cases: p ≜ ⊥ trivially holds; p ≜ q; d with q a NetKAT−dup

term holds by Lemma 4 and (A1); p ≜ c; d with c ::= x?q | x!q | rcfgx,q

trivially holds. Induction step, cases: p ≜ X - discarded, as p is not guarded;

p ≜ p1 ⊕ p2 ; p ≜ p1Tp2 ; p ≜ πn(p
′) ; p ≜ p1 | p2 ; p ≜ δL(p

′) and, eventu-

ally, p ≜ p1 || p2 . All items before follow by the axiom system EDNK and the

induction hypothesis, under the assumption that p1, p2 and p′ are guarded. ■

Lemma 8 (Soundness of EDyNetKAT\AIP ) Let EDyNetKAT\AIP stand for the
axiom system EDNK in Figure 6, without the axiom (AIP ). EDyNetKAT\AIP is
sound for DyNetKAT bisimilarity.

Proof sketch. This is proven in a standard fashion, by case analysis on transitions

of shape (p,H0, H
′
0)

γ−→ (q,H1, H
′
1) with γ ::= (σ, σ′) | x?n | x!n | rcfg(x,n),

according to the semantic rules of the DyNetKAT operators in (2). Take (A0)

DyNetKAT: An Algebra of Dynamic Networks 195



for instance. The left hand-side 0; p can only evolve according to (cpol✓;) in
Fig. 4 which, in turn, has an empty premise as J0K(σ :: ⟨⟩) = {} for all σ.
Thus, (cpol✓;) does not entail any step for this case. Symmetrically, there is
no semantic transition for ⊥ in Fig. 4. In other words, none of the left/right
hand-sides of (A0) displays any behaviour, therefore the axiom is sound. ■

Lemma 9 (Soundness of AIP ) The Approx. Induction Principle (AIP ) is
sound for DyNetKAT bisimilarity.

Proof sketch. The proof is close to the one of Theorem 2.5.8 in [4] and uses the
branching finiteness property of guarded DyNetKAT policies. ■

Theorem 1 (Soundness & Completeness). EDNK is sound and ground-
complete for DyNetKAT bisimilarity.

Proof. Soundness: if EDNK ⊢ p ≡ q then p ∼ q, follows from Lemma 8 and
Lemma 9. Completeness: if p ∼ q then EDNK ⊢ p ≡ q, is shown as follows.
Without loss of generality, assume p and q are in n.f., according to Lemma 7.
We want to show that p ≡ q ⊕ p and q ≡ p ⊕ q which, by ACI of ⊕ implies
p ≡ q. This reduces to showing that every summand of p is a summand of q
and vice-versa. We first argue that every summand of p is a summand of q. The
reasoning is by structural induction.
Base case p ≜ ⊥ holds by the hypothesis p ∼ q that q ≜ ⊥.
Induction step. Case p ≜ ((α · π); p′) ⊕ p′′: then, (p, σα :: H,H ′)

(σα,σπ)−−−−−→
(p′, H, σπ :: H ′) implies by the hypothesis p ∼ q that (q, σα :: H,H ′)

(σα,σπ)−−−−−→
(q′, H, σπ :: H ′) and p′ ∼ q′. Recall that q is in n.f.; hence, by the shape of the
semantic rules in Figure 4 it holds that q ≜ ((α · π); q′) ⊕ q′′. By the induction
hypothesis, it holds that p′ ≡ q′ hence, (α ·π); p′ is a summand of q as well. Cases
p ≜ (c; p′)⊕ p′′ with c ::= x?n | x!n | rcfgx,n follow in a similar fashion. Hence,
p ≡ q ⊕ p holds. The symmetric case q ≡ p⊕ q follows the same reasoning.

We refer to [7] for the complete proofs and additional details.

4 A Framework for Safety

In this section we provide a language for specifying safety properties for networks
characterized by DyNetKAT, together with a procedure for reasoning about
safety in an equational fashion. Intuitively, safety properties enable specifying
the absence of undesired network behaviours.

