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Chapter 1

Introduction

In many urban areas, the road network is operating close to capacity. In such networks,
small fluctuations in traffic flows can result in large disruptions in the level of service (LOS),
e.g., travel speeds and travel times. With local disturbances rapidly influencing a larger
part of the network, a full understanding of the spatio-temporal dynamics in the LOS is
necessary to prevent or quickly identify disruptions, to predict its network-wide effects, and
to support management decisions mitigating negative impacts in the short and long run. In
this thesis, we investigate urban traffic variations on different scales and explore the impact
of information regarding these variations for the decision-making processes of a selection
of actors operating in the urban traffic domain. These actors use traffic information, e.g., for
route planning and advice after incidents.

The remainder of this chapter is organized as follows. We introduce the thesis’ research
on including information regarding urban traffic variations in decision-making processes in
Section 1.1. In Section 1.2, we discuss the relevance of information systems for decision
making. Section 1.3 provides an overview of the variations in the LOS of the traffic system,
and Section 1.4 discusses approaches from literature to model traffic variations on differ-
ent scales. In Section 1.5, we examine the relevance of these models for decision-making
processes of actors in the context of urban traffic. Section 1.6 identifies the research gap,
which we consequently use to formulate a research objective and the main research ques-
tions. Further, we discuss the scientific and practical relevance of the research in Section
1.7.

1.1 Introduction

The relatively recent increase in the real-time traffic data availability in urban networks
allows for constructing a picture of the prevailing traffic conditions. However, using the
current situation as a predictor for future conditions during decision-making processes is
naive since variations occur on different timescales, and current information may become
obsolete in limited time. When making robust decisions, it is inevitable for decision makers
operating in the urban traffic domain (e.g., public road authorities, route planners, dispatch-
ers) to anticipate the future state of the system. That is, decisions should be based on
forecasts (or: predictions) that not only account for periodic variations in demand and sup-
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ply, but additionally incorporate the emergent behavior of travelers in reaction to decisions,
and the effects of measures on traffic and society in general. In fact, the uncertain feedback
of, e.g., travelers, operators and authorities largely determine future conditions, and predic-
tions therefore need to account for the inter-dependencies between forecasts, management
actions and responses.

Constructing such anticipatory forecasts in a timely manner is a difficult task, in partic-
ular in the context of urban traffic. In fact, the urban traffic system is highly complex and
irregular, with a sophisticated physical structure, a vast variety of trip types and interacting
modes, and a range of control measures in place. Moreover, erroneous data and the limited
coverage of measurement devices makes that only a small share of the complete network
is monitored on a continuous basis. Therefore, not only future conditions are uncertain
but also information regarding the historical and current LOS extracted from the data is
characterized by a high degree of uncertainty.

Decision makers operating in an urban traffic context employ information regarding the
LOS, including its potential future development, using a traffic information system that is
part of a larger management system additionally reporting, e.g., information on the status
of the actor’s operations. In this thesis, we distinguish three actors that potentially benefit
from using a traffic information system during different stages of their decision-making pro-
cesses: (i) logistics service providers (LSPs), (ii) urban traffic managers, and (iii) individual
car users.

LSPs in home delivery are faced with a vehicle routing problem (VRP): the assignment
of parcels to trucks, determining the order of the deliveries, the physical paths between
the stops and the departure times (e.g., Laporte, 1992; Toth & Vigo, 2002). To be able to
timely communicate an estimated time of arrival (ETA) to their customers, LSPs determine
initial plans a long time (hours, days) in advance (e.g., Agatz et al., 2008) after evaluating a
possibly large set of alternative route plans. Provided an assignment of parcels to a vehicle,
determining the optimal route is known as a variant of the fraveling salesman problem
(TSP). Accounting for variations in driving times is necessary so that accurate ETAs can be
communicated to customers while keeping operation costs low. Here, accurate travel time
estimates over different timescales are necessary to reduce the uncertainty regarding driving
times and to evaluate and construct route plans that possibly require adaptation while being
en route.

Urban traffic managers from public road authorities monitor the historical and current
network performance using a traffic information or network management center. Historical
and real-time information regarding traffic light statuses, queues, delays and/or volumes are
typically presented and visualized to support decision making. Further, on major arterials,
collected data is used for automatic incident detection. Communication, management and
policy measures and scenarios are partly or fully based on this information.

Individual car users employ advanced traveler information systems (ATIS), for example
route advice in navigation devices, to support or automate a part of their decision making.
Often, the origin and destination of the user is known and the information is presented in a
descriptive or prescriptive way (Van Essen et al., 2016). Nowadays, a large share of these
systems is also used for en-route updates and current and future estimates of the LOS can
then be used to improve advice during different stages of the trip.

Independent of the actor, the information from the system can be characterized by two
components: dynamism and uncertainty (Gmira et al., 2021; Pillac et al., 2013; Soeffker
et al., 2022). The dynamic component reflects the capability of the information system
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to incorporate the relevant spatio-temporal variations in the LOS, while uncertainty is due
to the inherent capacity limitations of a system to capture all the variability. Indeed, the
uncertainty stems from different sources including the unpredictable variability of the traffic
system and the user responses from an aggregated perspective, model errors, and the limited
access to data.

Decision makers benefit from accounting for both the dynamics in the LOS and the un-
certainty in the information system regarding these dynamics. We briefly illustrate how in-
formation with respect to traffic variations can support the actors under consideration. Route
plans of LSPs can account for the spatio-temporal dynamics of LOS, e.g., by avoiding con-
gested areas during rush hours. At the same time, uncertainty in driving times is important,
particularly when considering a sequence of stops where uncertainty on different parts of
the traffic network accumulates or cancels out. Urban traffic managers infer an estimate of
the performance of the network using a management system. Here, noisy fluctuations in
measurements should be distinguished from abrupt changes to prevent the unnecessary de-
ployment and counterproductive effects of measures. ATIS typically account for changing
travel times over the course of a day, but could also consider communicating uncertainty in
arrival times - or at least provide a robust ETA based on the uncertainty.

Summarizing, LSPs, urban traffic managers and individual car users are faced with de-
cisions over different scales that are influenced by the variability in the urban traffic condi-
tions. Although the actors use independent information systems, all with an individual and
fragmented picture regarding the (future) conditions of the network, information regard-
ing the relevant spatio-temporal variations in the LOS as well as the uncertainties therein
support these actors in making well-informed and pro-active decisions.

1.2 Information systems, variations and decision making

Information systems extract information from the available data sources and provide an
estimate of historical, current, and future developments (Soeffker et al., 2022). In a traffic
context, such systems support decision makers by providing descriptive information on the
historical and current LOS or predictive information on future events, potentially even for
data-poor parts of the network, but can also be used in a prescriptive way when a part of
the decision-making process is automated based on the information (Lepenioti et al., 2020;
Wang et al., 2016). Often, there is a mismatch between the time of decision and information
availability in the sense that not all necessary information is fully known at the time of
decision making. Some information (e.g., travel times) is only revealed over time, e.g.,
during execution, making that the required input for decision or optimization problems is far
from static and deterministic (see, e.g., Ferrucci & Bock, 2015; Pillac et al., 2013). Possibly
irreversible decisions should be made here-and-now using only an a priori characterization
of the system’s evolution and the corresponding uncertainty. Robust solutions anticipate
the dynamics of information (e.g., Pérez Rivera & Mes, 2017) and optimize over multiple
possible realizations of the future, which might be infinitely many in contrast to the static
and deterministic setting that only considers one scenario. Assuming a fixed horizon and a
relatively stable environment, uncertainty decreases over time and continuous refinements
of initial decisions are theoretically possible. In fact, newly arriving information can be
used to react to changes in the system while anticipating future developments based on an
updated characterization of the dynamics and the uncertainty (recourse). Such adaptations
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could even be necessary when serious unexpected disruptions occur. Although practicalities
induce that some decisions should be made a long time before execution, a priori decisions
benefit from anticipating that solutions can be adjusted based on the realization of that what
was initially considered uncertain.

