
Queueing Systems (2023) 103:313–346
https://doi.org/10.1007/s11134-022-09869-1

Diffusion parameters of flows in stable multi-class
queueing networks

Sarat Babu Moka1 · Yoni Nazarathy2 ·Werner Scheinhardt3

Received: 25 August 2020 / Revised: 5 November 2022 / Accepted: 9 November 2022 /
Published online: 24 November 2022
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Abstract
We consider open multi-class queueing networks with general arrival processes, gen-
eral processing time sequences and Bernoulli routing. The network is assumed to be
operating under an arbitrary work-conserving scheduling policy that makes the system
stable. We study the variability of flows within the network. Computable expressions
for quantifying flow variability have previously been discussed in the literature. How-
ever, in this paper, we shed more light on such analysis to justify the use of these
expressions in the asymptotic analysis of network flows. Toward that end, we find a
simple diffusion limit for the inter-class flows and establish the relation to asymptotic
(co-)variance rates.

Keywords Queueing networks · Diffusion limits · Asymptotic variance

Mathematics Subject Classification 60K25

1 Introduction

The study of explicit performance measures of stable queueing networks has been at
the heart of applied probability and operations research for the past half century. Initial
results such as Burke’s theorem [7], indicating that the output of a stationary M/M/1
queue is a Poisson process, havemotivated the study of queueing output processeswith
the aim of using the output characteristics of one queue as the input of a downstream
queue. While landmark results such as the product form solution of Jackson networks
(cf. [23, 26]) have given much hope and practical utility, in the 1960s and 1970s it was
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well understood that explicit exact queueing network decomposition is in general not
attainable.

The lack of explicit solutions in general cases as well as the inability to exactly
decouple most networks has motivated the study of queueing output processes as in
[3, 14–16, 22, 38]. That line of work is also coupled with the development and study
of heuristic queueing network decomposition schemes such as the queueing network
analyzer (QNA) [36] (see also [30]) and many subsequent approximation methods
(see for example the heuristics in [28]). The typical approximating assumption made
in such schemes is that each queue in isolation is a G/G/1 queue which can be analyzed
independently of the other queues. The input process is then approximated by taking
into consideration both exogenous arrivals and departures from other queues in the
network.

Some of the key ingredients needed for a network decomposition (such as QNA)
are based on

λk := lim
t→∞

E[Ak(t)]
t

, and σ 2
k = lim

t→∞
Var
(
Ak(t)

)

t
,

where Ak(t) is the arrival counting process into the queue of class k:

Ak(t) := Ek(t) +
∑
i

Di,k(t),

with Ek(t) representing the exogenous arrival counting process to that queue and
Di, j (t) the number of items that have departed from queue i and immediately arrived
to queue j during the time interval [0, t]. We refer to the counting process Di, j (t) as
flow i → j . The summation in Ak(t) is over all flows i → k.

Finding λk exactly is typically a trivial matter based on the network routing matrix
and exogenous arrival rates. As opposed to that, σ 2

k is more complex. In fact, com-
putable expressions forσ 2

k have only been presented as part of the so-called innovations
method in [28]. Here, the author builds on earlier work [29] by Kim,Muralidharan and
O’Cinneide and presents an expression that yields σ 2

k among other performance mea-
sures (see equation (42) in [28]). We independently arrived to similar formulas backed
by rigorous proofs, for such performance measures. The performance measures that
we cover include

σi, j := lim
t→∞

Cov
(
Ai (t), A j (t)

)

t
, (1)

and the asymptotic variability parameters of flows:

σ 2
i→ j := lim

t→∞
Var
(
Di, j (t)

)

t
, and

σi1→ j1,i2→ j2 := lim
t→∞

Cov
(
Di1, j1(t), Di2, j2(t)

)

t
. (2)
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The focus and contribution of [28, 29] is on advancing the state of the art in network
decomposition approximations and not on exact expressions for asymptotic variability
nor on rigorous asymptotic analysis. Hence, in using such results one is left wondering
about the meaning and rigor justifying validity of the expressions at hand. Specifically,
there remain open questions regarding stability conditions, the usage in diffusion limits
and the relationship to asymptotic variance rates.

Our key contribution in the current paper is answering such questions as well as
presenting detailed formulas for σ 2

k , σi, j , σ
2
i→ j and σi1→ j1,i2→ j2 . Our formulas hold

for a wide class of stable networks. However, for concreteness we present our results
in the context of stable multi-class queueing networks (of which generalized Jackson
networks are a special case). Our main result, Theorem 1, is formulated as a simple
functional central limit theorem (FCLT) for the aforementioned processes and also
ties the covariance structure of the limiting FCLT processes to system asymptotic
variability parameters via uniform integrability. That is, expressions for (1) and (2)
and hence for σ 2

k are rigorously justified.
In dealing with a stable queueing network, this could be viewed as a “fundamental”

diffusion limit result similar to some of the results summarized in [10]. To the best
of our knowledge within the context of diffusion limits, this fundamental result has
been overlooked by previous authors with the exception of [28, 29] that don’t focus on
rigorous asymptotic results. This is probably due to the fact that much of the exciting
research in the field of diffusion approximations of queueing networks in the past
three decades has focused on critically loaded networks (cf. [5, 13, 34, 39], as well
as many other key references summarized in [10, 17, 31, 37]). The seminal paper [9]
does consider diffusion approximations for queueing networks in all regimes (under-
loaded, balanced and over-loaded), yet the inter-queue flows are not considered in that
paper. Also, in Sect. 4 of the early influential paper [21], Harrison considers flows, but
the analysis there is only for the uninterrupted (primitive) processes and not for the
true flows A(·) and D(·) as we have here.

As described in our main diffusion result, the asymptotic variability of flows is
driven by two components: (i) the variability of the arrival flows; and (ii) the variability
resulting from the Bernoulli routing. In stable networks, the variability of queue sizes
(related also to service time distributions) does not play a role. Since asymptotic
variability of flows only depends on the interplay of the arrival process variability
and the Bernoulli routing, we are also motivated to present an alternative way for
quantifying the asymptotic variability parameters: networks with zero service times.
In such networks, jobs that arrive to the network traverse instantaneously through the
classes/queues until they depart, and hence the total count of jobs passing on flow
i → j is

∑
k

Ek(t)∑
�=1

Ni, j |k(�),

where the outer sum is over all classes and Ni, j |k(�) are counts of the number of passes
on i → j for the �’th job arriving exogenously to k. Using elementary calculations,
we find the asymptotic variances and covariances of such processes, and prove they
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are the same as those originating from the diffusion parameters. It is the zero-service
time view which allows us to establish uniform integrability and to relate the diffusion
parameters to asymptotic variability parameters.

The structure of the sequel is as follows: In Sect. 2, we summarize our results in
a main theorem together with the notation and assumptions of the model. Then, the
three sections that follow constitute the proof. In Sect. 3, we present the calculation
of the diffusion parameters and diffusion limit. In Sect. 4, we present the alternative
view of the network based on zero service times. In Sect. 5, we relate the diffusion
parameters to asymptotic variance and establish the required UI. We then follow with
Sect. 6 where we present a numerical example, and compare with the innovations
method of [28]. For this comparison and for the convenience of readers, we spell out
the details of the relevant results from [28]. Readers are encouraged to read Sect. 6 in
conjunction with Sect. 2. Closing remarks are in Sect. 7.

2 Model andmain result

We consider open multi-class queueing networks (MCQN) operating under arbitrary
resource allocation policies and subject to Bernoulli routing. Special cases include
generalized Jackson queueing networks as described in [10] as well as many other
examples appearing in [4]. Consider a queueing network of J servers serving K
classes of customers denoted by 1, . . . , K . For each class, there is a unique server s(k)
and let C j = {k : s(k) = j} denote the constituency of server j , that is, C j is the set
of all the classes served at server j .

The evolution of the network is driven by the following primitive sequences of
random variables: {ξk(�)}∞�=0 is the sequence of exogenous inter-arrival times to class
k and {ηk(�)}∞�=0 is the sequence of service times in class k. The sequence {φi, j (�)}∞�=1
of indicator variables determines if the �’th job departing from class i moves to class
j (this is indicated via φi, j (�) = 1) where i ∈ {1, . . . , K } and j ∈ {0, . . . , K } with
j = 0 implying the job departing from the network. For any �,

K∑
j=0

φi, j (�) = 1. (3)

These primitives are assumed to exist on a joint probability space and construct the
primitive processes

(
E, S,�

)
, as we describe now.

