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ABSTRACT
Peak tibial acceleration (PTA) is a widely used indicator of tibial bone 
loading. Indirect bone loading measures are of interest to reduce the 
risk of stress fractures during running. However, tibial compressive 
forces are caused by both internal muscle forces and external ground 
reaction forces. PTA might reflect forces from outside the body, but 
likely not the compressive force from muscles on the tibial bone. 
Hence, the strength of the relationship between PTA and maximum 
tibial compression forces in rearfoot-striking runners was investigated. 
Twelve runners ran on an instrumented treadmill while tibial accelera
tion was captured with accelerometers. Force plate and inertial mea
surement unit data were spatially aligned with a novel method based 
on the centre of pressure crossing a virtual toe marker. The correlation 
coefficient between maximum tibial compression forces and PTA was 
0.04 ± 0.14 with a range of −0.15 to +0.28. This study showed a very 
weak and non-significant correlation between PTA and maximum tibial 
compression forces while running on a level treadmill at a single speed. 
Hence, PTA as an indicator for tibial bone loading should be recon
sidered, as PTA does not provide a complete picture of both internal 
and external compressive forces on the tibial bone.  
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Introduction

Runners are at high risk of developing bone stress fractures. Stress fractures account for 3% to 
14% of running injuries (James et al., 1978; McBryde, 1985; Taunton et al., 2002) and are most 
prevalent in the distal part of the tibial bone (20% to 53%) (Romani et al., 2002; Wall & Feller,  
2006). Stress fractures are the result of prolonged and repetitive forces on the bone without 
enough rest for bone remodelling (Harrast & Colonno, 2010; Umans & Pavlov, 1994). Stress 
fracture risk is influenced by both fixed factors, such as sex, skeleton alignment, bone 
geometry, bone remodelling, and bone mineral density, and variable factors, such as training 
intensity, training frequency, training surface, footwear, running incline, and running kine
matics (Edwards, 2018; Harrast & Colonno, 2010; Pohl et al., 2008; Saunier & Chapurlat, 2018; 
Umans & Pavlov, 1994). Forces on the tibia and subsequent tibial bone deformation can only 
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be directly measured in vivo after an invasive surgery (Komi, 1990; Lanyon et al., 1975; 
Milgrom et al., 2000). Hence, there is a lot of interest in indirect measures of tibial bone forces.

Ground reaction forces (GRFs) and peak tibial accelerations (PTAs) are often used as 
surrogate measures for tibial bone loading and injury risk in running (Bigelow et al., 2013; 
Chadefaux et al., 2019; García-Pérez et al., 2014; Lafortune et al., 1996; Lucas-Cuevas et al.,  
2015; Milner et al., 2006; Mizrahi et al., 2000; Zadpoor & Nikooyan, 2011). GRF is the force 
exerted by the ground on the body to support the body weight (BW) and, in addition, 
results in acceleration and deceleration of the body’s centre of mass during the stance phase 
of running. The collision of the foot with the ground causes an impact shock that travels 
through the body (Lafortune et al., 1996). PTA reflects this impact shock at the surface of 
the skin near the tibia bone (Sheerin et al., 2019). PTA occurs shortly after initial contact 
and negligibly to moderately correlates with the slope of the vertical GRF and GRF impact 
peak shortly after initial contact (Greenhalgh et al., 2012; Van den Berghe et al., 2019). The 
benefit of PTA compared to GRF metrics is that PTA can be easily measured outside of the 
lab with a wearable accelerometer. Multiple studies link high PTA values to retrospective 
running injuries (Milner et al., 2006; Pohl et al., 2008; Zifchock et al., 2008). Prospective 
preliminary data of five runners suggest that runners with a tibial stress fracture tended to 
have higher PTA values (9.1 g) compared to matched controls (4.7 g; p = 0.06) before they 
sustained an injury (Davis et al., 2004). PTA is often used as a biofeedback variable to 
decrease impact forces and risk of tibial stress fractures in runners (Clansey et al., 2014; 
Crowell & Davis, 2011; Crowell et al., 2010) and is even applied in commercially available 
sensors as an indicator of running injury risk (Runscribe n.d.). Hence, many findings 
support the idea of using PTA as a surrogate measure for tibial bone forces in running.

