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Abstract

Edge degree conditions have been studied since the 1980s, mostly with
regard to hamiltonicity of line graphs and the equivalent existence of domi-
nating closed trails in their root graphs, as well as the stronger property of
being supereulerian, i.e., admitting a spanning closed trail. For a graph G,
let σ2(G) = min{d(u) + d(v) | uv ∈ E(G)}. Chen et al. conjectured that a
3-edge-connected graph G with sufficientl large order n and σ2(G) > n

9 − 2
is either supereulerian or contractible to the Petersen graph. We show that
the conjecture is true when σ2(G) ≥ 2(bn/15c − 1). Furthermore, we show
that for an essentially k-edge-connected graph G with sufficiently large order
n, the following statements hold.

(i) If k = 2 and σ2(G) ≥ 2(bn/8c − 1), then either L(G) is hamiltonian
or G can be contracted to one of a set of six graphs which are not
supereulerian;

(ii) If k = 3 and σ2(G) ≥ 2(bn/15c− 1), then either L(G) is hamiltonian or
G can be contracted to the Petersen graph.
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1. Introduction

We follow Bondy and Murty [2] for undefined terms and notation, and consider
finite and loopless graphs only, but we allow multiple edges. Whenever we allow
multiple edges in the sequel, we will indicate this by using the term multigraph;
if we use the term graph, we will always assume the graph under consideration
is simple. A graph G is hamiltonian if it has a Hamilton cycle (i.e., a spanning
cycle). For a vertex x of a graph G, we denote by NG(x) the neighborhood of
x in G, i.e., the set of vertices adjacent to x in G, and by dG(x) = |NG(x)| (or
simply d(x)) the degree of x in G. For multigraphs these concepts need to be
adjusted in the obvious way. To distinguish vertex sets with different degrees,
we use Di(G) = {v ∈ V (G) | d(v) = i}, and we let D(G) = D1(G) ∪ D2(G).
The circumference of G, denoted by c(G), is the length of a longest cycle of G.
The girth of G, denoted by g(G), is the length of a shortest cycle of G. A graph
is called claw-free if it has no induced subgraph isomorphic to K1,3. The line
graph of a graph G will be denoted by L(G). As in [2], the matching number ,
the connectivity and the edge-connectivity of G are denoted by α′(G), κ(G) and
κ′(G), respectively.

An edge cut X of G is essential if G − X has at least two nontrivial com-
ponents, i.e., containing at least one edge. For an integer k > 0, a graph G is
essentially k-edge-connected if G is connected and does not have an essential edge
cut X with |X| < k. Note that a graph G is essentially k-edge-connected if and
only if its line graph L(G) is k-connected or complete.

For a fixed function f(n) of the order n of a graph G, degree conditions like
δ(G) ≥ f(n) are usually referred to as Dirac-type degree conditions. Similarly,
with σ2(G) = min{d(u)+d(v)| uv /∈ E(G)}, conditions of the form σ2(G) ≥ f(n)
are commonly called Ore-type degree conditions. Here we focus on so-called edge
degree conditions, i.e., conditions of the type σ2(G) ≥ f(n), where σ2(G) =
min{d(u) + d(v)| uv ∈ E(G)}.

Degree conditions of the above three types are well-known in the area of
hamiltonian graph theory as the classic approach to establishing sufficient condi-
tions for guaranteeing hamiltonian properties. We refer the interested reader to
the surveys [13, 14] for a wealth of results and references in this field, but here we
only repeat the basic results involving the three above parameters. Let G be a
graph of order n ≥ 3. In [12], Dirac proved that δ(G) ≥ n

2 is a sufficient condition
for G to be hamiltonian. As a generalization of Dirac’s result, in [16], Ore proved
that σ2(G) ≥ n guarantees the hamiltonicity of G. In [3], Brualdi and Shanny
proved that a graph G of order n ≥ 4 with σ2(G) ≥ n has a hamiltonian line
graph L(G). Motivated by the hamiltonicity results on claw-free graph obtained
in [8, 19], we focus on sufficient conditions for the hamiltonicity of the line graph
L(G) of a graph G involving σ2(G).
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Regarding substructures in a graph G that are crucial for investigating the
existence of Hamilton cycles in L(G), we introduce the following terminology.
A closed trail Ψ is called a spanning closed trail (SCT) in G if V (G) = V (Ψ),
and is called a dominating closed trail (DCT) if E(G − V (Ψ)) = ∅. A graph is
supereulerian if it contains an SCT. The family of supereulerian graphs is denoted
by SL. In order to limit the length of this paper, we refrain from repeating the
details of the techniques that are nowadays more or less standard for this field.
We refer the reader to [18] for a detailed explanation of the general approaches
that are used in our proofs, like Catlin’s reduction method of collapsible graphs,
the core of a graph, Veldman’s reduction, and so on.

All results on hamiltonicity of line graphs are based on the following close
relationship between DCTs in graphs and the hamiltonicity of their line graphs.

Theorem 1 (Harary and Nash-Willians [15]). Let G be a graph with at least
three edges. Then L(G) is hamiltonian if and only if G has a DCT.

The following was conjectured by Benhocine et al. in [1], and proved by
Veldman in [20].

Theorem 2 (Veldman [20]). Let G be an essentially 2-edge-connected graph of
order n such that σ2(G) > 2n

5 − 2. If n is sufficiently large, then L(G) is hamil-
tonian.

