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Abstract— We consider the dynamic scheduling of skip-stop
patterns in public transportation. Operators of fixed-line
public transportation services seek to reduce their vehicle
running times by skipping stops that will not impact
significantly the waiting times of passengers. This can result
in an improved trade-off between vehicle running times and
passenger waiting times allowing to slightly increase the
travel times of passengers in order to reduce the operational
costs. Although there exist several decision support models
for dynamic stop-skipping, these models do not consider
the impact of skipped stops to in-vehicle crowding. That is,
apart from the increased passenger waiting times, a skipped
stop might result in an increased amount of passengers
boarding the next trip of the line resulting in overcrowding. To
rectify this, we propose a mixed-integer nonlinear model that
incorporates the objective of avoiding in-vehicle overcrowding
when making stop-skipping decisions. This is particularly
relevant in situations where passengers are no longer able
to find a seat or they have to maintain social distancing
inside the vehicle because of a pandemic. Because the stop-
skipping problem is NP-Hard, we introduce a number of valid
inequalities that tighten its solution space and we demonstrate
the performance of our model in benchmark problem instances.

Keywords: Expressing; stop-skipping; COVID-19; social dis-
tancing; public transport.

I. INTRODUCTION

As public transport operators resume their services, they
have to operate under reduced capacities due to COVID-19
[1]. Because demand can exceed capacity at different areas
and across different times of the day, drivers have to refuse
passenger boardings at specific stops to avoid overcrowding
[2]. In practice, the coronavirus pandemic has resulted in
the consideration of two vehicle capacities: the nominal
(actual) capacity of the vehicle, hereafter referred to as “hard
capacity”, and the pandemic-imposed capacity of the vehicle
that satisfies the recommended social distancing, hereafter
referred to as “soft capacity”. The soft capacity is lower than
the hard one and it can differ among public transport service
providers based on the local pandemic regulations. Contrary
to the hard capacity, the value of the soft capacity can vary
over time subject to the status of the pandemic in a study
area.

Given the urgent need to develop decision support tools
that can meet the soft capacity of public transport vehicles,
this study introduces a dynamic integer nonlinear program to
derive the optimal service patterns of skipped/served stops
for individual vehicle trips. In addition to the objective of
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meeting the soft capacity due to COVID-19, the proposed
stop-skipping model accounts for the waiting time of pas-
sengers at stops. The model decides the skipped and the
served stops of a public transport vehicle and it is tested
in a bus line connecting the University of Twente with its
surrounding cities demonstrating the trade-off between the
reduced in-vehicle crowding levels, the trip travel times, and
the waiting times of passengers.

The developed mixed-integer nonlinear model (MINLP)
has an exponential computational cost and it cannot be
solved to global optimality in near real-time for bus lines
with regular sizes. To rectify this, the model is solved with
the implementation of a branch-and-bound algorithm that
terminates its branching and bounding operations within a
pre-determined time limit returning an improved feasible
solution with a guaranteed optimality gap.

The developed model is implemented in a bus line con-
necting the University of Twente with its two neighboring
cities. Its performance is compared against the “as-is” setting
that does not skip any stops. The evaluation results demon-
strate that the proposed stop-skipping model can reduce the
total in-vehicle passenger load that exceeds the pandemic
capacity by 31% and the total trip travel times by 2%. This,
however, results in skipping (i.e., not serving) a number of
stops (approximately 1 stop per two trips).

II. LITERATURE REVIEW

Public transport is one of the most affected sectors of
the pandemic. Many public transport service providers have
reported ridership losses of up to 90% compared to the pre-
pandemic levels. In addition, social distancing requirements
have frequently resulted in the adaptation of public trans-
port schedules, including stop closures at crowded areas,
cancelation of services at night times, changes of service
frequencies, and timetable modifications [3]–[5]. These mod-
ifications to the (pre-pandemic) public transport schedules
are predominantly made at the tactical planning stage. For
instance, Transport for London announced the closure of
specific metro stations at the early stages of the pandemic.
This study will also address the problem of not serving
specific stops to reduce the in-vehicle crowding. Instead of
semi-permanent stop closures, however, this study proposes
a dynamic stop-skipping model that decides which stops to
skip and which stops to serve for all vehicles of a service
line operating within a time horizon.