Models are used to realistically capture the evolution of information but make a trade-
off between tractability and simplicity so that they remain applicable in the limited time
available (Koot et al., 2021; Shone et al., 2021). Measurements only give an indication of the
current status of the system and directly using measurements is challenging in the context of
big data, e.g., due to the high granularity and the noisy fluctuations. Information extraction
is therefore highly related to pattern recognition where regularities are discovered (Bishop,
2006). Domain knowledge, generally expressed in a theoretical model, is used to relate
measurements in that the desired hidden information is revealed (Hansen, 2010). A model
is even necessary if historical decisions and control actions are inter-related by feedback
effects, i.e., if only the realization corresponding to a previous control action is revealed
in the data (Bertsimas & Kallus, 2020). Assuming that there are systematic variations and
seemingly random fluctuations in the variable of interest as a function of an independent
variable (in our context, typically time), past trends are used and extrapolated to forecast the
future (Thomas et al., 2010). However, the trend is usually not explicitly observed in the
past, and many other trends could have been extracted as well. In any case, even the most
detailed model cannot incorporate all real-world mechanisms, and any information system
therefore contains some degree of uncertainty (Gneiting et al., 2007; Shone et al., 2021).
Even worse, with future conditions possibly being substantially different from the past, no
model is able to provide reliable estimates under all circumstances.

With the future being inherently uncertain, the associated limited predictability should
be addressed before adopting estimates in a decision-making framework (Lepenioti et al.,
2020; Liu & Gupta, 2007; Walker et al., 2003). There have been many attempts to classify
uncertainties (e.g., Walker et al., 2003), typically focusing on policy-related uncertainties.
Here, we focus on shorter-term decisions on an operational and tactical level and follow the
taxonomy of Makridakis et al. (2009), who stated that there are two types of (modeling) un-
certainties that make that future outcomes cannot be predicted exactly: subway uncertainty
and coconut uncertainty.

We define subway uncertainty as the accumulated uncertainty in a resultant variable
due to the natural variability of the system from the perspective of a modeler under the
hypothesis that the underlying environment remains stable (Makridakis et al., 2009). A
well-known example of subway uncertainty is the variability accompanying a fair coin toss
(assuming one does not model the physics of the toss): the exact outcome of the toss is
unpredictable, and the inherent variability induces the uncertainty in the result. Hence, the
best possible point prediction is frequently wrong, yet the associated probability distribution
of the error can be derived accurately. In this sense, the system is uncertain yet perfectly
predictable (Wright & Goodwin, 2009).

Coconut uncertainty refers to events that are unexpected and rare but have far-reaching
consequences (Makridakis et al., 2009). One knows that this class of events occurs (with a
significant probability), however the time and place of occurrence of such events is rather
difficult if not impossible to forecast. As such, individual coconut events occur infrequently
and are therefore only sparsely included in historical data, if at all (Goodwin & Wright,
2010).

According to Makridakis et al. (2009), subway uncertainty together with a share of
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the coconut uncertainty define the known unknowns, while the other share of the coconut
events for which the uncertainty cannot be accurately quantified comprises the unknown
unknowns. With the probabilities of occurrences highly dispersed, coconut uncertainties
are very difficult to incorporate in forecasts (Goodwin & Wright, 2010). Occurrence of
events in the class unknown unknowns cannot be predicted at all - otherwise these events
would not be in this class.

Decisions should be considered in the light of the future uncertainties, and one should
therefore account for the limited predictability of the system under consideration. Apart
from the inherent variability of the system, there is also epistemic uncertainty due to our im-
perfect knowledge of the system (Walker et al., 2003). Again, considering the fair coin toss
example, epistemic uncertainty occurs if the predicted variability in the outcome is different
from the 50% chance for the side showing head or tails. In modeling, epistemic uncertainty
can be considered the prediction error (when considering forecasts) or the reconstruction
error (when considering historical systematic variability). In theory, this uncertainty could
be reduced by improving the model. However, it is not always obvious if one is dealing
with inherent or epistemic uncertainty - in particular when studying a highly dynamic real-
world system. As mentioned, any model introduces uncertainties due to design choices, e.g.,
assumptions and boundaries, which further complicates distinguishing the different uncer-
tainties. In any case, it is virtually impossible to eliminate all uncertainties using improved
models - and one should therefore accept and incorporate uncertainty as an integral part of
decision making (Gneiting et al., 2007; Liu & Gupta, 2007; Makridakis et al., 2009; Walker
et al., 2003).

Information systems including an estimate regarding the level of the uncertainty allow
for robust decisions that anticipate subway uncertainties by accounting for the range of
possible yet natural outcomes. Assuming that subway uncertainties can be accurately and
continuously captured in a probabilistic framework, the input of the decision problems can
be characterized as dynamic and stochastic in the sense that part of the input is revealed over
time, but probabilistic information is available regarding the system’s evolution (Pillac et al.,
2013). Although theoretically this allows for informed decision making, formulating and
solving such sequential decision problems is highly complex not only because of the diffi-
culties capturing the dynamic character into a single model but also due to the wilderness
of solution methods (Powell, 2014; Shone et al., 2021). Time and place of the occurrence
of coconut events cannot be predicted, and therefore asks for reactive contingency plans
(Goodwin & Wright, 2010; Makridakis et al., 2009). Decision makers can only respond
to such events, and the challenge is to recognize them in a timely manner and dynamically
adapt decisions to it. Even though uncertainty-aware decision making introduces additional
challenges compared to the conventional static and deterministic setting (Pillac et al., 2013;
Shone et al., 2021), it provides better-informed and robust decisions in an inherently uncer-
tain environment.

1.3 Variations in traffic

A large share of the fluctuations in the LOS of the traffic system shows periodic behavior
(Turochy & Smith, 2002) and is related to the time of day, e.g., the rush hours repeat them-
selves from day to day. These fluctuations are inevitably related to the variability in demand
and supply. Yet, demand and supply variations do not directly cause a changing LOS, e.g.,
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only when demand approaches or exceeds capacity, travel speeds drop and then driving
times are likely to increase. We provide a brief overview of factors influencing demand and
supply.

Variations in the demand occur on different scales. Longer-term temporal variations and
trends in the demand exist from year to year (KiM, 2020; Rijkswaterstaat, 2021), but are
also related to the seasons (Thomas et al., 2008), and different types of days (Viti, 2006).
Intra-day variations are shown to exist when comparing 24h patterns for different weekdays
(Thomas et al., 2008; Viti, 2006; Weijermars & Van Berkum, 2005), e.g., revealing the addi-
tional demand because of the extended opening hours of shops (Crawford, 2017). Shorter-
term variations also occur due to events (Olabarrieta & Lafia, 2020; Polson & Sokolov,
2017; Thomas & Van Berkum, 2009). Exogenous factors known to influence the demand
include the weather (Maze et al., 2006) and pandemics (Van der Drift et al., 2022). Spatio-
temporal variations in the demand, frequently expressed in terms of network usage, provide
an aggregated picture of the variability in travel behavior across travelers (Crawford, 2017),
e.g., in time of departure (Crawford, 2020), route choice (Zhu & Levinson, 2015) and mode
choice (Heinen & Chatterjee, 2015).

