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Shape matters: Competing mechanisms of particle shape segregation

D. Hern4ndez-Delfin®,"? D. R. Tunuguntla®,’ T. Weinhart ®,*> R. C. Hidalgo®,">" and A. R. Thornton ®37

' Departamento de Fisica y Matemdtica Aplicada, Universidad de Navarra, P.O. Box. 177, E-31080 Navarra, Spain

2BCAM - Basque Center for Applied Mathematics, Mazarredo, 14 E-48009 Bilbao, Basque Country, Spain

3Multiscale Mechanics, Department of Thermal and Fluid Engineering, Faculty of Engineering Technology,
MESA+, University of Twente, P.O. Box 217, 7500 AE Enschede, Netherlands

® (Received 16 January 2022; accepted 4 November 2022; published 28 November 2022)

It is well known that granular mixtures that differ in size or shape segregate when sheared. In the past, two
mechanisms have been proposed to describe this effect, and it is unclear if both exist. To settle this question, we
consider a bidisperse mixture of spheroids of equal volume in a rotating drum, where the two mechanisms are
predicted to act in opposite directions. We present evidence that there are two distinct segregation mechanisms
driven by relative overstress. Additionally, we showed that, for nonspherical particles, these two mechanisms
(kinetic and gravity) can act in different directions leading to a competition between the effects of the two. As a
result, the segregation intensity varies nonmonotonically as a function of aspect ratio (AR), and, at specific points,
the segregation direction changes for both prolate and oblate spheroids, explaining the surprising segregation
reversal previously reported. Consistent with previous results, we found that the kinetic mechanism is dominant
for (almost) spherical particles. Furthermore, for moderate aspect ratios, the kinetic mechanism is responsible
for the spherical particles’ segregation to the periphery of the drum, and the gravity mechanism plays only a
minor role. Whereas, at the extreme values of AR, the gravity mechanism notably increases and overtakes its

kinetic counterpart.
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I. INTRODUCTION

Anyone who has shaken a box of cereal has observed seg-
regation or demixing. This is the so-called Brazil-nut problem,
which still has many open questions despite being heavily
studied [1,2]. In general, segregation occurs due to differences
in physical properties, ranging from shape and size to the coef-
ficient of restitution and sliding friction. However, in sheared
dense granular flows, it is the difference in size that primarily
drives segregation [3].

Size-based segregation in sheared dense granular flows has
recently attracted a lot of scientific attention, utilizing a variety
of different approaches and geometries. For example, van der
Vaart et al. [4] experimentally studied particle size segregation
in a shear box, looking at individual small and large particle
dynamics in a system under oscillatory shear. In contrast, Jing
et al. [5] used particle simulations in a periodic chute to show
that individual large particles carry higher contact forces. This
overstress (or overpressure) acts as a mechanism that drives
these large particles upwards.

The idea of large particle overstresses measured by Jing
et al. [5] (and many others) had previously been theoretically
postulated by Gray and Thornton [6,7]. However, they do not
express the overstress in terms of particle size, which left open
two questions: How does the over stress scale with particle
size ratio; and, how do you define size? In the original model,
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the overstress is assumed to be proportional to the hydrostatic
load (pressure), which for most geometries scales with gravity.
However, in dynamic cases, Fan and Hill [8,9] showed a
second source of overstress called Kinetic stress, which is due
to difference in velocity fluctuations and does not scale with
gravity.

For polydisperse mixtures of spheres, Tunuguntla et al.
[10] developed a novel micro-macro analysis technique, based
on coarse graining (CG) [11-15]. This is required as it con-
sistently splits the stress of a contact between different sizes
of particles, which is not guaranteed with simpler methods,
e.g., binning. CG is used to obtain macroscopic properties
of granular flows from microscopic details. This technique
is widely used as a micro-macro mapping procedure present-
ing advantages compared to other, simpler methods, namely
binning and the method of planes [16]. Using the technique,
Tunuguntla et al. [16] showed that, in bidisperse mixtures
flowing down inclined planes, the overstress in the kinetic
stress is far greater than the contact stress. However, both
act in the same direction. Hence it is very hard to distin-
guish the effects and raises the questions: Is there one or two
segregation mechanisms, and what happens for nonspherical
particles?

Lu and Miiller [17] investigated mixtures of spherical and
nonspherical particles in a rotating drum. They explored mix-
tures with different blockiness; always, nonspherical particles
segregated towards the center. Various other authors have also
studied segregation in rotating drums with shapes such as
cuboids and spheres [18] and rods [19,20]. In these studies,
the particles differed in volume and mass. Recently, He et al.
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FIG. 1. Sketch of the numerical system; the dashed line repre-
sents the boundary between the flowing layer and the solid body.
In addition, the inset shows a representation of the particle shapes
(AR € {0.1,0.5, 1.0, 2.5, 4.0}).

