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Abstract— In interacting with stiff environments through
teleoperated systems, time delays cause a mismatch between
haptic feedback and the expected feedback by the operator.
This mismatch causes artefacts in the feedback, which decrease
transparency, but so does filtering these artefacts. Through
modelling of operator stiffness and the expected feedback force
with EMG, the artifacts can be selectively filtered without loss of
transparency. We developed several feedback modulation tech-
niques to bring the feedback force closer to the expected force:
1) the average between the modelled operator force and the
feedback force, 2) a low pass filter and 3) a scaling modulation.
To control for overdamping, a transparency check is included.
We show that the averaging approach yields significantly better
contacts than unmodulated feedback. None of the modulation
algorithms differ significantly from the unmodulated feedback
in transparency.

I. INTRODUCTION

Teleoperation provides an intuitive tool that allows interac-

tion with a remote environment. A teleoperation architecture

is generally composed of a leader (a haptic device driven by

the user) and an follower (a robotic device that interacts with

the remote environment) connected through a communication

channel, which allows the information exchange [1]. An

effective teleoperation setup requires precise leader position

tracking by the follower and a clear force feedback signal

to ensure adequate dexterity and intuitiveness. However, the

transparency requirements clash with the stability. For the

sake of safety, stability must be ensured at the cost of

transparency and many algorithms were developed to ensure

this [2]–[5]. Performance of the control architecture can be

improved by implementing solutions like position drift error

compensation [6] or force-reference transparency enhancing

solutions [7]. In a real implementation of a teleoperation

architecture (e.g. for a disaster scenario response, like the

one proposed in [8]), problems may arise when interacting

with a stiff environment.

In particular, in Position-Force (PF) architectures inter-

acting with stiff environments, the force feedback signal

is delayed, which results in two possible scenarios. 1) As

the operator pushes a follower against a stiff environment

through manipulation of a leader, the follower makes contact

with the environment before the leader can display a force
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Fig. 1. The ‘bounce’ effect visible as dips in force as contact is made,
with an ideal contact outlined in red.

to the operator. The lack of feedback causes the operator to

continue applying force in order to further move the follower

to make contact. This increases the force with which the

follower pushes on the environment and in turn increases the

feedback force, which causes an unexpectedly large force

on the operator. As the contact has been established for

longer than the operator was aware of, the feedback force

will be displayed for longer than expected and with an

unexpected amplitude. 2) If the operator stopped their effort

and awaited the feedback without continued pushing of the

leader, the stiffness of the operator’s arm will decrease, as

it is motionless in free space. This decreased arm stiffness

causes a mismatch between the arm stiffness and the feed-

back force. This phenomenon decreases task performance

while the operator attempts a transition from free space to a

constrained contact with a stiff environment (hard contact),
which is an often required task in teleoperation scenarios.

Both these situations are due to the delay in the feedback

channel and/or due to a mismatch in that delay.

The mismatch between the feedback force and the operator

impedance causes the operator to be pushed back along with

the leader, in some cases past the point in space where the

contact was first established. This in turn causes the follower

to move away from the environment. This failed transition

between free space and a stable contact is referred to as a

‘bounce’ in this paper. This effect is clearly visible in figure

5 in Heck et al. [9], where an undamped contact transition

leads to multiple bounces and is also visualised in figure 1

in this paper. The bounce effect is distinct from instabilities,

which can cause similar effects, but differs from it because

the mismatch between the human operator stiffness and the

feedback force causes the bounce, not a force gain due to

the architecture. The bounce problem has been reported in

by many works in litterature [10], [11]. However, to the

best knowledge of the authors, no specific solutions were
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Fig. 2. Communication channels of the position force leader as used in this study, with feedback modulation.

proposed to address this problem.

These bounce effects can be greatly reduced by smoothing

the force feedback displayed to the operator (e.g. [11] pro-

posed over-damping the system to eliminate these bounces,

without taking into account the operator state), giving the

operator time to reestablish the correct stiffness to counteract

the applied force at a cost in transparency (stiff environment

may appear more compliant). Therefore, we propose three

dynamic smoothing algorithms that only dampen the contact

when there would otherwise be a bounce, improving stiff

environment contact tasks effectiveness by facilitating a

stable contact at a minimal loss of transparency. The impact

on stability of this selective damping is not addressed and

we assume an already stable PF architecture. To establish the

effectiveness of these algorithms in decreasing the bounces,

the contact shape is compared to an ideal contact shape in

which no bounces are present, as visible by the red plot

in figure 1, under each modulation condition. To assess the

transparency of the modulation algorithms and to control for

an overly large amount of damping, which decreases trans-

parency, the ability of the operator to distinguish between a

stiff and compliant environment is measured.