Compression forces acting on the tibial bone (Ftibia) can be divided into external forces 
(Fext) caused by the foot contacting the ground and internal forces (Fint) caused by the pull 
of muscles (Romani et al., 2002; Scott & David, 1990). Ftibia in the distal tibia can reach 
values of 10.3 up to 14.3 times BW during running, of which only 18% is caused by Fext 
(Scott & David, 1990). Most of Ftibia is therefore caused by internal forces which reach their 
maximum compressive action around midstance during running (Burdett, 1982; Glitsch & 
Baumann, 1997; Matijevich et al., 2019; Sasimontonkul et al., 2007; Scott & David, 1990). 
Matijevich and colleagues investigated the commonly assumed relationship between GRF 
metrics (peak vertical GRF around impact and midstance, slope of vertical GRF and GRF 
impulse) and maximum tibial compression forces (Ftibia;max) during running (Matijevich 
et al., 2019). Since GRF does not account for compressive muscle forces, no strong group- 
level correlation with Ftibia was found, although there was high inter-subject variability. 
Hence, GRF metrics should not be used as indicator of tibial bone forces in running.

Despite the widespread use of PTA as a measure of tibial bone loading and injury risk, PTA 
(occurring shortly after initial contact) and Ftibia;max (occurring around midstance) do not 
coincide in time. PTA is expected to reflect the contribution of GRF around initial contact to 
Ftibia, however, Fext is only 18% of Ftibia;max (Scott & David, 1990). Hence, there is reason to 
doubt the commonly used PTA as a surrogate for tibial bone loading in running. Therefore, 
the research question of this study is: How strong is the relationship between PTA and 
Ftibia;max in rearfoot-striking runners during level running at a single speed? It is hypothesised 
that PTA does not reflect the contribution of Fint (i.e., muscle contractions) to Ftibia;max and 
therefore that there are no statistically significant correlations between PTA and Ftibia;max.
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Methods

Participants

Thirteen recreational runners participated in this study. Since internal forces tend to be 
different for non-rearfoot striking runners, only rearfoot striking runners were included in 
this study (Almonroeder et al., 2013; Chen et al., 2016; Rooney & Derrick, 2013). Inclusion 
criteria were: 1) Able to run for 5 min at 14 km/h to prevent possible effects of fatigue; 2) 
Injury-free for at least 6 months; 3) Self-reported rear-foot strike pattern. One subject was 
retrospectively excluded from analysis because of a non-rearfoot strike pattern. Data from 
four females and eight males were included (age: 36.7 ± 12.2 years, height: 178.7 ± 9.6 cm, 
mass: 74.2 ± 17.7 kg). Subjects ran on average 29.9 ± 19.9 km per week with 15.0 ± 14.9  
years of running experience. All participants gave written informed consent before parti
cipating in this study. The study protocol was approved by the Ethics Committee Computer 
and Information Science of the University of Twente (EC-CIS, ref.:RP2021–117).

Measurement systems

Subjects ran on one belt of a dual-belt treadmill with an integrated three-dimensional 
(3D) force plate (custom Y-mill, Motekforce-Link, Culemborg, The Netherlands). 3D 
GRFs and ground reaction moments were captured at 2048 Hz. Subjects were equipped 
with eight IMU sensors (MVN Link, Xsens, Enschede, The Netherlands) capturing at 
240 Hz, measuring acceleration (±16 g), angular velocity (±2000 deg/s), and the Earth 
magnetic field (±1.9 Gauss). Sensors were placed on the sternum and pelvis and bilat
erally on the lateral midportion of the thigh, medial surface of the proximal tibia, and on 
top of the midfoot in the shoes. All sensors had one axis aligned with the longitudinal 
direction of the associated segment. Sensors were attached to the skin with double-sided 
tape and covered with stretchable tape (Chadefaux et al., 2019). Subjects wore slightly 
compressing sleeves to firmly fix the sensors on the tibia to the lower leg.

Measurement protocol

Multiple anthropometric values were measured (body height, hip height, hip width, 
knee height, ankle height, and shoe length). Subjects wore their own running shoes 
throughout the experiment. Subjects performed a 5-min warm-up at a self-selected 
speed on an instrumented treadmill. After the warm-up, an inertial measurement unit 
(IMU) sensor-to-segment calibration was performed according to the manufacturer’s 
instructions (Xsens Technologies B.V., 2021).

Subjects performed a 90-s running trial at their self-selected step frequency at 12 km/h. 
Trials started and ended with three jumps on the treadmill to time-synchronise the force 
plate and IMU data (see section: Temporal synchronisation and spatial alignment) (Day 
et al., 2021). Since this study was part of a larger experiment, each subject performed a total 
of nine running trials of 90 s at different speeds (10, 12, and 14 km/h) in random order and 
with different step frequencies (self-selected and imposed), of which data was not included 
in further analysis. Subjects had a 3-min break after every trial to minimise possible effects 
of fatigue.
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Data processing