[21] numerically studied a bidisperse mixture of ellipsoids
in a rotating drum, keeping the particle volume constant.
Under these conditions, segregation is exclusively a result
of the differences in shape. Astonishingly, they showed that
the segregation direction changes depending on the shape
differences. They attributed the results to two competing seg-
regation mechanisms. The first one is related to the fact that
spheres have better flowability than nonspherical particles,
making spheres flow along the strongly sheared drum periph-
ery while ellipsoids deposited at the center as they dissipate
more energy in the flowing layer. They described a second
mechanism by observing that particles tend to orient more
against the flow direction as they become more nonspherical,
allowing spheres to percolate towards the core as ellipsoids
offer less resistance.

In this work, inspired by the segregation reversal reported
by He et al. [21] for equal-volume particles and equipped
with the state-of-art particle analysis tool MERCURYCG [10],
we thoroughly analyze the segregation behavior of spheroids
for different aspect ratios within the existing theoretical
frameworks. Remarkably, we demonstrate (1) the segregation
reversal is predicted by the idea of an overstress, and (2) there
are two distinct stress segregation mechanisms, which even
compete with each other.

II. NUMERICAL MODEL (DEM)

The model consists in a nondimensional system involving
a bidisperse mixture of spherical and ellipsoidal particles in a
rotating drum, subjected to a gravitational field of magnitude
g = 1, as considered in Ref. [22]. Figure 1 illustrates a sketch
of the numerical setup: a drum is of radius R = 15d and depth
L = 6d, with periodic boundary conditions in the transverse
direction (y axis). Gravity acts in the z direction. The main
goal of the simulations is to study segregation as a result
of differences in shape only, the material densities of both
constituents are equal, and spheroid semidiameters a, b, and
¢ are chosen in order to keep equal volumes, and therefore
equal masses. Thus, each sphere (¢ = b = ¢) has diameter

d =1 and mass m = 1, respectively. Similarly to He et al.
[21], we define an aspect ratio AR = a/c and seta = AR*? /2
and b = ¢ = AR™!/3/2, such that the spheroids have the same
volume as the spheres. If AR < 1, the mixture is made of
spheres and prolate spheroids; if AR = 1, both species are
spheres; otherwise, the bed is made of spheres and oblate
spheroids. The studied range of AR was from 0.1 to 4.0 at
0.1 intervals, with a total number of N = 2000 particles, half
of which belong to each one of the constituents.

The drum walls are constructed by placing spherical parti-
cles of diameter d /2 onto a cylindrical surface in a L x 27 R
grid and forcing them to rotate at a given angular velocity
around the y axis. Constructing the drum from particles cre-
ates a rough surface with sufficient friction to avoid slipping
between the drum and the bulk particles. The rotation ve-
locity w is set such that the nondimensional Froude number
F = w’R/g, which characterizes the ratio of centrifugal to
gravitational forces, is F' = 0.01. This value is close to the
upper limit of the rolling regime, which is one of the six cate-
gories of rotating drum flows and one of the most relevant for
industrial applications [23]. Under this regime, the granular
flow involves two distinct zones: a thin flowing layer at the
surface and a passive solid body rotation below.

Simulations were carried out in MERCURYDPM [24], an
open-source code for discrete element modeling (DEM) par-
ticle simulations. To model forces among particles, the linear
spring-dashpot contact model is used, with a restitution coeffi-
cient e, = 0.1, collision time 7. = 0.05, and Coulomb friction
coefficient u = 0.5. In order to find the contact point and com-
pute the overlap between two particles, we consider spheroids
and spheres as a subset of superquadric particles. The im-
plementation is similar to that in [25], describing the surface
of superquadrics with blockiness parameters n; = n, = 2 for
ellipsoidal shapes; the inset in Fig. 1 illustrates particle shapes
for AR € {0.1,0.5, 1.0, 2.5, 4.0}. As a starting point, the N
particles are randomly placed inside the drum, and we wait
until the system is relaxed before starting to rotate the drum.
Setting the time step as At = 1./50, we analyze the results
after ten rotations, at which time He ef al. [21] observed ap-
preciable differences regarding the components segregation.