Ek(t)=max

{
n ≥ 0 :

n−1∑
�=0

ξk(�) ≤ t

}
and Sk(t)=max

{
n ≥ 0 :

n−1∑
�=0

ηk(�) ≤ t

}
,

with the convention that summation from 0 to −1 is 0. The counting processes, Ek(t)
and Sk(t), represent the number of exogenous arrivals to class k during [0, t] and the
number of jobs served during uninterrupted service in class k during [0, t], respectively.
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Further, for � = 1, 2, . . ., let,

�i, j (�) =
�∑

�′=1

φi, j (�
′),

which denotes the number of items routed from class i to class j out of the first � items
served at i . Due to (3), for any �,

K∑
j=0

�i, j (�) = �, i = 1, . . . , K . (4)

The primitive processes (E, S,�) interact to yield the network processes
(T , Q, D, A) which we define now. Let Tk(t) denote the work (in units of time)
allocated toward serving class k during the time interval [0, t]. In general, T is policy
dependent as it captures how server effort is allocated among classes. We have for all
j ∈ {1, . . . , J },

∑
k∈C j

Tk(t) ≤ t .

With Tk(t) at hand, the actual number of class k jobs served during [0, t] is Sk
(
Tk(t)

)
.

Further, composing with � we define the inter-class flows via

Di, j (t) = �i, j

(
Si
(
Ti (t)

))
, i = 1, . . . , K , j = 0, . . . , K . (5)

Let Qk(t) denote the number of items of class k at time t in the system (queue or in
service). We refer to this number as the queue length, and it satisfies

Qk(t) = Ak(t) −
K∑
j=0

Dk, j (t) + Qk(0),

where the (total) arrival process to class k is

Ak(t) = Ek(t) +
K∑
i=1

Di,k(t). (6)

In our exposition, we assume Qk(0) = 0 and thus the queue length equation
becomes

Qk(t) = Ak(t) −
K∑
j=0

Dk, j (t). (7)
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Our results below can be generalized for cases where Qk(0) is at some fixed positive
quantity or is random. For clarity of the exposition, we omit these details.

In the treatment below, the vectors Q, T , E, A and S (and their “bar,” “hat” and
“tilde” versions as defined below) are treated as K -dimensional column vectors. Fur-
ther, let � and D be K 2-dimensional column vectors with the elements ordered in
lexicographic order with the elements Dk,0 omitted. For example,

D =
(
D1,1, . . . , D1,K , D2,1, . . . , D2,K , . . . . . . . . . . . . , DK ,1, . . . , DK ,K

)T
.

Probabilistic assumptions

Throughout the paper, we make use of the following assumptions on the network
primitives. Without loss of generality assume for some 1 ≤ L ≤ K that only the
first L classes have non-null exogenous arrivals, and for the other K − L classes, the
exogenous inter-arrival times are infinite (no arrivals). Note that (A3) is not needed for
our main result, but is needed to satisfy positive Harris recurrence (stability) results in
general.

(A1) {ξk(�)}∞�=0 are i.i.d. sequences and mutually independent over all k = 1, . . . , L .
Furthermore, independent of inter-arrival times, the sequences {ηk(�)}∞�=0 are
i.i.d. sequences and mutually independent over all k = 1, . . . , K .

(A2) For all k = 1, . . . , K , we have 0 < E[(ξk(0))r ] < ∞ and 0 < E[(ηk(0))r ] < ∞
for r = 3. (In Lemma 1, which is not essential to our main result, we assume a
slightly stronger version, for some r > 3).

(A3) Independent of inter-arrival times and service times, each vector (φk,0(�), . . . ,

φk,K (�))T for k = 1, . . . , K and � ≥ 1 follows a multinomial distribution with
a single success and probability vector (pk,0, pk,1, . . . , pk,K )T with pk, j ≥ 0,
and pk,0 = (1 − ∑K

j=1 pk, j ) ≥ 0. We denote by P the K × K matrix of
pk, j , k, j = 1, . . . , K .

Assumption (A1) is standard. Assumption (A2) yields finite moments and is
used for diffusion limits and uniform integrability. Assumption (A3) is the stan-
dard “Bernoulli routing” assumption implying that each K + 1-dimensional vector
(φk,0(�), . . . , φk,K (�))T has a single entry that is 1 and K zero entries.

Since ξ and η have finite third moments, they also have finite first and second
moments and we denote

αk = 1

E[ξk(0)] , and μk = 1

E[ηk(0)] .

We also denote by α the vector of αk and μ the vector of μk . Note that later in Sect. 4
we consider a situation where essentially μk ≡ ∞ since the service times are zero,
yet that section deals with a related model which has processes that can be coupled to
the flow processes of the actual model described here.
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Structural network assumptions

Weassume that the network isopen and stabilizablevia the following two assumptions:

(A4) The matrix P has a spectral radius less than 1 that is, I − PT is non-singular.

We now denote λ = (I − PT)−1α and λi, j := λi pi, j . Now assume

(A5)
∑

k∈C j

λk
μk

< 1 for every server j .

An additional assumption that we make is that policies are work conserving. For this,
we denote the idle time process of server j via,

I j (t) = t −
∑
k∈C j

Tk(t).

Now, the work-conserving assumption is

(A6)
∫ t

0

( ∑
k∈C j

Qk(u)
)
d I j (u) = 0 for all t ≥ 0 and all servers j .

Assumption (A4) means that the network is open. Assumption (A5) is used for
stability, a concept that we discuss in further detail below. The assumption implies
that there is enough capacity in the network. If it is violated, then it is easy to show that
the network cannot be stabilized, [4]. As opposed to that under (A5),much research has
gone into finding scheduling policies that stabilize the network. For general MCQN
such policies exist, see for example [6, 35] and references therein. In the case of
generalized Jackson networks (single class meaning that |C j | = 1 for all servers j),
under (A5) and (A6) networks are stable, see for example [2].

Scaling limits

For n = 1, 2, . . . and a function U (t), denote U
n
(t) = U (nt)/n. We say that a fluid

limit of U exists if limn→∞ U
n
(t) = U (t) exists uniformly on compact sets (u.o.c)

almost surely. Further, when the limit U (t) exists, denote

Û n(t) = U (nt) −U (nt)√
n

, n = 1, 2, . . . . (8)

In cases where the above sequence converges weakly on Skorohod J1 topology to a
limiting process, Û (t), we denote

Û n ⇒ Û .

For discrete time processes replace U (nt) by U (�nt�). See [10], Chapter 5 for brief
background of weak convergence in the context of queueing networks. An extensive
treatment is in [37].

123



320 Queueing Systems (2023) 103:313–346

As a consequence of the assumptions (A1) and (A2) (for first moments), the prim-
itive processes satisfy a functional strong law of large numbers (FSLL) yielding fluid
limits Ek(t) = αk t and Sk(t) = μk t . Further, from (A3), �i, j (�) = pi, j�.

As a consequence of assumptions (A1) and (A2), the primitive processes satisfy
functional central limit theorems (FCLT). Specifically Êk(t) are Brownian motions
with diffusion coefficients (also sometimes known as volatility coefficients),

vk = αkc
2
k , where c2k = E[ξk(0)2]

E[ξk(0)]2 − 1. (9)

Similar diffusion limits exist for the service processes; however, these do not play a
role in our limiting results. The routing processes also have diffusion limits due to
(A3). We have that

�̂k,·(t) =
(
�̂k,1(t), . . . , �̂k,K (t)

)
, k = 1, . . . , K , (10)

are K -dimensional Brownian motions with covariance matrices 
k , having the i, j’th
entry pk,i (δi, j − pk, j ), where δi, j is the Kronecker delta; see [9, 37]. All these results
are for primitive processes; our theorem deals with scaling limits of the flows.

Scaled queues convergence assumption

We also require an assumption on the sequence of processes Q̂n(t). Specifically the
assumption is the following process level convergence:

(A7) Q̂n ⇒ 0 as n → ∞, where 0 is the K -dimensional zero process.

In many cases (A7) is not difficult to verify. For example, in stable generalized (sin-
gle class) Jackson networks it is automatically satisfied due to our primitive network
assumptions (A1)–(A6), see Theorem 7.25 in [10]. There, the proof uses the contin-
uous mapping theorem and the oblique reflection mapping (specific to Generalized
Jackson networks) to establish Q̂n ⇒ 0. Further in Proposition 8.12 of [10] one sees
such a result for a specific multi-class queueing network with 4 nodes and a specific
policy.

However, in a more general context, such as the general multi-class queueing net-
works thatwe consider, we have not been able to establish (A7) based on first principles
and hence we present (A7) as an assumption. Nevertheless, if one assumes or estab-
lishes tightness (see, e.g., Chapter VI of [24]) of Q̂n using first principles and/or other
primitive model assumptions, then Lemma 1, presented in the sequel, yields (A7).