Unless stated otherwise, data were expressed in the global force plate coordinate system 
(Ψgl; fpÞ with the X-axis pointing in the running direction, the Y-axis upwards, and the 
Z-axis to the right. The stance phase of running was defined as the period where the vertical 
GRF was larger than 20 N (Milner & Paquette, 2015). The stance phase started with initial 
contact and ended with toe-off. Data were normalised for BW and expressed as a percentage 
of the stance phase. To exclude the effects of adapting to the treadmill speed, 50 right-leg 
stance phases between the 40th and 80th second of the running trial were used for analysis. 
To check if all runners had a rearfoot striking pattern, the mean foot contact angle (i.e., 
angle between sagittal plane orientation of the foot and the global vertical axis as provided 
by the IMU-based biomechanical model) at the initial contact was computed for each 
subject. A mean foot contact angle smaller than 8 degrees (less dorsiflexion results in 
a smaller angle) was interpreted as a non-rearfoot strike pattern, and these subjects were 
excluded from further analysis (Altman & Davis, 2012). Data processing and statistics were 
performed in MATLAB (MathWorks Inc., MA, USA, version 2022a).

IMU data
Sensor orientations were estimated using proprietary filtering based on acceleration, angu
lar velocity, and magnetometer data from the IMUs in the software package Xsens MVN 
Analyze (version 2020.0.2). Sensor orientations, together with anthropometric measure
ments, were used to create a scaled biomechanical model of each subject in the same 
software. Lower body kinematics, 3D coordinates of joint centres, and locations of virtual 
anatomical landmarks with respect to joint centres were obtained from the scaled biome
chanical model (Xsens Technologies B.V., 2021). These IMU-derived data were expressed 
in either a global IMU-based coordinate system (Ψgl;imu) or a sensor-fixed coordinate 
system (Ψs). The forward direction (X-axis) of Ψgl;imu was determined during the sensor- 
to-segment calibration and was roughly similar to the running direction in Ψgl; fp.

Force plate data
GRF, ground reaction moments, and centre of pressure (COP) as measured by the force 
plate (in Ψgl; fp) were low-pass filtered with a third-order recursive Butterworth filter of 
15 Hz (Matijevich et al., 2019). Force plate data were then linearly downsampled to 240  
Hz to match the sampling frequency of IMU data.

Temporal synchronisation and spatial alignment
A rough estimate of the vertical ground reaction force in running can be made by 
multiplying vertical pelvis acceleration with BW (Day et al., 2021). Force plate and 
IMU data can then be time-synchronised by cross-correlating the vertical acceleration 
of the pelvis segment with the vertical GRF during the first three jumps on the treadmill 
(Day et al., 2021). Note that BW only functions as a scaling factor and is not necessary for 
time synchronisation.

To compute Ftibia, the sagittal plane ankle moment (Mankle) and the GRF moment arm 
with respect to the ankle joint centre was required (see section: Tibial compression force). 
To compute the GRF moment arm, IMU-derived data (expressed in Ψgl;imu) needed to be 
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transformed to Ψgl;fp. First, the orientation of Ψgl;imu was rotated to match the orientation 
of Ψgl;fp using the running direction (positive X-axis). The IMU-based biomechanical 
model cannot distinguish between stationary (i.e., on a treadmill) and overground 
running, which resulted in a displacement of the pelvis segment in Ψgl;imu of about 250  
m during each trial, predominantly in the X-axis. A least-squares line was fitted through 
the forward and sideward pelvis displacement in Ψgl;imu and the angle between these lines 
was used to rotate all IMU-derived data from Ψgl;imu to Ψgl;fp.

The origin of Ψgl;imu was then translated to match Ψgl;fp during each step to be able to 
estimate the GRF moment arm and compute Mankle. Since Ftibia is computed with a 2D 
model, only spatial alignment of data in the forward direction (X-axis) was required. The 
COP trajectory was provided by the force plate in Ψgl;fp. In rearfoot striking runners on a 
treadmill, the forward trajectory of COP (COPx) over the surface of the foot was expected 
to be similar. Therefore, it was assumed that the percentage of the stance phase at which 
COPx crossed the fifth metatarsal marker (MT5x) would be similar between strides and 
subjects. The IMU-based scaled biomechanical model provided virtual marker locations 
of the heel and MT5 with respect to the ankle joint center. These virtual marker locations 
were modeled based on the foot length of participants. The mean percentage of the stance 
phase at which COPx crossed MT5x in rearfoot runners was then used to spatially align 
Ψgl;imu with Ψgl;fp in the X-direction during each stride, see Figure 1. A published dataset 
of six rearfoot striking runners running at eight different speeds was used to test this 
method and to obtain the mean percentage of the stance phase at which COPx crossed 