Variability in the supply is caused, among other things, by geometry and the intra-
personal variability in car-following behavior, e.g., in headways on major roads (Luttinen,
1996) and departure headways at intersections (Jin et al., 2009). On freeways, capacity is
shown to be influenced by the weather (Maze et al., 2006). In an urban setting, the vari-
ation in traffic light signal phases is a well-known cause of variation in capacity possibly
in interaction with the arrival dynamics (i.e., vehicle-actuated signals). Capacity is also in-
fluenced by accidents and incidents, currently causing more than 20% of all congestion on
freeways (Rijkswaterstaat, 2021). Spatio-temporal variations in the LOS in an urban setting
on a more local and short-term scale occur, e.g., due to the dynamics at intersections, on-
street parking, and heterogeneous choice behavior of individual travelers (e.g., Carrion &
Levinson, 2012).

1.4 Modeling traffic variations

The LOS of the traffic system shows variability in time and space. Variations are typically
expressed on an aggregated and accumulated level in the measurements of variables that
provide an indicator of the traffic conditions, e.g., using traffic volume time series. Apart
from systematic variations that in theory are predictable, these measurements also show
random fluctuations that seemingly show no pattern and cannot be predicted (Banks, 1999;
Bates et al., 2001; Thomas et al., 2010). In this section, we discuss literature on modeling
systematic and random variations in aggregated or accumulated variables partly reflecting
the LOS on a part of the traffic system: volumes, speed, delays, and travel times. For
variation in longer-term conditions and predictions, we refer to De Jong et al. (2007).
Fluctuations in traffic conditions-related variables occur on different timescales. In this
thesis, we are mainly concerned with changes on the following two timescales. Changes are
often measured in intervals in the order of 5-15 minutes, and assumed to reflect the variabil-
ity in the ‘regime’ or actual performance or usage in the network (Breiman & Lawrence,
1973; Thomas et al., 2008). Very short-term variations occur in the order of seconds. Incor-
porating these variations is oftentimes not deemed desirable for decision-making processes,
and some form of aggregation is applied to obtain ‘stable’ increments (Coogan et al., 2017;
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Guo et al., 2007; Oh et al., 2005; Smith & Ulmer, 2003; Vlahogianni & Karlaftis, 2011).
Even though very short-term fluctuations seem noisy, both timescales are of practical and
theoretical interest (Breiman & Lawrence, 1973; Miller, 1970; Mirchandani & Head, 2001;
Vlahogianni et al., 2004). First, variations on an aggregated and/or accumulated level - typ-
ically expressed using time series - are directly related to the very short-term variations. For
example, the 10min volumes measured at a fixed location can be considered to be the result
of a series of events of arrivals or departures with headway variations in the order of (tenths
of) seconds. With aggregation applied in the context of decision making oftentimes without
consideration of the impact of the resolution (Guo et al., 2007), very short-term variations
introduce seemingly random variation when considering scales of several minutes. Indeed,
the variability in a time series can correspond to the volatility of an underlying process
(Brillinger, 2008). Even periodic variations on short timescales, e.g., due to the variation in
supply at signalized intersections, introduce noise on a 5-15min level (Gerlough & Huber,
1976; Koen & Lombard, 1993; Thomas et al., 2010). An understanding of the underlying
processes that cause random changes in aggregated time series helps one to separate noise
from systematic differences in the conditions and to assess the quality of a model or pre-
diction scheme a priori. Second, the LOS seems to be rapidly changing over time when
considering measurements in the order of minutes (e.g., due to the capacity drop and the
onset of congestion). In practice, obviously, many of these changes are not so abrupt and
can be anticipated or quickly identified when considering shorter timescales (Son et al.,
2014; Vlahogianni & Karlaftis, 2011). In particular these events are highly relevant to pre-
dict since control actions can then be deployed to mitigate network-wide impact, yet require
short-timescale estimates in a very noisy environment.

Systematic variability in the order of minutes can be used to separate different regimes
over space and time, which then, in turn, can be used to study changes over longer timescales.
Traffic volumes, typically examined in both research and practice using 24h time series, are
well known to show systematic volume variations during a day and between days. Time of
day is an important predictor for network usage with 24h time series collected at a single
point showing a regular M-shaped curve (Crawford et al., 2017; Lafa et al., 2019; Weijer-
mars & Van Berkum, 2005). Considering the day-to-day variability, traffic volumes deviate
systematically between days (Ma et al., 2021; Stathopoulos & Karlaftis, 2001), and show
considerable seasonable variation (Coogan et al., 2017; Thomas et al., 2008). However, as
Crawford (2017) points out, there has been less attention for systematic differences in both
the shape and the height of 24h traffic volumes on a day-to-day basis. This simultaneous
consideration is necessary to accurately consider the impact of short-term systematic vari-
ations such as events on a single day and to assess the robustness of time-(in)dependent
services and policies such as road pricing (Crawford et al., 2017; Thomas & Van Berkum,
2009). Further, the changing height, width and time of the peak over time are important for
estimating the remaining road capacity, and for longer-term monitoring purposes and policy
evaluation (Guardiola et al., 2014; Weijermars, 2007).

Since the systematic variation in volumes, and for other measurement series as well, is
typically not known in advance nor revealed over time, it needs to be inferred from historical
data in a supervised or unsupervised manner. Using a supervised approach (e.g., Crawford
et al., 2017), one investigates the influence of explanatory variables next to time as a pre-
dictor for systematic differences. Unsupervised approaches (e.g., Guardiola et al., 2014;
Muralidharan et al., 2016) aim to infer patterns from the data, which are consequently - if
possible - interpreted using auxiliary variables. Hence, from such an approach we cannot
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guarantee to find the source of the variation - and therefore it is not easily incorporated in a
forecasting scheme. On the other hand, many variations cannot be predicted using typically
available exogenous variables only, but can be forecasted in a statistical sense (Ma et al.,
2021; Thomas et al., 2010; Wagner-Muns et al., 2018).

Clustering approaches (see Li et al., 2015) are probably the most popular way to rec-
ognize and identify groups of 24h time series, typically extracting a group-specific 24h
pattern that represents the within-day variability assuming less variation within the group
than between groups (Caceres et al., 2012; Chung, 2003; Crawford et al., 2017; Zhong et
al., 2020). For example, the approach by Weijermars and Van Berkum (2005) found three
regular intra-day working-day patterns when considering 24h traffic volumes collected at
a freeway, distinguishing Mondays, core weekdays, and Fridays. Crawford et al. (2017)
explicitly accounted for gradual changes in the time series using normalization, and identi-
fied day of the week-dependent shapes in 24h flow series on an urban road in the Greater
Manchester area. Guardiola et al. (2014) used unsupervised clustering to identify under-
lying principal components, which turn out to be easily interpreted. For example, here,
the first component distinguishes working days and holidays. Wavelet analysis considers
one long time series and looks for regularities with various time lags, e.g., Jiang and Adeli
(2004) found a daily pattern with two peak periods every day and a periodicity over a pe-
riod of one week. Longer-term periodic variations are related to weeks and seasons (Jiang
& Adeli, 2004), with the winter profile including a smaller proportion of flows in the morn-
ing peak, and a larger proportion in the middle of the day (Crawford et al., 2017). Other
techniques, e.g., neural networks (Polson & Sokolov, 2017), seasonal ARIMA (Guo et al.,
2014) and nearest neighbor (Habtemichael & Cetin, 2016), also infer systematic patterns
from the data, but they can be considered black-box approaches in the sense that the in-
ferred systematic variations cannot easily be extracted or are considered in the context of
short-term traffic forecasting (Lv et al., 2015; Vlahogianni et al., 2014).