In [20], Veldman also obtained the following related result, showing that the
lower bound in the above result can be improved, but only by allowing a class of
exceptional graphs.

Theorem 3 (Veldman [20]). Let G be an essentially 2-edge-connected graph of
order n such that σ2(G) > 2(bn7 c− 1). If n is sufficiently large, then either L(G)
is hamiltonian or G is contractible to a K2,3 such that all vertices of degree 2 in
K2,3 are contracted vertices.

We use θ(i, j, k) to denote the graph that is obtained from the multigraph
consisting of two vertices and three multiple (parallel) edges by subdividing the
three edges i, j, and k times, respectively. For example, θ(1, 1, 1) ∼= K2,3. We
also define the following two classes of graphs, referring to Figure 1.

• G1 = {K2,3,K2,5,W
∗
3 , θ(1, 1, 2), θ(1, 1, 3), θ(1, 2, 2)} and

• G2 = {J(2, 2), J(2, 3),K∗2,5,K
∗∗
2,5, C(6, 2), C(6, 2)′, C(6, 4), C(6, 4)′, θ(1, 1, 4),

θ(1, 1, 4)′, θ(1, 1, 4)′′, θ(1, 1, 4)′′′, θ(2, 2, 2), θ(1, 2, 3), θ(1, 2, 3)′,W ∗∗3 }.

As already mentioned in [20], Theorem 3 is best possible in the sense that
there exist infinitely many essentially 2-edge-connected graphs G with σ2(G) =
2(bn7 c − 1) such that L(G) is nonhamiltonian and G is not contractible to K2,3.
Examples of such graphs can be found among the graphs contractible to K2,5
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Figure 1. The graphs in G1 ∪ G2.
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or the 3-cube minus a vertex (the graph W ∗3 ). The following result confirms
this, and shows that we can lower the bound on σ2(G) in Theorem 3 slightly by
excluding these two classes of exceptional graphs.

Theorem 4 (Tian and Xiong [19]). Let G be an essentially 2-edge-connected
graph of order n such that σ2(G) ≥ 2(bn7 c − 1). If n is sufficiently large, then
either L(G) is hamiltonian or G is contractible to a K2,3, a K2,5, or a W ∗3 such
that all vertices of degree 2 in K2,3, K2,5, and W ∗3 are contracted vertices.

The next result shows that for 3-edge-connected graphs, the lower bound in
Theorem 4 can be improved considerably, even with a stronger conclusion. Here,
the Petersen graph is the graph P (10) depicted in Figure 2.

Figure 2. The Petersen graph P (10), and the graph P (14).

Theorem 5 (Chen and Lai [9]). Let G be a 3-edge-connected graph of order n
such that

(1) σ2(G) ≥ n

5
− 2.

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

In [10], Chen and Lai improved the lower bound in Theorem 5 even further,
and obtained the following result.

Theorem 6 (Chen and Lai [10]). Let G be a 3-edge-connected graph of order n
such that

(2) σ2(G) ≥ n

6
− 2.

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.
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A natural question in this context is the following. What is the best possible
lower bound for the degree sum condition on pairs of adjacent vertices for which
all the exceptional graphs can be contracted to the Petersen graph? Due to
a construction based on the so-called Blanuša snarks in [10], there is an infinite
family of graphs showing that in the following conjecture, if true, the lower bound
in (3) would be best possible.

Conjecture 7 (Chen and Lai [10]). Let G be a 3-edge-connected graph of order
n such that

(3) σ2(G) >
n

9
− 2.

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

We define G3 = {P (10), P (14)}, where P (10) and P (14) are the graphs de-
picted in Figure 2. In the sequel, we use G′ to denote the reduction of a graph
G, and G′0 for the reduction of the core G0 of a graph G. In [6], Chen et al.
improved the result of Theorem 6 and obtained the following result.

Theorem 8 (Chen et al. [6]). Let G be a 3-edge-connected graph of order n such
that

(4) σ2(G) > 2
( n

15
− 1
)
.

If n is sufficiently large, then either G ∈ SL or G′ ∈ G3. Furthermore, if σ2(G) ≥
2( n14 − 1) and G′ = P (14), then n = 14s and each vertex in P (14) is obtained by
contracting a Ks or Ks − e for some e ∈ E(Ks).

Let Q0(r, k) be the family of k-edge-connected triangle-free graphs of order
at most r that do not admit an SCT. We will show that Q0(8, 2) = G1 ∪ G2
(see Theorem 16 in Section 2). In the following, for given integer p > 0, we
use “n � p” for “n is sufficiently large relative to p”. Our main result reads
as follows. As we will see, Theorems 2, 3, 4, 5, 6 and 8 are all special cases of
Theorem 9, with (p, k) ∈ {(5, 2), (7, 2), (10, 3), (12, 3), (15, 3)}.

Theorem 9. Let G be an essentially k-edge-connected graph of order n (k ∈
{2, 3}), and let p ≥ 2 be an integer such that

(5) σ2(G) ≥ 2(bn/pc − 1).

If n� p, then either L(G) is hamiltonian or G has no DCT and G′0 ∈ Q0(max{p,
3
2p− 4}, k).



Edge Degree Conditions for Dominating and ... 7

We continue with stating some consequences of our main result, and postpone
all proofs to later sections. As applications of Theorem 9, the following results
are obtained.