The paper is organized as follows: relevant related work is

discussed in section II, the feedback modulation algorithms

are outlined in section III and the study design section IV.

The results are presented in section V and discussed in

section VI.

II. RELATED WORK

Previous works aiming to improve transparency include

adaptive impedance [12] and adaptive admittance [13]

schemes, which improved tracking errors and intuitiveness

by dynamically altering stiffness parameters which make the

operation less cumbersome in free space and more precise

in contact. In tele-impedance control, the impedance of

the human arm is matched to the follower by estimating

the arm impedance of the operator with EMG sensors and

mimicking this on the follower [14]. The stiffness of the

operator can be estimated by observing joint torques [15]

or muscle activation [14]. Muscle activation measures have

been used successfully for operator impedance estimation.

Traditional wired electrode setups were used by [14], [16],

[17] to measure muscle activity, but [18], [19] used wearable

EMG sensors successfully. [14] use a simple linear mapping

to relate muscle activation to stiffness, [18]–[20] use co-

contraction as a direct stiffness indication, [16] uses a force

model based on Stiffness Trend Index (STI, from [15])

to estimate force based on EMG values and velocity. All

these approaches have in common that they assume the arm

impedance does not change over the course of the time

delay, and that as such the feedback force matches the

arm impedance as it is displayed to the operator. As the

impedance of the operator and follower are the same, the

operator will receive a feedback force which fits the stiffness

of the arm and no bounce effect will occur. However, in the

presence of large time delays, the operator arm impedance

can change, which causes a mismatch and consequently

may cause a bounce. This work builds on the impedance

estimation methods used in [15], [18]–[20] to estimate the

impedance of the operator after the delayed feedback has

arrived at the operator to match the feedback to the operator

impedance.

III. FEEDBACK MODULATION

In a PF teleoperation architecture the leader commands a

position to the follower and the follower sends a reference

force from a sensor back. When providing the user with

the force directly from the sensor (referred to as raw force
from now on), the user’s stiffness is not taken into account.

The arm stiffness provides an indirect measure of the force

expected by the user and usually depends on the visual

feedback and on past experiences. This expected force can

be used as additional information to enhance the feedback to

the user. In this section, we present three algorithms which

modulate raw force using EMG-based estimated arm stiffness

to take into account what the user expects. The objective is

to provide the user with the best feedback information to

accomplish a certain task. The modulation algorithms are

developed to accomplish a 1-DoF task, but can be expanded

to cover more degrees of freedom at the cost of greater

complexity in terms of estimated stiffness. A schematic rep-

resentation of the architecture is shown in figure 2. It should

be noted that the force feedback communication channel does

not exhibit time delay, thus the architecture is assumed to

be stable (neglecting quantization and discretization effects)

and only the quality of the feedback needed to accomplish a

certain task is investigated in this paper. However, in order

for bounces to occur, visual feedback and force feedback

must be made asynchronous. In this way, no delay in the

communication channel (but on visual feedback channel,

see figure 2) guarantees a stable architecture and subject to

bounces that cannot be confused with instability.

The feedback modulation algorithms are named Average,

Scale and Low-Pass Filter. The first two algorithms require
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a stiffness model (described below).

A. Stiffness model

The stiffness estimate is based on flexor (f ) and extensor

(e) EMG values which were low-pass (Butterworth) filtered

to 2 Hz, biased to be relative to the initial value and normal-

ized [18], [20]. The shared component of the activation εi(t)
of antagonistic muscles is defined as the co-contraction η(t).
εmini

and εmaxi
are the minimum and maximum muscle

activation levels collected during the EMG calibration. Time

dependence is omitted for the sake of readability.

ε̂i = max

(
0,

εi − εmini

εmaxi − εmini

)
with i = f, e

η = min (ε̂f , ε̂e)

(1)

Minimum and maximum muscle activations are recorded

during a user-dependent calibration phase (see section IV-

A), along with minimum (ηmin) and maximum (ηmax) co-

contraction levels.

B. Feedback Modulation Strategies

The following strategies modulate the raw force (Fr) on

the base of the co-contraction η. The output is a modulated

force Fout which is commanded to the leader and then

displayed to the user. All strategies have sampling rate dt =
1

1000 [s]. A maximum displayable force FMAX = 10 [N ] is

assumed due to hardware limitations (see section IV).