In past literature, there are mathematical models for de-
ciding about the skipped stops of a service line at the tactical
and the operational (dynamic) level. Studies at the tactical
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level typically decide about the skipped stops of a service
line before the start of the daily operations and they do
not proceed to real-time adjustments of these decisions [6]–
[11]. In contrast, dynamic stop-skipping models applied at
the operational level can use real-time information regarding
the passenger demand and the status of the operations [12].

A comprehensive survey of dynamic stop-skipping models
is provided in [13] and [14]. There are two strands of
research in dynamic stop-skipping: works that focus on the
stop-skipping decisions of a single vehicle that is about to be
dispatched, and works that focus on the stop-skipping deci-
sions of a number of future vehicle-trips that operate within
a specific time horizon. Studies that decide the skipped stops
of a single vehicle result in simpler models that can be solved
with brute force for medium-sized service lines with up to
20 stops [15], [16]. This notwithstanding, their decisions are
myopic because the effect of a vehicle’s skipped stops on
its subsequent trips is not considered. Studies that decide
about the skipped stops of a set of future trips provide more
comprehensive decisions, but, at the same time, result in
more computationally complex mathematical models with an
increased number of decision variables. This study belongs
to the latter category and proposes a comprehensive MINLP
model that is solved with branch-and-bound.

The study of [17] was one of the first to propose the
development of dynamic stop-skipping strategies for all
trips operating in a time horizon (also known as “rolling
horizon”). Eberlein et al. [17] modeled the stop-skipping
problem as an integer nonlinear program considering the
passenger waiting times as an objective function. Given the
problem’s complexity, [17] simplified the model formulation
and proposed an analytic solution that can be applied to the
simplified problem. [13] introduced also a dynamic stop-
skipping model that decides about the skipped stops of
vehicle-trips of a service line in rolling horizons. The model
was an integer nonlinear program and it was solved to global
optimality for small-scale instances.

Stop-skipping can also be applied in conjunction with
other control measures [18], [19]. Li et al. [20] proposed
a combined stop-skipping and short-turning model that was
formulated as a 0–1 stochastic programming problem. Their
formulation was stochastic because they considered oper-
ational disruptions. Given the complexity of the problem,
[20] used heuristics and tested the solution performance
with sample data from the Shanghai Transit Company. Stop-
skipping is also combined with vehicle holding at public
transport stops [21]–[23] and vehicle scheduling [24].

In the aforementioned studies, the main focus of stop-
skipping models is to reduce the trip travel times without
increasing significantly the waiting times of passengers that
are waiting at skipped stops. This trade-off is the essence of
stop-skipping models, which are also known as “expressing
models” because they strive to reduce the trips’ travel times
by serving fewer stops. During the current pandemic, how-
ever, stop-skipping can be used for different purposes. Stop-
skipping can be applied to reduce the in-vehicle crowding
levels instead of only seeking to reduce the in-vehicle travel

times. [25] proposed a model in this direction, but this model
did not consider the trip travel times in the optimization
process and returned feasible solutions only if the number
of vehicle-trips was enough to satisfy the soft capacities
of vehicles. This study provides a more comprehensive
formulation that considers the trade-off between: (i) the
passenger waiting times at stops; (ii) the trip travel times;
and (iii) the exceedance of the soft capacity in overcrowded
line segments. Specific contributions are:

• the expansion of dynamic stop-skipping to incorporate
the soft capacities of vehicles as an additional objective.

• the reformulation of the expanded model to a MINLP
that can be solved with branch-and-bound.

• the investigation of the potential benefits in a Dutch case
study.

III. PROBLEM FORMULATION

A. Assumptions and Nomenclature

The modeling part of this work extends the dynamic
stop-skipping model of [13] to incorporate the soft capacity
restrictions due to the COVID-19 pandemic. The formulation
of the problem relies on the following assumptions:

• Buses that serve the same line do not (typically) over-
take each other [26], [27].

• The passenger arrivals at stops are random at high-
frequency services [28].