Stability using fluid models

We now briefly give an overview of the fluid stability framework, referring to details
in the literature for the sake of brevity. For a MCQN and a scheduling policy, we
can associate a set of deterministic equations called the fluid model (equations). Such
equations are spelled out in detail in [4] page 104, equations (4.50)–(4.55). The fluid
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model description in [4] summarizes key ideas from [8, 11, 12] and others. In general,
each scheduling policy may induce a different set of equations. Examples are in [4].
A key object in the fluid model equations is the queue fluid limit, {Z(t)}t≥0, a K -
dimensional vector (using the notation of [4]).

The concept of fluid model stability then requires that there exist some finite time t∗
such that if

∑K
k=1 Zk(0) = 1 then

∑K
k=1 Zk(t) = 0 for t ≥ t∗. Much of the literature

on MCQN has dealt with proving fluid model stability associated with different net-
works and scheduling policies, see [4]. A key result in [11] (also summarized in [4])
connects fluid model stability to positive Harris recurrence of the associated Markov
process describing the MCQN. In general, the most accepted stability notion of a
stochastic MCQN is positive Harris recurrence. Of notable mention are generalized
Jackson networks (single class) which are stable under any work-conserving policy
and assumptions (A4)–(A5). Ourmain theorem requires the fluidmodel of the network
to be stable.

Assumptions (A1)–(A3) and an additional technical assumption requiring the inter-
arrival times to be unbounded and spread-out (see for example (1.4) and (1.5) in [11])
can be used to show that a stable fluid model yields positive harris recurrence of the
network. In this paper, we don’t explicitly require positiveHarris recurrence, and hence
such an additional technical assumption is not needed.

A related stability notion that we use in the sequel is weak stability. The fluid model
is weakly stable if when Z(0) = 0 then Z(t) = 0 for all t ≥ 0. Weak stability clearly
follows from fluid model stability since our networks are time-homogenous.

Main result

We now set up some matrices and vectors used in our main theorem. Use 1 to denote
the K -dimensional vector of ones and define the K × K 2 matrix B := 1T ⊗ I where
⊗ is the Kronecker product and here I is the K × K identity matrix. Further denote
the K 2 × K matrix,

Pc :=

⎡
⎢⎢⎢⎣

PT e1,1
PT e2,2

...

PT eK ,K

⎤
⎥⎥⎥⎦ ,

where ei, j is a K ×K matrix with all entries 0 except for the i, j’th entry being 1. Now
define the K × (K + K 2) matrix G and the K 2 × (K + K 2) matrix H , respectively,
as,

G := [(I − PT)−1 (I − PT)−1B
]
, (11)

H := [Pc(I − PT)−1 IK 2 + Pc(I − PT)−1B
]
. (12)
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Also define the (K + K 2) × (K + K 2) covariance matrix for the exogenous arrival
processes and the routing processes:

�(P) :=

⎡
⎢⎢⎢⎣

diag(v2k ) 0
λ1
1

. . .

0 λK
K

⎤
⎥⎥⎥⎦ , (13)

where diag(v2k ) is a diagonal matrix with elements v2k . Further, for any i, j ∈
{1, . . . , K } define the K -dimensional vector m(i, j) as follows:

m(i, j) := (I − P)−1ei,i P·, j , (14)

where P·, j is the j’th column of P . As further elaborated on in Sect. 4, the k’th entry
of the column vectorm(i, j) is the expected number of transitions from state i to state
j in a Markov chain whose transient component is specified by P and initial state is
set to k.

We now present our main result. Relationships to the results of [28] are in Sect. 6.

Theorem 1 Consider a multi-class queueing network and assume (A1)–(A7) hold. If
the fluid model of the network (incorporating the scheduling policy) is stable, then

(i) The sequences Ân and D̂n converge weakly to drift-less Brownian motion pro-
cesses with covariance matrices,

�(A) := G �(P) GT, and �(D) := H �(P) H T, (15)

respectively.
(ii) The asymptotic variability parameters, as defined in (1) and (2), can be read off

from the diffusion parameters. Namely,

σi1→ j1,i2→ j2 = �
(D)
(i1−1)K+ j1, (i2−1)K+ j2

, σi, j = �
(A)
i, j .

(iii) An alternative calculation for the asymptotic variability parameters is

σi1→ j1,i2→ j2 = m j1(i2, j2)α
Tm(i1, j1) + m j2(i1, j1)α

Tm(i2, j2)

+(v2 − α)T
(
m(i1, j1) • m(i2, j2)

)
, (16)

σ 2
i→ j = (1 + 2m j (i, j))α

Tm(i, j) + (v2 − α)T
(
m(i, j) • m(i, j)

)
, (17)

σi, j = v2i

K∑
k=1

mi (k, j) + v2j

K∑
k=1

m j (k, i) +
K∑

k1=1

K∑
k2=1

σk1→i,k2→ j (18)

where mk(i, j) is the kth entry of the vector m(i, j) and (x • y) signifies the vector
resulting from element-wise product of the vectors x and y.
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The proof is structured as follows: (i) is established in Sect. 3. (iii) is established
in Sect. 4. (ii) relies on the development of (iii) and is established in Sect. 5. Since
the result may appear quite technical, we demonstrate the applicability on a specific
network example in Sect. 6.

We also put forward foundations utilizing several results from the literature. Specif-
ically equations (19), (20), (21), and (22), that we obtain now, are used in the proofs.

Using weak stability, and assumptions (A4)–(A6), Theorem 4.1 in [8] ensures Q(t)
and T (t) exist and for any class k,

Qk(t) = 0, (19)

and

T k(t) = λk

μk
t . (20)

Using fluid model stability and assumptions (A1) and (A2), Theorem 4.1 (ii) in [12]
states that for every initial state x of the associated Markov process of the network
(and policy),

lim
t→∞Ex

[
Qk(t)

2
]

≤ c, (21)

for some constant c and any class k.
We now refer to equation (5.18) on page 60 of [20].We have that under assumptions

(A1) and (A2) for the arrival process, for each class k and some t0 > 0,

{
(Ek(t) − αk t)2

t
, t ≥ t0

}
is uniformly integrable. (22)

Finally, of independent interest when one is able to establish tightness of Q̂n for a
specific model, the following result yields a sufficient condition for Q̂n ⇒ 0 and can
be used in place of (A7).

Lemma 1 Suppose (A1) and (A2) hold, the fluid model is stable, and the sequence of
processes Q̂n is tight. Suppose further that (A2) holds with r = 3+ ε for some ε > 0,
then Q̂n ⇒ 0 as n → ∞.

Proof Using the union bound and the Markov inequality, for any ε̃ > 0

P
(|Q̂n(t)| > ε̃

) ≤
K∑

k=1

P

(
Qk(nt)√

n
>

ε̃

K

)
≤ K 2+ε

n1+ε/2 ε̃2+ε

K∑
k=1

E

[
Qk(nt)

2+ε
]
.

(23)

Now, the finitemoment convergence result (21) yields limt→∞ Ex
[
Qk(t)2+ε

] ≤ c.
With the Borel–Cantelli lemma, since the series (in n) summing the probabilities of
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the left-hand side of (23) converges, it holds that |Q̂n(t)| → 0 as n → ∞ almost
surely. Hence for class k and every fixed t limn→∞ Q̂n

k (t) = 0, almost surely.
To see the convergence of finite-dimensional distributions of Q̂n , consider

t1, . . . , t�, a finite sequence of time points. From (23) and (21), we have that
P
(|Q̂n(t)| > ε̃

)→ 0 as n → ∞. As a simple consequence,

lim
n→∞P

(|Q̂n(t1)| > ε̃, . . . , |Q̂n(t�)| > ε̃
) = 0.

Since this is true for any finite sequence t1, . . . , t�, under the assumption that {Q̂n :
n ≥ 1} is tight, from Sect. 3 of Chapter VI in [24], we have the required result. ��

3 The diffusion parameters

Using the scaling definition (8), Eqs. (4), (7) and (6) are easily manipulated for all
k = 1, . . . , K and n ≥ 1 to yield,

0 =
K∑
j=0

�̂n
k, j (�), � = 1, 2, . . . , (24)

Q̂n
k (t) = Ên

k (t) +
K∑
i=1

D̂n
i,k(t) −

K∑
j=0

D̂n
k, j (t), t ≥ 0, (25)

Ân
k (t) = Ên

k (t) +
K∑
i=1

D̂n
i,k(t), t ≥ 0. (26)

Observe that the property T k(t) = λk
μk
t implies,

lim
n→∞ D

n
i, j (t) := Di, j (t) = �i, j (Si (T i (t))) = pi, jλi t, u.o.c.. (27)

Lemmas 2–5 summarize straightforward algebraic manipulations of these equa-
tions. Then, this leads to a simple diffusion limit that follows from Donsker’s theorem
(see [10], Chapters 5-7 or [17] for background). Techniques similar to those employed
here are also in [33], applied to queueing networks that generate their own input. The
basic idea is to represent the diffusion scaled processes, D̂n and T̂ n in terms of the
following “tilde" processes:

�̃n
i, j (t) := �̂n

i, j

(
S
n
i

(
T
n
i (t)
))

, and S̃nk (t) := Ŝnk (T
n
k (t)),

which in turn have diffusion limits based on the primitive processes.