1) Average: The average strategy computes an average

between the raw force and the expected force. The force

model presented in [16] was used to estimate the expected

force the participant can be subjected to with acceptable

deflection from the co-contraction value:

k̂h(t) = α · η(t) + β [N/m]→ estimated stiffness

b̂h(t) = γ · η(t) + δ [Ns/m]→ estimated damping

⇒ Fm(t) = k̂h(t) ·Dx(t)− b̂h(t) · ẋ(t) [N ]
(2)

where Dx(t) = (x(t) − x(t − 1)) denotes a position

difference, ẋ(t) a velocity and α, β, γ and δ are user-

specific factors to be identified (see section IV-A). Position

difference, velocity and force are recorded along with the

EMG co-contraction signal for a certain amount of time T .

Then, a linear regression problem is solved:

⎡
⎢⎢⎢⎣
F0

F1

...

FT

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣
η0 ·Dx0 Dx0 −η0 · ẋ0 −ẋ0

η1 ·Dx1 Dx1 −η1 · ẋ1 −ẋ1

...
...

...
...

ηT ·DxT DxT −ηT · ẋT −ẋT

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎣
α
β
γ
δ

⎤
⎥⎥⎦

⇒

⎡
⎢⎢⎣
α
β
γ
δ

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣
η0 ·Dx0 Dx0 −η0 · ẋ0 −ẋ0

η1 ·Dx1 Dx1 −η1 · ẋ1 −ẋ1

...
...

...
...

ηT ·DxT DxT −ηT · ẋT −ẋT

⎤
⎥⎥⎥⎦

+ ⎡
⎢⎢⎢⎣
F0

F1

...

FT

⎤
⎥⎥⎥⎦
(3)

where subscripts indicate time instants. The average mod-

ulation condition averages between the estimated force the

operator is able to withstand and the raw force using an

empirically chosen weight function w(t) that depends on the

co-contraction level:

Fout(t) = B(t) · (w(t) · Fr(t)+

(1− w(t) · Fm(t)) + i(t) + 0.5 · Fr(t) [N ]

w(t) =
e2·η(t) − 1

e2 − 1
[ ]→ weight

(4)

where i(t) is an integral correction and B(t) is a scaling

correction:

E(t) = Fr(t)− Fout(t) [N ]

i(t) = dt · k · E(t− 1) + i(t− 1) [N ]→ integrator

B(t) =
FMAX − 0.5 · Fr(t)− i(t)

FMAX
[ ]→ scaling factor

(5)

with k = 5 [1/s], which is an empirically set gain. The

integral term is a correction which was added to ensure that

the steady state value measured by the sensor is reached.

If during a contact the user does not keep contracting their

muscles, the modulated algorithm could provide them with

a force which is lower than the sensor force. Thus, after

a first modulated strike, the force should keep increasing

up to the sensed value and this is realized with the integral

correction. The term B(t) is a scale to normalize the output

force according to the maximum displayable force.

2) Scale: The scale strategy scales the raw force with the

co-contraction level, yielding the presented output force:

Fout(t) = B(t) · w(t) · Fr(t) + i(t) + 0.5 · Fr(t) [N ]

w(t) =
e2·η(t) − 1

e2 − 1
[ ]→ weight

(6)

Correction terms are the same used in equation 5.

3) Low-Pass Filter (LPF): The LPF modulation modifies

the frequency contribution of the raw force based on the

co-contraction. As the relation between the muscle co-

contraction level and force is approximately linear [21],

the co-contraction level η(t) linearly maps the filter cutoff

frequency between ωmin = 1Hz and ωmax = 20Hz. This

bandwidth was chosen in as it relates to the bandwidth of

the kinesthetic perception capabilities of human body [22].

Fout(t) = Fout(t− 1) + (Fr(t)− Fout(t− 1))·
(1− e−dt·2π·ω(t)) [N ]⎧⎪⎨

⎪⎩
m = ωmax−ωmin

ηmax−ηmin
[rad/(V · s)]→ slope

q = ωmax −m · ηmax [rad/s]→ offset

ω(t) = m · η(t) + q [rad/s]→ cutoff frequency

(7)

In this formulation, no integral correction is needed since

the raw force is only modified in terms of frequency and not

in amplitude.
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IV. METHOD

A. EMG calibration

To obtain individualized parameters for the force model

used in the averaging modulation algorithm, a short cal-

ibration was performed. Using the Omega 7 leader with

constraints in place to limit the movement to 1 DoF, subjects

pushed against a virtual wall with stiffness 500Nm with the

pushing motion which was shown in a video beforehand.

Over the course of 60 seconds, the cocontraction values,

displayed force and position relative to the virtual wall were

recorded at 1 kHz. The α, β, δ and ε values were calculated

as described in section III-A.

