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Abstract 
Leafsprings are commonly used in flexure mechanisms to enable repeatable motion and provide support stiffness. In various 
applications, the torsional stiffness needs to be increased. This paper presents the concept of using warping constraints distributed 
along the leafspring to increase the torsional stiffness relative to the stiffness in other directions. A beam-based model of nonuniform 
torsion is used to estimate the relationship between the geometrical design parameters and the expected increase in torsional 
stiffness. The model predicts that an order of magnitude increase in stiffness is feasible. Compared to other solutions, the distributed 
warping constraints have a less obtrusive shape that offer more design freedom.  
 
Flexure mechanism, leaf spring, warping, torsion stiffness, twisting, constraints 

1. Introduction 

Leafsprings are common components of flexure mechanisms 
[1-5]. Their slender shape enables repeatable motion in the 
three directions of low stiffness, while constraining motion in 
the three directions of high stiffness. As the torsional stiffness is 
relatively low, twisting motion is generally considered one of the 
three unconstrained degrees of freedom (DOFs). In some 
applications, it may be desirable to increase the torsional 
stiffness of the leafspring relative to the stiffness in the two 
other DOFs.  

In this paper, we present the use of distributed warping 
constraints to significantly increase the torsional stiffness 
relative to the stiffness in the other directions, essentially 
yielding a torsionally stiffened leafspring with only two DOFs 
remaining. 

These warping constraints may eliminate the need for 
additional flexures that would otherwise serve as torsional 
constraints. Other applications are flexure mechanisms with a 
large range of motion, in which the support stiffness tends to 
deteriorate with deflection due to unwanted torsional 
compliance. 

Existing solutions for increasing the torsional stiffness include 
reinforced midsections [5], the infinity flexure [6-7] and a cell-
based metamaterial [8]. Compared to these solutions, the 
distributed warping constraints of the present work have a less 
obstructive shape, offering more design freedom and 
application-specific tailoring. 

This paper establishes the design concept and provides a 
theoretical model for the mode of action and the design 
parameters that are involved. 

2. Warping      

A leafspring can be considered as a slender structure with 
rectangular cross-sections. When it is subjected to a torsional 
moment, the cross-sections rotate and warp [9-10]. The warping 
of the cross-section is of interest, because it affects the torsional 

stiffness of the leafspring and it can be influenced by design 
choices. 

If all cross-sections are free to warp, the torsion angle changes 
linearly over the length of the beam. However, if a cross-section 
is constrained from warping, additional normal and shear 
stresses develop in the vicinity of the constraint. These stresses 
require additional torque for the same torsion angle and 
essentially increase the torsional stiffness.  

Warping can be constrained by a section with a large warping 
stiffness, such as the clamps or fillets commonly present at the 
ends of a leafspring. Since the additional stresses in the 
leafspring vanish at a distance from the warping constraint, the 
effect on the torsional stiffness is nontrivial and dependent on 
geometrical parameters. 

3. Beam-based stiffness model 

When the additional stresses due to warping constraints are 
significant, the torsion angle no longer changes linearly over the 
length of the beam and the St. Venant uniform torsion model 
loses validity. Instead, the torsion angle 𝜙𝑥(𝑠) can be modeled 
by the ordinary differential equation [9-11] 

𝐺𝐽
𝑑2𝜙𝑥

𝑑𝑠2
− 𝐸𝐼𝑤

𝑑4𝜙𝑥

𝑑𝑠4
= 0 (1) 

where 𝐸 is Young’s modulus, 𝐺 the shear modulus and 𝑠 the 
coordinate along the beam’s neutral line ranging from 0 to 𝐿. 
The St. Venant torsion constant for a wide rectangular beam 
with width 𝑤 and thickness 𝑡 can be approximated by 

𝐽 ≈
1

3
𝑤𝑡3 (2) 

and the warping constant by 

𝐼𝑤 ≈
1

144
𝑤3𝑡3 (3) 

The torsional moment at a position 𝑠 is given by 

𝑀𝑥(𝑠) = 𝐺𝐽
𝑑𝜙𝑥

𝑑𝑠
− 𝐸𝐼𝑤

𝑑3𝜙𝑥

𝑑𝑠3
(4) 

The quantity 

𝐵(𝑠) = 𝐸𝐼𝑤
𝑑2𝜙𝑥

𝑑𝑠2
(5) 
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is referred to as the bimoment and represents the stress 
resultant associated with the additional stresses due to warping 
constraints. If warping is free, then 𝐵 = 0. If warping is perfectly 
constrained, i.e. with infinite warping stiffness, then 𝜙𝑥

′ = 0, 
where a prime denotes differentiation with respect to 𝑠.  