Compared to longer-term variations during regular conditions, short-term systematic
differences in time series on timescales shorter than 24h but longer than 5-15min have been
studied only to a limited extent. From a modeling perspective, these variations occur in
the residual time series, i.e., the deviations compared to the underlying yet unknown 24h
pattern which would have been realized without the short-term event (Chen et al., 2012;
Li et al., 2015). These variations express systematic differences, e.g., due to events and
weather conditions, and are highly relevant to predict since they express non-typical situ-
ations. Nonetheless, the time of occurrence of such events is highly variable making that
standard 24h clustering methods do not appropriately account for such deviations. Thomas
and Van Berkum (2009) show that in case of incidents and events, sinusoidal fluctuations
occur around the intra-day pattern. Polson and Sokolov (2017) predict traffic flows related
to football matches and snowstorms using a neural network implicitly learning the patterns.
Olabarrieta and Lafia (2020) show that volume patterns occur in time and space before and
after a football match. These studies indicate that events influence volumes in a systematic
manner, and in theory can be predicted provided that the time of occurrence and location
of the underlying event is known. Periodicities can also be considered in a more abstract
form. The occurrence of outliers - independent of the underlying reason - were shown to
follow approximately a negative exponential distribution, and can therefore considered to
be unpredictable (Chen et al., 2012). Yet, regular fluctuations around the intra-day pattern
were shown to have periodicities on a 30min timescale (Thomas et al., 2008).

Regarding the variability in travel times, systematic variations are shown to be related
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to the regimes in traffic. Van Lint and Van Zuylen (2005) identified four different regimes
with different travel time distributions: free-flow conditions, congestion onset, congestion
and congestion dissolve. Typically, a few explanatory variables are used to cover the varia-
tions. For example, Li and Rose (2011) consider different independent variables influencing
travel times, including time of day, day of week and rainfall. At the same time, recent travel
times were shown to influence current and near-future travel times as well (Kwon et al.,
2000). Zhong et al. (2020) considered the day-to-day and within-day travel time variability,
indicating that under rare events travel times have a longer tail compared to the travel time
distribution under recurrent conditions. When considering speeds, variations in speeds over
time were shown to follow a quasi-sinusoidal pattern with a daily period (Kamarianakis
et al., 2005). Extending the spatial dimension, only a few spatio-temporal patterns were
shown to exist on major arterials (Lopez et al., 2017). A difficulty compared to measure-
ments resulting from roadside devices is the additional uncertainty due to the intra-personal
variability in travel times.

If the modeler, according to his opinion, has accounted for all systematic variations, or,
at least, that the remaining patterns occur on timescales that are shorter than the aggregation
level, uncertainty is an inherent part of the variation. Throughout this thesis, following
Thomas et al. (2008), we refer to these subway uncertainties that are uncorrelated over
successive time intervals as random variation or noise, although what is considered to be
uncorrelated for a fixed location might show patterns over other spatial and temporal scales
(Ermagun et al., 2017; Koen & Lombard, 1993). Not only the natural variability in the
system contributes to this variation, but also temporary measurement errors induce random
variations. Quantification of the random variation should be an integral part of the modeling
exercise, since it indicates the extent to which a measurement can be ‘trusted’ (Kaas et al.,
2008), and provides an a priori quality assessment of a prediction scheme, including a lower
bound on the predictability of the variable under consideration. However, it is currently
often only implicitly considered as a part of interpolation exercises possibly including a
regularization parameter (Crawford et al., 2017), outlier filtering (Chen et al., 2012), and
state-space filtering (e.g., Kalman filter - Haykin, 2004; Kalman, 1960).

Using a time series approach, random variation is also referred to as dispersion or
volatility, i.e., the variability over time, for which the time-dependent variance or standard
deviation, possibly in relation to the mean value, is a standard measure. In signal process-
ing, this is expressed in the signal-to-noise ratio (Kay, 1993). An a priori quantification of
the random variation is difficult in the context of urban traffic, and is partly a result from
the modeling exercise and the modeler’s trade-off between fidelity and simplicity (Shone
et al., 2021), and therefore includes a share of uncertainty that is only treated as such for
the benefit of the model. Vice versa, without careful consideration of the nature and level
of uncertainty one could infer patterns from true noise (overfitting), providing a potential
reason that simple prediction schemes still provide accurate forecasts (Makridakis et al.,
2020). Moreover there is evidence (Chen et al., 2012; Guo & Williams, 2012; Thomas et
al., 2008) that the random variation depends on the underlying systematic pattern or condi-
tions and exogenous variables (Li, Chai, et al., 2022) and, hence, random variations should
be studied in relation the underlying processes. In the remainder of this section, we provide
an overview of capturing and modeling random variation in the context of traffic, typically
using a probabilistic framework in contrast to the often-used deterministic setting to capture
systematic variations.

Basically, there are two possibilities to study the probability distribution of the random
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variation. First, as a function of time and previous squared residuals (compared to a pattern
capturing the systematic variability) and variances. Second, as a function of the underlying
systematic pattern or exogenous variables. The first approach is used in generalized au-
toregressive conditionally heteroscedastic (GARCH) models to capture the variance of the
residual time series, and to predict the volatility. GARCH has been used by Kamarianakis
et al. (2005) to study the volatility in speed, and, among others, by Guo et al. (2015), Huang
et al. (2018) and Vlahogianni and Karlaftis (2011) to study the natural variability of traffic
flows on arterials and freeways. Stochastic volatility models, where the variance follows a
stochastic process, are used, e.g., by Zhang et al. (2014). The second approach, where the
distribution is conditioned on the underlying trend or regime, allows for a more intuitive
explanation of the random variation. A well-known example is the (discrete) Poisson distri-
bution, for which the variance of the random variable equals the mean. Adopting the latter
property for continuously-varying data, Thomas et al. (2008, 2010) showed that this disper-
sion coefficient is a lower bound on the true dispersion for volume data. Although additional
challenges occur when adopting a count time-series approach (Manolakis & Bosowski,
2019), variants of queuing theory can be used to explain the underlying dynamics (e.g.,
arrival processes) leading to this volatility (Breiman & Lawrence, 1973). Transformations
on the data can be used to detect the volatility (Guo et al., 2015; Guo & Williams, 2012).

Regarding travel times, Van Lint and Van Zuylen (2005) observe different types of travel
time distributions under different regimes. Where free-flow travel times show little spread
around the mean, other regimes show a highly skewed distribution. It is argued that using
variance or standard deviation in relation to the mean value is naive when modeling the
reliability of travel times (Ramezani & Geroliminis, 2012; Van Lint et al., 2008). Li and
Rose (2011) indicated that the vehicle-to-vehicle travel time variability is a sigmoid-like
function of the mean travel time meaning that the random variation can be well-modeled as
a function of the underlying patterns.