Lemma 2 For i = 1, . . . , K and j = 0, . . . , K,

D̂n
i, j (t) = �̃n

i, j (t) + pi, j S̃
n
i (t) + pi, jμi T̂

n
i (t). (28)
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Proof Use Di, j (nt) = �i, j (Si (Ti (nt))) = �i, j (nS
n
i (T

n
i (t))) and (27) to get

D̂n
i, j (t) = �i, j (nS

n
i (Ti

n
(t))) − pi, jλi nt√
n

= �i, j (nS
n
i (Ti

n
(t))) − pi, j nS

n
i (T

n
i (t))√

n
+ pi, j nS

n
i (T

n
i (t)) − pi, jμi nT

n
i (t)√

n

+ pi, jμi nT
n
i (t) − pi, jλi nt√

n
.

Now, (28) follows. ��
Denote by M the diagonal matrix with diagonal elements μ−1

k . We now have

Lemma 3 The diffusion scaled time allocation can be written as:

T̂ n(t) = M(I − PT)−1
(
Ên(t) + B�̃n(t) − Q̂n(t)

)
− MS̃n(t). (29)

Proof Substituting (28) into (25), we have

Q̂n
k (t) = Ên

k (t) +
K∑
i=1

(
�̃n

i,k(t) + pi,k S̃
n
i (t) + pi,kμi T̂

n
i (t)

)

−
K∑
j=0

(
�̃n

k, j (t) + pk, j S̃
n
k (t) + pk, jμk T̂

n
k (t)

)

= Ên
k (t) +

K∑
i=1

(
�̃n

i,k(t) + pi,k S̃
n
i (t) + pi,kμi T̂

n
i (t)

)− S̃nk (t) − μk T̂
n
k (t)

= Ên
k (t) +

K∑
i=1

�̃n
i,k(t) − (S̃nk (t) −

K∑
i=1

pi,k S̃
n
i (t)
)− (μk T̂

n
k (t) −

K∑
i=1

pi,kμk T̂
n
i (t)

)
,

where in the second step we used (24) and
∑K

j=0 pi, j = 1. In vector/matrix form this
reads:

Q̂n(t) = Ên(t) + B�̃n(t) − (I − PT)S̃n(t) − (I − PT)M−1T̂ n(t).

Now (29) follows by multiplying both sides by M(I − PT)−1. ��
As a consequence, we now have,

Lemma 4 The process D̂n(t) can be represented as,

D̂n(t) = H

[
Ên(t)
�̃n(t)

]
− Pc (I − PT)−1 Q̂n(t).
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Proof Equations (28) are

D̂n(t) = �̃n(t) + Pc
(
S̃n(t) + M−1T̂ n(t)

)
.

Substituting (29) in the above, S̃n(t) drops out of the equation, and we obtain,

D̂n(t) =
(
IK 2 + Pc (I − PT)−1B

)
�̃n(t)

+Pc (I − PT)−1 Ên(t) − Pc(I − PT)−1 Q̂n(t).

��
Observe from Lemma 4 that D̂n does not depend directly on Ŝn but rather

through Q̂n . This means that as n → ∞ the diffusion processes of the service times do
not affect the diffusion processes of the flows. We may now represent the analogous
result for Ân , this time omitting the primitive sequence Ŝn from the representation.

Lemma 5 The process Ân(t) can be represented as,

Ân(t) = G

[
Ên(t)
�̃n(t)

]
− B Pc(I − PT)−1 Q̂n(t),

Proof We use (26) and the previous lemma:

Ân(t) = B D̂n(t) + Ên(t)

= B H

[
Ên(t)
�̃n(t)

]
− B Pc(I − PT)−1 Q̂n(t) + [IK 0]

[
Ên(t)
�̃n(t)

]

=
(
B H + [IK 0]

) [ Ên(t)
�̃n(t)

]
− B Pc(I − PT)−1 Q̂n(t).

Since B Pc = PT and PT (I − PT)−1 = (I − PT)−1 − I ,

(
B H + [IK 0]

)
= [B Pc(I − PT)−1 + I

(
I + B Pc(I − PT)−1

)
B
] = G.

��
We can now establish the diffusion limit in our main theorem.

Proof of Theorem 1 (i): Assumptions (A1) and (A2) imply that for each class k, there
are FCLTs for Ên

k with diffusion coefficients as described in (9). Assumption (A3)
together with applications of the continuous mapping theorem and (20) imply FCLTs
where for each class k, �̃n

k,.(t) converges weakly to K-dimensional Brownian motion

with covariance matrix μk
λk
μk


k .

123



Queueing Systems (2023) 103:313–346 327

By assumption of mutual independence of primitive processes, as stated in (A1)
and (A3), the limiting covariance matrix of

[
Ên(t)
�̃n(t)

]

is �(P). The result then follows from the representation in Lemmas 4 and 5 and
Assumption (A7). ��

We note that Lemma 3 can also yield diffusion limits for rate allocations. This
appears as (7.89), pp.189 in [10]. In fact, there the authors handle a much wider case
in which some queues may be critical and/or over-loaded. This is originally from [9]
(6.14), pg 1498. As stated in the Introduction, the diffusion limits for D and A did
not appear in [9] and subsequent literature. It is insightful to know that we may also
obtain joint diffusion limits for T and D or A, yet we do not pursue this here. Further,
handling the case of over-loaded queues does also not pose any additional technical
difficulty. The case of critical queues is in general an open question. It was handled in
[1] for the single station queue.

4 The zero-service time view

In this section, we refer to the queues as nodes to make it clear that there is actually
no queueing taking place. For the �th customer arriving exogenously first to node k,
denote N j |k(�) as the number of times that the customer visits node j , and denote
Ni, j |k(�) as the number of times that the customer traverses on the flow i → j . Thus,
N j |k(�) =∑K

i=1 Ni, j |k(�). Define now

D̆i, j (t) :=
K∑

k=1

Ek(t)∑
�=1

Ni, j |k(�), and

Ăk(t) := Ek(t) +
K∑
i=1

D̆i,k(t) = Ek(t) +
K∑

k′=1

Ek (t)∑
�=1

Nk|k′(�).

The process D̆i, j (t) is a count of the number of items passing from node i to node
j up to time t as if service times are 0. In particular, the �’th customer who arrives
at node k by time t (� = 1, . . . , Ek(t)) makes an “instantaneous tour” through the
nodes, passing Ni, j |k(�) times on the flow i → j . Similarly, Ăk(t) is the count of the
number of jobs arriving to queue k either exogenously or passing through the network
assuming that service times are 0.

By considering both D(·) and D̆(·) on the same probability space, we have that
a.s.,

Di, j (t) ≤ D̆i, j (t).
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Denote now,

N̆i, j (t) := D̆i, j (t) − Di, j (t).

This is the number of future passes on i → j by customers that are currently in the
system (where service times are generally nonzero) at time t . It is obvious from the
Markovian nature of the routing that

N̆i, j (t)
d=

K∑
k=1

Qk (t)∑
�=1

Ni, j |k(�), (30)

where the equality
d= is in distribution and for given k,

{(
Ni, j |k(�), i, j ∈ {1, . . . , K }, i �= j

)
, � = 1, 2, . . .

}
,

is an i.i.d. sequence (of K 2-dimensional randomvectors) whose distribution is induced
by a discrete time Markov chain on state space {0, 1, . . . , K } with transition matrix,

P̃ =
[

1 0T

1 − P1 P

]
.

The equality in distribution in (30) is a result of the fact that customer routes can
be generated a priori and are not state dependent. This presents N̆i, j (t) as a form
of a queue of the number of items that are yet to pass via i → j at time t in the
nonzero-service time model.

To construct Ni, j |k(�), denote by {Xk
n} a sequence of states generated by the above

Markov chain with P(X0 = k) = 1 for k ∈ {1, . . . , K }. Then, for i �= j , Ni, j |k(�) has
the same distribution as the random variable

Ni, j |k :=
∞∑
n=1

I{Xk
n−1 = i, Xk

n = j},

with I denoting an indicator function. Similarly, N j |k(�) is distributed as

N j |k :=
∞∑
n=0

I{Xk
n = j}.

Since the queueing network is open (P is sub-stochastic), the only recurrent class in
this Markov chain is {0} and thus the random variables Ni, j |k are proper. It is also a
standard exercise to show that they have finite mean and variance.

