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Abstract— We present the design and development of a
non-linear series-elastic element based on repelling magnets.
Progressive stiffness offers the transparency advantages of
a low-stiffness elastic actuator at low load levels, and the
high torque tracking bandwidth of a high-stiffness actuator
at high loads. The design space of this magnet-based concept is
thoroughly analysed, for both box- and arc-segment magnets. A
proof-of-concept prototype is presented which is experimentally
validated. A gain-scheduled torque controller is used to exploit
its non-linear dynamics. Simulation and experimental results
demonstrate the viability of the concept.

I. INTRODUCTION

Robotic actuation developments in the last two decades
have shown a trend away from stiff, highly-geared, position-
controlled drives to torque- and impedance-controlled sys-
tems aimed at physical interaction performance. Series elas-
tic actuators (SEAs) [1]–[3] combine the torque capacity
of geared drives with low output impedance, and exhibit
excellent interaction performance.

Selection of the series stiffness presents a trade-off be-
tween torque tracking bandwidth and actuator transparency
(or low output impedance) [3], [4]. Research into overcoming
this trade-off has focused on non-constant or adjustable
stiffness of the elastic element. The two primary approaches
in this area are Variable Stiffness Actuators (VSAs) and
Non-linear Series-Elastic Actuators (NSEAs). VSAs [5], [6]
use a secondary motor to adjust the physical stiffness. This
leads to increased mechanical complexity, and the solutions
are generally relatively bulky. Conversely, in NSEAs the
elasticity is passively non-linear [7]–[18]. By increasing
stiffness with deflection (progressive stiffness) they can
provide higher torque resolution and higher safety at low
output torque, while offering a higher “bandwidth” than a
traditional constant-stiffness SEA with similar deflection and
torque resolution at higher output torque. This is similar
to mammalian muscles [19], [20], which also progressively
increase their stiffness with force output.

Existing NSEAs can be divided into three main categories:
1) mechanism-based, 2) material-based, and 3) magnetism-
based. The first deflects a linear elastic element through a
non-linear mechanism [7]–[12] or uses structure controlled
stiffness [12], [13]. Second, material-based NSEAs use the
inherent non-linear properties of materials to generate non-
linear stiffness [14], [15]. However, existing materials with
these properties tend to suffer from high hysteresis. Lastly,
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Fig. 1: Magnet-based elastic element: CAD and realised prototype.

magnetism-based NSEAs are based on the non-linear re-
pelling force of magnets [16]–[18].

This work presents a magnet-based concept for non-
linear series-elastic elements, with a rotational design similar
to the recent work [18]. Contrary to [18] however, we
thoroughly analyse the design space of such elements for
two types of magnets, leading to design guidelines and an
analytical model able to predict torque and stiffness of a
design. We then present a proof-of-concept prototype to
validate the concept (Fig. 1). We characterise the prototype’s
non-linear stiffness profile, and finally evaluate closed loop
control performance in both simulation and experiment. The
contributions of this paper are summarised as follows:

1) A non-linear elastic element concept based on box- or
arc-segment magnets, including design guidelines;

2) An analytical model based on empirical magnet re-
pelling force data that predicts torque and stiffness
curves for a given design;

3) A proof-of-concept prototype that validates the concept
and shows a stiffness range of 3x;

4) A suitable gain-scheduled torque controller that signif-
icantly outperforms linear controllers in NSEAs.

This paper is organized as follows. First, Sec. II considers
the design parameters and analysis of magnet-based non-
linear elastic elements. Sec. III presents the proof-of-concept
prototype, together with its torque/stiffness characterisation.
Sec. IV then proceeds to design the gain-scheduled torque
controller. Simulation and experimental results are reported
in Sec. V and Sec. VI, respectively. Finally, Sections VII
and VIII discuss the results and conclude the work.
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II. CONCEPT AND ANALYSIS

A. Principle of operation

In this work the desired non-linear stiffness is generated
with the use of magnets. Following their inherently non-
linear repelling force, the force imposed on each magnet
increases progressively as distance between a pair of magnets
decreases. Rotational movement of electrical motors implies
a radial orientation of the magnets. Therefore, the concept
shown in Figs. 1 and 2 comprises of two halves that fit
together as inner hub and outer hub. In Fig. 2, αmax represents
the maximum deflection range in one direction that the two
halves of the element can move with respect to each other, β
denotes the angular space that an individual magnet segment
can occupy, and N ≥ 1 is the total number of segments on
each half (leading to 2N opposing magnet pairs).