Figure 1. Visualization of spatial alignment method for Ψgl;imu and Ψgl;fp for a representative subject. 
The mean percentage of the stance phase at which the center of pressure (COP) crosses the fifth 
metatarsal marker (MT5) in the forward direction (X-axis) is used to align Ψgl;imu and Ψgl;fp. COP and 
MT5 positions with respect to the heel marker are shown. COP data was downsampled for visualiza
tion purposes and only the forward position of COP is aligned and shown. This figure was inspired by 
Figure 1 of (Fuchioka et al., 2015).
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MT5x [32]. This mean percentage at which COPx crossed MT5x was then applied to all 
steps from all subjects from the online dataset. The error of this alignment method was 
quantified by computing the absolute distance between MT5x and COPx at the group- 
mean percentage of the stance phase were MT5x crossed COPx. A full description of the 
analyses of the online dataset can be found in the Appendix.

Tibial compression force Ftibiað Þ

Ftibia was defined as the axial compression force on the distal end of the tibia and is equal 
to the ankle compression force (Matijevich et al., 2019, 2020; Sasimontonkul et al., 2007; 
Scott & David, 1990), see Figure 2. Ftibia is computed according to a 2D (sagittal plane) 
lower limb model which sums the ankle joint reaction force caused by GRF (Fext) and an 

Figure 2. Visualization of the 2D lower leg model to estimate tibial compression forces. Calf muscle = 
combination of the soleus, gastrocnemius medialis and lateralis muscles; rat= Achilles tendon moment 
arm relative to the ankle joint center; GRF = ground reaction force; Center of rotation = center of 
rotation of the ankle joint; Angle β = Angle between long axis of tibia and ground reaction force vector 
in the sagittal plane.
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estimate of compression forces on the tibia exerted by the soleus, gastrocnemius medialis, 
and lateralis plantar flexor muscles (Fint) while ignoring contributions of other muscles 
(Scott & David, 1990).

Ftibia tð Þ ¼ Fext tð Þ þ Fint tð Þ (1) 

The mass and inertia of the foot were assumed to be negligible (Matijevich et al., 2019,  
2020; Scott & David, 1990). Fext was therefore set equal to GRF in the axial direction of 

the tibia, but GRF was low-pass filtered with a 45 Hz (GRF��!�
) instead of a 15 Hz cut-off 

frequency to allow representation of the heel impact in Fext (Matijevich et al., 2019; Scott 
& David, 1990):  

Fext tð Þ ¼ GRF��!� tð Þ
�
�
�

�
�
� � cos β tð Þ (2) 

where β represents the angle between GRF��!�
and the orientation of the tibial segment 

(obtained from IMU-based biomechanical model) in the sagittal plane. Fint is computed 
as Mankle divided by the Achilles tendon moment arm relative to the ankle joint centre 
(rat), which was assumed to be constant and 0.05 m (Farris & Sawicki, 2012; Honert & 
Zelik, 2016; Matijevich et al., 2019, 2020):  

Fint tð Þ ¼
Mankle

rat
¼

COPx;ankle � GRFz tð Þ
0:05

(3) 

where COPx;ankle represent the forward COP position with respect to the ankle joint 
centre obtained from the scaled biomechanical model and is an estimate of the GRF 
moment arm relative to the ankle joint centre. Mankle was estimated by multiplying 
COPx;ankle with the vertical GRF (GRFz). This computation of Mankle assumes that solely 
the plantar flexors contribute to Fint during the stance phase and that there is no co- 
contraction between plantar and dorsi flexors during the stance phase (Matijevich et al.,  
2019, 2020; Scott & David, 1990).

Peak tibial acceleration
The acceleration of the tibial sensor, including gravity (~atibia) expressed in Ψs, was 
filtered with a fourth-order Butterworth recursive lowpass filter of 60 Hz to 
minimise noise (Sheerin et al., 2019). PTA was defined as the peak acceleration 
in the axial direction of the tibial sensor in the local tibial sensor coordinate 
system, similar to (Clansey et al., 2014; Lucas-Cuevas et al., 2015; Reenalda et al.,  
2019).

Statistical analysis

To test if PTA correlates with Ftibia;max in running on level ground at a single speed, 
Pearson’s correlation coefficients (r) were computed for each participant independently, 
after which the group mean correlation was computed. Correlation coefficients were based 
on 50 right leg PTA and Ftibia;max values for each subject. Correlations were interpreted as 
very strong r = ±(0.90, 1.00), strong for r = ±(0.70, 0.89), moderate for r = ±(0.40, 0.69), 
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weak for r = ±(0.20, 0.39) and very weak for r = ±(0.00, 0.19) (Evans, 1996). The level of 
statistical significance was set to an alpha of 0.05. The influence of an offset in aligning 
Ψgl;imu with Ψgl;fp on the conclusion of this study was assessed by introducing an additional 
error of 10, 20, and 30 mm to the alignment of Ψgl;imu and Ψgl;fp and recomputing the 
correlation between PTA and Ftibia;max with these offsets.