B. Contact quality

For the contact quality assessment part of the study,

subjects contacted a rigid surface six times per time delay

condition and per feedback modulation condition resulting

in a total of 72 contacts. Time delays were 0ms, 150ms and

300ms of visual delay on the monitor, while the haptic feed-

back remained undelayed to prevent instability from affecting

the contacts. To distribute possible learning effects remaining

after the familiarisation over the different conditions, the

contacts were made in two rounds of three contacts each.

In addition to this, the order of the feedback modulation

conditions were randomly assigned per participant. The

contact quality measure Δ is defined by

Δi =
∑tie

tis
|F i

avg − F i
t | dt (8)

where tis and tie are the start and end time for each contact i
and F i

avg is the average contact force during the contact. This

measure was used, as the force in an ideal contact has very

little deviation from the mean and the deviation increases as

the number of bounces or the bounce size increases.

A bayesian linear model with the delay conditions, feed-

back modulation conditions and the participants as random

effects and the feedback force grouped per time delay as

conditional effect was used to determine the effect size of

the conditions while controlling for individual differences

and the lower force applied at higher time delays. A non-

informative prior was used for this model, and as the

deviation from the mean has a minimum of zero and no

(theoretical) maximum, an exponential model family was

chosen.

C. Transparency check

To determine the impact of the feedback modulation on the

transparency of the system, participants were presented with

a stiff and a compliant target in random order and were asked

to differentiate between the two. The duration and number

of contacts necessary for participants to distinguish between

the targets were used as measures of transparency. The

differentiation task was performed with the same delay and

feedback modulation conditions as the contact quality part

of the study. To ensure that the difference between targets

could not be seen on the monitor despite the measures taken,

10 participants performed the differentiation task without

Fig. 3. Setup of the user experiments. Left: user operating Omega 7 leader
and wearing Myo EMG sensor. Right: user view of the robot end effector
(left side of image), with alignment square, facing the contact target (right
side of image).

any visual feedback in addition to the three time delay

conditions. The effect of the time delay conditions on the

number of contacts and on the time the subjects took to

perform the task were compared with bayesian models. The

delay conditions, the feedback modulation conditions and

the participants were considered random effects in both the

number of contacts and in the time on task models. In

both models, a non-informative prior was used. For the

number of contacts model, the poisson distribution family

was chosen, as the outcome variable was discrete with a

lower boundary. For the time on task model, an exponentially

modified gaussian model family was chosen as the outcome

variable is continuous with a non-zero lower bound.

D. Setup

An impedance controlled Franka Emika Panda arm was

used to perform the movements, with a constant linear

stiffness of 1000 Nm on the end effector. During the study,

the arm was limited to two degrees of freedom: the main

movement axis and the vertical axis to allow on-the-fly drift

compensation by the operator. A Force Dimension Omega 7

was used as leader. The leader was mechanically constrained

such that it was limited to one degree of freedom during

experiments but could be lifted out of the alignment structure

to realign the robot. An ATI mini-40 force torque sensor was

used to provide force sensing for the force feedback. The

setup was operated through ROS Kinetic at 1 kHz.

Figure 3 shows the Omega 7 in use on the left image and

the end effector on the right image. The leader was operated

with the subjects seated and resting their elbow on the chair

armrest. The subjects were instructed to move the leader

forward and backward with their wrist rather than with the

full arm, as this facilitated EMG measurement at the arm.

A Thalmic labs Myo armband (as used in [18]) was used to

obtain raw EMG values from the wrist extensor and flexor

muscles. The device can be seen on the arm of the subject

in the left image in figure 3.

Subjects were instructed to hit a round target of 60mm in

diameter (figure 3, right side on right image) with the end

effector (figure 3, left side on right image). Two targets were

made, one with a high stiffness and one with a low stiffness.

The high stiffness target was used during the testing of the

contact quality, both targets were used in the transparency

check.

The targets were 3D-printed disks, the low stiffness target

was made of a flexible plastic (TPU) with a very low infill

to make it compliant, the high stiffness target was made of a
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stiff plastic (PLA) with one layer of TPU on the outside to

make the targets look identical. Subjects viewed the robot on

a monitor through a livestream, which enabled a time delay

to be set on the visual channel. The robot was shown from

the side with a slight angle to the back so that the front of the

targets could not be seen to prevent a visual identification of

the stiffness of the target. An alignment square was placed

on the monitor so that the end effector could be aligned

such that the target would be struck in the center. Only adult

competent subjects were recruited for this study. Subjects

with any condition that lead them to be sensitive to injury

on their dominant arm were excluded. A total of 19 subjects

participated in the study of which 8 were female and 11 were

male. All were right-handed.