To obtain the stiffness matrix, the ODE can be solved for the 
torsion angle by supplying the four boundary conditions 

𝜙𝑥(0) = Φ0 
𝜙𝑥

′ (0) = 𝑊0 
𝜙𝑥(𝐿) = ΦL 
𝜙𝑥

′ (𝐿) = 𝑊𝐿  
The stiffness matrix can be found by substituting the solution 

for 𝜙𝑥(𝑠) in equations 4 and 5, and evaluating the torsional 
moment and bimoment at both ends 𝑠 = 0 and 𝑠 = 𝐿. This 
yields 

[

𝑀0

𝑀𝐿

𝐵0

𝐵𝐿

] = 𝑲 [

Φ0

Φ𝐿

𝑊0

𝑊𝐿

] (6) 

The full expression of stiffness matrix 𝑲 is given in the appendix. 
Each matrix component depends on 𝐺, 𝐽, 𝐿 and 𝜆. Here, the 
dimensionless parameter 𝜆 has been introduced. It is given by 

𝜆 = 𝐿√
𝐺𝐽

𝐸𝐼𝑤
≈

𝐿

𝑤
√

24

1 + 𝜈
(7) 

and relates the warping stiffness 𝐸𝐼𝑤  to the uniform torsion 
stiffness 𝐺𝐽. It can be interpreted as a spatial decay rate for the 
warping stresses. 

For the present discussion, we isolate component 2,2 
(𝑑𝑀𝐿/𝑑Φ𝐿) from 𝑲 and consider it to be the torsional stiffness 
in the presence of perfect warping constraints at both ends (i.e. 
𝑊0 = 𝑊𝐿 = 0). It is given by 

𝑘𝑥 =
𝐺𝐽

𝐿
(

𝜆

𝜆 − 2 tanh (
𝜆
2
)
) (8) 

Since the torsional stiffness in the case of free warping is 𝐺𝐽/𝐿, 
we can see that the warping constraints lead to a stiffening 
factor of 

𝛾 =
𝜆

𝜆 − 2 tanh (
𝜆
2
)

(9) 

as shown in figure 1 for 𝐿/𝑤 ratios from 1/4 to 15 and 𝜈 = 0.3. 
This range corresponds with 𝜆 from 1 to 64. It can be seen that 
the stiffness remains unaffected for slender beams with a large 
𝐿/𝑤 ratio (i.e. a large decay rate 𝜆), but strongly increases for 
shorter beams.  

 
Figure 1. Increase in torsional stiffness due to constrained warping, 
based on a beam model for nonuniform torsion in leafsprings. 

 4. Distributed warping constraints 

This paper introduces the idea of using a number of warping 
constraints distributed along the leafspring’s length dimension, 
in order to increase the total torsional stiffness. Each warping 
constraint represents a local increase in warping stiffness that 
hinders torsional deformation. This reinforced leafspring can be 

regarded as a series of very short clamped-clamped leafspring 
segments with warping constrained at both ends. Each segment 
has a small spatial decay rate 𝜆 (i.e. a small length-to-width 
ratio), such that the warping stresses cannot significantly 
diminish over the length of the segment. 

Figure 2 shows a 3D-printed prototype of a 150 x 50 x 1 mm 
leafspring with 14 local warping constraints, effected by 14 
segments of 20 x 2 mm distributed equally along the length. 

 
Figure 2. Photograph of a leafspring with distributed warping 
constraints. 
 

 
Figure 3. Schematic of the leafspring with distributed warping 
constraints. 

 
 
4.1. Perfect-constraint model    
The theoretical stiffness increase, an upper bound based on 

the perfect-constraint model of the previous section, can be 
obtained by considering the reinforced leafspring as a series 
connection of 𝑁 individual torsion compliances 1/𝑘𝑥, see figure 
3. The length of each segment is 𝐿/𝑁. Each segment is 
comprised of the warping constraint with length 𝛼𝐿/𝑁 and a 
flexible part with length (1 − 𝛼)𝐿/𝑁. With this definition, 𝛼 
represents the fraction of the total leafspring length 𝐿 that is 
used by the warping constraints. 

The total stiffness of the reinforced leafspring is given by the 
reciprocal sum 

𝑘𝑥,reinf = (
1

𝑘𝑥,1
+ ⋯+

1

𝑘𝑥,𝑁
)

−1

(10) 

which, for identical segments, reduces to  

𝑘𝑥,reinf =
𝐺𝐽

𝐿(1 − 𝛼)
(

𝜆𝑒

𝜆𝑒 − 2 tanh (
𝜆𝑒

2
)
) (11) 

This expression takes the same form as the one for the regular 
leafspring (equation 8). Parameter 𝐿 still represents the total 
length of the full leafspring, but now the stiffening factor (figure 
1) for the entire reinforced leafspring is dependent on 𝜆𝑒, which 
is the decay rate of a single segment. It is given by 

𝜆𝑒 =
𝐿(1 − 𝛼)

𝑁𝑤
√

24

1 + 𝜈
(12) 

Equations 11 and 12 show how the design parameters affect 
the stiffness increase that can be obtained with the reinforced 
leafspring. Comparing with equation 7, the ratio 𝐿/𝑤 plays the 
same role as for the regular leafspring, but we also see that 
increasing the number of constraints 𝑁 drastically reduces the 
spatial decay rate and hence, as per figure 1, increases the 
torsional stiffness. 