Results

Ftibia;max was estimated to be, on average 7.6 ± 0.6 BW with a range of 6.5 to 8.7 BW, see 
Table 1 and Figure 3. The within-subject range of Ftibia;max was on average 1.6 BW. Mean 
PTA was 7.8 ± 1.6 g and ranged from 4.9 up to 10.1 g. The within-subject range of PTA was 
on average 3.3 g. On a group level, PTA and Ftibia;max showed a very weak correlation 
coefficient of 0.04 ± 0.14 with a range of −0.15 up to 0.28 (very weak to weak). No 
significant correlations between PTA and Ftibia;max were found for any of the runners, see 
Figure 4.

To validate the method to spatially align Ψgl;imu with Ψgl;fp during each step, to be 
able to compute the GRF moment arm, an online dataset was used (Matijevich 
et al., 2019). On average, COP crossed the MT5 marker in the forward direction at 
62 ± 12% of the gait cycle with a range of 47% to 85%, see Table 2. Within-subject 
variability was small, while between-subject variability was larger. The mean 
absolute error introduced by this alignment method was 12 ± 15 mm with a range 
of 4–28 mm.

The effect of a possible error in tibial force estimates caused by the alignment method 
of Ψgl;imu with Ψgl;fpon the conclusion of this study was investigated by applying an 
additional alignment offset in the forward direction impacting the GRF moment arm 
estimate, see Table 3. An additional alignment offset influenced the estimation of Fint and 
Ftibia;max, however the correlation between Ftibia;max and PTA remained very weak for all 
imposed offsets.

Table 1. Mean maximum values. Range refers to the mini
mum and maximum average subject values (coloured dots 
in Figure 4). GRFmax = Maximum vertical ground reaction 
force; Mankle,max = Maximum ankle moment; Fext,max =  
Maximum external force; Fint,max = Maximum internal force; 
Ftibia,max = Maximum tibial force; PTA = Peak tibial accelera
tion; r = correlation coefficient; BW = body weight; g = grav
itational acceleration; SD = standard deviation.

Mean ± SD Range

GRFmax (BW) 2.4 ± 0.2 2.1–2.7
Mankle;max ( Nm

kg ) 0.3 ± 0.0 0.2–0.3

Fext;max (BW) 2.4 ± 0.2 2.1–2.8
Fint;max (BW) 5.3 ± 0.6 4.5–6.2
Ftibia;max (BW) 7.6 ± 0.6 6.5–8.7
PTA (g) 7.8 ± 1.6 4.9–10.1
Correlation PTA - Ftibia (r) 0.04 ± 0.14 -0.15–+0.28
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Figure 3. Group average estimated tibial forces (top figure) and axial tibial acceleration (bottom 
figure) as a percentage of the stance phase. Dots represent maximum values for estimated tibial forces 
and tibial acceleration during the stance phase. Shaded areas represent the standard deviation around 
the group mean. Ftibia = tibial compression force; Fint = Internal component of tibial compression force 
(i.e., caused by muscle contractions); Fext = external component of tibial compression force (i.e., caused 
by ground reaction force); atibia = tibial acceleration in the axial direction of the tibial sensor; BW = 
body weight; g = gravitational acceleration.
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Figure 4. Scatterplot of PTA and estimated Ftibia;max values for all 50 strides of all subjects (light grey 
dots). Coloured dots represent the mean PTA and Ftibia;max for each subject. Coloured ellipses represent 
the standard deviation ellipse for all individual runners. The legend shows the correlation coefficients 
(r) between PTA and Ftibia;max .

Table 2. Results from validating the spatial alignment method on an online 
dataset. The second column shows the percentage of the stance phase at which 
the centre of pressure in the forward direction (COPx) crossed the marker of the 
fifth metatarsal (MT5x). The third column shows the absolute mean error in 
spatial alignment introduced by assuming that COPx always crossed MT5x at 
62% of the stance phase.

Subject
COP crossing MT5  
(% stance phase) Absolute mean error (mm)

1 47 ± 2 28 ± 3
2 59 ± 3 4 ± 3

4 85 ± 10 16 ± 3
5 56 ± 4 9 ± 5

6 68 ± 3 5 ± 2
7 68 ± 6 14 ± 9

10 56 ± 2 8 ± 3
Group mean 62 ± 12 12 ± 15

Table 3. Influence of additional alignment offset between Ψgl;imu and Ψgl;fp on the estimated tibial 
forces and the correlation between PTA and Ftibia;max . Columns represent the introduced translation 
error in the forward direction of Ψgl;imu with respect to Ψgl;fp for each step.

