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Abstract
We propose a density estimation algorithm called
random forest density estimation (RFDE) based
on random trees where the split of cell is along
the midpoint of the randomly chosen dimension.
By combining the efficient random tree density
estimation (RTDE) and the ensemble procedure,
RFDE can alleviate the problems of boundary
discontinuity suffered by partition-based density
estimations. From the theoretical perspective, we
first prove the fast convergence rates of RFDE if
the density function lies in the Hölder space C0,α.
Moreover, if the density function resides in the
subspace C1,α, which contains smoother density
functions, we for the first time manage to explain
the benefits of ensemble learning in density esti-
mation. To be specific, we show that the upper
bound of the ensemble estimator RFDE turns out
to be strictly smaller than the lower bound of
its base estimator RTDE in terms of convergence
rates. In the experiments, we verify the theoretical
results, and show the promising performance of
RFDE on both synthetic and real world datasets.
Moreover, we evaluate our RFDE through the
problem of anomaly detection as a possible appli-
cation.

1. Introduction
In the field of machine learning, the leverage of feature
density can be found in most tasks. For example, regres-
sion and classification problems employ feature density to
enhance the estimation of the label density conditioned on
features (Maldonado et al., 2019; Tumiran & Sivakumar,
2021; Steininger et al., 2021; Silverman, 2018); clustering
and anomaly detection directly use feature density to deter-
mine the neighbors or outsiders (Campello et al., 2020; Li
et al., 2020; Corizzo et al., 2019; Zhang et al., 2018; Zhao &
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Shi, 2019; Emadi & Mazinani, 2018); And for adversarial
attacks and defenses, algorithms always seek the weakness
in feature density to tamper the outcomes (Huang et al.,
2021; Hu et al., 2019; Li et al., 2019), etc. Consequently,
the study of density estimation, which targets on estimating
the underlying probability density function of features, has
attracted more and more attention (Bodin et al., 2021; Cui
et al., 2021).

Density estimation assumes the observations are i.i.d. drawn
from the underlying probability density function and con-
structs an approximated version accordingly. The most
popular and widely-used method is called kernel density
estimation (KDE) (Rosenblatt, 1956; Parzen, 1962). How-
ever, KDE has its own drawbacks. That is, the lack of local
adaptivity. In particular, when KDE encounters density func-
tions with different local properties, the performance will be
badly affected. Subsequently, partition-based methods have
been proposed, which construct appropriate partitions of
the input space to better use the local information (Klemelä,
2009; López-Rubio, 2013; Liu & Wong, 2014; Li et al.,
2016). The first and most intuitional idea is the histogram
density estimation (HDE), which quickly comes into vogue
in academy as the basic form of density estimation (Freed-
man & Diaconis, 1981; Härdle et al., 2012). Although HDE
enjoys sound theoretical properties, the histogram partition
is of low computational efficiency and even corrupts for
high dimension data, which forces researchers to seek tree-
based algorithms (Ram & Gray, 2011; Criminisi et al., 2011;
Criminisi & Shotton, 2013). Unfortunately, a majority of
tree-based methods fail to gain theoretical support from
the perspective of the statistical learning theory. Moreover,
they suffer from the boundary discontinuity, i.e. the density
estimator is discontinuous at the partition boundary.

To overcome the challenges in density estimation problems,
we propose a tree-based learning method with learning
theory guarantees called random tree density estimation
(RTDE) based on random tree partition (Breiman, 2004;
Biau, 2012). The construction procedure of RTDE starts
with partitioning the feature space into non-overlapping
cells along the midpoint of the randomly-chosen dimension,
which helps separating the local features from area to area.
Then we apply a constant estimator to each cell and obtain
an RTDE estimator. Since the density estimation at each
point is only affected by the samples falling into the cell
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containing that point, the RTDE estimator enjoys the nature
of being local. However, RTDE still suffers from the bound-
ary discontinuity. To alleviate this problem, we generate
several random partitions and the corresponding RTDEs,
and then we average these estimators to obtain the random
forest density estimation (RFDE).

The strengths of RFDE can be summarized as follows: First
of all, the tree structure of the random partition enables
RFDE to be locally adaptive and the efficient partition rule
brings higher computational efficiency than HDE. Moreover,
due to the intrinsic randomness of the partition, the proba-
bility of a sample point being on the partition boundaries of
one tree is zero, and the probability remains zero if it is on
the partition boundaries of several trees simultaneously. As
a result, with the number of trees increasing, the asymptotic
smoothness of RFDE estimators can be achieved, which
further leads to the improvement of the estimation accuracy.

The contributions of this paper come from the theoretical
and experimental perspectives:

(i) We propose a tree-based density estimation algorithm
called random forest density estimation (RFDE), which
not only alleviates the problem of boundary disconti-
nuity long plaguing partition-based methods, but also
enjoys high computational efficiency.

(iii) From a learning theory point of view, we prove the fast
convergence rates of RFDE with assumptions that the
underlying density functions lie in the Hölder space
C0,α.

(iii) To our best knowledge, we are the first to explain the
strength of ensemble in the density estimation from the
theoretical point of view. To be specific, in the space
C1,α, we show that the lower bound for the excess risk
of RTDE turns out to be greater than the upper bound
for that of RFDE when d ≥ 2. That is, when d ≥ 2,
RFDE converges strictly faster than RTDE.

(iv) In experiments, we validate the theoretical results and
evaluate our RFDE through comparisons on both syn-
thetic and real data. Moreover, we evaluate our RFDE
through the problem of anomaly detection as a possible
application.

2. Methodology
We dedicate this section to the methodology of our random
forest density estimation (RFDE). To this end, we begin by
introducing some notations to be used throughout. Then
in Section 2.2, we give explicit description of the random
tree partitions. The formulations of our random tree density
estimators and the ensemble version are presented in Section
2.3 and 2.4.

2.1. Notations

Let X ⊂ Rd be a subset, µ be the Lebesgue measure with
µ(X ) > 0, and P be a probability measure with support X
which is absolute continuous with respect to µ with density
f . Let the training data D := (X1, . . . , Xn) be i.i.d obser-
vations with the same distribution as X drawn from P. We
denote Br as the centered hypercube of Rd with side length
2r, that is Br := [−r, r]d = {x = (x1, . . . , xd) ∈ Rd :
xi ∈ [−r, r], i = 1, . . . , d}, and write Bcr := Rd \ [−r, r]d
for the complement of Br. Throughout this paper, we use
the notation an . bn and an & bn to denote that there
exists positive constants c and c′ such that an ≤ cbn and
an ≥ c′bn, respectively, for all n ∈ N.

2.2. Random Tree Partition

In this paper, we investigate the mid-point random tree par-
titions suggested by Biau (2012) and Breiman (2004). To
be specific, let A1

0 := Br ⊃ X be the initial rectangular cell
containing the support X and π0 := {A1

0} be the initialized
cell partition. In addition, let p ∈ N be a deterministic
parameter, fixed beforehand by the user, and possibly de-
pending on n.

In the first step, we choose one of the coordinates X =
(X1, . . . , Xd) with the `-th feature X` having a probability
1/d of being selected, and then split Br into two rectangular
cells along the midpoint of the chosen side. In other words,
there exist 1 ≤ ` ≤ d such that Br = A1

1 ∪ A2
1, where

A1
1 := {(x, y) ∈ Br : x` ≤ 0} and A2

1 := Br \A1
1. In this

way, we get a partition with two rectangular cells denoted
as π1 := {A1

1, A
2
1}. Note that the total number of possible

partitions after the first step is equal to the dimension d.
Suppose after i − 1 steps of the recursion, 1 ≤ i ≤ p we
have obtained a partition πi−1 of Br with 2i−1 rectangular
cells. In the i-th step, further partitioning of the region is
defined as follows:

(i) For each rectangular cell Aji−1, 1 ≤ j ≤ 2i−1, a coor-
dinate of X = (X1, . . . , Xd), namely Zi,j is selected,
with the `-th feature having a probability 1/d to be
chosen, that is,

P(Zi,j = `) = 1/d, for 1 ≤ ` ≤ d. (1)

(ii) For each rectangular cell Aji−1, 1 ≤ j ≤ 2i−1, once
the coordinate is selected, the split is at the midpoint of
the chosen side. As a result, each rectangular cellAji−1
is divided into two new ones, namely A2j−1

i and A2j
i .

We denote the set of all these cells {Aji , 1 ≤ j ≤ 2i}
by πi.

After p recursive steps, we obtain the partition of Br, i.e.

πp := {Ajp}j∈Ip := {Ajp, 1 ≤ j ≤ 2p}. (2)
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Figure 1. Random tree partitions with p = 2 and d = 2.

We call it a random tree partition with depth p. The com-
plete process is presented in Algorithm 1 and an illustration
is shown in Figure 1.

Algorithm 1 Random Tree Partition

Input: Depth of the random tree p;
Initial partition π0 = {A1

0 := Br}.
for i = 1 to p do

for j = 1 to 2i−1 do
For rectangular cell Aji−1, randomly choose one di-
mension coordinate Zi,j whose probability distribu-
tion is given by (1);
Divide the cell Aji−1 into two subregions, that is,
Aji−1 = A2j−1

i ∪ A2j
i , along the midpoint of the

dimension Zi,j ;
end for
Get πi = {Aji , 1 ≤ j ≤ 2i}.

end for
Output: Random tree partition πp.

For any x ∈ Br, there exists j ∈ Ip such that x ∈ Ajp. Then
we denote the cell containing x as Ap(x) := Ajp.