Theorem 10. Let G be an essentially 2-edge-connected graph of order n such
that

(6) σ2(G) ≥ 2(bn/8c − 1).

If n is sufficiently large, then either L(G) is hamiltonian or G is contractible to
a graph in {K2,3,K2,5,W

∗
3 , C(6, 2)′, C(6, 4)′, θ(1, 1, 4)′′′}.

Theorem 11. Let G be an essentially 3-edge-connected graph of order n such
that

(7) σ2(G) ≥ 2(bn/15c − 1).

If n is sufficiently large, then either L(G) is hamiltonian or G can be contracted
to the Petersen graph.

Theorem 12. Let G be a 3-edge-connected graph of order n such that

(8) σ2(G) ≥ 2(bn/15c − 1).

If n is sufficiently large, then either G is supereulerian or G can be contracted to
the Petersen graph.

The remainder of this manuscript is organized as follows. In Section 2, we
will present some useful results. In Section 3, we start by presenting and proving
some Ore-type analogues of the results in this paper. Section 3.1 contains our
proof of Theorem 9, whereas the proofs of Theorems 10, 11 and 12 are given in
Section 3.2.

2. Preliminaries

As we mentioned, the first result on edge degrees in this context is due to Brualdi
and Shanny [3], but we would like to emphasize that the foundations for all the
more recent results in this area were laid by the late Paul Catlin, and subsequently
by Catlin and his coworkers. Some of the main results of Catlin et al. are
presented in the following theorem.

Theorem 13 (Catlin et al. [4, 5]). Let G be a connected graph and let G′ be the
reduction of G.

(a) G is collapsible if and only if G′ = K1, and G ∈ SL if and only if G′ ∈ SL.
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(b) G has a DCT if and only if G′ has a DCT containing all the contracted
vertices of G′.

(c) If G is a reduced graph, then G is simple and triangle-free, and δ(G) ≤ 3.
Moreover, any subgraph Γ of G is reduced, and either Γ ∈ {K1,K2,K2,t

(t ≥ 2)} or |E(Γ)| ≤ 2|V (Γ)| − 5.

We state some facts we need on reduced graphs, as summarized in the fol-
lowing theorem, where the first fact is folklore and easy to prove.

Theorem 14. Let G be a connected reduced graph of order n. Then each of the
following holds.

(a) If G /∈ SL and κ′(G) ≥ 2, then n ≥ 5 and n = 5 only if G = K2,3.

(b) (Corollary 4.11 in [11]) If n ≤ 15 and δ(G) ≥ 3, then G is supereulerian if
and only if G /∈ G3.

(c) (Lemma 4.8 in [11]) If n ≥ 15, κ′(G) ≥ 3 and α′(G) ≤ 7, then G is supereu-
lerian.

In [19], Tian and Xiong characterized some small graphs which have no SCT,
as follows.

Theorem 15 (Tian and Xiong [19]). Let G be a 2-edge-connected triangle-free
graph of order at most 7. Then either G is supereulerian or G ∈ G1.

The following result extends the above result and will be used for our proof
of Theorem 10.

Theorem 16. Let G be a 2-edge-connected triangle-free graph of order at most
8. Then either G is supereulerian or G ∈ G1 ∪ G2.

Let G be a 2-connected graph, and let C = v0v1v2 · · · vc(G)−1v0 be a longest
cycle of G, where the subscripts are taken modulo c(G) throughout. Then any
component of G − V (C) has at least two different neighbors on C. Denote by
dC(vi, vj) the distance between vi, vj ∈ V (C) (with vi 6= vj) on C. Obviously,

1 ≤ dC(vi, vj) ≤
⌊
|V (C)|

2

⌋
.

Proof of Theorem 16. Let G be a 2-edge-connected triangle-free graph of or-
der at most 8. If G has an SCT, then we are done. So, in the following, we
assume that G has no SCT. If |V (G)| ≤ 7, then by Theorem 15, G ∈ G1. So, in
the following, we only need to consider the case |V (G)| = 8.

Suppose first that κ(G) = 1. Let B1, B2, . . . , Bt (t ≥ 2) be the blocks of G.
Since G is triangle-free, |V (Bi)| ≥ 4. Note that Bi and Bj (i 6= j) have at most
one vertex in common. Then t = 2; otherwise, 8 = |V (G)| ≥ 3 × 4 − 2 = 10, a
contradiction. Without loss of generality, we may assume that |V (B1)| = 4 and
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|V (B2)| = 5. Since G is triangle-free, B1 = C4. Then B2 /∈ SL; otherwise, G
has an SCT, a contradiction. Now, by Theorem 14(a), B2 = K2,3. Note that
|V (B1) ∩ V (B2)| = 1. Then G is isomorphic to the graph J(2, 2) or J(2, 3).

In the following, we suppose that G is 2-connected. Since G is triangle-free
and since G /∈ SL, 4 ≤ c(G) ≤ 7.

Observation 1. By deleting all chords of C from G, the resulting 2-connected
graph Gτ is a spanning subgraph of G. Obviously, C is also a longest cycle of
Gτ . Then Gτ has no SCT; otherwise, G has an SCT, a contradiction.

Note that by adding the deleted chords of C to Gτ one by one, by our
assumptions, at each step we obtain a spanning subgraph of G which has no
SCT, or we derive at a contradiction. Obviously, if 4 ≤ c(G) ≤ 5, then C has no
chord. We distinguish the cases that c(G) = 4, 5, 6, and 7.