Definition 10 (Safety Properties - Syntax) Let A be an alphabet over let-
ters of shape α · π and rcfgx,p, with α and π ranging over complete tests and
assignments, and rcfgx,p ranging over reconfiguration actions. Safety properties
are defined in the following fashion:

act ::= α · π | rcfgx,p (α · π, rcfgx,p ∈ A)
regexp ::= true | act | ¬act | regexp + regexp | regexp · regexp |

(regexp)n (with n ≥ 1)
prop ::= [regexp]false
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A safety property specification prop is satisfied whenever the behaviour en-
coded by regexp should not be observed within the network. Regular expressions
regexp are defined with respect to actions act : a flow of shape α · π is the ob-
servable behaviour of a (NetKAT−dup) policy transforming a packet encoded by
α into απ, whereas rcfgx,p corresponds to a reconfiguration step in a network.
Recursively, a sum of regular expressions regexp1 + regexp2 encodes the union
of the two behaviours, a concatenation of regular expressions regexp1 · regexp2

encodes the behaviour of regexp1 followed by the behaviour of regexp2. A prop-
erty of shape [¬a]false, with a ∈ A, states that the system cannot do anything
apart from a as a first step. The property [true]false states that no action can
be observed in the network, whereas [rn]false encodes the repeated application
of r for n times.

Note that true, negated expressions ¬a and repetitions rn are mere syntactic
sugars of equivalent expressions free of these operations. Not surprisingly, “de-
sugaring” (ds(−)) is defined as:

ds(true) ≜ Σa∈Aa

ds(¬a) ≜ Σ
ai ∈ A
ai ̸= a

ai ds(rn) ≜ ds(r · r · . . . · r︸ ︷︷ ︸
n times

)

ds(r1 · r2) ≜ ds(r1) · ds(r2) if r1 · r2 not de-sugared

ds(r1 + r2) ≜ ds(r1) + ds(r2) if r1 + r2 not de-sugared

ds(r) ≜ r [owise]

The complete formal definition of the de-sugaring function is provided in [7].

Definition 11 (Safety Properties - Semantics) Let A be an alphabet over
letters of shape α · π and rcfg(x,p), with α and π ranging over complete tests
and assignments, and rcfg(x,p) ranging over reconfiguration actions. We write
w,w′ for (non-empty) words with letters in A (i.e., w,w′ ∈ A∗) and | w | for
the length of w. We write w′ ⪯ w whenever w′ is a prefix of w (including w).

Let r be a de-sugared regular expression (regexp) as in Definition 10. We call
head normal form (h.n.f.) of r, denoted by hnf(r), the sum of words as above
obtained by left-/right- distributing · over + in r, in the standard fashion. Note
that such a h.n.f. always exists for r. Let Prop stand for the set of all properties
as in Definition 10, in h.n.f.

The semantic map J−K : Prop → DyNetKAT associates to each safety prop-
erty in Prop a DyNetKAT expression as follows. Let Θ be the DyNetKAT policy
(in normal form) encoding all possible behaviours over A: Θ ≜ Σ⊕

a∈A(a;⊥⊕a;Θ).
Then:

J [Σ i ∈ I
wi ∈ A∗

wi]false K ≜ Σ⊕
w ∈ A∗

| w |< M
∀i ∈ I : wi ̸⪯ w

w;⊥ ⊕ Σ⊕
w ∈ A∗

| w |= M
∀i ∈ I : wi ̸⪯ w

(w;⊥ ⊕ w;Θ) (3)

such that M is the length of the longest word wi, with i ∈ I, and w is a
DyNetKAT-compatible term obtained from w where all letters have been sep-
arated by ; and inductively defined in the obvious way. Namely, a ≜ a for a ∈ A

DyNetKAT: An Algebra of Dynamic Networks 197



and a · w ≜ a;w for a ∈ A and w ∈ A∗. The semantic map J−K is defined
following the intuition provided earlier in this section. For instance, as shown
in (3), if none of the sequences of steps wi can be observed in the system, then
the associated DyNetKAT term prevents the immediate execution of all wi.