Denote now

σ̆i, j := lim
t→∞

Cov
(
Ăi (t), Ă j (t)

)

t
, and σ̆i1→ j1,i2→ j2 := lim

t→∞
Cov
(
D̆i1, j1(t), D̆i2, j2(t)

)

t
.

123



Queueing Systems (2023) 103:313–346 329

As we show now, these variability parameters (of the zero-service time flows) are the
same as the variability parameters of the system with queueing:

Proposition 1 If (21) holds, then

σ̆ 2
i, j = σ 2

i, j , and σ̆i1→ j1,i2→ j2 = σi1→ j1,i2→ j2 . (31)

Proof We present the proof for the asymptotic variability of D, the case of A is similar
and is omitted. We have

∣∣∣Cov
(
D̆i1, j1(t), D̆i2, j2(t)

)
− Cov

(
Di1, j1(t), Di2, j2(t)

)∣∣∣
≤
∣∣∣Cov

(
Di1, j1(t), N̆i2, j2(t)

)∣∣∣+
∣∣∣Cov

(
Di2, j2(t), N̆i1, j1(t)

)∣∣∣
+
∣∣∣Cov

(
N̆i1, j1(t), N̆i2, j2(t)

)∣∣∣

≤
√
Var
(
Di1, j1(t)

)
Var
(
N̆i2, j2(t)

)
+
√
Var
(
Di2, j2(t)

)
Var
(
N̆i1, j1(t)

)

+
√
Var
(
N̆i1, j1(t)

)
Var
(
N̆i2, j2(t)

)
. (32)

For any (i, j), we have that both Var(Di, j (t))/t and Var(N̆i, j (t)) are bounded from
the above uniformly in t ; for the latter, this is a consequence of (21). Dividing (32) by
t and taking t → ∞ we get the result. ��

Note: a version of the above result also exists for the mean rates, λ. In this case, all
that is required is finiteness of the first moments of the queues.

Wenowexpress the components of σ̆ in termsofE[Ni, j |k] andCov(Ni1, j1|k, Ni2, j2|k).

Proposition 2 For all i1, i2, j1, j2,

σ̆i1→ j1,i2→ j2 =
K∑

k=1

αkCov(Ni1, j1|k, Ni2, j2|k)

+
K∑

k=1

v2kE[Ni1, j1|k]E[Ni2, j2|k],

σ̆ j1, j2 = v2j1E[N j2| j1 ] + v2j2E[N j1| j2 ]

+
K∑

k=1

αkCov
(
N j1|k, N j2|k

) +
K∑

k=1

v2k E[N j1|k]E[N j2|k]

= v2j1E[N j2| j1 ] + v2j2E[N j1| j2 ] +
K∑

i1=1

K∑
i2=1

σ̆i1→ j1,i2→ j2 .
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Proof We begin with the asymptotic variability of D̆, namely σ̆i1→ j1,i2→ j2 . For illus-
tration, we begin with the variance (even though it is a special case of the covariance
calculation that follows). Using the conditional variance rule, we get

Var
(
D̆i, j (t)

)
=

K∑
k=1

Var
( Ek (t)∑

�=1

Ni, j |k(�)
)

=
K∑

k=1

(
E[Ek(t)]Var(Ni, j |k) + Var(Ek(t))E[Ni, j |k]2

)
.

Moving onto the covariance, observe that Ni1, j1|k(�) and Ni2, j2|k′(�) are independent
whenever k �= k′, hence,

Cov
(
D̆i1, j1(t), D̆i2, j2(t)

)
=

K∑
k=1

Cov
( Ek (t)∑

�=1

Ni1, j1|k(�),
Ek (t)∑
�=1

Ni2, j2|k(�)
)

=
K∑

k=1

(
E[Ek(t)]Cov(Ni1, j1|k, Ni2, j2|k)

+Var
(
Ek(t)

)
E[Ni1, j1|k]E[Ni2, j2|k]

)

where in the second step we use the conditional covariance rule

Cov(X ,Y ) = E
[
Cov(X ,Y |Z)

]+ Cov
(
E[X |Z ],E[Y |Z ]).

Dividing by t and taking t → ∞ yields the result.
Moving onto the asymptotic variability of Ă (this time treating the variance and the

other covariance terms together), we expand and get

Cov
(
Ă j1(t), Ă j2(t)

) =
K∑

i2=1

Cov
(
E j1(t), D̆i2, j2(t)

)+
K∑

i1=1

Cov
(
E j2(t), D̆i1, j1(t)

)

+
K∑

i1=1

K∑
i2=1

Cov
(
D̆i1, j1(t), D̆i2, j2(t)

)
(33)

To rewrite the first sum on the right-hand side, we can use

Cov
(
E j1(t), D̆i2, j2(t)

) =
K∑

k=1

Cov
(
E j1(t),

Ek (t)∑
�=1

Ni2, j2|k(�)
)

= E[Cov(E j1(t),

E j1 (t)∑
�=1

Ni2, j2| j1(�)
∣∣ E j1(t)

)
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+ Cov
(
E[E j1(t) | E j1(t)],E[

E j1 (t)∑
�=1

Ni2, j2| j1(�)
∣∣ E j1(t)]

)

= Cov
(
E j1(t), E j1(t)E[Ni2, j2| j1(�)]

)

= Var
(
E j1(t)

)
E[Ni2, j2| j1(�)]

with a similar expression holding for the second term, while the third term on the right
hand side of (33) can be rewritten using

Cov
(
D̆i1, j1(t), D̆i2, j2(t)

) =
K∑

k1=1

K∑
k2=1

Cov

⎛
⎝

Ek1 (t)∑
�1=1

Ni1, j1|k1(�1),
Ek2 (t)∑
�2=1

Ni2, j2|k2(�2),

⎞
⎠

=
K∑

k=1

E

⎡
⎣

Ek (t)∑
�=1

Cov
(
Ni1, j1|k(�), Ni2, j2|k(�)

)
⎤
⎦

+
K∑

k=1

Cov
(
Ek(t) E[Ni1, j1|k(�)], Ek(t) E[Ni2, j2|k(�)]

)

=
K∑

k=1

E[Ek(t)]Cov
(
Ni1, j1|k(�), Ni2, j2|k(�)

)

+
K∑

k=1

Var
(
Ek(t)

)
E[Ni1, j1|k(�)] E[Ni2, j2|k(�)].

where we used the independence of different customers in the absence of queuing.
Substituting in (33) and using

∑K
i=1 Ni, j |k(�) = N j |k(�) we arrive at

Cov
(
Ă j1(t), Ă j2(t)

) = Var
(
E j1(t)

)
E[N j2| j1(�)]

+Var
(
E j2(t)

)
E[N j1| j2(�)]

+
K∑

k=1

E[Ek(t)]Cov
(
N j1|k(�), N j2|k(�)

)

+Var
(
Ek(t)

)
E[N j1|k(�)]E[N j2|k(�)].

Now dividing by t and letting t → ∞, the result is immediate. ��

Wenow representE[Ni, j |k] andCov(Ni1, j1|k, Ni2, j2|k) in terms of the routingmatrix
P . It is an elementary application of “first step analysis” to calculate the desired
moments (cf. [25] and/or [27]), yetwe have not seen this specific calculation elsewhere,
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so we spell out the details. Define:

m(i, j) :=
⎡
⎢⎣

E[Ni, j |1]
...

E[Ni, j |K ]

⎤
⎥⎦ , m(i1, j1, i2, j2) :=

⎡
⎢⎣

E[Ni1, j1|1 Ni2, j2|1]
...

E[Ni1, j1|K Ni2, j2|K ]

⎤
⎥⎦ ,

c(i1, j1, i2, j2) :=
⎡
⎢⎣

Cov
(
Ni1, j1|1, Ni2, j2|1

)
...

Cov
(
Ni1, j1|K , Ni2, j2|K

)

⎤
⎥⎦ .

Lemma 6 The definition of m(i, j) in (14) agrees with the above, namely

m(i, j) = (I − P)−1ei,i P·, j .

Further, let i1 → j1 and i2 → j2 be distinct flows (i.e., i1 �= i2, or j1 �= j2, or
both), then

m(i1, j1, i2, j2) = m(i1, j1)m j1(i2, j2) + m(i2, j2)m j2(i1, j1),

m(i, j, i, j) = m(i, j)
(
1 + 2m j (i, j)

)
, (34)

and thus,

c(i1, j1, i2, j2) = m(i1, j1)m j1(i2, j2) + m(i2, j2)m j2(i1, j1) − m(i1, j1) • m(i2, j2),

c(i, j, i, j) = m(i, j)
(
1 + 2m j (i, j)

)− m(i, j) • m(i, j). (35)

Proof It is well known that E[Ni |k] is the (k, i)th element of (I − P)−1, and
clearly E[Ni, j |k] = E[Ni |k] pi, j , from which the first statement follows. For
E[Ni1, j1|k Ni2, j2|k]we condition on the first transition from the initial node k, as follows
(let i1 �= i2, and/or j1 �= j2).