2.3. Random Tree Density Estimation

In this subsection, we introduce the random tree density
estimation (RTDE) based on the above mentioned random
tree partition πp. According to the random tree partition
rule, for all j ∈ Ip, the Lebesgue measure µ(Ajp) > 0.

Definition 1 (Random Tree Density Estimation) Let Q
be a probability measure on Rd. Let πp := {Ajp}j∈Ip
be a random tree with depth p as in (2). Then, the function
fpQ : Rd → [0,∞) defined by

fpQ(x) :=
∑
j∈Ip

Q(Ajp)1Ajp(x)

µ(Ajp)
.

is called a random tree density estimation of Q.

Recalling that P is a probability measure on Rd with the
corresponding density function f , by taking Q = P with
dP = f dµ, then for x ∈ Ajp, we have

fpP(x) =
P(Ajp)

µ(Ajp)
=

1

µ(Ajp)

∫
Ajp

f(x′) dµ(x′). (3)

In other words, for x ∈ Ajp, then fpP(x) is the average
true density on Ajp. Since P is inaccessible, in order to
obtain the random tree density estimator, we take Q to be
the empirical measure Dn := 1

n

∑n
i=1 δxi instead of P,

where δxi denotes the Dirac distribution. For a set A ⊂ Rd,
Dn(A) is the expectation of 1A with respect to Dn, which is
Dn(A) := EDn1A = 1

n

∑n
i=1 δxi(A) = 1

n

∑n
i=1 1A(xi).

For x ∈ Ajp, the random tree density estimator is

fpDn(x) =
Dn(A

j
p)

µ(Ajp)
=

1

nµ(Ajp)

n∑
i=1

1Ajp(xi) (4)

where Ajp can also be written as Ap(x). The summation on
the right-hand side of (4) counts the number of observations
falling in Ajp. From now on, for notational simplicity, we
will suppress the subscript n of Dn and denote D := Dn,
e.g., fpD := fpDn .

2.4. Random Forest Density Estimation

In this subsection, we formulate the random forest density
estimation (RFDE). Ensembles consisting of a combination
of different estimators have been highly recognized as an
effective technique to significantly improve the performance
over a single estimator in the literature, which inspires us
to apply them to our random tree density estimation. In our
cases, we first train T RTDEs based on different random
tree partitions, separately; once this is accomplished, the
outputs of the individual estimators are combined to give
the ensemble output for new data points. Here, we use
the simplest possible combination mechanism by taking a
uniform-weighted average.

To be specific, assume that {Zti,j , 1 ≤ i ≤ p, 1 ≤ j ≤
2i−1, 1 ≤ t ≤ T} is an i.i.d. sequence of selected coordinate
to split drawn from the probability measure PZ given by (1).
For 1 ≤ t ≤ T , given select coordinates Zt := {Zti,j , 1 ≤
i ≤ p, 1 ≤ j ≤ 2i−1}, following Algorithm 1, we generate
a partition πtp := {Aj,tp }j∈Itp . Thus for 1 ≤ t ≤ T , RTDE
is defined by

fpD,t(x) :=
∑
j∈Itp

D(Aj,tp )1Aj,tp (x)

µ(Aj,tp )
.

Therefore, the random forest density estimation with T base
learners can be presented as

fD,E(x) :=
1

T

T∑
t=1

fpD,t(x). (5)
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It is worth mentioning that RFDE enjoys three advantages.
First, the ensemble procedure alleviates the discontinuity
and brings smoothness to tree-based density estimators,
thanks to the randomness of base learners. To be specific,
RFDE average the random base learners with different par-
tition boundaries. As the number of base learners T grows,
RFDE turns out to approximate a smooth density function
well. Consequently, it can be more smooth than its base
learner, i.e. T = 1, which will also be theoretically veri-
fied in Section 3 and experimentally validated by numerical
simulations in Section 4.2.2.

Second, the random tree partition is more efficient than
the histogram partition, therefore random tree density es-
timators are able to cope with higher dimensional density
estimation compared with HDE. In the ordinary histogram
partition, the number of cells grows exponentially with both
the depth of splits p and the dimension of data d. The total
number of cells will be 2pd, which causes a heavy com-
putational burden when d is large. On the contrary, in the
random tree partition, the number of cells, 2p, is signifi-
cantly smaller than 2pd, even if d = 2.

Third, the algorithm can be locally adaptive by applying
random partitions. Ordinary density estimators such as
KDE adopt uniform bandwidth, regardless of the fact that
the local structures of real-world data usually vary from area
to area. On the contrary, it is well known that partition-based
algorithms take local data structures into consideration, and
thus the cells with different shapes exactly catch various
local features of the input data. Thus, the combination of
random trees with the ensemble procedure can lead to great
local adaptivity.

3. Theoretical Results
In this section, we present main results on the convergence
rates of our density estimators. We first introduce the funda-
mental Hölder continuous assumption for the density func-
tion f to achieve convergence rates in Section 3.1. Then
the results concerning convergence rates of RFDE with
f ∈ C0,α are shown in Section 3.2. Moreover, when
f ∈ C1,α, Section 3.3 establishes the upper bound of
the excess risk for RFDE and the lower bound of that for
RTDE, which theoretically explains the benefits of RFDE
over RTDE.

3.1. Fundamental Assumption

Our theoretical analysis concerning convergence rate is built
upon the fundamental assumption about the smoothness
of the density function. To be more concrete, we assume
the underlying density function f resides in the general
function space Ck,α consisting of (k, α)-Hölder continuous
functions. The definition is shown below.

Definition 2 Let r ∈ (0,∞), k ∈ N ∪ {0} and α ∈
(0, 1]. We say that a function f : Rd → R is (k, α)-
Hölder continuous, if there exists a finite constant cL > 0
such that (i) ‖∇`f‖ ≤ cL for all ` ∈ {1, . . . , k}; (ii)
‖∇kf(x) − ∇kf(x′)‖ ≤ cL‖x − x′‖α for all x, x′ ∈ Rd.
The set of such functions is denoted by Ck,α.

We remark that k decides the order of smoothness for f ∈
Ck,α and larger k indicates that f enjoys a higher order
of smoothness. For the special case k = 0, the function
space C0,α coincides with the commonly used α-Hölder
continuous function space Cα.

3.2. Convergence Rates of RFDE for f ∈ C0,α

In the following theorem, we present the convergence rates
of the RFDE estimators with respect to the L2-norm. For
this purpose, we first need to introduce the notation

‖f‖2L2(ν)
:=

∫
Br

EPZ⊗Pnf(x)
2 dµ(x),

where ν := µ⊗ PZ ⊗ Pn.

Theorem 1 Let fD,E be the RFDE estimator with T base
learners as in (5). Suppose that the true density f ∈ C0,α

with support X ⊂ Br. For any T ≥ 1, let (pn) be the
sequences defined by pn := d(d log 2 + 1− 4−α)−1 log n.
Then we have

‖fD,E − f‖2L2(ν)
. n

− 1−4−α

d log 2+1−4−α , (6)

where ν := µ⊗ PZ ⊗ Pn.

For the special case T = 1, RFDE reduces to base learner
RTDE and thus Theorem 1 implies that RTDE also enjoys
the same convergence rate n−(1−4

−α)/(d log 2+1−4−α). Thus
we are not able to show the advantage of RFDE over RTDE
from the perspective of the convergence rate when f ∈
C0,α.

3.3. Results for f ∈ C1,α

In the previous analysis of f ∈ C0,α, we show the con-
vergence rates of RFDE under L2-norm. However, we fail
to show the discrepancy between tree estimators and forest
estimator for f ∈ C0,α in terms of convergence rates. There-
fore, in this part, we turn to consider that the true density
f resides in the subspace C1,α, which contains smoother
functions. For f ∈ C1,α, we manage to show that RFDE
exceeds RTDE in the sense of convergence rate.

3.3.1. CONVERGENCE RATES OF RFDE FOR f ∈ C1,α

The following theorem gives an upper bound for the conver-
gence rate of RFDE estimator.
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Theorem 2 Let fD,E be the RFDE estimator with T base
learners as in (5). Suppose that the true density f ∈ C1,α

with support X ⊂ Br. Let (pn), (Tn) be the sequences
defined by pn := d(1 + d log 2)−1 log n, Tn & n

1
4+4d log 2 .

Then we have

‖fD,E − f‖2L2(ν)
. n−

1
d log 2+1 , (7)

where ν := µ⊗ PZ ⊗ Pn.

Theorem 2 shows that the L2-error decreases as Tn grows at
first, and when Tn achieves a certain level, RFDE achieves
the best convergence rate. Moreover, comparing with Theo-
rem 1, when the underlying density function turns more
smooth, RFDE achieves a faster convergence rate with
f ∈ C1,α than that with f ∈ C0,α, where a relatively
large Tn helps the density estimator to achieve asymptotic
smoothness.

3.3.2. LOWER BOUND OF RTDE FOR f ∈ C1,α

The next theorem gives the lower bound of convergence rate
for tree estimators.

Theorem 3 Let the random tree density estimator fpD be
defined as in (4). Moreover, assume that f ∈ C1,α with
the compact support X ⊂ Br and there exists a constant
cf ∈ (0,∞) such that ‖∇f‖ ≥ cf . Then we have

‖fpD − f‖
2
L2(ν)

≥ c0n
log(1−0.75/d)

log 2−log(1−0.75/d) ∨ c1, (8)

where ν := µ⊗PZ⊗Pn, c0 and c1 are constants depending
on r, d, cf specified in the proof.

