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Phase diagram of the square 2D Ising lattice with nearest
neighbor and next-nearest neighbor interactions
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Abstract
We have determined the temperature dependent phase diagram of the
square 2D Ising lattice with anisotropic nearest neighbor (Jx,y) and
isotropic next-nearest neighbor (Jd) interactions. The phase boundaries
between the various ordered phases (ferromagnetic, antiferromagnetic
and striped antiferromagnetic) and the disordered phase
(paramagnetic) are obtained by considering the domain wall free
energy. Although the phase boundary equations are not exact, they
provide a very accurate description when the nearest neighbor
interactions are stronger than the next-nearest neighbor interaction.
The square 2D Ising lattice does not exhibit a phase transition when

Jd = − 1
2
|Jx,y|min if Jx and Jy have the same sign or Jd = 1

2
|Jx,y|min if Jx

and Jy have opposite signs.
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Introduction

In Nature one often encounters phase transitions, i.e. transformations of a material from one state
to another state. For example at 0°C and under atmospheric conditions water undergoes a tran-
sition from its liquid state to its solid state (ice). Despite the omnipresence of phase transitions
in real life, mathematical descriptions of phase transitions are often lacking because of their com-
plexity. In fact there are only a handful of phase transitions that have been exactly solved using stat-
istical mechanical methods [1]. One of the most simplest models is the so-called Ising model. In
1925 Ernst Ising proposed a simple model to describe ferromagnetism [2]. He considered a one-
dimensional chain of spins. The spin, s, can only take two values, s = +1 or s = −1, where
s = +1 refers to the spin pointing upwards and s = −1 refers to the spin pointing downwards.
The spins only interact with their nearest neighbors via a coupling constant J. Neighboring spins
prefer to align in the ferromagnetic (or antiferromagnetic) configuration if J . 0 (or J , 0).
Ising found that the spin chain is only ordered at T = 0 K and disordered at any nonzero tempera-
ture. This result is easy to understand if one considers the free energy, F = E− TS, that is required
to flip a single spin somewhere in the infinite long chain. The free energy, F, that is required to flip a
single spin is 2J − kTln(N). Irrespective of the actual strength of the interaction between neighbor-
ing spins, the entropy term will always dominate as N � 1 (provided at least that T . 0 K) and
therefore the free energy for a spin flip is always negative.

Based on his findings for the one-dimensional (1D) system, Ising conjectured that also the two-
dimensional (2D) and three-dimensional (3D) Ising systems have a critical temperature of 0 K. In
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1936 Peierls [3] demonstrated, however, that the conjecture of Ising is not correct. The 2D and 3D
Ising systems have a nonzero phase transition temperature. Below the critical temperature, these
systems are in an ordered state (e.g. ferromagnetic or antiferromagnetic), whereas above the critical
temperature these systems are in a disordered (paramagnetic) state.

After Ising solved the 1D Ising model it took almost two decades before the square 2D Ising
model was solved by Lars Onsager [4]. Several years before Onsager published his seminal article,
Kramers and Wannier [5] already demonstrated that if the 2D Ising model with ferromagnetic iso-
tropic nearest neighbor interactions has an order–disorder phase transition, the transition tempera-
ture is uniquely defined by the relation sinh(2J/kbTc) = 1. In 1944 Onsager showed that the 2D
Ising model indeed exhibits an order–disorder phase transition. Onsager derived an exact
expression for the free energy per spin in the absence of an external magnetic field. Unfortunately,
the free energy per spin does not give a full understanding of all the properties of the system. There
are many interesting quantities such as the spontaneous magnetization, susceptibilities and corre-
lation functions, that cannot be directly deduced from the free energy per spin. Despite the long
history of Ising systems they still receive substantial attention [6–9]. To date more complicated
2D Ising lattices that involve interactions beyond nearest neighbor interactions or an external
field have not yet been solved exactly.