• An origin-destination pair cannot be skipped by two
consecutive bus trips of the same line [15], [16], [29].

• Passengers use the same door channels for boardings
and alightings.

• Passenges who are skipped by a vehicle will be accom-
modated by another service line or they will exit the
public transport system.

Our formulation decides about the skipped and served
stops of a set of vehicle-trips of a bus line that are planned
to operate in the near future (i.e., within the time window
of the next hour). Let N = {1, ..., n..., |N |} be the set of
trips and S = {1, .., |S|} be the ordered set of stops of the
bus line. In addition to the sets of trips and line stops, there
are also the following parameters that provide the necessary
input to the dynamic stop-skipping model.

Parameters:
• tn,s is the estimated inter-station travel time of trip n

from stop s− 1 to stop s
• The soft capacity of each vehicle-trip, gn, ∀n ∈ N
• The hard capacity of each vehicle-trip, g̃n, ∀n ∈ N
• p1 and p2 are the average boarding and alighting times

per passenger, respectively
• δ is the average bus acceleration plus deceleration time

for serving a bus stop
• λsy is the average arrival rate at stop s of passengers

who travel to destination stop y
• c1 is the unit time value associated with the passenger

waiting time increase
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• c2 is the unit time value associated with the vehicle
operation time

• c3 is the unit time value associated with the exceedance
of the soft capacity of a vehicle-trip

• d̃n,1 is the planned departure time of every trip n ∈ N
from the first stop of the line

• w̃1,sy is the number of passengers waiting for the first
trip and are traveling from stop s to y > s.

The decision variables of the skip-stop decision problem
are the binary variables xn,s, where xn,s = 1 if stop s is
served by vehicle-trip n and 0 otherwise. This results in a
combinatorial problem with 2|N ||S| potential combinations
of stop-skipping strategies. The variables of the optimization
problem are presented below.

Variables:
• the departure time dn,s of any trip n from stop s
• the arrival times an,s
• the dwell times kn,s
• the headway hn,s between trips n− 1 and n at stop s
• the number of passengers waiting for vehicle-trip n and

traveling from stop s to y, wn,sy

• the number of passengers boarding trip n at stop s, un,s

• the number of passengers boarding trip n at stop s
whose destination is stop y, bn,sy

• the number of passengers alighting trip n at stop s, vn,s
• the in-vehicle passenger load of vehicle-trip n when

departing from stop s, γn,s

B. Mathematical Formulation

The number of passengers waiting for vehicle-trip n and
traveling from stop s to y, wn,sy , is:

wn,sy = λsyhn,s ∀n ∈ N \{1}, s ∈ S\{|S|}, y ∈ S : y > s
(1)

where wn,sy = w̃sy when n = 1.
The objective function of the stop-skipping decision prob-

lem includes three terms that are multiplied by the respective
weight factor c1, c2 and c3:

f(x)
.
=c1

|N |∑
n=2

|S|−1∑
s=1

un,s
hn,s

2
+ c2

|N |∑
n=2

|S|∑
s=2

(tn,s + (kn,s + δ)xn,s)

+ c3

|N |∑
n=1

|S|∑
s=2

max(0, γn,s − gn) (2)

The first term computes the total waiting time of pas-
sengers. In more detail, un,s

hn,s

2 is the waiting time of
passengers who arrive after the departure (or passing) of bus
n − 1 at stop s, assuming uniformly distributed passenger
arrivals. The second term in the objective function computes
the total travel time of all bus trips in set N . The third term
penalizes in-vehicle crowding γn,s when it is beyond the soft
capacity limit gn.
Remark: If the public transport service provider places
more importance on meeting the soft capacity requirement

that is imposed due to COVID-19, then c3 should take an
adequately higher value than c1, c2. In this case, c3 can be
seen as a Big-M term where c3 >> c1 and c2.

The objective function is nonlinear because of the first
two terms that include multiplications between variables and
the (implicit) conditional expression max(0, γn,s − gn,s) of
the third term. Later in this study, the third term will be
reformulated to a linear expression by adding continuous and
binary variables.