��� 

β

α

(a) Arc-segment magnets.

a b
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β

α

(b) Box magnets.

Fig. 2: Elastic elements with different types of magnets and N = 3.
Different magnet types are discussed in Sec. II-B.2.

B. Design parameters

1) Deflection range, torque, and stiffness: In this section
we consider the effect of the design parameters on deflection
range, torque range, and stiffness range. We start with
deflection range. The geometry shown in Fig. 2a results
in a trade-off between angular magnet space βmax and the
achievable deflection αmax:

βmax =
π

N
− αmax. (1)

Computing Eq. (1) yields Fig. 3, which shows the usable
angular magnet space βmax for a required deflection range
αmax and number of magnet segments N . For a given
(minimum) deflection range, a vertical line can be drawn
which intersects with the lines of different values of N .
Indicated in the figure are the chosen design parameters for
the presented prototype, with a deflection of αmax = 10 ◦,
N=3 (presented in Sec. III-A).

Fig. 4 shows torque and stiffness as function of deflection
α, for fixed β and different number of segments N (i.e. αmax
varies as in Fig. 3). The analytical model to compute these
results will be presented in Sec. II-C. Fig. 4 shows that an
increase in magnet segments (given constant β effectively
increasing total magnet volume) increases maximum torque
τmax, base stiffness k0 (at α = 0), and maximum stiffness,
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Fig. 3: Trade-off between αmax and β for various values of N .

at the cost of deflection range αmax (Fig. 3). The increase
in base stiffness is a result of the non-linear nature of the
repelling force: smaller distance between magnets at α =
0 leads to an increased force gradient between each pair,
and thus increased base stiffness. Lastly, notice that for a
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Fig. 4: Effect of N on deflection range αmax, torque, and stiffness.
Example magnet of 30x2.6x12 mm, and βmax = 10 ◦, R2 = 60mm.

given deflection range αmax and number of segments N , total
angular space utilised by magnets results from (1) as

βtotal = N β = π −N αmax, (2)

which is maximised for small N , due to fewer ’gaps’ needed
for deflection. Hence, peak torque and stiffness in a given
volume are also maximised for small1 N . To conclude, to
maximise torque and stiffness in a given volume:

1) Set the maximum deflection range αmax to the mini-
mal required for the application, and large enough to
achieve satisfactory base stiffness k0;

2) Minimise the number of segments N ;

1It should be noted however that for very small values (e.g. N ∈ {1, 2})
the majority of repelling force is not oriented perpendicular to the axis of
rotation, and hence internal stresses increase and torque and stiffness reduce.
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both of which maximise total magnet area βtotal. Some iter-
ation may be required given the available magnets. Further
guidelines on outer dimensions (volume) are presented in
Sec. II-B.3.

2) Magnet type: So far we have discussed circumfer-
entially polarized arc segment magnets shown in Fig. 2a,
which maximise surface utilisation for a given arc β and
respective inner and outer radii R1 and R2. However,
compared to regular ’box’ type magnets, they are more
expensive and are generally not available as off-the-shelf
components. Therefore, the prototype realised in this work
will utilize box magnets, as shown in Fig. 2b. Although
this reduces torque and stiffness capacity, the principle of
operation remains unchanged. Following their rectangular
shape, the thickness a relative to length b of box magnets
represents an additional parameter that can be optimised to
maximise surface utilisation. Given an outer radius R2, arc
β, and magnet length b, its maximum thickness a that does
not intersect the other magnet in the arc is given by

a = (R2 − b) tan

(
β

2

)
. (3)

The maximum surface area ab (and thus volume) can then be
derived as b = R2

2 . Notice that this is independent of both β
and N . It should be noted that a maximum surface utilization
does not necessarily imply neither maximum torque nor
stiffness; to maximise these properties, numerical iteration
using available magnets is necessary. However, maximum
surface utilisation typically yields a design very close to
maximum torque and stiffness.