After the publication of the exaction solution of the square 2D Ising model with nearest neighbor
interactions by Onsager in 1944 more than 1500 papers have been appeared in the literature that
have either two-dimensional Ising or 2D Ising in their title. Particularly in the last few decades sev-
eral theoretical papers have been published on the 2D Ising model with interactions that go beyond
the nearest-neighbor interactions. Several of these papers [10,11] make use of the domain wall
method that has been put forward in 2006 [12], while others elaborate on parts of the phase diagram
[13,14], partition function zeros [15] or critical properties of the antiferromagnetic 2D Ising system
with nearest and next-nearest neighbor interactions [16]. More recently, Gagliardi and Pierre-Louis
[17] used the results of 2D Ising model with nearest and next-nearest neighbor interactions to study
the equilibrium island shape in crystal growth. Despite the fact that several studies deal with the
phase diagram of the square 2D Ising lattice with nearest and next-nearest neighbor interactions
a complete and accurate phase diagram is still lacking. It is the aim of this work to bridge this
gap and provide a complete phase diagram.

The 2D Ising model has been used to describe and interpret a large number of surface processes,
such order–disorder phase transitions [18], step diffusivity [19] and domain wall wandering [20,21].
In the vast majority of cases these systems are compared to the 2D Ising model with only nearest
neighbor interactions. The experimental systems are, however, usually more realistically modelled
by a 2D Ising model that also involves next-nearest neighbor interactions. These next-nearest
neighbor interactions are virtually in all cases weaker than the nearest-neighbor interactions.
The latter is very fortunate as the results obtained by our analysis are most accurate in the range
where the next-nearest neighbor interactions are weaker than the nearest neighbor interactions.

Here we will consider a square 2D Ising lattice with anisotropic nearest neighbor and isotropic
next-nearest neighbor interactions. We will derive the full phase diagram by using a method that
relies on the determination of the free energy of domain walls between two regions with opposite
spin order. The critical temperature is found by setting the domain wall free energy equal to zero.
This method is, unfortunately, not exact, but it provides very accurate results if the nearest-neigh-
bor interactions are not too weak. Furthermore, we show that under certain conditions the square
2D Ising lattice with nearest neighbor and next-nearest neighbor interactions does not exhibit a
phase transition.

Results and discussion

Let us consider a two-dimensional square lattice with anisotropic nearest neighbor (Jx,y) and isotro-
pic next-nearest neighbor (Jd) interactions. J . 0 and J , 0 refer to ferromagnetic and

2 H. J. ZANDVLIET



antiferromagnetic interactions, respectively. The Hamiltonian of this system is given by,

H = −Jx
∑
i

si,jsi+1,j − Jy
∑
j

si,jsi,j+1 − Jd
∑
i,j

(si,jsi+1, j+1 + si,jsi+1,j−1) (1)

We will first consider the 2D Ising square lattice with ferromagnetic nearest neighbor interactions,
see Figure 1. The dotted line refers to a domain boundary running along the x-direction (we will
refer to this direction as the (10) direction). This boundary separates two regions with opposite
spin orientation. The formation energy per unit length of a (10) domain boundary is 2Jy + 4Jd,
whereas the formation energy of a kink with a length of n units is given by [12],

Ekink, n = 2nJx + 4(n− 1)Jd (2)

The Ising lattice is ordered at T = 0 K if the domain wall formation energies (in any direction) are all
positive. As the (10) and (01) domain boundaries have the lowest formation energies we find that
this system is in its ferromagnetic phase if,

Jd . − 1
2
(Jx,y)min (3)

We can extend this analysis to the antiferromagnetic and striped antiferromagnetic phases. The
results are summarized in Table 1 and the T = 0 K phase diagram of the 2D Ising lattice with nearest
and next-nearest neighbor interactions is shown in Figure 2.