The expected number of passengers who will board bus
trip n at stop s (assuming bus n stops at stop s) depends on
the number of passengers traveling between stops s and y
(y > s) and whether the bus will stop at stop y:

un,s = xn,s

|S|∑
y=s+1

wn,syxn,y, ∀n ∈ N, s ∈ S \ {|S|} (3)

At the last stop of the service line we have no boardings.
Thus, un,|S| = 0, ∀n ∈ N . From the total amount of
passengers boarding bus trip n at stop s (un,s), the number
of passengers boarding bus trip n at stop s ∈ S\{|S|} whose
destination is stop y is:

bn,sy = xn,swn,syxn,y, ∀n ∈ N, s ∈ S \ {|S|}, y > s (4)

Clearly, bn,sy = 0 for y ≤ s. The expected number of
alighting passengers for bus trip n at stop s is:

vn,s = xn,s

s−1∑
y=1

wn,ysxn,y,∀n ∈ N, s ∈ S \ {1} (5)

A special case is the first stop of a bus trip where we do
not have passenger alightings. This introduces the boundary
condition vn,1 = 0,∀n ∈ N . The dwell time of each bus trip
n at each stop s depends on the number of passengers that
will board and alight at the stop, denoted by un,s and vn,s,
respectively:

kn,s = p1un,s + p2vn,s, ∀n ∈ N, s ∈ S \ {1} (6)

The in-vehicle passenger load of any vehicle-trip n ∈ N
traveling from stop s to stop s+ 1 is also derived by:

γn,s = γn,s−1+un,s− vn,s ,∀n ∈ N, s ∈ S \ {1, |S|} (7)

where γn,s = un,s for s = 1. In addition, the in-vehicle
passenger load should not exceed the hard capacity limit of
its vehicle:

γn,s ≤ g̃n, ∀n ∈ N, ∀s ∈ S \ {|S|} (8)

The arrival time of bus trip n at stop s is equal to its
departure time at stop s − 1 (dn,s−1), plus the travel time
between the two stops, plus the time lost in acceleration and
deceleration:
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an,s = dn,s−1+tn,s+
δ

2
(xn,s−1+xn,s), ∀n ∈ N, s ∈ S\{1, 2}

(9)
where the arrival time at the second stop is derived from

the boundary condition:

an,2 = d̃n,1 + tn,2 +
δ

2
(xn,1 + xn,2), ∀n ∈ N (10)

In addition, the departure time of vehicle-trip n from stop
s ∈ S \ {1} is:

dn,s = an,s + kn,s, ∀n ∈ N, s ∈ S \ {1} (11)

Assuming that overtaking between buses of the same line
is not allowed, the time headway between the arrival of bus
trip n at stop s and the departure of its preceding one from
stop s is:

hn,s = an,s − dn−1,s, ∀n ∈ N \ {1}, s ∈ S \ {1} (12)

Finally, the time headway at the first stop is calculated
based on the boundary condition:

hn,1 = d̃n,1 − d̃n−1,1, ∀n ∈ N \ {1} (13)

The aforementioned constraints and the objective function
in (2) represent the formulation of the stop-skipping problem
that considers the soft capacity of vehicles due to COVID-19.
To this problem, we add the following constraints:

xn,1 = xn,|S| = 1, ∀n ∈ N (14)

(xn−1,sxn−1,y) + (xn,sxn,y) ≥ 1

∀n ∈ N \ {1}, s ∈ S, y ∈ S : y ≥ s (15)

Constraint (14) enforces that we cannot skip the first and
the last stop of each vehicle-trip. In addition, constraint (15)
ensures that if an origin-destination pair is skipped by one
trip, it will be served by the next one.