3) Outer radius R2: An increase in outer radius R2,
and thus overall size, increases both maximum torque and
stiffness. This is because 1) magnet area scales with radius
(progressively for arc-segment magnets), and 2) a larger
radius increases moment arm. Therefore, R2 has a relatively
large impact. This can be seen in Fig. 5, for box and arc-
segment magnets respectively. The arc-segment magnets in
Fig. 5b have a constant inner radius R1 of 24 mm (for the
central hub and bearing).

Tables I and II lists different values for outer radius R2,
resulting total magnet volume, peak torque, base stiffness, as
well as torque density and stiffness density, given a 12 mm
thickness. For box magnets, torque and stiffness density
decrease with outer radius, as effective space utilisation
decreases. Arc-segment magnets fully utilise the additional
area, and thus torque and stiffness density remain almost
constant. Secondly, they are approximately 2.5-6.2x and 2.1-
3.6x higher, respectively, than for box magnets.

Lastly, increasing the thickness of the elastic element
linearly increases its generated torque. This makes it trivial
to scale a design for different torque and stiffness capacity.

C. Elastic element model

Traditionally, analysing the repelling force of magnets
is analytically impossible and computationally expensive.
It can be approximated by using empirical data available
from magnet manufacturers and resellers, or experimentally

(a) Box magnets: R1 = R2
2

mm.

(b) Arc-segment magnets: R1 = 24mm.

Fig. 5: Effect of R2 on torque and stiffness. β = 10 ◦, N = 10.

R2

[mm]
M. vol.
[mm3]

τmax

[Nm]
k0

[Nm
rad

]
τ dens.
[ Nm
mm3 ]

k dens.
[ Nm
rad·mm3 ]

50 6.5e2 20 58 2.12e− 4 6.16e− 4

100 2.6e3 68 198 1.80e− 4 5.25e− 4

150 5.9e3 118 424 1.39e− 4 5.00e− 4

200 1.1e4 168 674 1.11e− 4 4.47e− 4

250 1.6e4 201 856 8.54e− 5 3.63e− 4

TABLE I: Box magnets and results used in Fig. 5a.

R2

[mm]
M. vol.
[mm3]

τmax

[Nm]
k0

[Nm
rad

]
τ dens.
[ Nm
mm3 ]

k dens.
[ Nm
rad·mm3 ]

50 2.0e3 33 85 3.58e− 4 9.00e− 4

100 9.8e3 194 491 5.15e− 4 1.30e− 3

150 2.3e4 446 1.0e3 5.26e− 4 1.26e− 3

200 4.1e4 800 1.7e3 5.30e− 4 1.15e− 3

250 6.5e4 1.2e3 2.6e3 5.33e− 4 1.11e− 3

TABLE II: Arc magnets and results used in Fig. 5b.

obtained data (e.g. Fig. 6, data from K&J Magnetics Inc.2).
This data can be obtained by measuring the force between
two parallel magnets with a varying linear distance. We use
the empirical data to obtain the most accurate result for the
real-world elastic element.