−30 mm −20 mm −10 mm 0 mm +10 mm +20 mm +30 mm

Fext;max (BW) 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2 2.4 ± 0.2

Fint;max (BW) 4.0 ± 0.5 4.4 ± 0.5 4.9 ± 0.6 5.3 ± 0.6 5.8 ± 0.6 6.3 ± 0.6 6.8 ± 0.6

Ftibia;max (BW) 6.2 ± 0.6 6.6 ± 0.6 7.1 ± 0.6 7.6 ± 0.6 8.1 ± 0.6 8.5 ± 0.6 9.0 ± 0.7

Correlation PTA -Ftibia;max (r) 0.04 ± 0.14 0.04 ± 0.14 0.04 ± 0.14 0.04 ± 0.14 0.04 ± 0.15 0.04 ± 0.15 0.05 ± 0.15
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Discussion and implications

This research aimed to investigate the strength of the relationship between PTA, 
a commonly used measure for tibial bone loading, and estimated Ftibia;max during tread
mill running. This study showed a very weak correlation (r = 0.04 ± 0.14) between PTA 
and Ftibia;max in rearfoot striking runners on a treadmill at a single running speed. The 
hypothesis that there would be no statistically significant correlations between PTA and 
Ftibia;max was accepted. On a group level, the very weak correlation between PTA and 
Ftibia;max cannot be considered relevant for estimating tibial bone loading based on PTA. 
The weak correlations between PTA and Ftibia;max are expected to be caused by the 
inability of PTA to reflect internal compressive forces from muscle contractions and 
the mis-timing between PTA (shortly after initial contact) and Ftibia;max (around mid
stance). The use of PTA as a surrogate measure for Ftibia;max during treadmill running is 
therefore not supported by the findings of this study.

PTA and GRF reflect the effect of external forces on the body during running. GRF 
represents the effect of external forces during the complete stance phase, while PTA mostly 
reflects the impact peak that travels up the leg caused by the foot hitting the ground at the 
start of the stance phase. The contribution of Fext to Ftibia;max is only about 18−30%, while 
the remainder is caused by Fint (Scott & David, 1990). PTA, GRF loading rate, and GRF 
impact peak are often used as surrogate measures for each other and for tibial bone loading 
(Bigelow et al., 2013; Chadefaux et al., 2019; García-Pérez et al., 2014; Lafortune et al., 1996; 
Lucas-Cuevas et al., 2015; Milner et al., 2006; Mizrahi et al., 2000; Zadpoor & Nikooyan,  
2011). Previously, Matijevich et al. (Matijevich et al., 2019) showed that the slope of the 
vertical GRF and impact peak did not strongly correlate with Ftibia. Hence, the contribution 
of the high impact peak shortly after initial contact towards tibial stress fracture injury risk 
has been challenged before (Hamill et al., 2018; Loundagin et al., 2018) but not in relation to 
PTA assessed using an IMU on the tibia, although this relation has been often assumed 
(Bigelow et al., 2013; Chadefaux et al., 2019; García-Pérez et al., 2014; Lafortune et al., 1996; 
Lucas-Cuevas et al., 2015; Milner et al., 2006; Mizrahi et al., 2000; Zadpoor & Nikooyan,  
2011). No strong correlations between the slope of the vertical GRF, GRF impact peak, 
PTA, and tibial bone loading have been found in this study or in other literature (Matijevich 
et al., 2019; Van den Berghe et al., 2019), indicating that these metrics should not be used as 
surrogate measures for each other.

A group mean value for PTA of 7.8 ± 1.6 g was found, which is well within the expected 
range when running at 12 km/h (Milner et al., 2020; Sheerin et al., 2019; Van den Berghe 
et al., 2019). Ftibia;max in this study was estimated to be 7.6 ± 0.6 BW on average, which is 
similar to studies in which subjects ran at a similar speed (Matijevich et al., 2020) and falls 
between values reported for lower (Chen et al., 2016) and higher speeds (Burdett, 1982; 
Sasimontonkul et al., 2007; Scott & David, 1990). Ftibia;max increases with running speed 
(Edwards et al., 2010). Values for Fint;max, also called plantar flexor forces or Achilles tendon 
forces, reported in the literature were similar to our findings, respectively, 5.7 ± 1.5 versus 
5.3 ± 0.6 BW (Kernozek et al., 2017). Comparable values for Fint of 5.1 ± 0.9 BW (Sinclair,  
2014) when running at 14.4 km/h and 6.1 ± 0.6 (Almonroeder et al., 2013) when running at 
13 km/h were found in the literature. In vivo values for Fint;max of 3750 N at 14 km/h were 
found with a buckle transducer (Komi, 1990). These findings are only slightly lower than 
what we found (3914 ± 1094 N). Values for Fext;max from our study (2.4 ± 0.2 BW) were 
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higher than found in the literature (1.6–2.0 BW) (Sasimontonkul et al., 2007; Scott & David,  
1990) at similar speeds. Overall, PTA and estimated tibial force values of this study are in 
line with the literature.