The mathematical program expressed in Eqs.(1)-(15) is
a mixed-integer nonlinear optimization problem (MINLP)
with linear and nonlinear constraints and a nonlinear ob-
jective function. This results in a hard-to-solve problem
because its feasible region is not a convex set. To reduce
the complexity, the third term of the objective function,
c3

∑|N |
n=1

∑|S|
s=2 max(0, γn,s − gn), can be linearized by re-

placing max(0, γn,s − gn) with a continuous variable rn,s
and adding the following constraints:

rn,s ≥ γn,s − gn, ∀n ∈ N, s ∈ S \ {1} (16)
rn,s ≥ 0, ∀n ∈ N, s ∈ S \ {1} (17)

rn,s ≤ γn,s − gn +Mzn,s, ∀n ∈ N, s ∈ S \ {1} (18)
rn,s ≤ M(1− zn,s),∀n ∈ N, s ∈ S \ {1} (19)

where M is a very large positive number (Big-M), and
zn,s ∈ {0, 1} a binary variable that can be seen as a
binary |N ||S|-dimensional matrix. The MINLP expressed in

Eqs.(1)-(19) can be solved with branch-and-bound by solving
the continuous relaxation of the problem and constructing a
rooted decision tree with branching and bounding operations.

IV. EXPERIMENTS

A. Case study description

The case study is bus line 9 in Twente operated by Keolis.
This bus line connects the University of Twente with its
two neighboring cities: Hengelo with 80 thousand inhabitants
and Enschede with 160 thousand inhabitants. The bus line
consists of 13 stops per direction. The topology of the line
is presented in Figure 1.
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Fig. 1. Topology of bus line 9 in Twente.

The line operates from 6:29 until 23:29 during weekdays
and its average trip travel time per direction is 16 minutes.

B. Application

The application focuses on the peak hour of the weekdays,
starting at 8 am and ending at 9 am. The mean passenger
demand in this period is presented in the origin-destination
demand matrix of Table 1.

TABLE I
PASSENGER DEMAND FROM 8AM TO 9AM OF BUS LINE 9

Destinations
Origins 1 2 3 4 5 6 7 8 9 10 11 12 13

1 0 8 16 16 24 24 16 16 24 16 8 32 44
2 0 0 4 8 8 16 16 8 16 24 40 24 52
3 0 0 0 4 4 4 32 24 16 16 32 40 32
4 0 0 0 0 8 8 16 24 32 40 8 24 56
5 0 0 0 0 0 4 8 8 20 20 8 28 28
6 0 0 0 0 0 0 8 4 8 24 12 20 32
7 0 0 0 0 0 0 0 4 4 4 12 24 48
8 0 0 0 0 0 0 0 0 8 8 4 8 36
9 0 0 0 0 0 0 0 0 0 4 8 16 44

10 0 0 0 0 0 0 0 0 0 0 4 12 48
11 0 0 0 0 0 0 0 0 0 0 0 8 12
12 0 0 0 0 0 0 0 0 0 0 0 0 4
13 0 0 0 0 0 0 0 0 0 0 0 0 0

Bus line 9 is a high-frequency line with a headway of 5
min from 8am to 9am. That is, the frequency is 12 vehicles
per hour. Due to this high frequency, passenger arrivals at
stops are considered to be random because passengers do
not coordinate their arrivals with the arrival times of the
buses [28]. The considered soft capacity due to the pandemic
regulations is gn = 59 passengers (38 seated, 21 standees)
and the hard (actual) capacity is g̃n = 81 passengers (38
seated, 43 standees). The boarding and alighting time per
passenger is p1 = 2 s and p2 = 1 s, respectively. In
accordance to Fu et al. (2003), the values of c1 and c2 are
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$20/h and $50/h, respectively. If a bus stops at a particular
stop, there is an additional time δ = 20 s for acceleration
and deceleration purposes. The values of the parameters are
summarized in Table 2.

TABLE II
PARAMETER VALUES

Name Unit Value
δ s 20

p1 s 2
p2 s 1
c1 $/h 20
c2 $/h 50
c3 $/h 3.6· 108 (a very large number)
M - 104 (a very large number)
gn passengers 59
g̃n passengers 81

The mathematical model presented in Eqs.(1)-(19) is pro-
grammed in Python 3.8 and it is solved with branch-and-
bound using the optimization solver Gurobi Optimizer, ver-
sion 9.1.2. The optimizer is run on the cloud (on Microsoft
Azure - F2s v2) using a virtual machine with 2 CPUs and
4096 MB RAM. The continuous variables of the problem
are 5075 and the binary ones 1027. The model has also 3451
quadratic constraints.