E[Ni1, j1|k Ni2, j2|k] =
K∑

k′=1,k′ /∈{ j1, j2}
pk,k′ E[Ni1, j1|k′Ni2, j2|k′ ]

+pk, j1E[(δk,i1 + Ni1, j1| j1)Ni2, j2| j1]
+pk, j2E[Ni1, j1| j2(δk,i2 + Ni2, j2| j2)]

=
K∑

k′=1

pk,k′ E[Ni1, j1|k′ Ni2, j2|k′ ]

+pk, j1δk,i1E[Ni2, j2| j1] + pk, j2δk,i2E[Ni1, j2| j2 ]. (36)

Equation (36) can be represented as

m(i1, j1, i2, j2) = P m(i1, j1, i2, j2) + ei1,i1 P·, j1 m j1(i2, j2) + ei2,i2 P·, j2 m j2(i1, j1).
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or rearranged to

m(i1, j1, i2, j2) = (I − P)−1 (ei1,i1 P·, j1 m j1(i2, j2) + ei2,i2 P·, j2 m j2(i1, j1)
)
,

which yields (34). In a similar way, we can show that

E[N 2
i, j |k] =

K∑
k′=1

pk,k′ E[N 2
i, j |k′ ] + pk, jδk,i

(
1 + 2E[Ni, j | j ]

)
,

which gives

m(i, j, i, j) = (I − P)−1ei,i P·, j
(
1 + 2m j (i, j)

)
.

��
Proof of Theorem 1 (iii): Proposition 1 indicates that under property (21), the variability
parameters are the same as those of the zero-service time processes, and (21) follows
from the theorem assumptions. Now, the combination of Proposition 2 and Lemma 6
yields the result. ��

5 Asymptotic variance and uniform integrability

As stated at onset, our original goal is to obtain expressions for σk1,k2 and σi1→ j1,i2→ j2 .
As we state in Theorem 1 (ii) these can now be read off from the matrices �(A) and
�(D), respectively. The presentation in this section is for the σi1→ j1,i2→ j2 terms;
analogous results for the terms associated with A(·) can be proved in the exact same
manner.

Proving Theorem 1 (ii) requires establishing suitable uniform integrability (UI)
conditions for the following families:

D(1)
i, j =

{
Di, j (t) − λi, j t√

t
, t ≥ t0

}
,

D(2)
i, j =

{(
Di, j (t) − λi, j t

)2
t

, t ≥ t0

}
,

D(i1, j1),(i2, j2) =
{(

Di1, j1(t) − λi1, j1 t
)(
Di2, j2(t) − λi2, j2 t

)

t
, t ≥ t0

}
,

where t0 > 0 is arbitrary. Note that while each of the families D(2)
i, j is a special case

of D(i1, j1),(i2, j2), we treat it separately in this section for clarity. See for example [19]
for properties of UI sequences and families, and relations to weak convergence.

The following proposition relates the diffusion parameters to the asymptotic vari-
ance parameters.
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Proposition 3 If D(1)
i, j and D(2)

i, j are UI, then

σ 2
i→ j = �

(D)
(i−1)K+ j, (i−1)K+ j .

If D(1)
i, j and D(i1, j1),(i2, j2) are UI, then

σi1→ j1,i2→ j2 = �
(D)
(i1−1)K+ j1,(i2−1)K+ j2

.

Proof By the projection map at time t = 1 (cf. [37]), we have the convergence in
distribution:

Di, j (t) − λi, j t√
t

⇒ D̂i, j (1).

Further, using the continuous mapping theorem, we obtain

(
Di, j (t) − λi, j t

)2
t

⇒ (
D̂i, j (1)

)2
.

Similarly we have the convergence in distribution on R
2:

[Di1, j1(t) − λi1, j1 t√
t

,
Di2, j2(t) − λi2, j2 t√

t

]
⇒
[
D̂i1, j1(1), D̂i2, j2(1)

]
,

and thus using the continuous mapping theorem,

Di1, j1(t) − λi1, j1 t√
t

· Di2, j2(t) − λi2, j2 t√
t

⇒ D̂i1, j1(1) · D̂i2, j2(1).

Under theUI conditions established below the aboveweak convergences in distribution
imply that

lim
t→∞E

[Di, j (t) − λi, j t√
t

]
= E

[
D̂i, j (1)

]
,

lim
t→∞E

[ (Di, j (t) − λi, j t)2

t

]
= E

[(
D̂i, j (1)

)2]
,

as well as

lim
t→∞E

[(Di1, j1(t) − λi1, j1 t
)

√
t

·
(
Di2, j2(t) − λi2, j2 t

)
√
t

]
= E[D̂i1, j1(1) · D̂i2, j2(1)].

123



Queueing Systems (2023) 103:313–346 335

Combining this implies that

σ 2
i→ j = lim

t→∞
Var
(
Di, j (t)

)

t
= lim

t→∞
Var
(
Di, j (t) − λi, j t

)

t

= lim
t→∞

E[(Di, j (t) − λi, j t)2]
t

−
(
lim
t→∞

E[Di, j (t) − λi, j t]√
t

)2

= E[(D̂i, j (1)
)2] − (E[D̂i, j (1)]

)2 = Var
(
D̂i, j (1)

) = �
(D)
(i−1)K+ j, (i−1)K+ j .

Similarly,

σi1→ j1,i2→ j2 = lim
t→∞

Cov
(
Di1, j1(t), Di2, j2(t)

)

t

= lim
t→∞

Cov
(
Di1, j1(t) − λi1, j1 t, Di2, j2(t) − λi2, j2 t

)

t

= lim
t→∞

E[(Di1, j1(t) − λi1, j1 t)(Di2, j2(t) − λi2, j2 t)]
t

−
(
lim
t→∞

E[Di1, j1(t) − λi1, j1 t]√
t

)(
lim
t→∞

E[Di2, j2(t) − λi2, j2 t]√
t

)

= Cov
(
D̂i1, j1(1), D̂i2, j2(1)

)
= �

(D)
(i1−1)K+ j1, (i2−1)K+ j2

.

��

In establishing the UI, we make use of the following useful inequality: For r > 1
and arbitrary real values z1, . . . , zK ,

∣∣∣
K∑

k=1

zk
∣∣∣
r ≤ Kr−1

K∑
k=1

∣∣zk
∣∣r , (37)

which is a simple consequence of Jensen’s inequality. We now establish the required
UI.

Proposition 4 If (20) and (22) hold, then the families of random variablesD(1)
i, j ,D(2)

i, j
and D(i1, j1),(i2, j2) are UI.

Proof We first note that UI of D(2)
i, j implies UI of the other two types of families as

well, due to Theorem 4.7 (with p = q = 2) in Chapter 5 of [19]. To establish UI of
D(2)

i, j , recall from the previous section the representation Di, j (t) = D̆i, j (t)− N̆i, j (t),

where D̆i, j (t) is the number of instantaneous passes on flow i → j , and N̆i, j (t) is
the number of future passes on that flow. By applying (37) for r = 1 and r = 2,
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respectively, we have

∣∣∣Di, j (t) − λi, j t√
t

∣∣∣ ≤
∣∣∣ D̆i, j (t) − λi, j t√

t

∣∣∣+
∣∣∣ N̆i, j (t)√

t

∣∣∣,
∣∣∣
(
Di, j (t) − λi, j t

)2
t

∣∣∣ ≤ 2
(∣∣∣ D̆i, j (t) − λi, j t√

t

∣∣∣
2 +
∣∣∣ N̆i, j (t)√

t

∣∣∣
2)

.

It thus suffices to show that

D̆(2)
i, j :=

{(
D̆i, j (t) − λi, j t

)2
t

, t ≥ t0

}
, and N̆ (2)

i, j :=
{(

N̆i, j (t)
)2

t
, t ≥ t0

}
,

are UI.
To see D̆(2)

i, j is UI, it is useful to denote

D̆i, j |k(t) :=
Ek(t)∑
�=1

Ni, j |k(�) and λi, j |k := αkE[Ni, j |k].

Note that since, D̆i, j (t) =∑K
k=1 D̆i, j |k(t), we have

∑K
k=1 λi, j |k = λi, j . We now get

∣∣∣∣∣
(
D̆i, j (t) − λi, j t

)2
t

∣∣∣∣∣ =
∣∣∣∣∣
(∑K

k=1 D̆i, j |k(t) − (
∑K

k=1 λi, j |k)t
)2

t

∣∣∣∣∣

=
(∣∣∑K

k=1

(
D̆i, j |k(t) − λi, j |k t

)∣∣
√
t

)2

≤ K
K∑

k=1

∣∣∣∣∣
D̆i, j |k(t) − λi, j |k t√

t

∣∣∣∣∣
2

.