Case 1. c(G) = 4. Then G − V (C) = 4K1, or K2 ∪ 2K1, or P3 ∪ K1, or
2K2, or P4, or K1,3, or C4. Suppose that G− V (C) = K2 ∪ 2K1, or P3 ∪K1, or
2K2, or P4, or K1,3, or C4. Since G is 2-connected and triangle-free, there exists
a path x1 · · ·xk (k = 2 or 3 or 4) in G − V (C) with vi ∈ NG(x1) ∩ V (C) and
vj ∈ NG(xk)∩V (C) (vi 6= vj). But now we can find a cycle containing the vertices
x1, . . . , xk with length more than 4, a contradiction. Then G−V (C) = 4K1. Since
G is 2-connected and triangle-free, and since c(G) = 4, G = K2,6. Obviously,
K2,6 has an SCT, a contradiction.

Case 2. c(G) = 5. Then G − V (C) = 3K1, or K2 ∪ K1, or P3. Suppose
that G− V (C) = K2 ∪K1 or P3. Since G is 2-connected and triangle-free, there
exists a path x1 · · ·xk (k = 2 or 3) in G − V (C) with vi ∈ NG(x1) ∩ V (C) and
vj ∈ NG(xk)∩V (C) (vi 6= vj). But now we can find a cycle containing the vertices
x1, . . . , xk with length more than 5, a contradiction. Thus, G−V (C) = 3K1. Let
V (G) \V (C) = {x1, x2, x3}. Since G is 2-connected and triangle-free, dG(xi) = 2
(i = 1, 2, 3). Without loss of generality, we may assume that NG(x1) = {vi, vi+2}.
Then, by symmetry and since c(G) = 5, we can assume that either NG(xj) =
{vi, vi+2} or NG(xj) = {vi, vi+3} (j = 2, 3). Then G is isomorphic to the graph
K∗2,5 or K∗∗2,5.

Case 3. c(G) = 6. By Observation 1, without loss of generality, we first
assume that C is an induced cycle of G, namely G = Gτ . Then G−V (C) = 2K1

or K2. Let V (G) \ V (C) = {x1, x2}. We distinguish the following two subcases.

Subcase 3.1. G − V (C) = 2K1. Since G is 2-connected and triangle-free,
2 ≤ dG(xi) ≤ 3 (i = 1, 2). Suppose that dG(x1) = 3 (it is similar for dG(x2) = 3).
Without loss of generality, we may assume that NG(x1) = {vi, vi+2, vi+4}. By
2 ≤ dG(x2) ≤ 3, 2 ≤ |NG(x2) ∩ V (C)| ≤ 3. Then, it is easy to check that G
has an SCT, a contradiction. Therefore, dG(x1) = dG(x2) = 2. Without loss of
generality, we may assume that eitherNG(x1) = {vi, vi+2} orNG(x1) = {vi, vi+3}.
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Suppose first that NG(x1) = {vi, vi+2}. If vi ∈ NG(x2) (by symmetry, it
is similar for vi+2 ∈ NG(x2)), then vi+1, vi+2, vi+3, vi+5 /∈ NG(x2); otherwise,
either G has a triangle or G has an SCT, a contradiction. Then by dG(x2) = 2,
NG(x2) = {vi, vi+4}. Then G has a spanning subgraph isomorphic to the graph
C(6, 2).

If vi+1 ∈ NG(x2), then vi, vi+2, vi+3, vi+4, vi+5 /∈ NG(x2); otherwise, either
G has a triangle or G has a cycle of length more than 6, a contradiction. Then
dG(x2) = 1, contrary to dG(x2) = 2. Therefore, in the following, we may assume
that vi, vi+1, vi+2 /∈ NG(x2). Since G is 2-connected and triangle-free, and by
dG(x2) = 2, NG(x2) = {vi+3, vi+5}. Then G has a spanning subgraph isomorphic
to the graph C(6, 4).

Now suppose that NG(x1) = {vi, vi+3}. By dG(x2) = 2, |NG(x2)∩V (C)| = 2.
Then, it is easy to check that either G has an SCT, or G has a triangle, or G has
a cycle of length more than 6, a contradiction.

Subcase 3.2. G − V (C) = K2. Without loss of generality, we may assume
that NG(x1) ∩ V (C) = {vi}. Since G is 2-connected and triangle-free, and since
c(G) = 6, NG(x2)∩V (C) = {vi+3}. Then G has a spanning subgraph isomorphic
to θ(2, 2, 2).

In both subcases, by Observation 1, joining any two nonadjacent vertices
of C(6, 2) or C(6, 4) or θ(2, 2, 2) by an edge (step by step) will result in a
triangle, or a C(6, 2)′, or a C(6, 4)′, or an SCT in the new graph. Hence,
G ∈ {C(6, 2), C(6, 2)′, C(6, 4), C(6, 4)′, θ(2, 2, 2)}.

Case 4. c(G) = 7. By Observation 1, without loss of generality, we first
assume that C is an induced cycle of G, namely G = Gτ . Then G− V (C) = K1.
Let V (G)\V (C) = {x}. Since G is 2-connected and triangle-free, 2 ≤ dG(x) ≤ 3.