Initially, the continuous relaxation of the model is solved
to provide the lower bound of the optimization problem. The
solution of the continuous relaxation is computed in 3.08 s
and results in an objective function score of 6.987078e+06.
However, this solution is not feasible because the continuous
relaxation violates the integrality constraints of the MINLP.
Using this initial solution as a starting point, the branch-and-
bound algorithm is implemented in Gurobi. Because of the
dynamic nature of the problem, we provide a computation
time budget of 10 minutes (600 s). After the end of the 10-
min period, the solver returned a feasible solution with an
objective function score of 5.08285e+07. The best known
lower bound at the time of the termination of the branch-
and-bound algorithm was 3.4822e+07, indicating that the
optimality gap of the derived solution is, at most, 31.5%.
We note that this optimality gap is between the derived
feasible solution after running the optimization for 10 min
and the best known lower bound solution at the time of the
termination of the optimization. That is, the actual optimality
gap between the derived solution and the globally optimal
solution might be much lower than 31.5% because the lower
bound is not a feasible solution and it is allowed to take a
lower value than the globally optimal solution.

The branch-and-bound algorithm explored 9885 nodes of
the rooted decision tree. Figure 2 shows the performance
change of the lower bound at each exploration step and the
improved score of the best known feasible solution that takes
the value of 5.08285e+07 after running the algorithm for 600
s. Note that, as mentioned above, the gap between the lower
bound and the best known feasible solution at the termination
of the algorithm is 31.5%.

The derived solution from the optimization process is
presented in Figure 3. Figure 3 shows the skipped stops for
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Fig. 3. Optimal skip-stop solution when considering the soft capacity
constraints due to the pandemic. The skipped stops of a trip are presented
in gray color.

each one of the 12 trips that operate from 8am until 9am.
Notice that stops are skipped at every second trip in order
to avoid refusing a passenger to board a bus two times in a
row. This is a result of constraint (15) of our mathematical
program.

The proposed stop-skipping strategy from 8am to 9am is
compared against the ‘as-is’ situation that does not apply
stop-skipping. The results of this comparison in terms of
total passenger waiting times, total bus trip travel times, and
in-vehicle crowding beyond the soft vehicle capacities are
presented in Table 3.

TABLE III
PASSENGER DEMAND FROM 8AM TO 9AM OF BUS LINE 9.

Stop-skipping As-is
Total waiting times of passengers (in hours) 45.09 47.63

Total bus trip travel times (in hours) 4.07 4.15
In-vehicle crowding beyond the soft capacity limit

(in passengers · line segments) 508 743

From Table 3 one can note that when applying stop-
skipping, the in-vehicle crowding beyond the soft capacity
level reduces by 31%. In addition, the total trip travel
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times are also reduced by 1.9% because skipping a stop
results in a travel time decrease. The total waiting times are
also not affected significantly when applying stop-skipping
demonstrating the positive effect of implementing a skip-stop
strategy.

V. CONCLUSION

This work studied the dynamic stop-skipping problem in
public transport. The dynamic stop-skipping problem, which
considered the soft vehicle capacities due to the pandemic,
was modeled as a MINLP and was solved with branch-
and-bound. The method was implemented in bus line 9
in Twente. The implementation showed that the MINLP
formulation can return a solution with a proven optimality
gap within a reasonable time for a regular-sized bus line.
This is important given the dynamic nature of the model
that might require solving it several times during the daily
operations. Importantly, the skip-stop solution was able to
reduce by 31% the in-vehicle crowding beyond the soft
capacity limit compared to the as-is case where stop-skipping
was not permitted. In addition, this improvement does not
have a negative impact on the total trip travel times or the
passenger waiting times. In fact, both the trip travel times
and the passenger waiting times were slightly improved.

In future research, the dynamic stop-skipping model can
be applied in public transport lines with more stops to further
investigate the scalability of the model. In this direction,
one can also explore the development of heuristic solution
methods to further reduce the computational costs. Finally,
the probability that some skipped passengers might wait for
the next trip of the service line instead of using an alternative
service can be further investigated in order to incorporate it
into the mathematical model.
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