The random variation in traffic conditions-related variables makes that a volatility model
can be used for outlier detection, point prediction error estimation and for probabilistic
predictions - and thereby for decision assessment. Several standard (point forecasts) error
metrics are shown to be influenced by volatility (Kaas et al., 2008; Karlin & Taylor, 2012),
but this is not well-acknowledged in prediction studies. Where prediction intervals have
been introduced in different contexts (Khosravi et al., 2011; Lin et al., 2018), these are
often calibrated based on a single confidence level. However, singe-level optimized intervals
may show undesirable performance for other confidence levels. Although various metrics
take the width of the prediction interval into account (Khosravi et al., 2011; Makridakis
et al., 2020), these measures are more appropriate if a full density forecast is provided and
evaluated as a whole (Hong et al., 2016).

The random variation on longer timescales partly results from the very short-term fluc-
tuations in the dynamics. These short-term variations are difficult to study since (i) fluctu-
ations strongly depend on the regime (Breiman & Lawrence, 1973), and (ii) the underlying
real-life processes are highly complex particularly in an urban network. The underlying
processes are often modeled assuming a relatively slowly-changing or constant regime (sta-
tionary conditions), which rarely occurs - if at all - throughout a single day, e.g., volume
time series show a highly nonlinear and quickly changing intra-day pattern. In a stationary
setting, renewal theory allows one, under certain assumptions, to express the variation in
aggregated volumes as the result of the variation in inter-arrival times. In particular for free-
ways, this approach relates the variations across different timescales (Breiman & Lawrence,
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1973; Miller, 1970) but for interrupted flows, e.g., in urban traffic networks, such relations
are more difficult to capture directly. Indeed, in the lower urban network a large share of
the variations in the LOS is due to the induced fluctuations by interruptions, e.g., signalized
intersections and junctions, and traffic flows might show bursts, i.e., shorter periods with
numerous arrivals alternate with longer periods with no arrivals (Goh & Barabasi, 2008;
Paxson & Floyd, 1995). Therefore, queuing theory is used to explain the very short-term
variations in volumes and delays, the latter as a major travel time-influencing factor. In any
case, mirroring real-world traffic dynamics in this setting is very challenging compared to
freeways. For example, the arrival events on freeways were shown to approximately follow
a renewal process under low-to-moderate flows (Breiman et al., 1977; Luttinen, 1996), and
can thus be modeled using solely an inter-arrival or headway distribution (Ha et al., 2012;
Hoogendoorn, 2005). In an urban context, under all conditions, one should study events in
conjunction with other processes mainly at intersections, e.g., the inter-relations between
arrival and departure processes and signal dynamics (Luttinen, 1996; Zheng et al., 2017).
Explicitly modeling these interactions is not an easy task: arrivals at an approach are in-
fluenced by interruptions upstream and signals are, at least in our Dutch context, typically
actuated by vehicle arrivals. Literature focused on the impact of these short-term variations
on the mean and variance in the delay (for a single regime). As such, several encompassing
formulas approximating the relation between the degree of saturation and delays have been
proposed. The most prominent study is the one of Webster (1958). Over time, models have
been extended to account for various delay-contributing processes such as different arrival
processes (Boon & Van Leeuwaarden, 2018; McNeil, 1968; Viti, 2006), time-dependent
processes (Akcelik, 1980), networks of intersections (Boon & Van Leeuwaarden, 2018) and
vehicle-actuated signals (Viti & Van Zuylen, 2010b). Here, both the mean as well as the
variance in delays increase sharply when the degree of saturation increases.

The presence of systematic variability in the traffic conditions-related variables makes
that information systems should explicitly account for the dynamics in the LOS. At the same
time, point predictions are not sufficient when evaluating measures in a decision-making
process since random variation causes that a realization can substantially deviate from the
average. Hence, actors operating in the urban traffic domain should consider both systematic
and random traffic variations when considering robust measures, thereby anticipating both
the evolution as well as the uncertainty of the LOS.

1.5 Traffic variations and decision-making processes

We distinguish three main actors using information regarding the urban traffic network in the
decision making process: LSPs, traffic managers and individual car users. In this section,
we illustrate the relevance of using information regarding traffic variations during decision
making processes and examine how traffic variations are addressed in the accompanying
decision problems.

1.5.1 Traffic variations and decision making for LSPs

LSPs in home delivery construct route plans to visit a set of customers thereby minimizing
the costs of transport while satisfying service requirements. Route plans are constructed
days or hours before execution (e.g., Agatz et al., 2008), and the corresponding decision



12 1 Introduction

problem involves the assignment of goods to trucks, the sequence of customer visits, the
physical paths between the stops as well as the departure times of the trucks. Just before
execution, or while being en route, such plans might be adapted since the information on
which the initial route plans was based potentially becomes obsolete. In fact, dynamically
revealed information makes that adapting route plans in a near real-time fashion is desired
when ETAs are exceeded, or to assure that route plans are less vulnerable for future distur-
bances.

Although route plans are constructed in advance, offline route plans can relatively easily
account for variations in the LOS of the traffic system that occur on longer timescales. For
example, recurrent congested areas can be avoided by changing the sequence of customer
visits or by adapting the departure time as long as the service guarantees are met, i.e., longer-
term periodic variations can be accounted for during the offline decision-making processes.
However, a large share of the variability in traffic conditions cannot be predicted a long time
in advance, making that route planning is characterized by a high degree of unpredictability.
Not only the inherent uncertainties of the traffic system are part of this unpredictability, but
also systematic variations that occur on relatively short timescales are difficult to predict.
Robust offline route plans anticipate these uncertainties and target stable arrival times under
a variety of conditions. Here, it is not sufficient to consider local variations in isolation.
In fact, variations should be considered on a path rather than a link level since customers
and dispatchers are not so much concerned with variations in traffic per se, but are merely
focused on the timeliness of the provider (Heim & Sinha, 2001).

Assuming that the planning horizon remains stable over time, a priori information re-
garding travel times and information over time about realized network delays make that
plans can react to changing conditions while anticipating future developments. In fact, pre-
diction errors for recurrent variations decrease over time resulting in shorter-term travel time
predictions that can be used to dynamically update routes. However, shorter-term predic-
tions still include subway uncertainties and prediction errors. The online adaptation might
even be necessary when coconut events take place but should be avoided when very short-
term but natural variations occur that only seem to but not truly impact operations. Making
robust offline route plans stable under both subway and coconut uncertainties is virtually
impossible. Therefore, anticipatory route plans regarding traffic variations are character-
ized by relatively stable arrival times under prediction and subway uncertainties and allow
for dynamic adaptation when disruptions such as incidents occur.