Suppose that dG(x) = 2. We may assume that NG(x) = {vi, vj} (vi 6= vj).
Obviously, 2 ≤ dC(vi, vj) ≤ 3. If dC(vi, vj) = 2, then, without loss of generality,
we may assume that NG(x) = {vi, vi+2}. Then G has a spanning subgraph
isomorphic to θ(1, 1, 4). If dC(vi, vj) = 3, then, without loss of generality, we may
assume that NG(x) = {vi, vi+3}. Then G has a spanning subgraph isomorphic to
θ(1, 2, 3).

Suppose that dG(x) = 3. Without loss of generality, we may assume that
NG(x) = {vi, vi+2, vi+4}. Then G has a spanning subgraph isomorphic to W ∗∗3 .

By Observation 1, joining any two nonadjacent vertices of θ(1, 1, 4) or θ(1, 2, 3)
or W ∗∗3 by an edge (step by step) will result in a triangle, or a graph in {θ(1, 1, 4)′,
θ(1, 1, 4)′′, θ(1, 1, 4)′′′, θ(1, 2, 3)′,W ∗∗3 }, or an SCT of the new graph. Hence, G is
one of the graphs in {θ(1, 1, 4), θ(1, 1, 4)′, θ(1, 1, 4)′′, θ(1, 1, 4)′′′, θ(1, 2, 3), θ(1, 2, 3)′,
W ∗∗3 }. This completes the proof.

Using Theorem 13, Veldman [20] and Shao [17] proved the following.
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Theorem 17. Let G be an essentially k-edge-connected graph with σ2(G) ≥ 5,
such that k ∈ {2, 3} and L(G) is not complete. Let G′0 be the reduction of the core
G0 of G. Then each of the following holds.

(a) G0 is well-defined, nontrivial, δ(G0) ≥ κ′(G0) ≥ k, and κ′(G′0) ≥ κ′(G0) ≥ k.

(b) (Lemma 5 [20]) G has a DCT if and only if G′0 has a DCT containing all
the nontrivial vertices.

In [20], Veldman obtained the following result.

Theorem 18 (Veldman [20]). Let G be a connected graph of order n, and let
p ≥ 2 be an integer such that

(9) σ2(G) ≥ 2(bn/pc − 1).

If n� p, then

(10) |V (G′′)| ≤ max

{
p,

3

2
p− 4

}
,

where G′′ is the D(G)-reduction of G. Moreover, for p ≤ 7, (10) holds with equ-
ality only if (9) holds with equality.

Using Theorem 18, we can easily deduce the following result.

Theorem 19. Let G be an essentially k-edge-connected graph of order n (with
k ∈ {2, 3}), and let p ≥ 2 be an integer such that

(11) σ2(G) ≥ 2(bn/pc − 1).

If n� p, then exactly one of the following following holds.

(a) G0 ∈ SL;

(b) G′0 /∈ SL with |V (G′0)| ≤ max
{
p, 32p− 4

}
and κ′(G′0) ≥ k.

Proof of Theorem 19. By Theorem 13(a), (a) and (b) of Theorem 19 are mu-
tually exclusive. Suppose that G0 /∈ SL. Then L(G) is not complete; otherwise,
G = K1,n−1, and so G0 ∈ SL, a contradiction. By Theorem 13(a), and since
G0 /∈ SL, G′0 /∈ SL. Since σ2(G) ≥ 2(bn/pc − 1), if n ≥ 4p, then σ2(G) ≥ 6,
and consequently D(G) is an independent set. Let G′′ be the D(G)-reduction of
G. By Theorem 18, |V (G′′)| ≤ max{p, 32p − 4}. Since G′0 is a refinement of the
D(G)-reduction of G, |V (G′0)| ≤ |V (G′′)| ≤ max{p, 32p− 4}. By Theorem 17(a),
κ′(G′0) ≥ k. This completes the proof.
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3. Supereulerian Graphs and Hamiltonian Line Graphs

Before we continue with the remaining proofs of our results, we mention one other
result of Chen [7] and an application of our Theorem 16 in order to obtain an
Ore-type analogue of the results in this paper.

Let G be a graph, and let k ≥ 0 be an integer. If there is a graph G∗ such
that G can be obtained from G∗ by removing at most k edges, then G is said to
be at most k edges short of being G∗.

Theorem 20 (Chen [7]). Let G be a 2-edge-connected graph with girth g ∈ {3, 4},
and let p ≥ 2 be an integer. If

σ2(G) ≥ 2

g − 2

(
n

p
+ g − 4

)
,

and if

n ≥ 4(g − 2)p2,

then exactly one of the following holds.

(a) G ∈ SL;

(b) G′ /∈ SL and |V (G′)| ≤ p, where G′ is the reduction of G. Further, if
|V (G′)| = p, then n = (g − 2)ps, for some integer s, and δ(G) = 1

g−2
(
n
p +

g − 4
)
, and either

(i) g = 3, and the preimage Hi of each vertex vi of G′ is at most 1
2dG′(vi)

edges short of being Ks, or

(ii) g = 4, and the preimage Hi of each vertex vi of G′ is at most 1
2dG′(vi)

edges short of being Ks,s.

As an application of Theorems 16 and 20, we obtain the following result.

Theorem 21. Let G be a 2-edge-connected graph with girth g ∈ {3, 4}. If

σ2(G) ≥ 2

g − 2

(n
8

+ g − 4
)
,

and if

n ≥ 256(g − 2),

then exactly one of the following holds.