A simple 2D lower leg model was used to estimate Ftibia of the distal third of the tibial bone 
(Scott & David, 1990). This model assumes that only the gastrocnemius medialis, lateralis, and 
soleus contribute to Fint , that there is no co-activation of dorsiflexor muscles or other 
plantarflexor muscles, no influence of biarticular muscles and neglects the mass and inertia 
of the foot. These assumptions likely result in an underestimation of true Fint at similar speeds 
due to co-activation of dorsiflexor muscles and contribution of smaller plantarflexor muscles. 
Fext is likely overestimated in the simple 2D lower leg model since the mass and inertia of the 
foot dampens GRF while the model assumes that the full GRF acts on the ankle joint. Multiple 
studies used more elaborate models to estimate Ftibia that included dorsiflexor muscles and 
smaller plantarflexor muscles (Burdett, 1982; Kernozek et al., 2017; Sasimontonkul et al.,  
2007). They found that during 20−90% of the stance phase, mostly the gastrocnemius 
medialis, lateralis, and soleus were active with only little contributions (max 0.3 BW per 
muscle) from other plantar or dorsiflexor muscles (Sasimontonkul et al., 2007). When co- 
activation occurred, this was mostly during the start and end of the stance phase while Ftibia;max 
occurs around midstance. The simple 2D lower leg model has been shown to provide Fint;max 
in running that were similar to an extensive musculoskeletal model using 300 muscles with 
static optimisation, respectively, 5.7 ± 0.6 and 5.5 ± 1.4 BW (Kernozek et al., 2017). A 2D 
versus a 3D lower leg model to compute Ftibia;max and Fint;max provided similar results for both 
models (Burdett, 1982). Hence, using a simple or more elaborate model of the lower leg to 
estimate Ftibia is not expected to influence the conclusion of this study.

A new method was developed, validated, and applied to spatially align force plate and 
IMU data in the forward direction to be able to estimate the GRF moment arm relative to 
the ankle joint centre. Validation was performed on an online dataset and showed an 
absolute misalignment error of 12 ± 15 mm in the forward direction (Matijevich et al.,  
2019). To ascertain that an error of this magnitude would not affect the conclusion of this 
study, an additional offset between Ψgl;imu and Ψgl;fp was added (i.e., affecting the GRF 
moment arm relative to the ankle joint centre and thus Mankle, Fint and Ftibia) and the 
correlation between PTA and Ftibia;max was computed. This analysis showed that despite 
some uncertainty regarding the exact alignment of Ψgl;imu and Ψgl;fp, all alignment offsets 
(of up to 30 mm) resulted in a very weak correlation (r = 0.04–0.05) and did not influence 
the conclusion of this study.

This study focused on the relationship between tibial compression forces and one- 
dimensional axial tibial sensor acceleration. Besides compression forces, bending and 
shear forces on the tibia might play a role in the development of stress fractures (Burdett,  
1982; Glitsch & Baumann, 1997; Sasimontonkul et al., 2007; Scott & David, 1990). 
However, there is no reason to expect that PTA, measured in the axial direction of the 
tibial bone, would correlate better with bending or shear forces than with axial compres
sion forces. Additionally, these bending and shear forces are of a smaller magnitude (max 
1.2 BW) and work in different directions than maximum axial compression forces 
(Sasimontonkul et al., 2007). The axial compared to the resultant tibial acceleration 
was investigated in this study due to its demonstrated relationship with injuries 
(Sheerin et al., 2019) and possibly a stronger correlation with tibial compression forces. 
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The difference between axial and resultant PTA is caused by acceleration components in 
the forward and sideward directions, while these are not expected to contribute to axial 
compression forces. Hence, the correlation between the resultant PTA and Ftibia;max is 
expected to be lower than between the axial PTA and Ftibia;max.

The results of this study are based on a relatively small sample of 12 subjects. None of 
the runners showed a significant correlation between PTA and Ftibia;max. Increasing the 
sample size of this study would likely not affect the conclusion that there is no clinically 
relevant correlation between PTA and Ftibia;max on a group level.