To derive the generated torque as function of deflection
angle, we proceed as follows. First, note that the magnet
surfaces are not parallel (only at α = αmax). This means that
the distance between two magnets is a function of both radius
r and deflection angle α. To account for this, the magnet
is divided into infinitesimally small slices along the radial
direction (Fig. 7). Each slice is then treated as a fraction of
the original magnet in terms of force (and through radius,
torque). Integrating radially and multiplying by number of
magnet pairs then yields the torque of the elastic element as

2K&J Magnetics Inc., Magnet repelling force data for box-type magnets,
https://www.kjmagnetics.com/calculator.repel.asp, Feb 2021.
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Fig. 6: Empirical repelling force for the selected N52 30x12x12 mm
magnet.

function of deflection angle. For both box and arc-segment
type magnets this results in:

τbox(α) =
N

R2 −R1

∫ R2

R1

r Fbox(d(α, r)) dr, (4)

τarc(α) =
4N

R2
2 −R2

1

∫ R2

R1

r2 Farc(d(α, r)) dr, (5)

where F• denotes empirical magnet force data as function
of linear distance, which is given by

d(α, r) = 2 r sin

(
αmax − α

2

)
. (6)

Stiffness is then computed as the derivative with respect to
the deflection angle: k(α) = dτ(α)

dα .

γ

� �!

β

α

"

#"

d

Fig. 7: Modelling magnet torque using infinitesimal slices.

III. NON-LINEAR ELASTIC ELEMENT PROTOTYPE

A. Design requirements and chosen parameters

For the prototype, a torque range of ±10 Nm, base
stiffness of at least 20 Nm/rad, and deflection range of at least
αmax = 10◦ are desired. Using Eq. (1), this results in β = 50◦

for N = 3. Design iteration with available magnets yields
a chosen box magnet of 30x12x12 mm. Following Eq. (3),
this results in an inner radius R1 = 30mm and an outer
radius R2 = 60mm. The magnet grade used is N52. Using
online available magnet data scaled to the quoted maximum
repelling strength (Fig. 6), together with Eq. (4), yields the
torque and stiffness curves shown in Fig. 8. The chosen
box magnets satisfy the design requirements, with ±11.3Nm
peak torque, base stiffness of 32 Nm/rad, and peak stiffness
over 150 Nm/rad. Secondly, Fig. 8 also shows an arc-segment
magnet based design with comparable torque and stiffness
ranges, which has an outer radius R2 of only 40 mm.
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Fig. 8: Torque and stiffness predictions for 1) 30x12x12 mm box
magnets, and 2) a comparable arc-segment magnet design.

For comparison, an arc-segment magnet design of dimen-
sions similar to the box magnet design (R2 = 63mm)
would produce peak torque of 50 Nm and peak stiffness of
>1000 Nm/rad; approximately 4.5x and 3x higher than the
box magnet based design, respectively.

B. CAD and prototype
Fig. 1 shows both the CAD model and the realised elastic

element prototype. Fig. 9 shows a section view of the elastic
element. For illustration, the upper half is coloured in black,
the lower in light grey. This shows how the two elastic
element halves fit together, including the bearings in white,
and magnets in blue.

Fig. 9: Section view showing both halves in black and white,
respectively. Bearings shown in white, magnets in blue.

For construction of the prototype, 3D printing was se-
lected. It should be noted that the presented magnet-based
non-linear elastic element is less mechanically complex than
traditional NSEA and VSA designs and thus relatively simple
and inexpensive to produce. Carbon fiber filled nylon was
selected for its physical properties; it has comparatively high
mechanical toughness and ability to resist peak forces in the
design. The prototype’s mass is 672 g including magnets.
Measurements on the prototype are done using a load cell
(HTC-Sensor TAL2203,4) on a lever arm, connected to a
development board (NXP/Freescale Frdm K64F). The data
are further processed on a PC. As control, an ATI Industrial
Mini-40 force/torque (F/T) sensor is used to confirm the load-
cell measurements are linear with torque.

C. Static characterisation
We first characterise the deflection-torque profile of the

realised prototype by static tests. These results are subse-
quently validated against the analytical model derived in

3Sparkfun Electronics, load cell - 10kg, straight bar (tal220).
4Sparkfun Electronics, load cell amplifier (hx711).
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Sec. II-C. The test setup fixes the elastic element (optionally
through the F/T sensor) and allows it to be deflected in
one degree increments through a pointer which integrates
the load cell. The measured bending moment is proportional
to the torque produced by the element. The designed and
manufactured test setup can be seen in Fig. 10.