(a) G ∈ SL;

(b) G′ ∈ G1 ∪ G2, where G′ is the reduction of G. In particular, if |V (G′)| = 8,
then n = 8(g − 2)s, for some integer s, and either
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(i) g = 3, and the preimage Hi of each vertex vi of G′ is at most 2 edges
short of being Ks, or

(ii) g = 4, and the preimage Hi of each vertex vi of G′ is at most 2 edges
short of being Ks,s.

Proof of Theorem 21. If G has an SCT, then we are done. In the following,
we assume that G has no SCT. By Theorem 20(b), G′ /∈ SL and |V (G′)| ≤ 8.
By the definition of contraction, κ′(G′) ≥ κ′(G) ≥ 2. By Theorem 13(c), G′ is
simple and triangle-free. Then by Theorem 16, G′ ∈ G1 ∪ G2. So, dG′(v) ≤ 5 for
any v ∈ V (G′). By Theorem 20(b), Theorem 21(b) holds. This completes the
proof.

3.1. Proof of Theorem 9 and a useful proposition

Proof of Theorem 9. If L(G) is hamiltonian, then we are done. In the fol-
lowing, we assume that L(G) is not hamiltonian, and so L(G) is not complete.
Then by Theorem 1, G has no DCT. Since σ2(G) ≥ 2(bn/pc − 1), if n ≥ 4p,
then σ2(G) ≥ 6, and consequently D(G) is an independent set. Let G′′ be the
D(G)-reduction of G. By Theorem 18, |V (G′′)| ≤ max

{
p, 32p − 4

}
. Let G′0 be

the reduction of the core G0 of G. By Theorem 13(c), G′0 is simple and triangle-
free. By Theorem 17, G′0 /∈ SL and κ′(G′0) ≥ k. Since G′0 is a refinement of the
D(G)-reduction of G, |V (G′0)| ≤ |V (G′′)| ≤ max

{
p, 32p− 4

}
. This completes the

proof.

Let G′0 be the reduction of the core G0 of G. For v ∈ V (G′0), let Γ(v) be the
preimage of v in G. For convenience, we define the following sets, and we prove
a useful proposition that we use in some of the later proofs.

• S0 = {v ∈ V (G′0)| v is a nontrivial vertex in G′0};
• S1 = {v ∈ S0| |V (Γ(v))| > 1};
• S2 = S0\S1, the set of vertices v with Γ(v) = K1 and adjacent to some vertices

in D2(G);

• V0 = V (G′0) \ S0.

Proposition 22. Let G be an essentially k-edge-connected graph of order n (k ∈
{2, 3}) with σ2(G) ≥ 2(bn/pc − 1), where p ≥ 2 is an integer. Let G′0 be the
reduction of the core G0 of G, and suppose G′0 /∈ SL. Let S0, S1 and V0 be the
sets defined above. If n� p, then each of the following holds.

(a) If v ∈ S1, then |V (Γ(v))| ≥
⌊
n
p

⌋
− l + 1, where l = max

{
p, 3p2 − 4

}
.

(b) S1 = S0.

(c) V0 is an independent set, and NG′0
(v) ⊆ S1 for any v ∈ V0.
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(d) |S0| ≤ p. Furthermore, if |S0| = p, then V (G′0) = S0.

Proof. As the assumptions of Proposition 22 imply the assumptions of Theorem
19, it follows from Theorem 19 that |V (G′0)| ≤ max

{
p, 3p2 − 4

}
and κ′(G′0) ≥ k

≥ 2. For convenience, in the following, let l = max
{
p, 3p2 −4

}
. For v ∈ V (G′0), let

Γ(v) be the preimage of v in G. By Theorem 13(c), G′0 is simple and triangle-free.
Then

(12) dG′0(v) ≤ |V (G′0)| − 2 ≤ l − 2, for any v ∈ V (G′0).

(a) For each v ∈ S1, by (11) and since n � p, there exists a vertex u ∈
V (Γ(v)) with dG(u) ≥

⌊
n
p

⌋
− 1. Then by (12),

|V (Γ(v))| ≥ |NG(u) ∩ V (Γ(v))| ≥ dG(u)− dG′0(v) ≥
⌊
n

p

⌋
− l + 1.

(b) Suppose that S1 6= S0. Let v ∈ S2 = S0 \ S1. Then, dG(v) = dG′0(v), and
v is adjacent to a vertex u ∈ D2(G). By (11) and (12),

2(bn/pc − 1) ≤ σ2(G) ≤ dG(v) + dG(u) = dG′0(v) + 2 ≤ l,

contrary to the fact that n� p, and so (b) is proved.

(c) Suppose that there are two vertices v1, v2 ∈ V0 such that v1v2 ∈ E(G′0).
Since vi ∈ V0 (i = 1, 2), dG(vi) = dG′0(vi). By (11) and (12),

2(bn/pc − 1) ≤ σ2(G) ≤ dG(v1) + dG(v2) ≤ 2l − 4,

contrary to the fact that n� p, and so (c) is proved.

(d) Suppose that s = |S0| > p. By (b) above, S1 = S0. Let S1 = {v1, v2, . . . ,
vs}. Then by (a),

s

(⌊
n

p

⌋
− l + 1

)
≤

∣∣∣∣∣
s⋃
i=1

V (Γ(vi))

∣∣∣∣∣ ≤ n,
a contradiction if n� p.