Before the start of each user study, the following procedure

was followed:

1) The researcher gave a short explanation of the goal of

the study and the operation of the leader and the robot

2) The subject read the information brochure which details

the same information and was given a chance to ask

questions, after which subject signed the consent form

3) The subject watched a video which showed how the

leader is best gripped, and what the length of the

movements ought to be

4) The subject put on and aligned the EMG armband

5) The EMG armband calibration was performed

6) The subject practised moving the robot in different

conditions for around five minutes to limit a later

learning effect

V. RESULTS

A. Contact quality

Two participants experienced significantly worse contacts

than most participants, but these participants did not require

more contacts or nor more time in the transparency check

than other participants.

The posterior distributions and 90% credibility limits of

the bayesian model for the effect of feedback modulation

on the Δ measure (figure 4 and figure 5, right plot) show

that, for all modulated conditions, Δ was lower than the

raw condition. The average modulation yields the lowest Δ,

with a mean of 2.07 (versus 2.49 for the raw condition)

and p(Δaverage � Δraw) = 0.036. None of the delay

conditions lead to a significantly higher or lower Δ than

the raw condition (left plot in figure 5).

B. Transparency

The number of contacts required in the transparency task

to determine the correct environment stiffness increased

roughly linearly between 150ms and 300ms delay conditions

and the condition with no visual feedback (figure 6, top left).

The time spent on the task (ToT) was somewhat higher for

the 300ms delay condition (p(tot300ms � tot0ms) = 0.6)

but not for the 150 ms delay condition and the condition

with no visual feedback (figure 6, top right). The number of

contacts required to perform the transparency task in the low
pass and scale conditions was roughly equal to the number
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of contacts in the raw condition. The average modulation

required somewhat fewer contacts (figure 6, bottom left),

with p(Naverage � Nraw) = 0.17. The ToT in the low
pass and scale conditions was roughly equal to that of the

raw condition, the ToT in the average condition was not

significantly lower than in the raw condition (figure 6, bottom

right) with p(totaverage � totraw) = 0.82.

VI. DISCUSSION AND CONCLUSIONS

There were two subjects who experienced significantly

worse contacts than the others. The reason(s) for this are

unclear. While these subjects had a reasonable knowledge

about robotics, other participants who did not experience

such bad contacts had this as well. As the study concerned

physiological responses, knowledge about robotics was not

considered an exclusion criterion. In addition to this, the
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outlier subjects had no specific knowledge about the modu-

lation algorithms being tested. The subjects were therefore

not considered anomalies and were retained in the data for

the analyses. The number of contacts in the condition with

no visual feedback were slightly higher than the other delay

conditions, but increased with the same trend as the 300ms

condition with regards to the 150ms condition. The time

on task for the condition with no visual feedback did not

increase with the same trend, and lied between the 150ms

and 300ms delay conditions. The lack of significant increase

in either measure indicates that subjects were not able to

visually deduce the stiffness of the target and that therefore

all data could be used. As such the condition with no

visual feedback is considered a large delay. The absence of

significant effect of delay conditions on the Δ measure and

number of contacts indicates that scenario #2 as described in

section I is the main way of dealing with discrepant delay,

as the time spent in free space does not influence the arm

stiffness. The main goal of this study was to evaluate three

feedback modulation algorithms and compare performance in

a state transition from free space to a constrained contact. All

modulation conditions brought the contact shape closer to the

ideal (square) contact, but the averaging algorithm showed

the most significant improvement, with a 17% drop in the

mean effect size and a high certainty of improved perfor-

mance. As the scale algorithm is very similar to the average
algorithm except for the use of the user impedance model

(eq. 2), the impedance model seems to add significant value.

To evaluate whether the algorithms did not overdampen the

feedback, possibly increasing contact quality but at a loss

of transparency, a transparency check was performed. The

time on task and number of contacts required to perform

the transparency test are lower for the averaging condition

than for the unmodulated condition. This indicates that the

averaging algorithm indeed increased the transparency, and

made it easier for subjects to identify the stiffness associated

with the target. The LPF and scale algorithms performed

on par with the unmodulated condition for both the time

on task and number of contact measures. This means that,

even though the contact quality improved somewhat, the

transparency did not increase, which is an indication of

overdamping. In this study, the base controller had a fixed

impedance. In combination with the high time delays on

the visual modality, impedance mismatch was very likely

to occur. As the feedback modulation is a last-second repair

of a mismatched impedance, it is best combined with an

adaptive tele-impedance setup to match the impedance of the

operator and actuator. This ensures that there is only as much

damping as is necessary to ensure good quality contacts and

minimized overdamping.
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