The well-known routing problems, i.e., shortest-path problem, TSP, and VRP in their
basic form assume constant travel times between customers. The periodic variations re-
garding travel times are included in time-dependent variants (Gendreau et al., 2015; Kok et
al., 2012), with speeds or travel times modeled as function of time (of day). Random vari-
ations in the LOS of traffic are incorporated using a stochastic version of the optimization
problems - implicitly assuming that the uncertainties can be captured by a random variable
- thereby theoretically accounting for both the inherent as well as the prediction uncertain-
ties. Periodic variations and the accompanying uncertainty covering timescales longer than
the planning horizon can then be included in the offline setting. Possibilities for dynamic
refinements are highly determined by the a priori solution. In home delivery, when the
trucks depart, parcels are already assigned to vehicles and there is only limited calculation
time available to determine improved plans since the LOS might be quickly changing. At
the same time, anticipating future adaptations can significantly affect the offline route plans
(Powell et al., 1995).
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Pillac et al. (2013) provide a taxonomy of the relation between information evolution
and the information quality, with all necessary information either known or not known be-
forehand and with or without uncertainty. The variations in travel times make that the
uncertainty-aware decision problem is of dynamic and stochastic nature. In current prac-
tice, human planners are often dedicated with re-planning after the occurrence of an incident
or if a communicated ETA is exceeded. In theory, a part of re-planning could be automated
since the fleet is monitored in real time.

The complexity of the dynamic and stochastic variant of the shortest-path problem, TSP
and VRP is a potential reason that anticipatory and adaptive (re-)planning methods have not
been widely implemented. First, the time-dependent shortest path problem needs already
substantially more calculation time compared to the time-independent variant (Gendreau
et al., 2015), which is particularly concerning during the time-critical re-planning process.
Second, these problems require a transport management center not only estimating current
travel times but also providing travel time forecasts on a continuously changing collection of
paths over many different timescales. Here, incidents and accidents should be recognized
in a timely manner and forecasts should also account for future consequences (including
traffic management) of an event that not necessarily occurred at the intended path. These
problems become even more challenging with (time-dependent) uncertainties involved.

The size of the fleet, the uniqueness (in time and space) of incidents, the absence of
reliable traffic predictions, and the time-critical nature of (re-)planning makes that human
planners decide on sub-optimal route plans. Therefore, there have been several attempts
in literature to address these issues, translating the route planning process into a stochastic
and time-dependent TSP or VRP. We note that a majority of the VRP-literature, however,
considers uncertainties in the demand rather than travel conditions (see, e.g., Soeffker et
al., 2022). Static problems with time-dependent stochastic travel times or speeds include
the expected shortest path problem (Miller-Hooks & Mahmassani, 2000) and the stochas-
tic time-dependent VRP (Lecluyse et al., 2009; Tas et al., 2014). Re-planning after, e.g.,
incidents, is studied by Fleischmann et al. (2004) where the shortest path to the next des-
tination is recalculated based on current conditions. Studies that allow the adaptation of
route plans based on changing conditions include Ehmke et al. (2015), Ferrucci and Bock
(2014) and Koster et al. (2018) - typically making naive assumptions on the propagation
of congestion. Gmira et al. (2021) consider a dynamic VRP incorporating dynamic pertur-
bations to the travel speeds after which the current solution is reconsidered. These studies
underline the practical and theoretical difficulties to realistically capture and anticipate the
spatio-temporal dynamics and the uncertainties in the LOS in the context of routing.

1.5.2 Traffic variations and urban traffic management

Public road authorities and urban traffic managers use historical and near real-time infor-
mation to design and improve the urban traffic network. Decision making occurs on differ-
ent levels but is in an urban context often related to intersection-related choices. Strategic
and long-term decisions include the physical design of the network, i.e., construction plans
regarding a part of the network. On a lower level, junction design decisions are made,
involving the choice for the type of junction (e.g., roundabout or signalized intersection)
as well as longer-term decisions regarding the geometric design, slow-traffic handling, etc.
(Bezembinder, 2021). Medium-term decisions for intersections involve the traffic signal
cycle design. Short-term decisions are management and control measures and include, e.g.,
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cycle adaptations and communication measures in case of events and road works as well as
local management decisions to prevent blockages or the onset of congestion. We refer in
the remainder of this thesis to the medium and short-term decisions as urban traffic man-
agement, comprising local or network-wide measures on different timescales to improve the
utilization of the network (Taale et al., 2018).

The decisions cover various timescales, using diverse types of traffic information. For
example, network and junction design are decisions for the long term with infrequent re-
designs (Bezembinder, 2021). On the other hand, cycle adaptation occurs more frequently
and is potentially deployed on a corridor level with a very short timescale to allow a ‘green
wave’ (Coogan et al., 2017; Mirchandani & Head, 2001). Where longer-term choices are
mostly based on estimated trends in yearly or monthly demand, management choices re-
quire short-term estimates of the LOS on a local, link or junction-level, scale (Mirchandani
& Head, 2001). Decisions on longer temporal scales involve expert judgment with the addi-
tional use of design manuals, historical data or rough projections of future developments. As
an example, junction and traffic signal cycle design manuals (CROW, 2006; Transportation
Research Board, 2010) prescribe estimates of the normative volumes as a major determinant
for design choices. Also, rough forecasts in combination with expert judgment and man-
uals are used for management choices in case of, e.g., events (CROW, 2008). Short-term
management decisions are captured in management scenarios, using near real-time data to
trigger these scenarios, for instance in case of automated incident detection.

Traffic variations play a pivotal role here. Junction and traffic signal cycle design are
based on high-volume occasions, so that the projected day-to-day rush hours can typically
be handled. Hence, the trends in the 24h volume time series over days are important to
estimate - including structural changes in the height and width of the peak of conflicting
directions. For shorter-term decisions, the periodicities of the events influence the extent
to which data is used to support decision making. Traffic variations due to non-recurrent
events are difficult to predict and short-term management decisions are then reactive and
involve the use of near real-time data or recent measurements. This is partly due to the fact
that a majority of incidents and accidents cannot be predicted (coconut uncertainty). Urban
traffic information centers, at least in the Netherlands, support traffic managers and provide
information extracted from the data collected throughout the network, which is oftentimes
limited to information on the statuses of loops and traffic light signals, volumes, estimated
queues and delays near signalized intersections aggregated on a 1 to 15min scale.

Uncertainty should be an integral part of urban network traffic management. Current
management scenarios can be considered to respond to coconut events by comparing mea-
surements to threshold values, so that a minimum LOS can be guaranteed under different
conditions. Subway uncertainties, on the other hand, have not been well-integrated in urban
traffic management. Yet, it has been suggested to base management measures not only to
the systematic variations but also to the accompanying volatility (Tsekeris & Stathopoulos,
2006).

Current data sources, including Bluetooth sensors, floating car data, loop detectors and
video cameras, only provide an indication of a portion of the spatio-temporal dynamics that
occur in an urban network. An underlying model can also be used translate the available
data to a full yet interpolated picture of the traffic state throughout the network (Mahmas-
sani, 2001; Weijermars, 2007). Nonetheless, data is noisy - making that actual measure-
ments not necessarily reflect the actual conditions throughout the network. Moreover, the
highly dynamic nature of urban traffic in combination with aggregated and lagged mea-
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surements make it difficult to distinguish natural variations from systematic changes that
require management intervention. These challenges become even more pressing for parts
of the network where no data is collected and therefore, instead, a model is employed. As
a matter of fact, it is very challenging to capture all urban dynamics in a single model - let
alone make well-informed decisions based on such a model.