Now suppose that |S1| = p and V (G′0)\S1 6= ∅. Let v ∈ V0 = V (G′0)\S1. By
(c), we can assume that NG′0

(v) = {v1, v2, . . . , vt} and NG(v) = {w1, w2, . . . , wt}
such that wi ∈ Γ(vi) (1 ≤ i ≤ t). Note that D2(G

′
0) ⊆ S1. Then dG′0(v) ≥ 3 and

so t ≥ 3. By (12), dG(v) = dG′0(v) ≤ l − 2. Then

(13) dG(wi) ≥ 2

(⌊
n

p

⌋
− 1

)
− dG(v) ≥ 2

⌊
n

p

⌋
− l.
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Since G′0 is 2-edge-connected and triangle-free, and since t ≥ 3, dG′0(vi) ≤
l − 3. Then by (13),

(14) |V (Γ(vi))| ≥ |NG(wi) ∩ V (Γ(vi))| ≥ dG(wi)− dG′0(vi) ≥ 2

⌊
n

p

⌋
− 2l + 3.

By (a) and (14),

|V0|+ t

(
2

⌊
n

p

⌋
− 2l + 3

)
+ (p− t)

(⌊
n

p

⌋
− l + 1

)
≤

∣∣∣∣∣ ⋃
u∈V (G′0)

V (Γ(u))

∣∣∣∣∣ = n.

Then

|V0|+ t+ (p+ t)

(⌊
n

p

⌋
− l + 1

)
≤ n,

a contradiction if n� p, and so (d) is proved.

3.2. Proofs of Theorems 10, 11 and 12.

Proof of Theorem 10. This is the special case of Theorem 9 with p = 8 and
k = 2. Suppose that L(G) is not hamiltonian. Because σ2(G) ≥ 2(bn/8c − 1), if
n ≥ 32, then σ2(G) ≥ 6, and consequently D(G) is an independent set. Let G′0 be
the reduction of the core G0 of G. By Theorem 13(c), G′0 is simple and triangle-
free. Then by Theorems 9 and 16, G has no DCT and G′0 ∈ G1 ∪ G2. Note that
each of the graphs in the set {J(2, 2), J(2, 3), C(6, 2), C(6, 4), θ(1, 1, 2), θ(1, 1, 3),
θ(1, 2, 2), θ(1, 1, 4), θ(1, 1, 4)′, θ(1, 1, 4)′′, θ(2, 2, 2), θ(1, 2, 3), θ(1, 2, 3)′} can be con-
tracted to a K2,3, each graph in {K∗2,5,K∗∗2,5} can be contracted to a K2,5, and W ∗∗3
can be contracted to a W ∗3 . We conclude that G′0 can be contracted to a graph
in {K2,3,K2,5,W

∗
3 , C(6, 2)′, C(6, 4)′, θ(1, 1, 4)′′′}. This completes the proof.

Proof of Theorem 11. This is the special case of Theorem 9 with p = 15 and
k = 3. Suppose that L(G) is not hamiltonian. Because σ2(G) ≥ 2(bn/15c− 1), if
n ≥ 60, then σ2(G) ≥ 6, and consequently D(G) is an independent set. Let G′0
be the reduction of the core G0 of G. By Theorem 9, G′0 /∈ SL with |V (G′0)| ≤ 18
and κ′(G′0) ≥ 3.

By Proposition 22(b), S1 = S0 and so V (G′0) = V0 ∪ S1. If |V (G′0)| ≤ 15,
then, by Theorem 14(b), G′0 ∈ {P (10), P (14)}. Obviously, in this case, G can be
contracted to the Petersen graph. In the following, we only need to consider the
case that 16 ≤ |V (G′0)| ≤ 18.

Let V0 = {v1, v2, . . . , vt} and S1 = {vt+1, vt+2, . . . , v|V (G′0)|}. Without loss of
generality, we can assume that

|V (Γ(vt+1))| ≤ |V (Γ(vt+2))| ≤ · · · ≤
∣∣∣V (Γ

(
v|V (G′0)|

))∣∣∣ .
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Note that
∑|V (G′0)|

i=t+1 |V (Γ(vi))| ≤ n. Hence |V (Γ(vt+1))| ≤ n
|V (G′0)|−t

.

By Proposition 22(d), |S1| ≤ 15. Then, since |V (G′0)| ≥ 16, t ≥ 1. By Pro-
position 22(c), V0 is an independent set and

⋃t
i=1NG′0

(vi) ⊆ S1. Since G′0 is
3-edge-connected,

(15) dG′0(vi) ≥ 3, for vi ∈ V (G′0).

Let {w1, w2, . . . , ws} be a maximal subset of
⋃t
i=1NG(vi) which satisfies the fol-

lowing two conditions.

(i) For any pair of vertices {wi, wj} ⊂ {w1, w2, . . . , ws} (wi 6= wj), there exists a
pair of vertices {zi, zj} ⊂

⋃t
i=1NG′0

(vi) (zi 6= zj) such that wi ∈ Γ(zi), wj ∈
Γ(zj), and Γ(zi) ∩ Γ(zj) = ∅;

(ii) For each wi ∈ {w1, w2, . . . , ws}, there is a vertex vj (j ≤ t) that is adjacent
to wi in G.