𝑘𝑥 
𝑘𝑥 

𝑘𝑥 
𝑘𝑥 

𝐿 

𝛼𝐿/𝑁 

(1 − 𝛼)𝐿/𝑁 



  

 

 
Figure 4. Torsional stiffening factor due to warping constraints, equally 
distributed over the leafspring. 

 
Figure 4 shows the stiffening factor, expressed as 𝑘𝑥,reinf  

normalised with 𝐺𝐽/𝐿 (the stiffness in the free-warping case), for 
various numbers of constraints 𝑁.  

 
Figure 5. Profile of torsion angle 𝜙𝑥(𝑠) as a function of the length 
coordinate for various numbers of warping constraints 𝑁. The black dots 
indicate the location of the warping constraint, where locally 𝜙𝑥

′ = 0. 
 
Figure 5 shows the torsion angle 𝜙𝑥(𝑠) as a function of the 

length coordinate 𝑠, based on the solution of equation 1 (see 
appendix). The dimensions and material parameters can be 
found in the appendix. Graphs for various numbers of 
constraints have been plotted; in all cases the same torsional 
moment has been applied. The warping constraint length 𝛼 has 
been set to 0. In the free-warping case, the torsion angle varies 
linearly with 𝑠 and achieves the largest value of all cases at the 
end at 𝑠 = 𝐿. When perfect warping constraints are present, the 
torsion angle has zero slope locally, retarding the progression of 
twist, leading to smaller torsion angles at the end and to a larger 
stiffness. 

 
4.2. Finite-length perfect-constraint model    
Parameter 𝛼 represents the length of the warping constraint 

segments relative to the flexible length. An ideal warping 
constraint would provide infinite stiffness and have zero length 
(𝛼 = 0), but in reality both will be finite. When 𝛼 > 0, the 
effective flexible length decreases and the torsional stiffness 
increases (also see figure 4). While that is a desirable property, 
it will also lead to a larger stiffness in the two intended DOFs of 
the leafspring. Bending stiffness 𝐸𝐼/𝐿 becomes 𝐸𝐼/(𝐿(1 − 𝛼)), 
which may either be acceptable or should be compensated for 
by a smaller thickness 

𝑡 =
2𝜎max𝐿(1 − 𝛼)

𝜙𝑧,max𝐸
(13) 

to ensure the same bending stress levels 𝜎max given a certain 
prescribed bending rotation angle 𝜙𝑧,max. Similar considerations 

can be had for the compliant translational direction.   

5. Discussion 

Realistic warping constraints will have a finite length and a 
finite warping stiffness. As the beam-based model of section 4 
assumed an infinite warping stiffness, it serves as an upper 
bound for the achievable stiffness increase. Some error is 
incurred here, since the individual segments have very small 
length-to-width ratios, which are pushing the limits of validity of 
beam theory. It is conceivable that plate-like effects, such as the 
nonlinear Wagner torque for larger torsion angles and 
constrained anticlastic bending [12-14], will play a role as well. 

Stress considerations will limit the number and the length of 
the warping constraints that can be implemented, representing 
another bound on the maximally achievable stiffness increase. 

The optimal shape of the warping constraints themselves has 
not been discussed in this paper. It will be an application-specific 
trade-off, since adding too much mass may hinder dynamic 
performance, using up too much volume may cause self-collision 
depending on the intended range of motion in the DOFs, and 
intricate shapes may be hard to manufacture, even with additive 
manufacturing.  

Depending on the load case of the leafspring, equally spaced 
warping constraints may not be ideal. For instance, if the applied 
load is not a pure torsional moment, but instead a lateral force 
that causes a varying internal torsional moment when the 
leafspring is bent, warping constraints could be concentrated 
around where the torsional moment is largest. This could 
mitigate some of the support stiffness decrease observed in 
large range of motion flexures, which can be due to undesired 
torsional compliance [13,15]. 

Experiments to validate this model and design considerations 
for the shape of the warping constraints are topics for future 
work. 