III. OBTAINING CONTINUUM FIELDS

The previously mentioned continuum models are all ex-
pressed in terms of Eulerian continuum properties like stress
and volume fraction. However, the DEM algorithm resolves
the discrete Lagrangian trajectories of all the simulated parti-
cles, providing their location and contact network with a given
time resolution. We employ a coarse-graining methodology
to postprocess this discrete data to the required continuous
fields which are required for the theoretical models [11,13—
15]. Analogous to [16], the simulated system includes three
different types of constituents: (bulk spheres) type s, (bulk
spheroids) type e, and (boundary) type b. The interstitial pore
space is considered as a zero-density passive fluid. Following
Tununguntla et al. [16] we define the subsets of spherical par-
ticles, F*, elliptical particles, F¢, boundary particles, F' b and
their union F = F* U F¢ U F?, where each particle i € F"
has a mass m;, a center of mass r; and velocity v;.
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According to [11,13-16], the mass density corresponding
to type-v constituent, p”(r, t), at r and time ¢ is defined by

I )=y mip(r = i) (M
ieFY

and ¥ (r — r;(¢)), henceforth ; for simplicity, is an integrable
coarse-graining function. In the present work, we choose the
Lucy polynomials with a width of 1, i.e., the diameter of the
spherical particles, as recommended by Tunuguntla ef al. [10].
To satisfy the mass and momentum conservation equations,

expressions for the other type-v partial quantities are
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where v; is the fluctuation of the velocity of particle i with re-
spect to the mean field, v = u — v;, and f;; and b;; denote the
force between particle i and j and the branch vector between
particle i and its contact point with particle j, respectively.
Finally, ;; is the lineal integral along b;;, ¥;; = /01 Y(r —
r; + sb;;)ds, which distributes the contact stress proportion-
ally, subjected to the corresponding branch fraction of each
constituent.

Following the previous procedure, all relevant macroscopic
fields were extracted from the DEM data. The fields were
averaged over the depth of the drum and in time for a period of
1.5 rotations, starting from the tenth rotation, with a temporal
resolution Afcg = 0.01./d/g.

IV. RESULTS AND DISCUSSION

We performed DEM simulations of a rotating drum by
exploring the impact of the particle aspect ratio AR on the
segregation process. To this end, a simple visual inspection
of the system can tell us whether the particles tend to group
by shapes after a while. Figure 2(a) depicts the mixture
states after ten rotations for AR = {0.1, 0.5, 2.5, 4.0}. As can
be clearly seen, segregation is evidenced in all these cases
at different degrees. The most extreme mixture (AR = 0.1)
shows that most of the spherical particles are in the core
of the drum, while nonspherical ones are in the periphery.
In case AR = 0.5, the segregation inverts despite being less
intense. The inversion of the segregation also manifests in
mixtures that contain prolate ellipsoids. Similar segregation
reverse was previously found, e.g., the called reverse Brazil-
ian effect (RBE) [26,27] or the recent result in Ref. [28],
where the inversion is obtained by varying size and density
simultaneously. Here, the most striking about this result is that
the segregation reverse occurs only with varying the particle
shape (see also Ref. [21]).

Here we will define two types of volume fraction the
normal volume fraction per unit ¢ mixture volume, which
is simply the local ratio of volume of constituent i, over
total volume ¢" = V//V. From this we can define volume
fraction per unit granular volume that is ¢* = ¢"/(¢* + ¢°),

FIG. 2. (a) Snapshots of the mixtures AR = {0.1, 0.5, 2.5, 4.0}
after ten rotations (t &~ 2433). The spherical particles are colored
gray, while elongated particles are red. (b) The concentration of
spheres ¢,(x, z) obtained from density CG fields for the same AR
values of (a).

which has the property ¢¢ 4 ¢* = 1. Figure 2(b) shows as a
color map the volume fraction per solid volume of spheres
¢°(x, z). It resembles the spatial distribution of spheres and
ellipsoids, depicted in Fig. 2(a). One can notice that ¢* is
nonhomogeneous, with higher values in the core of the drum
for mixtures with extremely elongated spheroids (AR = 0.1
and AR = 4.0). In contrast, the opposite behavior is observed
for AR values close to 1, where the mixture is homogeneous.

Steeping forward, using the quantities ¢" and the bulk
density p(r), we adapt the method of Arntz et al. [29,30] to
quantify segregation accurately. From statistical mechanics,
the mixing entropy is defined as

=Y [ oo @ngenr o

vels, e}
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FIG. 3. The segregation index S as a function of the aspect ratio
AR, which has been computed for each of the three half rotations and
averaged. The red circles illustrate the aspect ratios where spheres
segregate to the center of the drum, whereas the blue triangles in-
dicate that spheres go to the periphery. For AR = 1.0, a particular
marker is assigned (black diamond). In all cases, error bars account
for the standard deviation of the mean value.