In the above, we again used (37) with r = 2. We now need to show that the families

{(
D̆i, j |k(t) − λi, j |k t

)2
t

, t ≥ t0

}
,

are UI:

(
D̆i, j |k (t) − λi, j |k t

)2
t

=
(∑Ek (t)

�=1 Ni, j |k (�) − λi, j |k t
)2

t

=
(∑Ek (t)+1

�=1 Ni, j |k (�) − λi, j |k t − Ni, j |k (Ek (t) + 1)
)2

t
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=
(∑Ek (t)+1

�=1

(
Ni, j |k (�) − λi, j |k

αk

)+ (Ek (t) + 1)
λi, j |k
αk

− λi, j |k t − Ni, j |k (Ek (t) + 1)
)2

t

=
(∑Ek (t)+1

�=1

(
Ni, j |k (�) − λi, j |k

αk

)+ ((Ek (t) + 1) − αk t)
λi, j |k
αk

− Ni, j |k (Ek (t) + 1)
)2

t

≤ 3

⎛
⎝
(∑Ek (t)+1

�=1

(
Ni, j |k (�) − λi, j |k

αk

))2
t

+
(
((Ek (t) + 1) − αk t)

λi, j |k
αk

)2
t

+
(
Ni, j |k (Ek (t) + 1)

)2
t

⎞
⎠.

The first term is a stopped randomwalk with zeromean increments where Ek(t)+1
is UI by (22). Thus, due to Theorems 6.1–6.3 in [20], the first term is UI. The second
term is UI again by (22). The third term is obviously UI since the family Ni, j |k(·) is
i.i.d.

To show that N̆ (2)
i, j is UI, we need to show that the second moment of N̆i, j (t)/

√
t

converges (to zero). This approach is due to Remark 5.4 in Chapter 5 of [19]. Define
N̆ Q
i, j |k(t) := ∑Qk (t)

�=1 Ni, j |k(�), where Qk(t) is the queue length at node k at time t .

Then, the expectation and variance of the random sums N̆ Q
i, j |k(t), and hence also (by

(30)) of N̆i, j (t), can be expressed in the expectations and variances of Qk(t) and
Ni, j |k(�), all of which are O(1) by (20). Thus, the result follows. ��
Proof of Theorem 1 (ii): Proposition 4 relies on (20) and (22) which follow from the
assumptions of the theorem. Proposition 4 then establishes UI of the families needed
for Proposition 3 which exactly states (ii). ��

6 Numerical example

Consider the 6-node network illustrated in Figure 1 with parameters,

P =

⎡
⎢⎢⎢⎢⎢⎢⎣

0 0 1/2 1/2 0 0
1/2 0 0 1/2 0 0
1/2 0 0 0 0 0
0 0 0 0 1/2 1/2
0 0 0 1 0 0
0 0 0 0 0 0

⎤
⎥⎥⎥⎥⎥⎥⎦

, μ =

⎡
⎢⎢⎢⎢⎢⎢⎣

8.25
8.25
5

8.25
5
5

⎤
⎥⎥⎥⎥⎥⎥⎦

,

Fig. 1 Example network
1

2

3

4

5

6

(α1, v1)

(α2, v2)

1

2

3

4

5

6

(α1, v1)

(α2, v2)
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Table 1 Covariance values of
flows i → j

i\ j 1 2 3 4 5 6

1 0 0 32/9 20/9 0 0

2 3/2 0 0 3/2 0 0

3 31/18 0 0 0 0 0

4 0 0 0 0 199/18 55/18

5 0 0 0 199/18 0 0

6 0 0 0 0 0 0

α = [1 4 0 0 0 0]T , and v2 = [2 2 0 0 0 0]T . (38)

For this network,

λ = (I − PT)−1α =
[
4 4 2 8 4 4

]T
< μ.

Hence, if considered as a single-class network, assumptions (A1)–(A7) hold and the
network is stabilized by any work-conserving policy. Note that besides verification of
the above inequality, the values of μ do not play a further role in the calculation of the
variability parameters. Nevertheless, we use them in a simulated example below.

It is now a straightforward matter to use (15) (or alternatively (16)–(18)) from
our main theorem to obtain variability parameters. Note that in this process, the only
matrix that requires inversion is (I − PT). The rest of the calculations follow from
matrix composition, addition and multiplication operations.

The resulting matrix �(D) is of dimension 36 × 36. We present the diagonals of
this matrix (which are σ 2

i→ j ) in Table 1.

As a further illustration, we present a few selected non-diagonal elements of �(D):

σ2→1,2→4 = −1/2, σ4→5,5→4 = 199/18, σ1→3,4→6 = 5/9, σ1→3,2→4 = −1/3.

In discussing these values, it is good to consider the asymptotic correlation coefficient:

ri1→i2, j1→ j2 := σi1→i2, j1→ j2√
σ 2
i1→i2

σ 2
j1→ j2

.

For these selected flow pairs, it evaluates to

r2→1,2→4 = −1

3
, r4→5,5→4 = 1,

r1→3,4→6 ≈ 0.16856, r1→3,2→4 ≈ −0.14434.

The first two values are easily explained in our example, the other two are not. For
r2→1,2→4, consider the Bernoulli splitting at the output of queue 2 and the fact there is
no feedback to this queue. Recall that in this case σ2→1,2→4 = (v22 − α2)/4 for v22 =
2, α2 = 4. In this case, the asymptotic correlation coefficient is (v22 − α2)/(v

2
2 + α2).
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In considering r4→5,5→4, observe that there is no random routing in this part of the
network: All jobs that enter 5 come from 4 and then return to 5.

We are not aware of an “easy” explanation of the values of r1→3,4→6 and r1→3,2→4.
It is insightful to see that as in this case, some correlations between flows are positive
while others are negative. We do not know of an a priori way of finding out the sign
of these correlations without using our main result. In fact, evaluating �(D) with v2
as free variable, we get

r1→3,2→4 = v22 − 4√
(v22 + 4)(v22 + 30)

.

We thus see that the sign of the correlation between those two flows depends on the
variability of the arrival process into 2. Observe that in the asymptotically uncorrelated
case (i.e., when v2 = 4),

lim
t→∞

Var
(
E2(t)

)

E[E2(t)] = 1,

as is for a Poisson process. This is consistent with the fact that in the case of a classic
Jackson network (Poisson arrival process and exponential processing times) case, since
node 2 has no feedback its output is a Poisson process and splitting of departures from
node 2 results in two independent Poisson flows, 2 → 1 and 2 → 4. The first of
these flows affects 1 → 3 but not the second. Hence, in such a case it is expected that
r1→3,2→4 = 0.

Arrivals to individual queues

Moving onto arrival processes into individual queues, application of our main result
yields

�(A) =

⎡
⎢⎢⎢⎢⎢⎢⎣

68/9 4/3 40/9 44/9 22/9 22/9
2 2/3 10/3 5/3 5/3

32/9 10/9 5/9 5/9
182/9 127/9 55/9

199/18 55/18
55/18

⎤
⎥⎥⎥⎥⎥⎥⎦

. (39)

Observe that σ 2
2 = 2 as expected since there are only exogenous arrivals to this queue.

Further since all jobs that pass through queue 5 eventually also pass through queue 6,
we have

σk,5 = σk,6, k = 1, 2, 3, 6.

It is the diagonal elements of �(A) that may be useful for network decomposition
approximations (which we do not explore further in this paper). Normalizing the
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diagonals by λ, we get

c2 = [ 1.89 0.5 1.78 2.53 2.76 0.76
]T

. (40)

Comparison with the innovations method

To compare our method with the innovations method of [28] (see also [29]), we now
describe how to compute the asymptotic covariance terms of arrival processes, and the
asymptotic variability parameters of flows using the innovations method. Toward that
end, we outline a step-by-step procedure to establish equation (42) of [28] under the
assumption that all the service times are zero; that is, ρi = 0, for all i = 1, 2, . . . , K
(using the notation of [28]).