Theorem 3 gives a lower bound of the convergence rate for
the tree estimator. In particular, when the dimension d →
∞, the lower bound in (8) becomes n−0.75/(0.75+d log 2).
More importantly, by combining Theorem 2 and 3, we find
that when d ≥ 2, the lower bound in (8) for RTDE turns
out to be larger than the upper bound in (7) for RFDE in
the sense of convergence rate. This indicates that random
forest converges faster than trees when the density function
is smooth. Therefore, the results demonstrate that ensemble
learning can enhance smoothness of tree regressors and thus
alleviate the boundary discontinuity problem.

4. Numerical Experiments
4.1. Evaluation Criteria

Mean absolute error (MAE). The first criterion of evaluat-
ing the accuracy of density estimator is the mean absolute
error, defined by MAE(f̂) = 1

M

∑M
j=1 |f̂(xj) − f(xj)|,

where x1, . . . , xM are test samples. It is used in synthetic
data experiments where the true density function is known.

Average negative log-likelihood (ANLL). Another effec-
tive measure of estimation accuracy, especially when fac-
ing real data and the true density function is unknown, is
the average negative log-likelihood, defined by ANLL(f̂) =
− 1
M

∑M
j=1 log f̂(xj), where f̂(xj) represents the estimated

probability density for the test sample xj and M is the size
of test samples. Note that the lower the ANLL is, the better
estimation we obtain.

4.2. Empirical Understandings

In this part, we conduct simulations concerning RFDE for
density estimation. Based on several synthetic datasets, we
show the power of ensemble procedure through simulations,
and we provide a possible explanation for the improvement
in accuracy from the perspective of the asymptotic smooth-
ness. Then we study how the hyper-parameter, the depth of
split p, affects the estimation accuracy.

4.2.1. SYNTHETIC DATA SETTINGS

We conduct the simulations on four different types of syn-
thetic distributions, each with dimension d ∈ {2, 5, 7}, re-
spectively. The premise of constructing data sets is that
we assume that the components Xi ∼ fi, i = 1 . . . , d, of
the random vector X = (X1, . . . , Xd) are independent of
each other. To be specific, Types I and II represent density
functions with bounded support and unbounded support,
respectively. Finally, Type III represents the case where
the marginal distributions of each dimension are not identi-
cal. More detailed descriptions and visual illustrations are
shown in Section C.1 of the appendix.

In the following experiments, we generate 2, 000 and
10, 000 i.i.d samples as training and testing data respec-
tively from each type of synthetic datasets, and each with
dimension d ∈ {2, 5, 7}.

4.2.2. THE POWER OF ENSEMBLE

To show the behavior of T , we carry out the experiments
with T ∈ {1, 5, 10, 20, 50, 100, 500, 1000}, and the hyper-
parameter p are chosen by 3-fold cross-validation. We pick
the optimal p from 1 to 15. For each T we repeat this
procedure 10 times.

As can be seen in Figure 2, regardless of the dimension
d, as T grows, the accuracy performance of RFDE (both
MAE and ANLL) first enhances dramatically when T grows,
but as T continues to grow, a steady state will be reached.
This coincides with Theorem 2, where the convergence
rate attains the optimum when Tn is greater than a certain
value. A large number of base learners leads to a more
accurate model but brings about the additional burden of
computation.
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Figure 2. The study of parameter T on RFDE of Type II synthetic
distribution, where the first and the second row respectively il-
lustrate the results with dimension d = 5 and d = 7. The left
column indicates how MAE varies along parameters T , and the
right column shows the variation of ANLL.

To give a possible explanation of the improvement in accu-
racy with the ensemble procedure, we conduct simulations
to show that RFDE achieves asymptotic smoothness with T
increases. For the sake of clearer visualization, we utilize
a toy example with 2, 000 samples i.i.d. generated from
the two-dimensional standard normal distribution, and use
RFDE to conduct density estimation, where the number of
trees T is set to 1, 5, 10, 100, respectively. To visualize the
estimation of the 2-dimension density function, we fix the
first coordinate x1 = 0.2 and plot it with x2 from −3 to 3.

(a) T = 1. (b) T = 5.

(c) T = 10. (d) T = 100.

Figure 3. The study of parameter T on RFDE on a 2-dimension
Standard Normal distribution. The red line represents the under-
lying density on the intersecting surface where x1 = 0.2, and the
blue line represents the density estimator returned by RFDE.

From Figure 3 we see that with T = 1, the base estimator
turns out to be a step function with discontinuous bound-

aries, and the estimation is far from satisfactory. Never-
theless, as the number of base learners T increases from 1
to 10, the forest estimator becomes more continuous and
smooth with the corresponding accuracy enhancing greatly.
With T = 10, our RFDE is able to approximate the smooth
density function well and achieve high estimation accuracy.
If we continue to add more base learners to T = 100, there
is no more significant improvement on the accuracy, which
coincides with Theorem 2.

4.2.3. PARAMETER ANALYSIS

Here we mainly conduct experiments concerning the pa-
rameter p of RFDE. To this end, we consider the Type II
synthetic dataset of three different dimensions to see how
the parameter p affects the performance of RFDE.

Recall that the larger p, the smaller and more cells, which is
helpful to learn the local structure of the density function.
However, if p is too large, few samples will be contained
in each cell, which may lead to large variance. We conduct
experiments over p ∈ {1, 2, . . . , 25}. We select T = 500 to
make the density estimator converge with the sufficient base
learners.
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Figure 4. The study of parameter p on RFDE of the Type II syn-
thetic distribution. The green line and orange line represents the
MAE and ANLL of RFDE, respectively.

As is shown in Figure 4, regardless of the dimension d, there
exists an optimal value of p which minimizes both ANLL
and MAE at the same time. In addition, the three subfigures
in Figure 4 demonstrate that the optimal value of p becomes
higher as d increases, which coincides the optimal order
of p in Theorem 2. Therefore, it is of great importance to
choose p properly.
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Table 1. Average ANLL and MAE over simulated datasets

d Method Type I Type II Type III
ANLL MAE ANLL MAE ANLL MAE

2

RFDE (Ours) −0.57∗ 0.65 3.14∗ 1.64e-2∗ 1.97∗ 3.29e-2∗
KDE −0.37 1.06 3.27 2.31e-2 2.14 5.32e-2
HDE −0.52 0.66 3.21 1.81e-2 2.01 3.82e-2

5

RFDE (Ours) −1.18∗ 7.77∗ 8.17∗ 6.78e-4∗ 3.12∗ 0.09∗
KDE −0.32 12.40 8.65 8.27e-4 3.86 0.15
HDE 10.17 19.70 10.77 1.33e-3 6.09 0.17

7

RFDE (Ours) −1.48∗ 30.60∗ 10.89∗ 5.54e-5∗ 3.96∗ 0.13∗
KDE 0.03 40.74 12.48 6.05e-5 5.16 0.18
HDE 11.48 73.97 11.49 1.05e-4 9.88 0.20

* The best results are marked in bold. We use ∗ to represent that the best method is significantly
better than the other compared methods.

4.3. Performance Comparisons

In this section, we conduct performance comparisons on
both synthetic and real datasets. Recall that both our theo-
retical results (shown in Theorems 2 and 3) and empirical
illustrations (shown in Figure 3) demonstrate that ensemble
improves the performance of partition-based methods by
enhancing the smoothness of the estimator. Therefore, we
compare our RFDE with the kernel density estimator (KDE)
which enjoys high order of smoothness. We also compare
our RFDE with the histogram density estimator (HDE). We
run HDE with the bin width of histogram chosen by Sturges’
rule (Sturges, 1926).

4.3.1. SYNTHETIC DATA COMPARISONS

Following the experimental settings in Section 4.2, we con-
duct empirical comparisons between RFDE and the pre-
vailing KDE and HDE to further demonstrate the desirable
performance of RFDE on synthetic datasets. We apply the
Wilcoxon signed-rank test (Wilcoxon, 1992) at the signifi-
cance level α = 0.05. Table 1 records average ANLL and
MAE over simulation data sets for KDE, HDE and RFDE
with T = 500. For higher dimensions d = 5 and d = 7,
our RFDE always outperforms KDE and HDE in terms of
ANLL and MAE.

4.3.2. REAL DATA COMPARISONS

We conduct numerical comparisons on real datasets from
the UCI repository (Dua & Graff, 2017). We put the detailed
description of datasets in Section C.2 of the appendix.

Experimental Settings. In order to evaluate the perfor-
mance of density estimators on datasets with various dimen-
sions, we apply the following data preprocessing pipeline.
Firstly, we remove duplicate observations as well as those
with missing values. Then each dimension of the datasets

is scaled to [0, 1] and each dataset is reduced to lower di-
mensions d′ through PCA, e.g. to 10%, 30%, 50% and 70%
of the original dimension d, respectively. Finally, in each
dataset, we randomly select 70% of the samples for training
and the remaining 30% for testing.

The number of iterations T is set to be 100 and the two
hyper-parameters p are chosen from {1, 2, . . . , 15}, respec-
tively, by 3-fold cross-validation. We repeat this procedure
10 times to evaluate the standard deviation for ANLL. The
average ANLL on test sets are recorded in Table 2.

Since real density often resides in a low-dimensional mani-
fold instead of filling the whole high-dimensional space, it
is reasonable to study the density estimation problem after
dimensionality reduction. Therefore, in data preprocessing,
all data sets are reduced to various lower dimensions through
PCA. However, we need to take the to-be-reduced dimen-
sion as a hyper-parameter, since in general, the dimension
of the manifold is unknown.