Fig. 10: CAD and the manufactured static test setup.

Fig. 11 shows the torque and stiffness results of the
prototype, as well as a polynomial fit (in red). Secondly,
the torque and stiffness predicted by the model are shown
(in yellow). The results show strong agreement between the
model and data in terms of torque, and desired torque range
of ±10Nm is achieved. The peak stiffness towards maximum
deflection is however significantly lower; stiffness varies
from approximately 40 to 120 Nm/rad. This range of 3x is
competitive when compared to other designs [12], [18]. Ad-
ditionally, our prototype achieves significantly higher torque
per unit volume by more effective space utilisation.
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Fig. 11: Static characterisation: Torque and stiffness profiles com-
pared to model predictions.

IV. TORQUE CONTROL

A. Series-Elastic Actuator model
We model a series-elastic actuator based on the magnet-

based elastic element using the model shown in Fig. 12.
It comprises a motor and gearbox with torque τm = gm i,
inertia Im, friction Rm, and gear ratio n. The gearbox output
is coupled to the output q through the non-linear elastic
element, with deflection α = n−1 θ−q. Its apparent stiffness
is given by k(α), parameterized using the analytical model
described in Sec. II-C. Following the use of magnets, we
consider the internal friction of the elastic element to be
negligible. For static testing of the element, the output of
the actuator is considered to be fixed (q ≡ 0). The dynamics
are then given by

Im θ̈ = τm − n−1 τ −Rm θ̇, (7)

where the elastic element torque τ(α) is given by a polyno-
mial approximation, of either Eq. (4) or (5). From this we
also define k(α), to denote the apparent stiffness as function
of deflection.

k(α)n

R
m

I
mg

m
i

θ, τm

q

Fig. 12: IPM of the actuator with the output fixed (q ≡ 0).

For control purposes we also define a linear model with
fixed stiffness k̄, written in terms of torque:[

τ̇

τ̈

]
=

[
0 1

− k̄
Im n2 −Rm

Im

][
τ

τ̇

]
+

[
0
k̄

Im n

]
τm (8)

B. Control concept

Given a torque measurement, a linear torque controller
could be used on an actuator incorporating the non-linear
elastic element. However, as will be shown later, due to the
strong non-linearity no single linear controller can provide
sufficient performance over the full operating range. We
tackle this issue using gain scheduling; adapting the control
gains on-line based on a linearisation around the current
operating point. An advantage of using gain scheduling is
the ability to exploit standard linear time invariant control
techniques to design this non-linear controller.The dominant
source of non-linearity is the non-linear stiffness. Hence,
given a characterisation of its deflection-stiffness properties
(Fig. 11), a measurement of its deflection may be used as
the exogenous scheduling variable.

C. Gain-scheduled full state feedback

Fig. 13 shows the proposed gain-scheduled state feed-
back controller, with torque reference τ∗. The feedback
gains N1, N2 denote the proportional and derivative gains
on torque respectively. They are derived using traditional
linear quadratic regulator (LQR) methods for each stiffness
operating point. M1,M2 denote the scheduling as function
of the current stiffness estimate k̂(α), derived from measured
deflection α. Similarly, τ̂(α) denotes the torque estimate.
N1, N2 are derived using the linear model (8), with k̄ ∈

[30, 300] (i.e. the dynamic stiffness range of the model), and
Q = diag(1, 7e−5) and R = 5e−2. The resulting stiffness-
dependent gains are shown in Fig. 14. The proportional
torque feedback gain N1 remains constant, however the
derivative torque feedback reduces with increased stiffness,
following the change in the plant’s natural damping ratio. For
quick computation we use a fractional fit for N2 = M2(k̂),
shown as red dashed line in Fig. 14. The feed-forward gain
NFF is used to achieve zero steady state error:

NFF = N1 + g−1
m n−1 . (9)
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Fig. 13: Overview of the proposed gain-scheduled controller.