In the case of ferromagnetic or antiferromagnetic nearest neighbor interactions the ground state
switches from the (anti)ferromagnetic phase to one of the striped antiferromagnetic phases when

Figure 1. Schematic diagram of the square 2D Ising lattice with anisotropic ferromagnetic nearest neighbor (Jx,y) and isotropic
next-nearest neighbor (Jd) interactions The dotted line is a domain boundary running in the (10) direction that separates two
regions with opposite spin orientations.
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Jd , − 1
2
|Jx,y|min (see Figure 2(a)). In the case that one nearest neighbor interaction is ferromagnetic

and the other one antiferromagnetic, the striped antiferromagnetic phase switches to the ferromag-

netic or antiferromagnetic phase when Jd .
1
2
|Jx,y|min (see Figure 2(b)). The domain wall formation

energy of one of the (01)/(10) boundaries is always zero when Jd = − 1
2
|Jx,y|min if Jx and Jy have the

same sign or Jd = 1
2
|Jx,y|min if Jx and Jy have opposite signs. The latter implies that in these cases the

square 2D Ising lattice is in its paramagnetic phase at T = 0 K and therefore the system does not
exhibit a phase transition. It is important to mention here that the other two phase boundaries

Table 1. Energy per spin and domain wall formation energies for (10) and (10) directions of the (anti)ferromagnetic and striped
antiferromagnetic ground states.

Phase Energy per spin E(10) E(01)
F
+ + +
+ + +
+ + +

−2Jx − 2Jy − 4Jd
Jx + Jy . 0

2Jy + 4Jd
Jy + 2Jd . 0

2Jx + 4Jd
Jx + 2Jd . 0

AF
+ - +
- + -
+ - +

2Jx + 2Jy − 4Jd
Jx + Jy , 0

−2Jy + 4Jd
2Jd − Jy . 0

−2Jx + 4Jd
2Jd − Jx . 0

SAF1
- - -
+ + +
- - -

−2Jx + 2Jy + 4Jd
Jx − Jy . 0

−2Jy − 4Jd
2Jd + Jy , 0

2Jx − 4Jd
Jx − 2Jd . 0

SAF2
- + -
- + -
- + -

2Jx − 2Jy + 4Jd
Jx − Jy , 0

2Jy − 4Jd
Jy − 2Jd . 0

−2Jx − 4Jd
2Jd + Jx , 0

Figure 2. Two quadrants of the phase diagram of the square 2D Ising lattice with anisotropic nearest neighbor and isotropic
next-nearest neighbor interactions at T = 0 K. (a) Both nearest-neighbor interactions have the same sign (Jx,y . 0 or Jx,y , 0).
(b) The nearest-neighbor interactions have opposite signs (Jx . 0 and Jy , 0 or Jx , 0 and Jy . 0). F, AF and SAF1 and
SAF2 refer to ferromagnetic, antiferromagnetic and the two striped antiferromagnetic phases, respectively.
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between the ferromagnetic/antiferromagnetic phases and the two striped antiferromagnetic phases,
respectively, are different in the sense that the domain wall formation energies (in any direction) are
always positive and therefore these transitions are regular first-order transitions.

We now return to the ferromagnetic system and discuss how the system behaves at nonzero
temperatures. With increasing temperature, the number of kinks in the domain wall increases.
These kinks costs energy, but will also lead to an increase of the entropy. As the entropy term
increases with increasing temperature there is a temperature at which the entropy term outweighs
the kink formation energy term. At this temperature, Tc, the domain wall free energy vanishes and
the system undergoes a phase transition from the ordered phase to the disorder phase.

In order to find this critical temperature we need the partition sum of the domain boundary. The
partition sum of a (10) domain wall is given by [12],

Z(10) =
∑
i

e−Ei/kbT = e−(2Jy+4Jd)/kbT 1+ 2
∑1
n=1

e−(2nJx+4(n−1)Jd)/kbT

( )
(4)

The free energy of the (10) domain wall per unit length is,

F(10) = −kbTln(Z(10)) = 2Jy + 4Jd − kbTln 1+ 2e−2Jx/kbT

1− e−2(Jx+2Jd)/kbT

( )
(5)

The critical temperature can be found by setting the domain wall free energy equal to zero. We find,

e−2Jx/kbTc + e−2Jy/kbTc + e−2(Jx+Jy)/kbTc(2− e−4Jd/kbTc) = e4Jd/kbTc (6)