Typically, safety analysis is reduced to reachability. In our context, a safety
property is violated whenever the network system under analysis displays a (fi-
nite) execution that is not in the behaviour of the property. Thus, the aforemen-
tioned semantic map is based on traces (or words in A∗) and is not sensitive
to branching. This paves the way to reasoning about safety properties in an
equational fashion.

Definition 12 (Safe Network Systems) Let Etr
DNK stand for the equational

axioms in Figure 6, including the additional axiom that enables switching from
the context of bisimilarity to trace equivalence of DyNetKAT policies, namely:
p; (q ⊕ r) ≡ p; q ⊕ p; r. Assume a specification given as the safety formula s
and a network system implemented as the DyNetKAT policy i. We say that the
network is safe whenever the following holds: Etr

DNK ⊢ JsK ⊕ i ≡ JsK. In words:
checking whether i satisfies s reduces to checking whether the trace behaviour of
i is included into that of s.

For an example, consider the firewall in Figure 1 and the corresponding
encoding in Figure 3. Recall that reaching int from ext without observing a
secure connection request is a faulty behaviour. This entails the safety formula
sn defined as [(¬rcfgsecConReq,1)

n · (α · π)]false, for n ∈ N, α ≜ (port = ext) and

π ≜ (port ← int). Therefore, checking whether the network is safe reduces to
checking, for all n ∈ N: Etr

DNK ⊢ JsnK⊕ Init ≡ JsnK. Note that, for a fixed n, the
verification procedure resembles bounded model checking [5].

5 Implementation

In this section, we describe our implementation for formal reasoning about dy-
namic networks. Our prototype tool, called DyNetiKAT (available at https:
//github.com/hcantunc/DyNetiKAT) is based on Maude [8], the NetKAT deci-
sion procedure [10], and Python [19] as a glue language. Our modular extension
of NetKAT allows for reusing the NetKAT tools in our framework. In our pro-
totype, we focus on checking reachability and waypointing in a dynamic setting.
We build upon the methods for checking reachability and waypointing properties
in NetKAT [3]. For a reminder, in NetKAT, reachability and waypointing prop-
erties are characterised as follows: for reachability properties, an egress point out
is reachable from an ingress point in, in the context of a switch policy p and
topology t, whenever the following NetKAT equivalence holds: in·(p·t)∗ ·out ̸≡ 0.
For waypointing properties, an intermediate point w between in and out is con-
sidered a waypoint from in to out if all the packets from in to out go through
w. Such a property is satisfied if the following equivalence holds:
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in · (p · t)∗ · out+ in · (¬out · p · t)∗ · w · (¬in · p · t)∗ · out
≡ in · (¬out · p · t)∗ · w · (¬in · p · t)∗ · out

In order to utilise the NetKAT decision procedure for property checking we
represent the properties given as regular expressions (as described in Section 4).
To this end, we introduced the operators head(D), and tail(D,R), where D is
a DyNetKAT term and R is a set of terms of shape rcfgX,N . Intuitively, the
operator head(D) returns a NetKAT policy representing the current configu-
ration in D, and tail(D,R) returns a DyNetKAT policy which is the sum of
policies in D that appear after the synchronisation events in R. We utilise these
operators as follows: for a given DyNetKAT term we apply our equational rea-
soning framework to unfold the expression and rewrite it into the normal form.
Then, we extract the desired configurations by using the head and tail opera-
tors. After this step, the resulting expression is a NetKAT term and we use the
NetKAT decision procedure for checking properties. For example, consider the
safety property [(true)n · (α · π)]false as in Definition 10, and a network SDN .
Note that for a given complete assignments, there exists a corresponding com-
plete test with the same values, e.g., the corresponding complete test for the
complete assignment f0 ← v0 . . . fn ← vn is f0 = v0 . . . fn = vn. Henceforth,
we write απ to represent the corresponding complete tests of π. The property
[(true)n · (α · π)]false can be encoded in the style of NetKAT as follows:

α · head(πn(SDN)) · απ ≡ 0 (4)

α · head(tail(πn(SDN), R)) · απ ≡ 0 (5)

where R is the set of all synchronisation events in the network and πn(−) is the
projection operator equationally defined in Figure 6. In our technical report [7]
we provide the corresponding correctness specification of the stateful example
discussed in Section 1. Note that in practice the parameter n in πn is a fixed value
specified by the user. Intuitively, (4) expresses that the initial configuration of
the network is not able to transform the packets satisfying the predicate α such
that they satisfy the predicate απ and (5) expresses that this transformation
is still not possible in the configurations after any sequence of synchronisation
events. Formally, the operators head and tail are defined as follows:

head(⊥) = 0 tail(⊥, R) = ⊥
head(N ;D) = N + head(D) tail(N ;D,R) = tail(D,R)

head(D ⊕ Q) = head(D) + head(Q) tail(D ⊕ Q,R) = tail(D,R) ⊕ tail(Q,R)

head(rcfgX,N ;D) = 0 tail(rcfgX,N ;D,R) = D ⊕ tail(D,R) if rcfgX,Z ∈ R

tail(rcfgX,N ;D,R) = ⊥ if rcfgX,N ̸∈ R

Note that we assume the DyNetKAT terms given as input to the operators
head and tail do not contain terms of shape x?q and x!q. This can be ensured
by applying the restriction operator δ on the input terms.

Observe that the safety properties of Definition 10 are designed to capture
unsafe flows. Similarly, one can also define the syntax ⟨regexp⟩true to express
that a certain safe flow is possible and reason about it. For an example, consider
the stateful firewall example and the property ⟨(rcfgsecConReq,1)

n · (α · π)⟩true
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Fig. 7: A FatTree Topology

where α ≜ (port = ext) and π ≜ (port ← int). This property expresses that the
flow from port ext to port int is possible after the event rcfgsecConReq,1. This
property can be encoded in the NetKAT style as α·head(tail(πn(Init), R))·απ ̸≡
0 where R = {rcfgsecConReq,1}.

6 Experimental Evaluation

In this section we evaluate the applicability of our implementation based on a
FatTree [22] topology case. FatTrees are hierarchical topologies commonly used
in data centers. Figure 7 illustrates a FatTree with 3 levels: core, aggregation
and top-of-rack (ToR). The switches at each level contain a number of redundant
links to the upper level. The groups of ToR switches and their corresponding
aggregation switches are called pods. For our experiments, we generated 6 Fat-
Trees that grow in size and achieve a maximum size of 1344 switches. For these
networks we computed a shortest path forwarding policy between all pairs of
ToR switches. The number of switches in the ToR layer is set to k3/4 where k
is the number of pods in the network.

We check dynamic properties on these networks and assess the time per-
formance of our tool. We consider a scenario involving two ToR switches Ta

and Tb that reside in different pods. Initially, all packets from Ta to Tb traverse
through a firewall Ax in the aggregation layer which filters SSH packets. The
controller then decides to shift the firewall from Ax to another switch Ax′ in the
aggregation layer. For this purpose, the controller updates the corresponding ag-
gregation and core layer switches resulting in 4 updates. The checked properties
are as follows: (i) At any point while the controller is performing the updates,
non-SSH packets from Ta can always reach Tb. (ii) At any point while the con-
troller is performing the updates, SSH packets from Ta can never reach Tb. (iii)
After all the updates are performed, Ax′ is a waypoint between Ta and Tb.