6. Conclusion 

This paper has presented the concept of using warping 
constraints distributed over a leafspring’s length to increase the 
torsional stiffness relative to the stiffness in other directions. A 
theoretical foundation has been established by means of a 
beam-based stiffness model. The model predicts that a 
stiffening factor of an order of magnitude is feasible. Reinforcing 
leafsprings this way can be useful since the warping constraints 
offer a lot of design freedom that can be leveraged for the 
specifics of an application. It has practical relevance since there 
are numerous flexure mechanism cases where torsional 
compliance is unwanted. 
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Appendix 

Torsion angle solution 
The solution of the ordinary differential equation with the specified boundary conditions is given by 
 

𝜙𝑥(𝑠) = 𝑐1
𝐿2

𝜆2
ⅇ

𝑥𝜆
𝐿 + 𝑐2

𝐿2

𝜆2
ⅇ−

𝑥𝜆
𝐿 + 𝑐3 + 𝑐4𝑥 

 
where 

𝑐1 =
𝜆 (𝐿(−1 + ⅇ𝜆 − 𝜆)𝑊0 + 𝐿 (1 + ⅇ𝜆(−1 + 𝜆))𝑊𝐿 + (−1 + ⅇ𝜆)𝜆(𝛷0 − 𝛷𝐿))

(−1 + ⅇ𝜆)𝐿2(2 + ⅇ𝜆(−2 + 𝜆) + 𝜆)
 

 

𝑐2 = −
ⅇ𝜆𝜆 (𝐿 (1 + ⅇ𝜆(−1 + 𝜆))𝑊0 + 𝐿(−1 + ⅇ𝜆 − 𝜆)𝑊𝐿 + (−1 + ⅇ𝜆)𝜆(𝛷0 − 𝛷𝐿))

(−1 + ⅇ𝜆)𝐿2(2 + ⅇ𝜆(−2 + 𝜆) + 𝜆)
 

 

𝑐3 =
𝐿(1 + ⅇ2𝜆(−1 + 𝜆) + 𝜆)𝑊0 + 𝐿(−1 + ⅇ2𝜆 − 2ⅇ𝜆𝜆)𝑊𝐿 + (−1 + ⅇ𝜆)𝜆 ((1 + ⅇ𝜆(−1 + 𝜆) + 𝜆)𝛷0 − (−1 + ⅇ𝜆)𝛷𝐿)

(−1 + ⅇ𝜆)𝜆(2 + ⅇ𝜆(−2 + 𝜆) + 𝜆)
 

 

𝑐4 = −
(−1 + ⅇ𝜆)𝐿𝑊0 + (−1 + ⅇ𝜆)𝐿𝑊𝐿 + (1 + ⅇ𝜆)𝜆(𝛷0 − 𝛷𝐿)

𝐿(2 + ⅇ𝜆(−2 + 𝜆) + 𝜆)
  

  

 
Stiffness matrix 
Stiffness matrix 𝑲 is given by 
 

[
 
 
 
 
 
 
 
 
 
 
 
 −

𝐺𝐽𝜆

𝐿𝜆 − 2𝐿tanh[
𝜆
2]

𝐺𝐽𝜆

𝐿𝜆 − 2𝐿tanh[
𝜆
2]

𝐺𝐽

2 − 𝜆coth[
𝜆
2]

𝐺𝐽

2 − 𝜆coth[
𝜆
2]

−
𝐺𝐽𝜆

𝐿𝜆 − 2𝐿tanh[
𝜆
2
]

𝐺𝐽𝜆

𝐿𝜆 − 2𝐿tanh[
𝜆
2
]

𝐺𝐽

2 − 𝜆coth[
𝜆
2
]

𝐺𝐽

2 − 𝜆coth[
𝜆
2
]

𝐺𝐽

2 − 𝜆coth[
𝜆
2]

𝐺𝐽

−2 + 𝜆coth[
𝜆
2]

𝐺𝐽𝐿csch[
𝜆
2
]2(−𝜆cosh[𝜆] + sinh[𝜆])

2𝜆(−2 + 𝜆coth[
𝜆
2])

𝐺𝐽𝐿csch[
𝜆
2
]2(𝜆 − sinh[𝜆])

2𝜆(−2 + 𝜆coth[
𝜆
2])

𝐺𝐽

−2 + 𝜆coth[
𝜆
2
]

𝐺𝐽

2 − 𝜆coth[
𝜆
2
]

𝐺𝐽𝐿csch[
𝜆
2
]2(−𝜆 + sinh[𝜆])

2𝜆(−2 + 𝜆coth[
𝜆
2
])

𝐺𝐽𝐿csch[
𝜆
2
]2(𝜆cosh[𝜆] − sinh[𝜆])

2𝜆(−2 + 𝜆coth[
𝜆
2
]) ]

 
 
 
 
 
 
 
 
 
 
 
 

 

 

where csch represents the hyperbolic cosecant. 
 
Figure 5 details   
Leafspring dimensions are 100 x 30 x 1 mm. Young’s modulus is 210 GPa. Shear modulus is 70 GPa.  
The applied torsional moment is 0.1 Nm.  
 
 

 

 