We can extend this analysis to the antiferromagnetic case by simply replacing Jx and Jy by −Jx and
−Jy. The formation energy per unit length of a (10) domain boundary is then −2Jy + 4Jd and the
formation energy of kink with a length of n units is given by Ekink, n = −2nJx + 4(n− 1)Jd. By fol-
lowing the same route as outlined above we find that the critical temperature is given by,

e2Jx/kbTc + e2Jy/kbTc + e2(Jx+Jy)/kbTc(2− e−4Jd/kbTc) = e4Jd/kbTc (7)

This expression is identical to Equation (6) apart from the change in sign of Jx and Jy. For the sake of
simplicity we first elaborate on the phase diagram of the 2D Ising lattice with isotropic nearest
neighbor and next-nearest neighbor interactions. By solving Equations (6) and (7) we find,

Jd/kbTc = − 1
4
ln

(2+ e−2|Jx|/kbTc)+
��������������������������
e−4|Jx|/kbTc + 4e−2|Jx|/kbTc

√

2e−2|Jx|/kbTc

[ ]
(8)

Please note that the + solution has to be ignored as for this value of Jd the ground state of the system
is not the ferromagnetic or antiferromagnetic phase.

So far, we have assumed that both nearest neighbor interactions are either ferromagnetic or anti-
ferromagnetic. However, with a few minor modifications Equation (6) can also be applied to the
striped antiferromagnetic systems. For the phase boundaries between the striped antiferromagnetic
phases and the paramagnetic phase Jy and Jd have to be replaced by by −Jy and−Jd, respectively, if
Jy . Jx (or Jx by −Jx and Jd by − Jd if Jy , Jx). For the striped antiferromagnetic phases we find

an asymptote when Jd = 1
2
|Jx,y|min. In Table 2 an overview of the phase boundary equations is given.

As our model is not exact, it is appropriate to elaborate on the applicability range of our results.
In Figure 3 we show several cross sections of the phase diagram. In Figure 3(a) the nearest neighbor
interaction is isotropic (Jy = Jx). The agreement between Equation (6) and the available numerical
results is very good [22–26] (the critical temperature deviates less than 1% from the available

numerical data when Jd ,
1
3
Jx). For a vanishing next-nearest neighbor interaction energy the

exact result of Onsager [4] is recovered. In the vicinity of the Onsager point, i.e.
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Jx
kbTc

= 1
2
ln

��
2

√
+ 1

( )
and Jd = 0 we use Equation (6) to determine the derivative

dJd
dJx

( )
Jd=0

. We

find,
dJd
dJx

( )
Jd=0

= − 1
2

��
2

√
[27]. This result is also exact, as it agrees with the value obtained from

spin–spin correlation functions [28]. For a vanishing nearest neighbor interaction energy the results
are, however, less accurate. If Jx = 0 the square 2D Ising lattice decouples into two interpenetrating
square 2D Ising lattices. These two interpenetrating square 2D lattices have an isotropic nearest

neighbor interaction Jd, resulting in a critical temperature
Jd

kbTc
= 1

2
ln

��
2

√
+ 1

( )
≈ 0.4406867... .

From Equation (6) we, however, find cosh
4Jd
kbTc

( )
= 2, which results in

Jd
kbTc

= 1
4
ln

��
3

√
+ 2

( )
≈ 0.3292394 . . . This result is obviously wrong, indicating that our model

fails to describe the regime near the decoupling properly [10]. Using renormalization group theory
van Leeuwen has shown [29] that the critical temperature in the vicinity of the decoupling regime

(Jx � 0) has a cusp and behaves as,
Jd

kbTc
/ Hc − Jx

kbTc

( )4/7

, where,Hc = 1
2
ln

��
2

√
+ 1

( )
. For a van-

ishing nearest neighbor interaction our model also reveals a cusp in the phase boundary between
the (anti)ferromagnetic phase and paramagnetic phase.

The fact that in the case of a vanishing next-nearest neighbor interaction the partition function,
i.e. Equation (4), is exact for all temperatures implies that we have the correct set of Boltzmann fac-
tors. This is remarkable as we have ignored overhangs and inclusions. Apparently the extra terms
perfectly cancel. However, when we introduce a next-nearest neighbor interaction the partition
function is not exact anymore. The latter is intimately related to the fact that the Boltzmann
terms of kinked and non-kinked contributions to the partition function are different for a non-
zero next nearest neighbor interaction. A kinked segment costs energy 2Jx + 2Jd, whereas a non-
kinked segment costs energy 2Jx + 4Jd. In our analysis, see Equation (4), the number of kinked seg-
ments per configuration is limited to the absolute minimum of only one and therefore the partition

Table 2. Phase boundary equations for the ferromagnetic, antiferromagnetic and striped antiferromagnetic phases.