We conducted the experiments on an Ubuntu 20.04 LTS OS with 16 core
2.4GHz Intel i9-9980HK processor and 64 GB RAM. The results are depicted in
Figure 8. We report the preprocessing time, the time taken for checking proper-
ties (i), (ii), and (iii) individually (referred to as Reachability-I, Reachability-II,
and Waypointing, respectively), and also time taken to check all the properties
in parallel (referred to as All Properties). The reported times are the average of
10 runs.
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The results indicate that preprocessing step is a non-negligible factor that
contributes to overall time. However, preprocessing is independent of the prop-
erty that is being checked and this procedure only needs to be done once for
a given network. After the preprocessing step, the individual properties can be
checked in less than 2 seconds for networks with less than 100 switches. For
larger networks with sizes up to 931 and 1344 switches, the individual properties
can be checked in a maximum of 5 minutes and 11 minutes, respectively. Check-
ing for the property (iii) takes more than twice as much time as checking for
the properties (i) and (ii). In the experiments where we check all properties in
parallel, we allocated one thread for each property. In this setting, checking all
properties introduced 24% overhead on average. After preprocessing, on average
87% of the running times are spent in the NetKAT decision procedure and this
step becomes the bottleneck in analysing larger networks.

Fig. 8: Results of FatTree experiments. Light-coloured areas indicate the time spent
in the NetKAT tool and solid coloured areas indicate the time spent in our tool.

7 Conclusions

We develop the language DyNetKAT for modelling and reasoning about dy-
namic reconfigurations in Software Defined Networks. Our language builds upon
the concepts, syntax, and semantics of NetKAT and hence, provides a modular
extension and makes it possible to reuse the theory and tools of NetKAT. We
define a formal semantics for our language and provide a sound and ground-
complete axiomatisation. We exploit our axiomatisation to analyse reachability
properties of dynamic networks and show that our approach scales to networks
with hundreds of switches. We assume that each data plane packet sees one set
of flow tables throughout their flight in the network [17]. We plan to investigate
small-step semantics in which the control plane updates can have a finer inter-
leaving with in-flight packet as future work. Another natural direction for future
work is devising compilation schemes enabling the translation of DyNetKAT
programs into real running code.
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network programming. In Chandra Krintz and Emery Berger, editors, Proceedings
of the 37th ACM SIGPLAN Conference on Programming Language Design and
Implementation, PLDI 2016, Santa Barbara, CA, USA, June 13-17, 2016, pages
369–385. ACM, 2016. doi:10.1145/2908080.2908097.

14. Peter D. Mosses. Modular structural operational semantics. J. Log. Algebraic
Methods Program. 60-61: 195-228, 2004. doi.org/10.1016/j.jlap.2004.03.008

15. Mohammad Reza Mousavi, Michel A. Reniers, and Jan Friso Groote. Notions of
bisimulation and congruence formats for SOS with data. Information and Compu-
tation, 200(1):107 – 147, 2005. doi.org/10.1016/j.ic.2005.03.002.

16. Tim Nelson, Andrew D. Ferguson, Michael J. G. Scheer, and Shriram Krishna-
murthi. Tierless programming and reasoning for software-defined networks. In
Ratul Mahajan and Ion Stoica, editors, Proceedings of the 11th USENIX Sym-
posium on Networked Systems Design and Implementation, NSDI 2014, Seattle,
WA, USA, April 2-4, 2014, pages 519–531. USENIX Association, 2014. URL:
https://www.usenix.org/conference/nsdi14/technical-sessions/presentation/nelson.

17. Mark Reitblatt, Nate Foster, Jennifer Rexford, Cole Schlesinger, and David Walker.
Abstractions for network update. In Lars Eggert, Jörg Ott, Venkata N. Padman-
abhan, and George Varghese, editors, ACM SIGCOMM 2012 Conference, SIG-
COMM ’12, Helsinki, Finland - August 13 - 17, 2012, pages 323–334. ACM, 2012.
doi:10.1145/2342356.2342427.

18. Alexandra Silva. Models of Concurrent Kleene Algebra. In Elvira Albert and
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