Apart from error analysis, subway uncertainties have only been partly covered in de-
cision making. It is recognized in intersection design manuals (CROW, 2006) that traffic
shows random behavior and that therefore delays differ from person to person, and that the
performance of an intersection changes over time. Although almost all major cities adopted
urban traffic management systems in various forms (see, e.g., Hamilton et al., 2013; Nellore
& Hancke, 2016), these systems rarely take the accompanying uncertainties explicitly into
account (Tettamanti et al., 2011) although, for example, a quantification of the (prediction)
uncertainty helps managers to value forecasts (Lafia et al., 2019). In the relative comfort of
model predictive control, where a model is assumed to mimic the real-world environment,
it was shown that taking uncertainties into consideration improves control decisions (Hu &
Hellendoorn, 2013; Tettamanti et al., 2011). Current traffic management practice can be
considered to be highly reactive, with infrequently re-evaluated management scenarios that
are triggered based on (near) real-time data. For example, short(er)-term predictions play
a less important role in current practice, but are necessary for anticipatory decision making
(Coogan et al., 2017; Li, Yang, et al., 2022; Vlahogianni et al., 2004). In contrast to local
anticipatory decisions, network-wide anticipatory decision making should not only focus on
local problems but, ideally, also anticipate feedback effects that occur on a larger scale: the
emergent behavior of travelers in response to decisions should then be accounted for.

1.5.3 Traffic variations and advanced traveler information systems

ATIS support travelers with their pre-trip and en-route travel decisions (Adler & Blue, 2002)
and travel-related information is presented to users in either a descriptive or prescriptive
way (Van Essen et al., 2016). Nowadays, car users often use a navigation device supporting
them in path choice decisions and to obtain en estimate of their travel or arrival time. The
navigation tool is used days to minutes or seconds before departure, and during different
parts of the journey. Such estimates mostly contain a (robust) point prediction regarding the
travel time or the time of arrival.

ATIS, particularly navigation devices, use predictions regarding the LOS of traffic on
different timescales. When suggesting routes days or hours in advance, only longer-term
periodic variations can be accounted for - making that the best-possible route can change
based on the more actual conditions. Hence, suggested paths are potentially time-dependent.
While being en-route, real-time data and short-term predictions are used by the navigation
device to propose or prescribe improved routes.

The uncertainty in predictions is usually not communicated to users, although the natural
variability in travel times and speeds make that arrival times are inherently variable. The
quality of the point prediction is however of high importance, since users oftentimes have a
desired or required arrival time. Yet, the subway uncertainties in the traffic network may be
accounted for in the point prediction by providing conservative estimates that are typically
not exceeded, e.g., when natural variations due to possibly random delays at intersections
add up. If in addition to the mean travel time, also predictions intervals would be constructed
and presented, users can select their preferred option based on their attitude towards risk



16 1 Introduction

(Tsekeris & Stathopoulos, 2006). For example, Shiftan et al. (2011) showed that experience-
seeking users tend to prefer routes characterized with a lower average but larger variance
in travel time. However, predictions should be accurate in the sense that an increase in the
prediction error causes a decrease in compliance to advice (Ben-Elia et al., 2013).

Where inherent uncertainties and longer-term systematic variations can be (implicitly)
included when advising routes, coconut events are generally not anticipated in the forecasts -
otherwise point predictions would be inaccurate in the ‘business-as-usual’ case. This makes
that en-route adaptations are potentially necessary to minimize the deviation compared to
the initial ETA. Currently, such adaptations are based on near real-time estimates of the LOS
over the network. In that sense, these suggestions are only partly anticipatory since these
adaptations do not account for feedback effects that particularly occur when penetration
rates of information services are high. Indeed, the impact of guidance information on the
(future) traffic conditions is rarely accounted for (Ben-Akiva et al., 1991). In addition,
whereas route adaptations are often predominantly based on the data collected via users of
the navigation system, suggestions are usually based on a limited picture of the LOS and,
for example, fail to account for supply variations.

Since ATIS are used during different stages of the journey, travel time estimates are
required on various timescales on many different paths. Employing solely the systematic
variations in travel times or speeds on links, a time-dependent variant of the shortest path
algorithm (Dijkstra, 1959) could be used to calculate such an estimate. Stochastic infor-
mation on the uncertain LOS can be included in the expected shortest path (Miller-Hooks
& Mahmassani, 2000), and - if we look for a policy rather than a path - in a shortest path
that is dynamically adapted based on revealed traffic conditions (Levering et al., 2022). In
practice, such paths are only recalculated after unexpected disturbances occur and do not
anticipate feedback effects.

1.6 Research gap

The urban traffic system is a complex system with its dynamics typically monitored and
expressed on an accumulated and aggregated level using spatio-temporal patterns in the
measurements. Recurrent patterns express a part of the systematic differences that in theory
could be predicted using a model. A share of the occurring fluctuations, however, show
seemingly no pattern, are uncorrelated and are considered random and thus unpredictable.
Random variation together with unexpected events such as incidents and accidents, and the
limited availability of different types of traffic conditions-related measurements on various
scales, cause that decision makers in the urban traffic domain are uncertain about the evo-
lution of the LOS. Informed decisions accept the uncertainties and are therefore uncertainty
aware. To support anticipatory decision making and to identify the limitations thereof in the
context of urban traffic, the inter-relations between systematic variation and uncertainty on
different spatio-temporal levels should be understood and quantified.

LSPs, urban traffic managers and individual road users desire during their decision-
making processes different types of information regarding the historical and future develop-
ments of the traffic network (see Section 1.5). LSPs use travel time predictions on different
timescales to make robust route plans that can be dynamically adapted over time. Urban
traffic managers employ patterns from historical data for the design of traffic signal control
systems and use near real-time data to trigger management scenarios. Individual road users
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employ information services to support travel decisions, e.g., estimates regarding the arrival
time. In all these decision-making processes, an estimate regarding the spatio-temporal
evolution of the LOS is incorporated. The accompanying uncertainty plays typically a less
prominent role but might be equally important in the context of robust decision making.

In this thesis, we use historical data to get a grip on the systematic and random variations
that occur on different spatio-temporal levels in the urban traffic network and thereby we
facilitate a shift from reactive to anticipatory and uncertainty-aware decision making. Since
the operations in an urban network are for a large share determined by the dynamics near
signalized intersections, we particularly focus on the variations there.

When considering the interrupted flows at signalized intersections, delays are mainly
determined by the arrival rate relative to the maximum discharge capacity during the effec-
tive green lag (degree of saturation). Although the dynamics here are complex, in particular
when inter-relations occur between the arrivals at different arms and the capacity in the
case of (semi-)actuated traffic control, the academic community (e.g., Akcelik, 1980; Web-
ster, 1958) proposed several encompassing formulas approximating the relation between
the degree of saturation and delays. Notwithstanding the accompanying simplification of
the actual dynamics, these functions show, under minor assumptions, that there is very little
variation in the average delay compared to the volume variability when the degree of satu-
ration is low. With delays showing little variation under low to medium arrival rates relative
to capacity, the underlying condition of the network is difficult to infer from delays only.
Volumes then particularly support predictions regarding delays, and thus travel times, and
thereby allow preemptive measures to be taken. In addition, delays are almost impossible to
measure directly and traffic speed measurements are collected by external companies, which
can make it expensive to use these data on a continuous basis. In our Dutch context, volume
data are collected by induction loop detectors at the arms of intersection and typically easier
accessible.