Experimental Results. In Table 2, we summarize the com-
parisons with the widely used density estimator KDE and
HDE on six real datasets. For most of the redacted datasets,
RFDE shows its superiority on the accuracy, whereas the
standard deviation of RFDE is slightly larger than that of
KDE due to the randomness of random tree partitions. Com-
pared with HDE which corrupts when the redacted dimen-
sion d′ > 7, our RFDE achieves the satisfying performance
benefiting from its high computational efficiency.

4.4. RFDE for Anomaly Detection

To showcase a potential application of RFDE, we propose
a density-based method for anomaly detection. Given a
density level ρ, we regard the sample points with low density
estimation {xi ∈ D | fD,E(xi) ≤ ρ} as anomaly points.
Then we are able to use RFDE for anomaly detection as
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Table 2. Average ANLL over real data sets

Datasets d′ RFDE KDE HDE Datasets d′ RFDE KDE HDE

Adult

2 −1.5226 −0.7402 −0.9838

Diabetes

1 −0.8073 −0.2627 −0.6067
(0.0113) (0.0027) (0.0143) (0.0576) (0.0111) (0.0676)

4 −1.8374 −0.3075 −0.7789 3 −1.5378 −0.4042 −0.3142
(0.0141) (0.0032) (0.0303) (0.0953) (0.0403) (0.3422)

8 −5.7832 −2.2970 − 4 −1.8387 −0.8353 2.9933
(0.0557) (0.0108) − (0.1433) (0.0773) (0.6034)

10 −6.6704 −3.4372 − 6 −2.3838 −1.9693 9.1732
(0.0475) (0.0110) − (0.1912) (0.1550) (0.3902)

Australian

2 −0.5836 1.3155 0.3898

Credit

2 1.2659 1.5435 1.6649
(0.1796) (0.0234) (0.1494) (0.1142) (0.0183) (0.1968)

4 −5.2131 0.8518 −2.2163 5 −1.3479 1.4844 1.3455
(0.3508) (0.0291) (0.2507) (0.2889) (0.0516) (0.5457)

8 −3.6821 0.6879 − 8 2.1191 3.0453 −
(0.3678) (0.1056) − (0.2905) (0.1067) −

10 −1.8187 0.4995 − 11 3.1343 3.5221 −
(0.3474) (0.1748) − (0.3182) (0.2292) −

Breast-cancer

1 −0.0323 0.6907 0.3697

Abalone

1 0.5664 0.5458 0.5609
(0.2059) (0.0394) (0.1011) (0.0144) (0.0103) (0.0140)

3 −3.3262 0.1743 1.3773 3 −2.6793 −0.9493 −1.2716
(0.5219) (0.1268) (0.3432) (0.0818) (0.0282) (0.0594)

6 −7.5657 −1.1397 1.8392 4 −4.0743 −2.6572 −2.2145
(0.9746) (0.2788) (0.5542) (0.0619) (0.0309) (0.1534)

8 −5.1952 −2.1110 − 6 −7.1922 −6.4804 0.3270
(1.2260) (0.3906) − (0.0722) (0.0445) (0.3553)

* The best results are marked in bold, and the standard deviation is reported in the parenthesis. The results of HDE with d′ > 7 is
corrupted due to numerical problems.

shown in Algorithm 2.

We conduct real-data experiments to compare our RFDE
with several popular anomaly detection algorithms such
as the forest-based Isolation Forest (iForest) (Liu et al.,
2008), the distance-based k-Nearest Neighbor (k-NN) (Ra-
maswamy et al., 2000) and Local Outlier Factor (LOF)
(Breunig et al., 2000), the kernel-based one-class SVM
(OCSVM) (Schölkopf et al., 2001), the boosting-based
Lump (Ridgeway, 2002), HDBSCAN (Campello et al.,
2015) and the ensemble-based AOM+VR (Aggarwal &
Sathe, 2015) on 20 real-world benchmark outlier detection
datasets from the ODDS library. We perform ranking ac-
cording to the best AUC when parameters go through their
parameter grids. Detailed experimental settings and com-
parison results are shown in Section C.3.

Algorithm 2 RFDE for Anomaly Detection

Input: Training data D := {x1, . . . , xn};
Density threshold parameters ρ.

Compute RFDE fD,E (5).
Output: Recognize anomalies as

{xi ∈ D | fD,E(xi) ≤ ρ}.

From the perspective of best performance, our method
RFDE wins in 5 out of 20 datasets, while the iForest and
OCSVM win both 4 out of 20 datasets, respectively. More-
over, in the aspect of the average performance of benchmark
datasets, our RFDE has the lowest rank-sum 55 whereas
the iForest has the second lowest rank-sum 72. Overall, our
experiments on benchmark datasets show that our method
has satisfying performance among competitive anomaly de-
tection algorithms.

5. Conclusion
In this study, we propose the random forest density estimator
(RFDE), constructed by generating random tree partitions,
building tree estimators, and finally ensembling trees to-
gether to obtain the forest. We verify that RFDE alleviates
the problem of boundary discontinuity from both the theo-
retical and experimental perspective. From the theoretical
perspective, we prove fast convergence rates of RFDE un-
der the assumption that the true density function is Hölder
continuous. Moreover, to explain the benefits of ensemble
learning in density estimation, we turn to consider more
smooth density functions. We establish the upper bound of
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the excess risk for RFDE, which is strictly smaller than the
lower bound of that for the tree base learners. In the aspect
of experiment, we demonstrate that RFDE turns out to be
more continuous as T grows and thus it achieves the asymp-
totic smoothness. Moreover, we conduct the experimental
comparisons both on synthetic and real-world datasets. Last
but not least, we carry out an application of anomaly detec-
tion compared with other widely used methods to show the
promising performance of RFDE.
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This appendix consists of supplementaries for both theoretical analysis and experiments. In Section A, we prove the
approximation error and estimation error term for the underlying density function residing in space C0,α and C1,α,
respectively. The corresponding proofs of Section A and Section 3 are shown in Section B. In Section C we show the
supplementaries for numerical experiments including the results of anomaly detection.

A. Error Analysis
In this subsection, we present the proofs when the true density f ∈ C1,α. To make the bias-variance decomposition, we
introduce some notations. This section provides a more comprehensive error analysis for the theoretical results in Section 3.
To be specific, we first present the approximation error and sample error of RFDE under the assumption that the density
function resides in the Hölder spaces C0,α in Section A.1. Then for f ∈ C1,α, we gives the upper bound of the two error
terms for RFDE based on the new bias-variance error decomposition in Section A.2.1 and the lower bound of them for
RTDE in Section A.2.2.

A.1. Error Analysis for f ∈ C0,α

To make the bias-variance decomposition, we first introduce the population version of fD,E in (5). For fixed p ∈ N+, let
{Ap,t}Tt=1 be random tree partitions with depth p and split coordinates Zt, t = 1, . . . , T . Moreover, let {fpP,t}Tt=1 be defined
as (3), then we define the population version of the RFDE by

fP,E(x) :=
1

T

T∑
t=1

fpP,t(x) (A.1)

A.1.1. BOUNDING THE APPROXIMATION ERROR TERM

Proposition 1 Let fP,E be defined by (A.1). Moreover, let the density function f ∈ C0,α and PX has the bounded support
X ⊂ Br. Then we have

‖fP,E − f‖2L2(ν)
≤ c2L(2r)2αd exp

(
(2−2α − 1)p/d

)
,

where ν := µ⊗ PZ ⊗ Pn.

A.1.2. BOUNDING THE ESTIMATION ERROR TERM

We firstly present a fundamental lemma, which shows that the ‖ · ‖2-distance between fD,E and fP,E.

Proposition 2 Let fD,E and fP,E be defined by (4) and (A.1) respectively. Moreover, let PX has the bounded support
X ⊂ Br. Then we have

‖fD,E − fP,E‖2L2(ν)
≤ ‖f‖∞ · 2p/n,

where ν := µ⊗ PZ ⊗ Pn.

A.2. Error Analysis for f ∈ C1,α

In this subsection, we present the proofs when the true density f ∈ C1,α. A drawback to the analysis in C0,α is that the
usual Taylor expansion involved techniques for error estimation may not apply directly. As a result, we fail to prove the
exact benefits of the ensemble procedure. Therefore, in this subsection, we turn to the function space C1,α consisting of
smoother functions. To be specific, we study the convergence rates of fD,B to the density function f ∈ C1,α. To this end,
there is a point in introducing some notations.

Then it is clear to have the following error decomposition,

EPZ (fP,E(x)− f(x))2 = VarPZ (fP,E(x)) + (EPZ (fP,E(x))− f(x))2

=
1

T
·VarPZ

(
fpP,1(x)

)
+
(
EPZ

(
fpP,1(x)

)
− f(x)

)2
.
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In particular, for the random tree density estimator, we are concerned with the lower bound for fpD. We make the error
decomposition

EPn⊗PZ
∥∥fpD − f‖2L2(µ)

= EPZ⊗Pn
∥∥fpD − fpP + fpP − f

∥∥2
L2(µ)

= EPZ⊗Pn
∥∥fpD − fpP∥∥2L2(µ)

+ EPZ⊗Pn
∥∥fpP − f∥∥2L2(µ)

+ EPZ⊗Pn

∫
Br

2
(
fpD − f

p
P

)(
fpP − f

)
dµ.