Next, we define a segregation index S that measures not
only the segregation intensity but also the direction in which
segregation occurs in a rotating drum (inwards or outwards),

M — 1 if spheres segregate inwards,
§= 1-M @

if spheres segregate outwards.

Thus, a positive value of S indicates that spheres tend to
segregate away from the core.

Going further, we show the spatially-averaged segregation
index Eq. (4) as a function of AR in Fig. 3. For AR values
close to 1.0, the values of S are positive (labeled with blue
triangles), indicating that the spheres tend to segregate to the
drum periphery, whereas S is negative for extreme AR values
(labeled with red circles); thus, the spheres segregate towards
the core.

For the case of prolate spheroids, S reaches a maximum
local value at AR =~ 2.5 and flips direction at AR ~ 3.1, sug-
gesting that a new effect starts to play a role in the behavior of
the system. Similarly, for oblate spheroids, S reaches a maxi-
mum local value at AR & 0.5 and flips direction at AR ~ 0.4.
At AR =1 (labeled with a black diamond), S & 0, a result
expected beforehand because segregation must not occur for
similar constituents. These results are similar to those in [21]
and indicate that the segregation changes direction at specific
AR values.

A. Continuum analysis of particle segregation

Next, we quantify the segregation mechanisms and clarify
the origin of the change in the segregation direction, em-
ploying the theoretical framework introduced by Fan and Hill
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FIG. 4. Drawing representing the velocity field u (black stream-
lines) and its perpendicular field § x u (red arrows). Complementary,
gravity g and its projection along a vector n = § x u/|u| are repre-
sented, g, = g - n.

[9]. This formulation is based on the partial momentum and
mass conservation equations for individual constituents of a
mixture [31],

p" +V-(p'u’) =0, (5a)
p'(du” +u’-Vu') = -V.o"+ p'g+B", (5b)

where p”, u’, and ¢ are the density, velocity, and stress of the
constituent v, respectively. g is the gravity vector, and 8" is
the interconstituent drag force that obeys > 8" = 0. We use
the coarse-graining formulas from Sec. III in order to directly
obtain these mixture variables from the discrete particle data.

We consider systems in which the velocities and partial
densities approach steady state long before the segregation
profile equilibrates, such that the temporal derivatives in (5b)
become negligible. Moreover, we assume that segregation
occurs in the direction of the shear plane orthogonal to the
barycentric velocity, u = > p"u’/p.

Thus, if the drum is rotating around the y axis, then the
direction of segregation is n = § x u/|u| (see Fig. 4). In the
flowing layer (where gradients perpendicular to n can be ne-
glected), multiplying (5b) by n yields

Voo, + Voo, = By + 0" gn, 6)

where 0&” and oXV denote the contact and kinetic parts, re-
spectively, of the stress component pointing in the n direction.
The gradient V, = V - n represents the derivative in the n
direction, and g, = g - n is the projection of g along n.

In addition to the previously defined partial quantity ¢", we
define kinetic and contact stress fractions, i.e., the stress per
unit granular stress, as f*' = oXv/ok and foV =05V /0¢,
as was done in previous contributions [6,16,32]. If the stress
fraction of a constituent exceeds the value ¢V, we call this
condition overstress; otherwise we call it understress.
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FIG. 5. Every row illustrates the profiles of (f*” — ¢") (left column), (f" — ¢") (center column), and (f©" — f*") (right column) as a
function of ¢" for oblate AR € {0.1, 0.2, 0.4, 0.5, 0.7} and prolate AR € {1.5, 2.3, 2.5, 3.7, 4.0} ellipsoids, respectively.

The last ingredient of the model is the form taken by 8!;
similarly to Hill and Tan [33], we neglect diffusive remixing
and propose the following drag terms

BY = oS Va(fS) + 0" Va(f") — pYc(ul —un).  (7)

The first two terms ensure that, as in Darcy’s law, the perco-
lation process is driven by intrinsic rather than partial stress
gradients. The third term is a linear drag law similar to that
provided by Morland [31] for the percolation of fluids, where
c is an interconstituent drag coefficient, which we assume to
be constant. This form of the drag may appear complicated,
but it is both theoretically justified, e.g., [6,33], and confirmed
in particle simulations [34,35]. Of particular note is the work
of [35], as they extended the drag model to give a closed
form expression for c; however, here we simply give it as to
determined parameter, c.
Substituting (7) in (6), the relative percolation velocity is

c,v _ rkov C,V __ AV
cd)"(u]: _ Mn) — %Vnaf + w

Dy @,

g (8)

where ®; and @, quantify the effects of kinetic and gravity
mechanisms. Note that ®; is not present in the original Gray
and Thornton model [6]. Before we compute ®; and ®,, it is
convenient to obtain the profiles of (f%" — ¢V), (f&” — ¢"),
and (& — f%") as a function of ¢".