Measurements were performed on an indoor instrumented treadmill. However, the 
effect of running surface on PTA is unclear (Fu et al., 2015; García-Pérez et al., 2014; 
Milner et al., 2020; Montgomery et al., 2016). In-vivo axial tibial compression strains 
were lower (Milgrom et al., 2003) while modelled Fint were higher in treadmill versus 
overground running (Willy et al., 2016). Without further understanding of the effect of 
running surface on PTA and tibial forces, the results of this study cannot be generalised 
to overground running without additional validation.

This study showed that there is only a very weak and non-significant correlation 
between PTA and Ftibia;max during treadmill running in rearfoot-striking runners, which 
cannot be considered relevant for estimating tibial bone loading based on PTA. Hence, 
PTA as an indicator for Ftibia;max and tibial stress fractures, as often used in the literature 
and commercial products, is not supported by scientific data. PTA might be an indicator 
of other running-related injuries, although the relation between PTA and tibial stress 
fracture risk is most referred to in the literature (Clansey et al., 2014; Crowell & Davis,  
2011; Milner et al., 2006). Future research should focus on a surrogate measure for tibial 
bone loading, which includes the contribution of Fint . The plantar flexor muscles are the 
largest contributors to Ftibia (Kernozek et al., 2017) and the magnitude of ankle power 
generation is directly related to running speed (Novacheck, 1998). Therefore, 3D accel
eration of the pelvis (i.e., close to the centre of mass) might reflect plantar flexor forces 
during running, and thus the contribution of Fint to Ftibia.

Conclusion

A very weak but non-significant correlation between PTA and Ftibia;max in treadmill 
running at a single speed on level ground was found for rearfoot-striking runners. 
Compression forces on the tibia are composed of both Fint (i.e., muscle contractions) 
and Fext (i.e., GRF). PTA is unable to reflect the contribution of muscle contractions to 
Ftibia. Hence, the assumed link between PTA and tibial bone loading (Ftibia;max), and 
between PTA and the risk of tibial stress fractures during treadmill running is not 
supported by the results of this study. Further research should focus on validating 
these findings in overground running and the development of a surrogate measure for 
Ftibia which reflects both Fint and Fext .
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Appendix

This appendix describes the analysis of an online dataset (Matijevich et al., 2019) to develop and 
validate a method to spatially align IMU-derived data expressed in a global IMU-based coordinate 
system Ψgl;imu, with force plate data expressed in a global force plate-based coordinate system 
Ψgl; fp.

Force plate and optical motion analysis data of 10 runners running at eight different speeds 
(ranging from 9.4 to 14.4 km/h) on a level treadmill were extracted from an online dataset 
(Matijevich et al., 2019). More details about the study protocol can be found in the original article 
accompanying the online dataset (Matijevich et al., 2019).

The stance phase of running was defined as the period where the vertical GRF was larger than 20 
N (Milner & Paquette, 2015). The stance phase started with initial contact and ended with toe-off. 
To be representative of the population used in the main study, only rearfoot striking runners were 
included. A rearfoot strike was defined as a mean foot contact angle at initial contact of 8 degrees 
or more (Altman & Davis, 2012). The mean foot contact angle was defined as the sagittal plane 
angle between a line from the right heel to the right toe marker and the horizontal at initial contact 
(Altman & Davis, 2012). Four out of 10 runners had a foot contact angle smaller than 8 degrees 
and were classified as non-rearfoot strikers and excluded from further analysis.

Ground reaction forces (GRF) and ground reaction moments (GRM) were filtered with a third- 
order recursive Butterworth filter of 15 Hz (Matijevich et al., 2019). The centre of pressure (COP) 
in the running direction (COPx) was computed: 

COPx ¼
GRMz

GRFy
(4) 

where GRMz represents GRM around the Z-axis (sidewards) of Ψgl; fp and where GRFy represents 
the vertical GRF in Ψgl; fp.
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Positions of the right heel, right toe, and fifth metatarsal marker (MT5) were extracted and 
filtered with a third-order recursive Butterworth filter of 10 Hz (Matijevich et al., 2019). In one 
subject, the right toe marker was not present; in this case, the position of the right first metatarsal 
marker (MT1) was extracted and filtered instead of MT5 to compute the foot contact angle.

The first 24 strides for each speed of all included subjects were used for analysis since each trial 
consisted of at least 24 strides. COPx and the forward position of the MT5 marker (MT5x) were 
normalised to the percentage of the stance phases. The percentage of the stance phase at which 
COPx crossed MT5x was computed and averaged for all steps. On average, COPx crossed MT5x at 
62 ± 12% of the stance phase, see Table 2.

To quantify the error introduced by assuming that COPx crossed MT5x at 62% of the stance phase 
in all rearfoot striking runners, the positional difference between COPx and MT5x for all subjects, 
and speeds at 62% of the stance phase were computed. This error was, on average 12 ± 15 mm, see 
Table 2.
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