The last term equal to 0 by exchanging the order of integration. Consequently, we get

‖fD,E − f‖2L2(ν)
= ‖fP,E − f‖2L2(ν)

+ ‖fD,E − fP,E‖2L2(ν)
. (A.2)

It is important to note that both of the two terms on the right-hand side are data- and partition-independent due to the
expectation with respect to Pn and PZ respectively. Loosely speaking, the first error term corresponds to the expected
estimation error of the estimator fpD, while the second one demonstrates the expected approximation error.

A.2.1. UPPER BOUND FOR CONVERGENCE RATE OF RFDE

Proposition 3 and Proposition 4 gives upper bounds for the approximation and estimation error terms of the forest estimator,
respectively.

Proposition 3 Let fP,E be defined by (A.1). Moreover, let the density function f ∈ C1,α and PX has the bounded support
X ⊂ Br. Then we have

‖fP,E − f(x)‖2L2(ν)
≤ c2L(2r)4d2T−1 exp

(
−0.75p/d) + 4c2L(2r)

2d+2d2 exp(−p/d),

where ν := µ⊗ PZ ⊗ Pn.

Proposition 4 Let fD,E and fP,E be defined by (5) and (A.1) respectively. Moreover, let PX has the bounded support
X ⊂ Br. Then we have

‖fD,E − fP,E‖2L2(ν)
≤ ‖f‖∞ · 2p/n,

where ν := µ⊗ PZ ⊗ Pn.

A.2.2. LOWER BOUND FOR CONVERGENCE RATE OF RTDE

Proposition 5 and 6 gives lower bounds for the approximation and estimation error terms of the tree estimator, respectively.

Proposition 5 Let the random tree partition Ap be defined as in Algorithm 1. Moreover, let the density function f ∈ C1,α

with support X ⊂ Br. Furthermore, suppose that there exists a fixed constant cf ∈ (0,∞) such that ‖∇f‖ ≥ cf . Then we
have

‖fpP − f‖
2
L2(PZ⊗µ) ≥ 0.75c2fr

2d(2r)d(−0.75/d)p.

Proposition 6 Let the random tree partition Ap be defined as in Algorithm 1 with depth p ≥ ln(‖f‖∞2d+1rd)/ log 2.
Moreover, suppose that PX has the compact support X ⊂ Br. Then we have

‖fpD − f
p
P‖

2
L2(PZ⊗µ) ≥ 2p/(2d+1rdn).

B. Proofs
This section consists of four parts, with the first sections concerning fundamental lemmas on properties of random tree and
the following two sections showing the proof related to the results for the space C0,α and C1,α respectively. The last one
presents the proof related to the main theoretical results. To be specific, Section B.1 presents the properties related to the
mid-point splitting rule. Section B.2 and B.3 present all proofs related to the space C0,α and C1,α, respectively. The proofs
related to Section 3 are presented in Section B.4.
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B.1. Properties of Random Tree

Throughout the proof of this paper, we will make repeated use of the following two facts proposed by (Biau, 2012).

Fact A.1 For x ∈ Br, let Ap(x) defined by (2) be the rectangular cell of the random tree containing x and Sjp(x) be
the number of times that Ap(x) is split on the j-th coordinate (j = 1, . . . , d). Then Sp(x) := (S1

p(x), . . . , S
j
p(x)) has

multi-nomial distribution with parameters p and probability vector (1/d, . . . , 1/d) and satisfies
∑d
j=1 S

j
p(x) = p. Moreover,

let Ajp(x) be the size of the j-th dimension of Ap(x). Then we have

Ajp(x)|R
D
= 2r · 2−S

j
p(x), (A.3)

where ·|R denotes the probability distribution and D= indicates that variables in the two sides of the equation have the same
distribution.

Fact A.2 Let µ be the Lebesgue measure. For x ∈ Br, let Np(x) be the number of samples falling in the same cell as x,
that is, Np(x) =

∑n
i=1 1{Xi∈Ap(x)}. By construction, we have

µ(Ap(x)) = (2r)d · 2−p. (A.4)

Before we proceed, we present the following lemma, which helps to bound the diameter of the rectangular cell Ap(x).

Lemma A.1 Suppose that xi > 0, 1 ≤ i ≤ d and 0 < α ≤ 1. Then we have( d∑
i=1

xi

)α
≤

d∑
i=1

xαi . (A.5)

Proof A.1 (Proof of Lemma A.1) Obviously, for any 1 ≤ i ≤ n, we have 0 < xi/
∑d
i=1 xi < 1. Since 0 < α ≤ 1, we

have ∑d
i=1 x

α
i

(
∑d
i=1 xi)

α
=

d∑
i=1

(
xi∑d
i=1 xi

)α
≥

d∑
i=1

xi∑d
i=1 xi

=

∑d
i=1 xi∑d
i=1 xi

= 1.

Consequently, we get
(∑d

i=1 xi
)α ≤∑d

i=1 x
α
i , which finishes the proof.

Combining Lemma A.1 with Fact A.2, it is easy to derive the following lemma which plays an important role to bound the
approximation error of the estimator.

Lemma A.2 Let the diameter of the set A ⊂ Rd be defined by diam(A) := supx,x′∈A ‖x− x′‖2. Then for any x ∈ X and
0 < β ≤ 2, there holds

EPZ

(
diam(Ap(x))

β
)
≤ (2r)βd exp

(
(2−β − 1)p/d

)
.

Proof A.2 (Proof of Lemma A.2) By definition, we have diam(Ap(x)) :=
(∑d

j=1A
j
p(x)

2
)1/2

. Consequently, (A.3) in

Fact A.1 implies diam(Ap(x))
β = (2r)β

(∑d
j=1 2

−2Sjp(x)
)β/2

. Applying Lemma A.1, we get

diam(Ap(x))
β ≤ (2r)β

d∑
j=1

2−βS
j
p(x). (A.6)

Consequently, we have

EPZ

(
diam(Ap(x))

β
)
≤ EPZ

(
(2r)β

d∑
j=1

2−βS
j
p(x)

)
= (2r)β

d∑
j=1

EPZ

(
2−βS

j
p(x)
)

= (2r)βd
(
1− (1− 2−β)/d

)p ≤ (2r)2αd exp
(
(2−β − 1)p/d

)
.

Taking expectation with respect to PR, we prove the desired assertion.
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For any x ∈ Br, let ajp(x) and ajp(x) be the minimum and maximum values of the j-th entries of points in Ap(x). Then, by
the construction of random tree, we have Ap(x) = [a1p(x), a

1
p(x)]× · · · × [adp(x), a

d
p(x)].

The next theorem gives an explicit form of the distance between xi and the center of the interval [ajp(x), a
j
p(x)], which is

used to derive the lower bound for the error of single random tree density estimation.

Lemma A.3 Let the random tree Ap be defined as in Algorithm 1. Moreover, let Ap(x) be the rectangular cell containing
x and Sjp(x) be the number of times that Ap(x) is split on the j-th coordinate (j = 1, . . . , d). For any x ∈ Br, let xj be the
j-th entry of x. If Sjp(x) = k, 0 ≤ k ≤ q, then we have∣∣xj − (ajp(x) + ajp(x)

)
/2
∣∣ = min

q∈Qk
|xj − q|,

where Qk :=
{
r(2i− 1)/2k

∣∣ − 2k−1 + 1 ≤ i ≤ 2k−1
}

.

Proof A.3 (Proof of Lemma A.3) If Sjp(x) = k, by the construction of random tree partition, we have(
ajp(x) + ajp(x)

)
/2 ∈ Qk. (A.7)

By the definition of Qk, for any q∗ ∈ Qk, there holds
∣∣q∗ − (ajp(x) + ajp(x)

)
/2
∣∣ ≥ r/2k−1. Since x ∈ Ap(x), we have∣∣xj − (ajp(x) + ajp(x)

)
/2
∣∣ ≤ r/2k. (A.8)

Therefore, using the triangular inequality, we obtain

|xj − q∗| ≥
∣∣∣∣xj − (ajp(x) + ajp(x)

)
/2
∣∣− ∣∣q∗ − (ajp(x) + ajp(x)

)
/2
∣∣∣∣ ≥ r/2k.

This together with (A.8) implies that |xj − q∗| ≥
∣∣xj − (ajp(x) + ajp(x)

)
/2
∣∣ holds for any q∗ ∈ Qk. Combining this with

(A.7), we get ∣∣xj − (ajp(x) + ajp(x)
)
/2
∣∣ = min

q∈Qk
|xj − q|,

which leads to the desired assertion.

B.2. Proof of Results for f ∈ C0,α

In this subsection, we present the proofs related to Section 3.2 and Section A.1, where the true density f ∈ C0,α.

B.2.1. PROOF RELATED TO SECTION A.1.1

Proof A.4 (Proof of Proposition 1) By Cauchy-Schwarz inequality and the fact fpP,t(x) are i.i.d, there holds

‖fP,E − f‖2L2(ν)
=

∥∥∥∥ 1T
T∑
t=1

(
fpP,t − f

)∥∥∥∥2
L2(ν)

≤ 1

T

T∑
t=1

∥∥fpP,t − f∥∥2L2(ν)
=
∥∥fpP − f∥∥2L2(ν)

. (A.9)

The assumption f ∈ C0,α implies that for any x ∈ Br, there holds

EPZ

(
fpP(x)− f(x)

)2
= EPZ

(
1

µ(Ap(x))

∫
Ap(x)

f(x′) dx′ − f(x)
)2

= EPZ

(
1

µ(Ap(x))

∫
Ap(x)

(
f(x′)− f(x)

)
dx′
)2

≤ EPZ

(
cLdiam

(
Ap(x)

)α)2
= c2LEPZdiam

(
Ap(x)

)2α
. (A.10)

According to Lemma A.2, (A.10) can be further bounded by

EPZ

(
fpP(x)− f(x)

)2 ≤ c2L(2r)2αd exp((2−2α − 1)p/d
)
.