Note that in this case
∣∣⋃t

i=1NG′0
(vi)
∣∣ = s. Then, since t ≥ 1 and (15),

s ≥ 3.

Claim 23. dG′0(vi) ≤ 15, for vi ∈ V (G′0).

Proof. By Theorem 13(c), G′0 is simple and triangle-free. Then, since κ′(G′0) ≥ 3
and |V (G′0)| ≤ 18, the claim holds immediately.

By Claim 23,

(16) dG(wi) ≥ 2
(⌊ n

15

⌋
− 1
)
− dG(vj) ≥ 2

(
n− 14

15
− 1

)
− 15 =

2n− 283

15
,

where vj (j ≤ t) is adjacent to wi in G.
By (i), for each wi, there is a vertex zi ∈

⋃t
i=1NG′0

(vi) such that wi ∈
V (Γ(zi)). Hence by (16) and Claim 23,

(17)

|V (Γ(zi))| ≥ |NG(wi) ∩ V (Γ(zi))| ≥ dG(wi)− dG′0(zi)

≥ 2n− 283

15
− 15 =

2n− 508

15
.

Hence, ∣∣∣∣∣
s⋃
i=1

V (Γ(zi))

∣∣∣∣∣ =
s∑
i=1

|V (Γ(zi))| ≥
s(2n− 508)

15
.

Since
∣∣⋃s

i=1 V (Γ(zi))
∣∣ ≤ n and n is sufficiently large,

s ≤ 7.
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Therefore, 3 ≤ s ≤ 7.
For x ∈ S1, by Proposition 22(a),

(18) |V (Γ(x))| ≥
⌊ n

15

⌋
− 18 + 1 ≥ n− 14

15
− 17 ≥ n− 269

15
.

In particular, if x ∈
⋃t
i=1NG′0

(vi), then |V (Γ(x))| = |V (Γ(zi))| for some zi ∈⋃t
i=1NG′0

(vi). By (17), |V (Γ(x))| ≥ 2n−508
15 .

Without loss of generality, we let V (G′0) = {v1, . . . , vt, vt+1, . . . , vt+s, vt+s+1,
. . . , vt+s+r}, where

t⋃
i=1

NG′0
(vi) = {vt+1, . . . , vt+s},

S1 = {vt+1, . . . , vt+s, vt+s+1, . . . , vt+s+r} and t+ s+ r = |V (G′0)|.
By (17) and (18),

t+
s(2n− 508)

15
+
r(n− 269)

15
≤

∣∣∣∣∣ ⋃
vi∈V (G′0)

V (Γ(vi))

∣∣∣∣∣ = n.

Since n is sufficiently large,

(19) 2s+ r ≤ 15.

Since s ≥ 3, and by (19), s + r ≤ 12. Then, since |V (G′0)| ≥ 16, t ≥ 4. Let
G∗ = G′0[{v1, . . . , vt, vt+1, . . . , vt+s}]. By (15), dG∗(vi) ≥ 3, for i ≤ t. By Theorem
13(c), and since t ≥ 4, G∗ /∈ {K1,K2,K2,l (l ≥ 2)}. Then 3t ≤ |E(G∗)| ≤
2(t+ s)− 5. So,

(20) t ≤ 2s− 5.

Using t ≥ 4, (19) and (20), we obtain 5 ≤ s ≤ 7.
If s = 5 (s = 6 or s = 7), then, by (19), r ≤ 5 (r ≤ 3 or r ≤ 1, respec-

tively). Note that
⋃t
i=1NG′0

(vi) = {vt+1, . . . , vt+s} and V0 is an independent set.
Then α′(G′0) ≤ 7. Using Theorem 14(c), we conclude that G′0 has an SCT, a
contradiction. This completes the proof.

Proof of Theorem 12. Since G is a 3-edge-connected graph, G is also an es-
sentially 3-edge-connected graph. If G is supereulerian, then we are done. In the
following, we assume that G /∈ SL. Since G is 3-edge-connected, D(G) = ∅. Let
G′0 be the reduction of the core G0 of G. Then G = G0 and so G0 /∈ SL. By
Theorem 19, G′0 /∈ SL, and |V (G′0)| ≤ 18 and κ′(G′0) ≥ 3. Then, similarly as in
the proof of Theorem 11, we conclude that G can be contracted to the Petersen
graph. This completes the proof.
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4. Concluding Remarks

We presented some new results on edge degree conditions of a graph for its line
graph to be hamiltonian. In fact, these results imply many known earlier results.
In particular, Theorems 2, 3, 4, 5, 6 and 8 are all special cases of Theorem 9,
with (p, k) ∈ {(5, 2), (7, 2), (10, 3), (12, 3), (15, 3)}. Moreover, with Theorem 9,
we implicitly provide improvements (Theorem 10 and Theorem 11) of Theorem 4
and Theorem 8, since they are special cases of Theorem 9 with p = 8 and k = 2,
and p = 15 and k = 3, respectively. Furthermore, we note that Theorem 12
slightly improves Theorem 8.

Acknowledgements

This work is supported by the Natural Science Funds of China (Nos. 12131013,
11871099 and 12101126), the China Scholarship Council (No. 201706030019) and
the Education Scientific Research Fund for Young and Middle-aged Teachers of
Fujian Province (No. JAT190066).

References
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