Notice that NFF depends only on constants, and more im-
portantly, is independent of stiffness.
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Fig. 14: LQR feedback gains N1 and N2 over fixed stiffness k̄.

V. SIMULATED RESULTS

In this section we present simulation results that demon-
strate the following:

1) The gain-scheduled controller outperforms linear con-
trollers throughout the stiffness range;

2) Non-linear (progressive) stiffness allows to combine
benefits of low stiffness during low-force (transparent)
interaction with the benefits of high stiffness during
large torque tracking [3].

The simulations are performed with the parameters of the
physical system, which are listed in Table III. The mo-
tor/gearbox combination comprises a Maxon EC60 flat mo-
tor5,6 and GP52C 43:1 gearbox7.

Parameter Value Unit
Torque constant g 5.25e− 2 Nm/A
Motor/gear friction Rm 1.5e− 4 Ns/m
Motor inertia Im 8.32e− 5 kg m2

Gearbox ratio n 43 -

TABLE III: Physical system parameters.

A. Controller comparison: Step response

We first compare the gain-scheduling controller to linear
controllers tuned for either low (30 Nm/rad) or high (300
Nm/rad) stiffness, through step responses. Figs. 15a to 15c

5Maxon EC60 flat, 614949, 200 W, 536 mNm continuous torque.
6Maxon MILE encoder, 651168, 4096 CPT.
7Maxon GP52C, 223089, 43:1 reduction, 30 Nm continuous torque.

show the response in the low-stiffness region (low torque),
middle of the stiffness region (medium torque), and high-
stiffness region (high torque), respectively (recall Fig. 11).

The results in Fig. 15 show that the gain-scheduled con-
troller (in blue) yields the most consistent results, being
neither under- or overdamped at any torque/stiffness range. In
contrast, both linear controllers are either underdamped (high
stiffness controller (yellow) at low torque), or overdamped
(low stiffness controller (red) at high torque). In the middle
range the gain-scheduled controller outperforms both. Notice
that in the higher stiffness region (Fig. 15c), the system
demonstrates an approx. 75% lower rise and settling time
compared to the low stiffness region, indicating an increase
in bandwidth which is available to be exploited.

B. Plant comparison: Torque tracking and Transparency

Next we compare SEAs based on the non-linear elastic
element to two linear SEAs with stiffness values at the
extremes of the non-linear element (30 and 300 Nm/rad). All
plants are commanded a reference sine sweep with 1 Nm
amplitude and offset τoffset ∈ {0, 9}Nm. This offset places
the non-linear element in either its low- or high-stiffness
operating range. We then compute frequency response.

Fixed-output torque tracking results are shown in Fig. 16.
The non-linear plant does show a significant shift as a
result of its different operating point. At τoffset = 0Nm, its
stiffness is nearly identical to that of the low stiffness plant,
and thus it yields a nearly identical response (red and blue
lines). Conversely, at τoffset = 9Nm, its stiffness increases
to approx. 220 Nm/rad and thus its response approaches
that of the high stiffness plant (yellow lines). Bandwidth as
measured by -3 dB point increases from 5.5 Hz to 11.5 Hz
for τoffset ∈ {0, 9}Nm, respectively.

Transparency can be measured by the torque tracking error
as function of output motion: we impose a sinusoidal load
velocity sweep, while setting a constant torque reference
τ∗ ∈ {0, 9}Nm. Again, this places the non-linear elastic
element in different stiffness operating regions. Fig. 17 shows
the resulting torque error as function of q̇. As with the torque
tracking results, the non-linear plant approaches the low-
stiffness plant behaviour at τ∗ = 0Nm and the high-stiffness
plant behaviour at τ∗ = 9Nm, respectively. In other words, it
achieves similar high transparency as the low-stiffness plant.