Taking expectation with respect to PX , we have

‖fpP − f‖
2
L2(ν)

≤ c2L(2r)2αd exp
(
(2−2α − 1)p/d

)
.

This together with (A.9) yields the assertion.
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B.2.2. PROOF RELATED TO SECTION A.1.2

Proof A.5 (Proof of Proposition 2) By Cauchy-Schwarz inequality and the fact that fpD,t(x)−f
p
P,t(x) are i.i.d, there holds

‖fD,E − fP,E‖2L2(ν)
=
∥∥ 1
T

T∑
t=1

(
fpD,t − f

p
P,t

)∥∥2
L2(ν)

≤ 1

T

T∑
t=1

∥∥fpD,t − fpP,t∥∥2L2(ν)
=
∥∥fpD − fpP∥∥2L2(ν)

. (A.11)

It is clear to see that

EPZEPn
(
fpD(x)− f

p
P(x)

)2
= EPZ

P
(
Ajp(x)

)(
1− P(Ajp(x))

)
nµ2(Ajp(x))

≤ EPZ

P
(
Ajp(x)

)
nµ2(Ajp(x))

= EPZ

2p∑
j=0

P
(
Ajp
)

nµ2(Ajp)
· 1Ajp(x).

Fubini’s theorem implies∫
Br

EPR,Z⊗Pn
(
fpD(x)− f

p
P(x)

)2
dµ(x) = EPZ

∫
Br

p∑
j=0

P
(
Ajp
)

nµ2(Ajp)
1Ajp(x) dµ(x) = EPZ

2p∑
j=0

P
(
Ajp
)

nµ(Ajp)
≤ ‖f‖∞ ·

2p

n
.

In other words, we have ‖fpD − f
p
P‖2L2(ν)

≤ ‖f‖∞ · 2p/n, where ν := µ⊗ PZ ⊗ Pn. This together with (A.11) yields the
assertion.

B.3. Proof of Results for f ∈ C1,α

B.3.1. PROOF RELATED TO SECTION A.2.1

The next proposition presents the upper bound of the L2-distance between the random forest density estimation fP,E and
the density function f in the Hölder space C1,α.

Proof A.6 (Proof of Proposition 3) According to the random tree splitting rule, the split coordinates {Zt}Tt=1 are i.i.d.
Therefore, for any x ∈ Br, the expected approximation error term can be decomposed as follows:

EPZ

(
fP,E(x)− f(x)

)2
= EPZ

(
(fP,E(x)− EPZ (fP,E(x))) + EPZ (fP,E(x))− f(x))

)2
= VarPZ (fP,E(x)) + (EPZ (fP,E(x))− f(x))2 = T−1 ·VarPZ (f

p
P,1(x)) +

(
EPZ (f

p
P,1(x))− f(x)

)2
. (A.12)

For the first term in (A.12), we have

VarPZ
(
fpP(x)

)
= EPZ

(
fpP(x)− EPZ (f

p
P(x))

)2 ≤ EPZ

(
fpP(x)− f(x)

)2
= EPZ

(
1

µ(Ap(x))

∫
Ap(x)

f(x′) dx′ − f(x)
)2

= EPZ

(
1

µ(Ap(x))

∫
Ap(x)

(
f(x′)− f(x)

)
dx′
)2

≤ EPZ

(
cLdiam

(
Ap(x)

))2
. (A.13)

According to Lemma A.2, the first term is further bounded by

VarPZ
(
fpP(x)

)
≤ c2L(2r)4d exp(−0.75p/d). (A.14)

We now consider the second term in (A.12). Taking the first-order Taylor expansion of f(x′) at x, we get

f(x′)− f(x) =
∫ 1

0

(
∇f(x+ t(x′ − x))

)>
(x′ − x) dt. (A.15)

Therefore, the assumption f ∈ C1,α implies

∣∣f(x′)− f(x)−∇f(x)>(x′ − x)∣∣ = ∣∣∣∣∫ 1

0

(
∇f(x+ t(x′ − x))−∇f(x)

)>
(x′ − x) dt

∣∣∣∣
≤
∫ 1

0

cL(t‖x′ − x‖2)α‖x′ − x‖2 dt ≤ cL‖x′ − x‖1+α.
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Now, by the triangle inequality, we have∣∣∣∣EPZ

(
1

µ(Ap(x))

∫
Ap(x)

(f(x′)− f(x))dx′
)∣∣∣∣− ∣∣∣∣EPZ

(
1

µ(Ap(x))

∫
Ap(x)

∇f(x)>(x′ − x)dx′
)∣∣∣∣

≤
∣∣∣∣EPZ

(
1

µ(Ap(x))

∫
Ap(x)

(f(x′)− f(x)−∇f(x)>(x′ − x))dx′
)∣∣∣∣

≤ EPZ

(
cL

µ(Ap(x))

∫
Ap(x)

‖x′ − x‖1+αdx′
)
≤ cLEPZ (diam(Ap(x))

1+α).

Then we get

∣∣EPZ (f
p
P,1(x))− f(x)

∣∣ ≤ ∣∣∣∣EPZ

(
1

µ(Ap(x))

∫
Ap(x)

∇f(x)>(x′ − x)dx′
)∣∣∣∣+ cLEPZ (diam(Ap(x))

1+α). (A.16)

Since ‖∇f‖ ≤ cL, we find ∣∣∣∣∫
Ap(x)

∇f(x)>(x′ − x)dx′
∣∣∣∣ ≤ cL d∑

j=1

∣∣∣∣∫
Ap(x)

(x̃′j − x̃j)dx̃′
∣∣∣∣, (A.17)

where x̃j and x̃′j denote the j-th entries of the vectors x̃ and x̃′ respectively.

Recall that ajp(x) and ajp(x) denotes the minimum and maximum values of the j-th entries of points in Ap(x). Moreover,
by the construction of the random tree, there holds Ap(x) = [a1p(x), a

1
p(x)] × · · · × [adp(x), a

d
p(x)]. Since |x̃′j − x̃j | ≤

ajp(x)− ajp(x) for any x̃′, x̃ ∈ Ap(x) and 1 ≤ j ≤ d. Consequently, we get∣∣∣∣∫
Ap(x)

(x̃′j − x̃j) dx̃′
∣∣∣∣ ≤ ∫

Ap(x)

|x̃′j − x̃j | dx̃′ ≤ (ajp(x)− ajp(x))
∫
Ap(x)

dx̃′

= µ(Ap(x))(a
j
p(x)− ajp(x)) = µ(Ap(x))A

j
p(x). (A.18)

Combining (A.17) with (A.18), we obtain∣∣∣∣∫
Ap(x)

∇f(x)>(x′ − x) dx′
∣∣∣∣ ≤ cLµ(Ap(x)) d∑

j=1

Ajp(x). (A.19)

Combining this with (A.16), we obtain

∣∣EPZ (f
p,1
P (x))− f(x)

∣∣ ≤ cLEPZ

( d∑
j=1

Ajp(x)

)
+ cLEPZ (diam(Ap(x))

1+α
). (A.20)

By (A.3), we have

EPZ

( d∑
j=1

Ajp(x)

)
=

d∑
j=1

EPREPZ (A
j
p(x)|R) = 2rd(1− 0.5/d)p ≤ 2rd exp(−0.5p/d). (A.21)

Moreover, Lemma A.2 implies

EPZ (diam(Ap(x))
1+α

) ≤ (2r)1+αd exp
(
(2−α−1 − 1)p/d

)
. (A.22)

Combining (A.21), (A.22) with (A.20), we get∣∣EPZ (f
p,1
P (x))− f(x)

∣∣ ≤ 2cLdr exp(−0.5p/d) + cL(2r)
1+αd exp

(
(2−α−1 − 1)p/d

)
≤ cLd(2r)2 exp(−0.5p/d). (A.23)
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Combining (A.14), (A.23) with (A.12), we find

EPZ

(
fP,E(x)− f(x)

)2 ≤ c2L(2r)4d2T−1 exp(−0.75p/d) + 4c2L(2r)
2d+2d2 exp(−p/d).

Taking expectation with respect to the Lebesgue measure µ, we get

‖fP,E(x)− f(x)‖2L2(ν)
≤ c2L(2r)4d2T−1 exp(−0.75p/d) + 4c2L(2r)

2d+2d2 exp(−p/d),

which leads to the desired assertion by exchanging the order of integration.

Proof A.7 (Proof of Proposition 4) According to the random tree splitting rule, split coordinates {Zt}Tt=1 are i.i.d. Thus
we have

EPZ

(
fD,E(x)− fP,E(x)

)2
= EPZ

( 1

T

T∑
t=1

(
fpD,t(x)− f

p
P,t(x)

))2
≤ EPZ

1

T

T∑
t=1

(
fpD,t(x)− f

p
P,t(x)

)2
= EPZ

(
fpD(x)− f

p
P(x)

)2
,

where the inequality holds due to the Cauchy-Schwarz inequality. Let Ap = (Ajp)j∈Ip be the random tree partition with p
splits. Then we have

EPR,Z⊗Pn
(
fD,E(x)− fP,E(x)

)2 ≤ EPZEPn
(
fpD(x)− f

p
P(x)

)2
= EPZ

P
(
Ajp(x)

)(
1− P(Ajp(x))

)
nµ2(Ajp(x))

≤ EPZ

P
(
Ajp(x)

)
nµ2(Ajp(x))

= EPZ

2p∑
j=0

P
(
Ajp
)

nµ2(Ajp)
· 1Ajp(x).