Let E (0)
i (t) := Ei (t) − E [Ei (t)] be the normalized arrival process into the queue

i . Similarly, define A(0)
i (t) and D(0)

i, j (t) using Ai (t) and Di, j (t), respectively. Further,

let X(t) and Y (t) be two K 2 + K -dimensional column vectors defined by

X(t) =
[
E (0)(t)
ζ(t)

]
, and Y (t) =

[
A(0)(t)
D(0)(t)

]
,

where

E (0)(t) =
[
E (0)
1 (t), . . . , E (0)

K (t)
]T

,

A(0)(t) =
[
A(0)
1 (t), . . . , A(0)

K (t)
]T

,

D(0)(t) =
[
D(0)
1,1(t), . . . , D

(0)
1,K (t), D(0)

2,1(t), . . . , D
(0)
K ,1(t), . . . , D

(0)
K ,K (t)

]T
,

and ζ(t) = [ζ1,1(t), . . . , ζ1,K (t), ζ2,1(t), . . . , ζK ,1(t), . . . , ζK ,K (t)
]T is a column vec-

tor of so-called innovation processes assumed to have the following properties:

E[ζi, j (t)] = 0,

Cov
(
ζi, j , ζi,k

) = pi, j (δ j,k − pi,k)E [Ai (t)] ,

Cov
(
Ai (t), ζi, j (t)

) = 0,

Cov
(
Ei (t), ζ j,k(t)

) = 0 for all i, j and k,

Cov
(
ζi1, j1 , ζi2, j2

) = 0 for i1 �= i2, and for all j1, j2.

See Sect. 4 of [28] for more details on the innovations.
With these processes and assumptions at hand, [28] presents the following (adapted

here to our notation): Let

F =
[
0 B
Pc 0

]
,
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Nowusing ρi = 0, for all i = 1, 2, . . . , K , in [28], Eq. (35) of [28] can be re-expressed
as

Y (t) = F Y (t) + X(t),

or equivalently, Y (t) = (I − F)−1 X(t). Non-singularity of I − F follows from that
of I − PT. To see this, first note that

I − F =
[
IK −B

−Pc IK 2

]
.

Using Banachiewicz inversion formula for the inverse of a partitioned matrix (see for
example [40]), we have

(I − F)−1 =
[

(IK − BPc)−1 (IK − BPc)−1B
Pc(IK − BPc)−1 IK 2 + Pc(IK − BPc)−1B

]

=
[

(IK − PT)−1 (IK − PT)−1B
Pc(IK − PT)−1 IK 2 + Pc(IK − PT)−1B

]

=
[
G
H

]
,

where the second equality follows from the fact that B Pc = PT and the last equality
follows from the definitions ofG and H , which are given by (11) and (12), respectively.
Hence, the claim that I − F is non-singular follows from the assumption that I − PT

is non-singular.

Further, we have that E
[
Y (t) Y (t)T

] =
[
G
H

]
E
[
X(t) X(t)T

] [
GT H T

]
, and as a

consequence,

�̃ := lim
t→∞

E
[
Y (t) Y (t)T

]

t
=
[
G
H

] (
lim
t→∞

E
[
X(t) X(t)T

]

t

) [
GT H T

]

which is equivalent to equation (42) of [28]. Note that, from the above properties of
the innovations,

lim
t→∞

E
[
X(t) X(t)T

]

t
=
[
limt→∞

E
[
E (0)(t) E (0)(t)T

]
t 0

0 limt→∞
E
[
ζ(t) ζ(t)T

]
t

]

=
[
diag(v2) 0

0 limt→∞
E
[
ζ(t) ζ(t)T

]
t

]

= �(P),

123



342 Queueing Systems (2023) 103:313–346

where �(P) is defined by (13) and the last equality follows from the above properties
of the innovation processes and the fact that limt→∞ E[Ai (t)]

t = λi for all i . Therefore,

�̃ =
[
G
H

]
�(P)

[
GT H T

] =
[
G �(P) GT G �(P) H T

H �(P) GT H �(P) H T

]
,

and thus σk1,k2 = �̃k1,k2 and σi1→ j1,i2→ j2 = �̃i1∗K+ j1,i2∗K+ j2 . Observe that the
innovations method and the results of Theorem 1 (i) provide essentially the same
expressions.

Finally, observe that the virtue of the innovations method in [28] is that it also
allows (and focuses on) cases where ρi ’s (in that paper) are not 0. However, in such
cases, all calculations are merely a heuristic. Further, as that was not the focus of [28],
the limits and model assumptions in that paper are not rigorously justified as in the
current paper.

Simulation results

To further illustrate our result and explore the effect of different policies and constraints
on the variance of flows, we carried out a Monte Carlo simulation of the example
network.

In the simulation, we set the service distributions of queue k to be distributed as a
sum of two i.i.d. exponential random variables, each with mean (2μk)

−1. This results
in a so-called Erlang 2 distribution (having a squared coefficient of variation of 1/2)
with mean μ−1

k .
The arrival process, E1(·), is the more variable of the two arrival processes. It is

taken to be a renewal process of inter-arrival times that are distributed as a mixture of
two independent exponential random variables (hyper-exponential): with probability
1/3 a mean 2 exponential and with probability 2/3 a mean 1/2 exponential. This
distribution has mean 1 and squared coefficient of variation 2 agreeing with α1 and v21
as specified in (38).

The arrival process, E2(·), is less variable. It is taken to be a renewal process with
inter-arrival times that are Erlang 2 distributed this time with mean 1/4. This is in
agreement with α2 and v22 as specified in (38).

We consider two settings:

Single-class: Each queue has a dedicated (separate) server. This is a generalized
Jackson network.
Multi-class: Queues 1 and 2 are served by the same server under a non-preemptive
priority policy giving priority to queue 1. All other queues have their own server.
Note that in this case the load on the server of queues 1 and 2 is λ1/μ1 +λ2/μ2 ≈
0.97 < 1. That is, it is quite heavily loaded but is still stable. Note in general
having a load of less than unity does not immediately imply that the system is
stable yet for this simple case it can be shown that stability holds under such a
priority policy (cf. [4]).

Besides exemplifying the correctness of our theoretical results, the goal in this
simulation setup is to illustrate that while the asymptotic variability parameters do not
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Fig. 2 Simulation estimates of Var
(
D5→4(t)

)
for two cases: single class (1 and 2 on separate servers) and

multi-class (1 and 2 on same server with a priority policy). The top graph illustrates the variance curve
estimates (dotted) vs. the solid line σ 2

5→4t . The bottom graph shows the bias: σ 2
5→4t − Var

(
D5→4(t)

)
. As

is illustrated, both systems have the same asymptotic variance for D5→4(t), yet their variance curves differ
for finite t

depend on service times and scheduling policies, the shape of the variance curve is in
general influenced by such factors.

We ran 2× 105 simulation runs of each case (single-class and multi-class) each for
1, 000 time units, starting at time t = 0 with the system empty1. We then estimated

1 The simulation was carried out using a simulation package written in C++: PRONETSIM. See [32],
Appendix A, for details about this software.
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Var
(
D5→4(t)

)
for each run over a grid of time points t = 20, 40, 60, . . . , 1000, by

taking the sample variance at each time point over 2× 105 observations. Note that we
purposely observe the flow 5 → 4 which is not directly adjacent to the multi-class
server serving 1 and 2.

Our main theorem applied to this example implies that in both the single-class and
multi-class case, for non-small t ,

Var
(
D5→4(t)

) ≈ σ 2
5→4t = 199

18
t = 11.055 t .

This is illustrated in Figure 2 (top) where we plot the variance curves versus the
approximation σ 2

5→4t . To take a closer look at the effect of single-class vs. multi-
class, we then plot the bias, σ 2

5→4t −Var
(
D5→4(t)

)
in Figure 2 (bottom). It is indeed

evident that different system characteristics yield different variance curves.
It is somewhat expected that the multi-class case will have a higher bias, since in

this case the server of 1 and 2 is under a heavier load (0.97). Further, in that case one
can expect more “bursts” on the flow 2 → 4 since queue 2 is served with low-priority.
These bursts perhaps “propagate” to flow 4 → 5 and ultimately to the flow which we
measure: 5 → 4. Nevertheless, such phenomena are not captured by the asymptotic
quantities found in the current paper. It should be noted that in [22] second-order
properties of this sort are explored for elementary queueing systems such as the stable
M/G/1 queue. It is not clear how to extend such an investigation to networks.

7 Conclusion

Prior to thiswork, a rigorous analysis dealingwith exact expressions for the asymptotic
variability of flows was lacking in the literature. In this paper, we put forward easy
computable expressions together with a simple diffusion limit theorem for the flows.

The queueing networks we considered in this paper are assumed to be open and
stable. This stands in contrast with the more general case handled in [9] (where nodes
are allowed to be either under-loaded, over-loaded or critical). It should be mentioned
that our results easily carry over to the case where some nodes are over-loaded. In this
case, the service times of over-loaded nodes contribute to the exogenous arrivals in a
straightforward manner (see for example [18] for an early treatment of this idea). On
the contrary, the case inwhich some nodes are critical is more challenging. In that case,
the single-server queue was only recently handled with some difficulty in [1]. There
the authors observed a BRAVO effect (Balancing Reduces Asymptotic Variance of
Outputs). We do not handle this in the network context. Thus, the challenge of finding
the asymptotic variability of flows in critical queueing networks remains.
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