The torque tracking and transparency results can be sum-
marised as follows: The non-linear series elastic actuator
offers the transparency advantages of a low-stiffness actuator
at low load levels, and the high torque tracking bandwidth
of a high-stiffness actuator at high loads.

VI. EXPERIMENTAL RESULTS

This section presents preliminary results of the prototype
in closed-loop force control. The motor was current con-
trolled by an ODrive motor controller8, with setpoints being
sent by the Frdm K64F running the torque controller at
200 Hz. Ground truth torque measurements are provided by

8ODrive Robotics, ODrive v3.6.
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Fig. 15: Simulation: Step response of the non-linear plant at different torque/stiffness ranges, comparing different controllers.
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the ATI Mini-40. Step responses are shown in different parts
of the stiffness range, demonstrating control performance
despite varying stiffness.

Fig. 18 shows experimental step responses between -4, 0,
and 4 Nm setpoints (in the 40-60 Nm/rad range cf. Fig. 11,
and limited by the range of the ATI F/T sensor). The top
plots show both the torque estimated based on deflection, and
the ground-truth FT sensor measurement, which correspond
well overall. The deflection settles rapidly, with settling times
in the range 70-110 ms, which is comparable to simulation
results for this part of the stiffness range. In the step from 4 to
-4 Nm however, some oscillatory behaviour can be observed,

which we attribute to mechanical non-idealities with the
prototype, and the relatively low sample frequency.

VII. DISCUSSION

The non-linear elastic element prototype realised in this
work demonstrates a peak torque of 10 Nm and base stiff-
ness of 40 Nm/rad, in agreement with model predictions.
The maximum stiffness however, is significantly lower. We
attribute this mainly to (visible) structural deformation, re-
sulting in non-tangential forces that do not contribute torque.
This also produced some asymmetry in the torque/stiffness
profiles around zero deflection, which we hope to solve in the
next prototype. The deficiencies in the preliminary prototype
were also visible in experimental results.

Comparing related work [18], the prototype produces 12x
higher torque at approx. 3.6x the size and 4.2x higher mass,
partly due to the use of stronger magnets and more effec-
tive magnet placement. Both this work and [18] show that
magnetic repulsive force can be used for a viable nonlinear
series elastic element.

VIII. CONCLUSION

In this work we developed a magnet-based progressive
elastic element for use in progressive series-elastic actuators.
A thorough analysis was presented, together with design
guidelines, including an analytical model that uses empirical
magnet data to predict the torque and stiffness curves of
such elastic elements. It was shown to accurately predict the
prototype’s main characteristics, making it a suitable design
tool.

A prototype was developed to validate the concept. The
prototype achieves ±10 Nm torque and a stiffness range
(min-max stiffness ratio) of 3x in experiment. This verified
that the presented analytical model gives accurate predictions
and is therefore a useful tool in the design of magnet-based
non-linear series elastic actuators.

Finally, a gain-scheduled quadratic regulator controller
was presented that outperforms linear controllers throughout
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Fig. 18: Experiment: Step response between setpoints in different parts of the stiffness range.

the stiffness range, as shown in presented simulations. We
believe an appropriate non-linear controller is essential to
fully leverage the advantages of progressive stiffness. The
controller was successfully applied to the developed proto-
type, with similar performance.

Progressive stiffness provides the transparency advantage
of a low-stiffness actuator at low load levels, and high
torque tracking bandwidth of a high-stiffness actuator at
high loads. It also retains advantages compared to high-
stiffness actuation that are not immediately visible in the
data, including increased safety and higher torque resolution
at lower loads. Additionally, compared to a linear low-
stiffness actuator, it can achieve a larger peak torque for a
given maximum deflection.

We suggest a few directions for future work. First, to solve
drawbacks of the current prototype, subsequent prototypes
should be manufactured using stiffer materials, such as com-
posites, aluminium, or non-magnetic steel. Second, designs
with arc magnets should be developed, as they should offer
far superior torque and stiffness density.
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