Fubini’s theorem implies∫
Br

EPR,Z⊗Pn
(
fpD(x)− f

p
P(x)

)2
dµ(x) = EPZ

∫
Br

p∑
j=0

P
(
Ajp
)

nµ2(Ajp)
1Ajp(x) dµ(x) = EPZ

2p∑
j=0

P
(
Ajp
)

nµ(Ajp)
≤ ‖f‖∞ ·

2p

n
.

In other words, we have ‖fD,E − fP,E‖2L2(ν)
≤ ‖f‖∞ · 2p/n, where ν := µ⊗ PZ ⊗ Pn. This proves the assertion.

B.3.2. PROOF RELATED TO SECTION A.2.2

We first show proofs for lower bound of approximation error for random tree density estimation.

Proof A.8 (Proof of Proposition 5) For any j ∈ Ip and x ∈ Aj , we have

fpP(x) =
P(Aj)

µ(Aj)
=

1

µ(Aj)

∫
Aj

f(x′) dx′.

Since f(x) ∈ C1,α, f is differentiable. Then according to the mean-value theorem, there exists xj ∈ Aj such that

f(xj) =
1

µ(Aj)

∫
Aj

f(x′) dx′ = fpP(x).

Consequently, we have∫
Br

(fpP(x)− f(x))
2dx =

∑
j∈Ip

∫
Aj

(fpP(x)− f(x))
2 dx =

∑
j∈Ip

∫
Aj

(f(xj)− f(x))2 dx. (A.24)

Let g(t) := f(xj + t(x− xj))− f(xj), 0 ≤ t ≤ 1. Since f(x) ∈ C1,α, g(t) is differentiable at every t ∈ (0, 1). According
to Lagrange’s mean value theorem, there exists t∗ ∈ (0, 1) such that

g(1)− g(0) = g′(t∗) = ∇f(xj + t∗(x− xj))>(x− xj).
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Let ξ∗j,x := xj + t∗(x− xj). Then we have

(f(xj)− f(x))2 = (∇f(ξ∗j,x)(x− xj))>∇f(ξ∗j,x)(x− xj) = ‖∇f(ξ∗j,x)‖2‖x− xj‖2.

Since ‖∇f‖ ≥ cf , we have (f(xj)− f(x))2 ≥ c2f‖x− xj‖2. This together with (A.24) yields∫
Br

(fpP(x)− f(x))
2dx ≥ c2f

∑
j∈Ip

∫
Aj

‖x− xj‖2 dx

= c2f
∑
j∈Ip

d∑
i=1

∫
Aj

|xi − xji |
2 dx = c2f

d∑
i=1

∑
j∈Ip

∫
Aj

(xi − xji )
2 dx, (A.25)

where xji denotes the i-th entry of the vector xj . Let aij and aij be the minimum and maximum values of the i-th coordinates
of points in Aj . Then by the construction of the random tree partition, we have Aj = [a1j , a

1
j ]× · · · × [adj , a

d
j ]. Moreover, let

h(t) :=
∫
Aj

(xi − t)2 dx. Then by the iterated integral rule, we have

h(t) =
∏
s6=i

(asj − asj)
∫ aij

aij

(xi − t)2 dxi =
∏
s6=i

(asj − asj)
(
(aij − aij)t2 − 2t

∫ aij

aij

xi dxi +

∫ aij

aij

x2i dxi

)
≥ h

(
(aij + aij)/2

)
.

Consequently, we get ∫
Aj

(xi − xji )
2 dx = h(xji ) ≥ h

(
(aij + aij)/2

)
=

∫
Aj

(
xi − (aij + aij)/2

)2
dx.

This together with (A.25) implies∫
Br

(fpP(x)− f(x))
2dx ≥ c2f

d∑
i=1

∑
j∈Ip

∫
Aj

(
xi − (aij + aij)/2

)2
dx

= c2f

d∑
i=1

∑
j∈Ip

∫
Aj

(
xi − (aip(x) + aip(x))/2

)2
dx = c2f

∫
Br

d∑
i=1

(
xi − (aip(x) + aip(x))/2

)2
dx,

where aip(x) and aip(x) are the minimum and maximum values of the i-th coordinates of points in Ap(x). Therefore, we
obtain

EPZ

∫
Br

(fpP(x)− f(x))
2dx ≥ c2f

∫
Br

d∑
i=1

EPZ

(
xi − (aip(x) + aip(x))/2

)2
dx. (A.26)

Let Sip(x) be the number of times that Ap(x) is split on the i-th coordinate. According to Lemma A.3, if Sip(x) = k,
0 ≤ k ≤ q, then we have ∣∣xi − (aip(x) + aip(x))/2

∣∣ = min
q∈Qk

|xi − q|,

where Qk =
{
r(2j − 1)/2k

∣∣ − 2k−1 + 1 ≤ j ≤ 2k−1
}

. Therefore, we obtain

EPZ

(
xi − (aip(x) + aip(x))/2

)2
=

p∑
k=0

PZ(S
i
p(x) = k) min

q∈Qk
(xi − q)2.

This together with (A.26) implies

EPZ

∫
Br

(fpP(x)− f(x))
2 dx ≥ c2f

∫
Br

d∑
i=1

p∑
k=0

PZ(S
i
p(x) = k) min

q∈Qk
(xi − q)2 dx
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= c2f

d∑
i=1

( p∑
k=0

f(k, p, 1/d)

∫
Br

min
q∈Qk

(xi − q)2 dx
)
, (A.27)

where f(k, p, 1/d) =
(
p
k

)
( 1d )

k(1− 1
d )
n−k. By the definition of Qk, we have∫

Br

min
q∈Qk

(xi − q)2 dx = (2r)d−1
∫ r

−r
min
q∈Qk

(xi − q)2 dxi

= (2r)d−1 · 2k+1

∫ r

r−r/2k
(xi − (r − r/2k))2 dxi =

3(2r)d−1

2
· r

3

22k
.

This together with (A.27) implies

EPZ⊗µ(f
p
P(x)− f(x))

2 ≥ c2f
d∑
i=1

( p∑
k=0

2−2k · f(k, p, 1/d)
)

= 0.75c2fr
2d(2r)d(1− 0.75/d)p,

which completes the proof.

Then we present proofs for lower bound of sample error for random tree density estimation.

Proof A.9 (Proof of Proposition 6) Since H(x) = x is a identity map, for any fixed split coordinates Z = {Zi,j , 1 ≤
i ≤ p, 1 ≤ j ≤ 2i−1}, {Aj}j∈Ip forms a partition of Br, then for j ∈ Ip we define the random variable Nj by Nj :=∑n
i=1 1Aj (Xi). Since the random variables {1Aj (Xi)}ni=1 are i.i.d. Bernoulli distributed with parameter PX(x ∈ Aj), it

is clear to see that the random variable Nj is Binomial distributed with parameters n and PX(x ∈ Aj). Therefore, for any
j ∈ Ip, we have E(Nj) = n · PX(x ∈ Aj). Moreover, the random tree density estimator fpD can be defined by

fpD(x) =

{
Nj

nµ(Aj)
· 1Aj (x) if Nj > 0,

0 if Nj = 0.

Then we have

ED∼Pn
∫
Br

(
fpD(x)− f

p
P(x)

)2
dµ = ED∼Pn

(∑
j∈Ip

∫
Aj

(
fpD(x)− f

p
P(x)

)2)
dµ

=
∑
j∈Ip

1

µ(Aj)2

∫
Aj

EPn

(
Nj
n
− P(Aj)

)2)
dµ. (A.28)

Since for a fixed j ∈ Ip, there holds

EPn

(
Nj
n
− P(Aj)

)2

=
1

n2
EPnN

2
j −

2P(Aj)

n
EPnNj + P(Aj)

2

=
nP(Aj)(1− P(Aj)) + n2P(Aj)

2

n2
− 2nP(Aj)

2

n
+ P(Aj)

2 =
P(Aj)(1− P(Aj))

n

Therefore, together with (A.28), we have

ED∼Pn
∫
Br

(
fpD(x)− f

p
P(x)

)2
dµ =

∑
j∈Ip

1

µ(Aj)2

∫
Aj

P(Aj)(1− P(Aj))

n
dµ =

∑
j∈Ip

P(Aj)(1− P(Aj))

nµ(Aj)
.

By the assumption p ≥ ln(‖f‖∞2d+1rd)/ log 2, we have P(Aj) ≤ ‖f‖∞µ(Aj) = ‖f‖∞(2r)d/2p ≤ 1/2. Consequently,
we get

ED∼Pn
∫
Br

(
fpD(x)− f

p
P(x)

)2
dµ ≥ 1

2
·
∑
j∈Ip

P(Aj)

nµ(Aj)
=

2p

2d+1rdn
. (A.29)

Hence we prove the desired assertion.
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B.4. Proof Related to Section 3

Proof A.10 (Proof of Theorem 1) Proposition 1 and 2 yield that

‖fD,E − f‖2L2(ν)
= ‖fP,E − f‖2L2(ν)

+ ‖fD,E − fP,E‖2L2(ν)
≤ c2L(2r)2αd exp

(
(2−2α − 1)p

d

)
+ ‖f‖∞ ·

2p

n
, (A.30)

By choosing pn := d log n/(d log 2 + 1− 4−α), we then obtain

‖fD,E − f‖2L2(ν)
. n

− 1−4−α

d log 2+1−4−α ,

which proves the assertion.