To perform the analysis related to the quantification of
the segregation mechanisms, we averaged the CG fields on
the domain where the density of the mixture is different
from zero. Figure 5 illustrates the aforementioned profiles
for oblate AR € {0.1, 0.2, 0.4, 0.5, 0.7} and prolate AR €
{1.5, 2.3, 2.5, 3.7, 4.0} ellipsoids, respectively. One can see
that the values of (f** — ¢*) for spheres are positive for all
AR, indicating that spherical particles support more kinetic
stress than their relative concentration. This result agrees with
previous observations that spheres possess a better flowability,
and implies that kinetic sieving alone is unable to explain the
change in the segregation direction. Moreover, (f©* — ¢°) is
near zero for AR = 0.5 and 2.5 and strictly negative for AR =
0.1 and AR = 4.0, indicating that spherical particles support
equal or less contact stress than their relative concentration.

In Fig. 5, we plot the kinetic (f%” —¢") (left), con-
tact overstresses (f“” — ¢") (middle), and their difference
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FIG. 6. From top to bottom: averaged gravity, (®,) stress; kinetic
segregation, (®); and total stress, [(®,) + (Pi)]. For formulations
see (8). The blue triangles are where the spherical particles segregate
inwards and the red spheres outwards. Showing only the combination
of the two mechanisms predicts the correct trend.

(f&" — %Yy (right). It should be noted that the difference
(right) is the prefactor for the kinetic mechanics, &, in Eq. (8),
and the contact overstress (right) is the prefactor for the
gravity mechanism &, in Eq. (8). Both mechanisms are in-
fluenced by the contact overstress and by the kinetic and

contact overstresses always being complementary: mixtures
that are contact-overstressed are simultaneously kinetic-
understressed, and vice versa. Thus, a high contact overstress
also leads to a high prefactor of @y, that is, the magnitude
(not direction) of both mechanisms is highly influenced by the
contact stress. This is why previously it has been hard to deter-
mine if there are one or two different segregation mechanisms.

We denote the averaging over the flowing layer by (®,) and
(dy), respectively. Figure 6 displays both terms and the aver-
aged total contribution, multiplied by c as a function of AR.
Comparing (®,) and (®;) shows that the kinetic mechanism
dominates where spheres segregate to the periphery of the
drum (blue triangles). However, where the spheres segregate
to the core of the mixture (red circles), the gravity mechanism
increases as the constituents of the mixture become more dif-
ferent, and the absolute values of (®,) are larger than the (®y)
ones. This implies that, for positive values of S, segregation
occurs mainly because of the kinetic stress gradient, and the
gravity mechanism is negligible. In contrast, for negative val-
ues of S, the gravity mechanism drives the segregation, even
though (®;) has considerable values. Finally, the averaged
total contribution (@) + (@) correlates with the behavior
of S, and the sign changes of the total contribution occur at
the same AR values as the sign change in S. So, in order
to correctly predict the direction of segregation, both mecha-
nisms are required. To the best of the authors’ knowledge, this
is currently the only known system where these two effects
compete.

V. CONCLUSIONS

Our numerical and theoretical analysis accurately explains
particle-shape segregation patterns in rotating drums. We
present evidence that there are two distinct segregation mech-
anisms driven by overstress in the contact and kinetic stresses,
as was suggested by Fan and Hill [9]. In fact, we show
that for nonspherical particles, these two mechanisms can act
in different directions leading to a competition between the
effects of the two. This explains the surprising segregation
reversal reported by He et al. [21]. Particularly, in rotat-
ing drums, the segregation intensity varies nonmonotonically
as a function of AR, and, at specific points, the segrega-
tion direction changes for both prolate and oblate spheroids.
Remarkably, our analysis predicts the location of these transi-
tion points quantitatively, quantifying the relative momentum
interchange between the species. Consistent with previous
results [9,16], we found that the kinetic mechanism is domi-
nant for (almost) spherical particles. For moderate AR values,
the kinetic mechanism is responsible for spherical particles
segregating to the periphery of the drum, and the gravity
mechanism plays only a minor role. At the extreme values of
AR, the gravity mechanism increases rapidly and dominates
its kinetic counterpart.
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