Phase Jx , Jy , Jd Phase boundary equation

F
+ + +
+ + +
+ + +

Jx + Jy . 0
Jy + 2Jd . 0
Jx + 2Jd . 0

e−2Jx/kbTc + e−2Jy/kbTc + e−2(Jx+Jy )/kbTc (2− e−4Jd/kbTc ) = e4Jd/kbTc

AF
+ - +
- + -
+ - +

Jx + Jy , 0
2Jd − Jy . 0
2Jd − Jx . 0

e2Jx/kbTc + e2Jy/kbTc + e2(Jx+Jy )/kbTc (2− e−4Jd/kbTc ) = e4Jd/kbTc

SAF1
- - -
+ + +
- - -

Jx − Jy . 0
2Jd + Jy , 0
Jx − 2Jd . 0

e−2Jx/kbTc + e2Jy/kbTc + e−2(Jx−Jy )/kbTc (2− e4Jd/kbTc ) = e−4Jd/kbTc

SAF2
- + -
- + -
- + -

Jx − Jy , 0
Jy − 2Jd . 0
2Jd + Jx , 0

e2Jx/kbTc + e−2Jy/kbTc + e−2(−Jx+Jy )/kbTc (2− e4Jd/kbTc ) = e−4Jd/kbTc

6 H. J. ZANDVLIET



function Z(10) exhibits a maximum for Jd . 0 and a minimum for Jd , 0, respectively. This implies
that for Jd . 0 our method gives an upper bound on the critical temperature. Likewise for Jd , 0
our method results in a lower bound on the critical temperature.

In Figure 3(b) the nearest neighbor interactions are anisotropic (Jy = 2Jx). We observe the devel-
opment of a cusp in the phase boundary between the striped antiferromagnetic phase and the para-
magnetic phase. In Figure 3(c) one of the nearest neighbor interactions is set to zero (Jy = 0). Both
phase boundaries have a cusp for a vanishing nearest neighbor interaction. In addition, for a van-
ishing next-nearest neighbor interaction the system converts to a 1D Ising system. This system is
disordered at any non-zero temperature and does not exhibit a phase transition.

Finally, in Figure 3(d) we consider the case that the one nearest neighbor interaction is ferromag-
netic, while the other nearest neighbor interaction is antiferromagnetic. There is a cusp in the
striped antiferromagnetic to paramagnetic phase boundary, while there is no cusp in the (anti)fer-
romagnetic to striped antiferromagnetic phase boundary.

Conclusions

We have presented the full temperature dependent phase diagram of the square 2D Ising lattice with
anisotropic nearest neighbor and isotropic next-nearest neighbor interactions. The phase

Figure 3. Various cross sections of the phase diagram of the 2D square Ising model with anisotropic nearest neighbor (Jx,y) and
isotropic next-nearest neighbor (Jd) interactions (a) Jy = Jx (b) Jy = 2Jx (c) Jy = 0 and (d) Jy = −Jx . Please note that: (1) all phase
boundaries are invariant under the transformation Jx � −Jx and (2) the phase boundaries in panels (a) and (d) are mirror sym-
metric under the transformation Jd � −Jd .
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boundaries between the various ordered phases ((anti)ferromagnetic and striped antiferromag-
netic) and the paramagnetic phase are obtained by a statistical mechanics method that relies on
the determination of the domain wall free energy between two regions with opposite sign ordering.
The square 2D Ising lattice with anisotropic nearest neighbor and isotropic next-nearest neighbor

interactions does not exhibit a phase transition for Jd = − 1
2
|Jx,y|min if Jx and Jy have the same sign

or Jd = 1
2
|Jx,y|min if Jx and Jy have opposite signs.
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