Proof A.11 (Proof of Theorem 2) Proposition 3 and 4 yield

‖fD,E − f‖2L2(ν)
= ‖fP,E − f‖2L2(ν)

+ ‖fD,E − fP,E‖2L2(ν)

≤ c2L(2r)4d2T−1 exp(−0.75p/d) + 4c2L(2r)
2d+2d2 exp(−p/d) + ‖f‖∞ · 2p/n. (A.31)

By choosing pn := d log n/(1 + d log 2), Tn := n1/(4+4d log 2), we then obtain

‖fD,E − f‖2L2(ν)
. n−

1
d log 2+1 ,

which proves the assertion.

Let us consider the case T = 1 where RFDE reduce to the single base learner RTDE, the following theorem presents an
upper bound for the rate of RTDE.

Theorem A.12 Let (Ajp)j∈Ip be a random tree partition with depth T induced by splitting variable Z. Moreover, let fpD be
the RTDE estimator and assume that the true density f ∈ C1,α with support X ⊂ Br. Let (pn) be the sequence defined by
pn := d(0.75 + d log 2)−1 log n. Then we have

‖fpD − f‖
2
L2(ν)

. n−
0.75

d log 2+0.75 . (A.32)

Proof A.13 (Proof of Theorem A.12) The excess risk bound (A.31) with T = 1 and pn := d log n/(0.75+ d log 2) yields

‖fpD − f‖
2
L2(ν)

. n−
0.75

d log 2+0.75 ,

which proves the assertion.

Proof A.14 (Proof of Theorem 3) Recall the error decomposition (A.2). Applying Propositions 5 and 6, we get

‖fD,E − f‖2L2(ν)
≥

3c2fr
2d(2r)d

4dd/2

(
1− 3

4d

)p
+

2pdd/2

2d+1rdn
≥ c0n

log(1−0.75/d)
log 2−log(1−0.75/d) . (A.33)

if p ≥ p0 := dln(‖f‖∞2d+1rd)/ log 2e. On the other hand, if p ≤ p0, again by (A.2), we get

‖fD,E − f‖2L2(ν)
≥ ‖fP,E − f‖2L2(ν)

≥
3c2fr

2d(2r)d

4dd/2

(
1− 3

4d

)p0
:= c1. (A.34)

Combining (A.33) with (A.34), we find

EPn⊗PZ
(
RL,P(fD)−R∗L,P

)
≥ c0n

log(1−0.75/d)
log 2−log(1−0.75/d) ∨ c1,

which leads to the desired assertion.
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Table 3. Descriptions of synthetic datasets.

Type True (Marginal) Distribution

I fi := 0.7 · Beta(2, 10) + 0.3 ·Unif(0.6, 1.0)
II fi := 0.5 · Laplace(0, 0.5) + 0.5 ·Unif(2, 4)
III fi := Exp(0.5) for 1 = 1, . . . , d− 1 and fd := Unif(0, 5)

* Let fi as the marginal probability distribution of the i-th dimension. For Types I, II and III, the marginal distributions of the true
density are independent, and the marginal distributions are identical for Types II and III.

(a) Type I (b) Type II (c) Type III

Figure 5. 3D plots of the synthetic distributions with d = 2.

C. Supplementary for Experiments
C.1. Descriptions of Synthetic Datasets

The detailed descriptions are shown in Table 3.

In order to give clear visualization of the distributions, we take d = 2 for instance, and give the 3D visualization of the
above four types of distributions in Figure 5, where x-axis and y-axis represent the 2-dimensional feature space and z-axis
represents the value of the density function.

C.2. Descriptions of Real Datasets

As follows are the datasets alphabetically listed, with the number of instances and features reported after preprocessing.

• Abalone: contains 4, 177 instances and 9 features with no missing values. The features are physical measurements of
abalone, which are originally designed for age predicting.

• Adult is also known as "Census Income" dataset. It contains 48, 842 instances with 6 countinuous and 8 discrete
attributes. Prediction task is to determine whether a person makes over 50K a year.

• Australian is an interesting dataset with a good mix of attributes, which contains continuous, nominal with both
small and large numbers of values. The dataset contains 690 instances with 6 numerical and 9 categorical attributes,
mainly concerning credit card applications.

• Breast-cancer is originally for predicting whether a cancer is recurrence event. It contains 675 instances of
dimension 11, describing the status of the tumors and the patients.

• Credit: the Credit Approval dataset, is a dataset of credit card applications, with 653 instances of dimension 16.

• Diabetes dataset comprises 768 samples and 9 features. The attributes concern about the medical records of patients,
consisting of 8 numerical features and 1 categorical feature.

C.3. Random Forest Density Estimation (RFDE) for Anomaly Detection

We conduct numerical experiments to make a comparison between our RFDE and several popular anomaly detection
algorithms such as the forest-based Isolation Forest (iForest) (Liu et al., 2008), the distance-based k-Nearest Neighbor
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(k-NN) (Ramaswamy et al., 2000) and Local Outlier Factor (LOF) (Breunig et al., 2000), and the kernel-based one-class
SVM (OCSVM) (Schölkopf et al., 2001), on 20 real-world benchmark outlier detection datasets from the ODDS library.
The detailed descriptions of these datasets can be found in Table 4. The measure for the performance evaluation is the area
under the ROC curve (AUC). For each method, we choose the best AUC performance when parameters go though their
parameter grids.

The implementation details are below: For our method, the grid of depth p is {1, 2, 3, 5, 10, 15, 20, 25, 30}. The number
of base learners T is set as 100. For iForest, LOF and OCSVM, we utilized the implementation of scikit-learn. For k-NN
and LOF, the parameter grid of number of neighbors k is {5, 10, 15, · · · , 45, 50}. As for iForest, we set the grid of the
number of trees to be {100, 500} and sub-sampling size to be 256. For OCSVM, we use RBF kernel with gamma grid
{0.001, 0.01, · · · , 1, 10}. The experimental results are reported in Table 5.

Table 4. Descriptions of Benchmark Datasets

Datasets n d #outliers(%) Datasets n d #outliers(%)

annthyroid 7200 6 534(7.42%) breastw 683 9 239(34.99%)
cardio 1, 831 21 176(9.61%) forestcover 286, 048 10 2747(0.96%)
glass 214 9 9(4.2%) http 567, 498 3 2211(0.39%)
ionosphere 351 33 126(35.90%) letter 1, 600 32 100(6.25%)
mammo. 11, 183 6 260(2.32%) mulcross 262, 144 4 26214(10.00%)
musk 3, 062 166 97(3.2%) pendigits 6, 870 16 156(2.27%)
pima 768 8 268(34.90%) satellite 6, 435 36 2036(32%)
shuttle 49, 097 9 3511(7.15%) smpt 95156 3 30(0.03%)
speech 3686 400 61(1.65%) thyroid 3772 6 93(2.5%)
vowels 1, 456 12 50(3.43%) wbc 129 13 10(7.7%)

Table 5. AUC performance on benchmark datasets
Datasets RFDE (Ours) k-NN iForest LOF OCSVM Lump HDBSCN AOM+VR

annthyroid 0.7646 0.7511 0.8209 0.7386 0.6749 0.8767 0.7119 0.6655
breastw 0.9938 0.9881 0.9884 0.4676 0.9789 0.9882 0.9882 0.9265
cardio 0.8360 0.8744 0.9297 0.6790 0.9473 0.8922 0.8775 0.8682
forestcover 0.9168 0.8950 0.8792 0.5778 0.6565 0.8258 0.7668 0.9232
glass 0.8599 0.8683 0.7041 0.8385 0.8748 0.6049 0.7396 0.6763
http 0.9947 0.2309 0.9999 0.3675 0.9953 0.9964 0.3724 0.4219
ionosphere 0.9398 0.9294 0.8520 0.9023 0.9382 0.7431 0.9255 0.8451
letter 0.8384 0.9071 0.6258 0.9120 0.6860 0.3480 0.7735 0.806
mammo. 0.8501 0.8527 0.8631 0.7568 0.8721 0.8615 0.709 0.7992
mulcross 0.9474 0.0013 0.9642 0.5848 0.9778 0.9989 0.7868 0.3434
musk 1.0000 0.9367 1.0000 0.5476 0.5281 0.9632 0.3815 0.8651
pendigits 0.9558 0.8607 0.9538 0.5437 0.9607 0.8971 0.6115 0.8342
pima 0.6927 0.6437 0.6796 0.6162 0.5842 0.6600 0.7283 0.6376
satellite 0.6850 0.7374 0.7041 0.5701 0.7064 0.6395 0.5717 0.6602
shuttle 0.9806 0.8004 0.9974 0.6035 0.9918 0.9861 0.5289 0.6786
smtp 0.9378 0.9338 0.9076 0.9299 0.7752 0.8156 0.8817 0.8343
speech 0.6255 0.4862 0.4782 0.6247 0.5564 0.5083 0.4832 0.4839
thyroid 0.9582 0.9510 0.9785 0.9464 0.9491 0.9714 0.9482 0.9353
vowels 0.9548 0.9749 0.7588 0.9467 0.9153 0.6968 0.9523 0.9419
wbc 0.9689 0.9501 0.9412 0.9460 0.9469 0.9292 0.949 0.9406
Rank Sum 55 78 72 116 82 91 108 118

* The best results are marked in bold, the second best results are marked in underline.
** The last row shows the summation of ranks for each method, which is the lower the better.