Although estimates regarding future travel times are of interest for road users, traffic
volumes throughout the network are an important source for explaining and predicting the
variability in driving times. For urban networks, alternative approaches that directly express
or forecast the variation in network-wide travel times are less appealing. Forecasting driv-
ing times under various conditions based on historical measurements is challenging since
many underlying variability-inducing factors are changing over time. For example, not only
the network conditions but also the routes may change over time (see Simroth & Zihle,
2010). Hence, in this thesis we mainly focus on the variations in urban traffic volumes near
signalized intersections.

Volume variations are mainly studied on two temporal levels. Variations in the condi-
tions are measured on an aggregated level, typically in 5-15min increments. Very short-
term fluctuations occur in the order of seconds (Breiman & Lawrence, 1973), and introduce
random variation on an aggregated scale. Where systematic and random variations are
inter-related and typically difficult to disentangle, current literature mainly study them in
isolation. A simultaneous focus, however, is necessary to recognize systematic differences
in noisy measurements and to assess decisions in the light of the evolution of the traffic
system including the accompanying uncertainty. Reviewing the literature on traffic volume
variations, we make the following observations.

The longer-term variability in traffic conditions can be examined by considering the
changes in the 24h traffic volume time series. Although a variety of methods have been
developed to identify patterns in aggregated and accumulated traffic measurements for re-
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construction and prediction purposes, these methods are generally designed for short-term
traffic predictions (e.g., Habtemichael & Cetin, 2016; Lv et al., 2015). Many decisions,
however, cover a longer timescale and an assessment of the systematic differences in the
24h volume time series support such decisions. Only a few studies (Crawford et al., 2017;
Guardiola et al., 2014), however, consider these time series over longer periods, and take
both the (slowly) changing shape and the height of the 24h pattern into account when as-
sessing systematic variations. In addition, there has been limited attention for the systematic
variability relative to the intra-day pattern, e.g., due to events, but particularly these differ-
ences contain valuable information to decision makers. In any case, extracting systematic
patterns from the time series is a difficult task, since noise with unknown characteristics
corrupt the measurements and the patterns are not observed directly.

Random variations are implicitly addressed by researchers when identifying outliers or
developing and applying a state-space model. Volatility models from econometrics (e.g.,
GARCH) do allow expressing the time-dependent higher order moments in time series yet
provide very little intuitive understanding regarding the relation of the volatility with the un-
derlying processes. In addition, when using such time series methods designed for measure-
ments collected at major arterials or freeways, the variability related to the spatio-temporal
variation in the demand and supply at the intersections throughout the network is not in-
corporated. A comprehensive understanding of the relations between arrivals, departure
dynamics and signal phases on the one hand and variations in aggregated measurements on
the other hand is still missing but is required, e.g., to understand and quantify the infor-
mation loss due to aggregation (Breiman & Lawrence, 1973; Paxson & Floyd, 1995; Son
et al., 2014; Vlahogianni & Karlaftis, 2011). A majority of the studies on local and very
short-term dynamics consider a theoretical setting (e.g., Boon & Van Leeuwaarden, 2018;
Van Leeuwaarden, 2006; Viti & Van Zuylen, 2010a) rarely based on extensive real-world
data, or consider only one factor such as the headway distribution (Hoogendoorn, 2005;
Jin et al., 2009; Luttinen, 1996). Yet, the underlying dynamics can only be revealed when
simultaneously considering different timescales with the use of empirical data, for example
with supply-based information on traffic signal cycles and induction loop data regarding the
occupancy.

Anticipatory decision making requires accurate predictions over various timescales, ex-
plicitly addressing the uncertainty in such predictions relative to the system’s unpredictabil-
ity including the random variation. Although more and more studies provide probabilistic
forecasts (e.g., Guo et al., 2014; Huang et al., 2018; Khosravi et al., 2011; Li & Rose, 2011;
Shi et al., 2014), they mostly generate and evaluate a prediction interval for a single or a
few confidence levels. The quantification of the individual sources of uncertainty accompa-
nying a prediction supports one to identify potential ways to improve it. In addition, many
of the volume prediction methods focus on freeways or major arterials, oftentimes limiting
themselves to short-term point predictions for recurrent conditions. With dynamics being
substantially different in an urban context, there is a demand for uncertainty-quantifying
forecasts, i.e., predictive densities, in this setting for longer prediction horizons under a
variety of conditions including events.

Compared to the rerouting in the context of LSPs, anticipatory traffic management and
rerouting under high penetration levels suffer from feedback effects in the sense that cur-
rent decisions influence traffic conditions, making that initial forecasts potentially become
obsolete. In fact, intended outcomes might not be achieved when failing to account for
the behavior of traffic users in response to management decisions (Ben-Akiva et al., 1991).



1.6 Research gap 19

Incorporating the dynamic feedback effects in limited time is difficult and an underlying
behavioral model should be used to predict the outcome. In this thesis, we explore the
potential of anticipatory traffic management on a strategic level and assess the complexity
of the corresponding optimization problem as follows. It can be assumed that managers
implement management measures to achieve a system optimum: the traffic state with min-
imum (total or average) travel time (Wardrop, 1952). Without intervention, however, the
real-world state is likely to be closer to the user equilibrium than to the system optimum
(Klein et al., 2018). We consider a social routing strategy, steering or nudging travelers
towards socially-desired routes. However, many approaches in literature (Angelelli et al.,
2016; Jahn et al., 2005; Van Essen et al., 2020) relax user constraints and, as a consequence,
realized travel time differences can be substantial. In practice, a routing strategy should an-
ticipate user responses to maximize compliance. As a matter of fact, behavioral responses
influence travel times, and need to be predicted in order to advise routes that are acceptable
to the users. Angelelli et al. (2021), Angelelli et al. (2020) studied such a setting by for-
mulating an integer program using piecewise linearization and developed heuristic solution
methods - providing evidence that social rerouting strategies potentially improve network
performance but are complex to solve to global optimality in limited time.

Research aim

Initially local and minor disturbances in the urban road network can rapidly impact the
conditions on a larger part of the traffic network, and thereby affect the quality of the deci-
sions made by actors operating in the urban traffic domain. This is particularly true for the
time-critical delivery operations of LSPs. The research of this thesis is part of the ADAP-
TATION (ADAptive Planning wiTh Advance Traffic InformatiON) project. The ADAPTA-
TION project has as aim to minimize the impact of traffic disruptions on the operations of
LSPs by quickly detecting disturbances, predicting their network-wide impact and adapting
the route plan in real time. In the context where small disruptions can have a significant
impact on timeliness of LSPs, a better understanding on the spatio-temporal variations in
traffic is required - particularly for the highly irregular urban traffic system.

Anticipatory decision-making processes of different actors operating in the urban traf-
fic domain (LSPs, urban traffic managers and individual road users) anticipate the future
evolution of the traffic system’s LOS as well as the uncertainty therein. Traffic volume
data included in traffic information models support such processes. To allow a shift from
reactive towards pro-active decision-making processes that account for the development
of uncertainties over time, variations in urban traffic volumes near signalized intersections
need to be investigated and predicted over multiple timescales. Consequently, the research
aim is as follows:

Quantifying and understanding variations that occur in urban traffic volumes at different
spatio-temporal levels.

We formulate the following research questions to quantify and understand traffic volume
variations:
1. To what degree do 24h urban traffic volume time series show systematic variations, and
how to characterize the random variation in volume measurements?
2. What is the influence of the arrival processes near signalized intersections on the varia-



20 1 Introduction

tions in urban volumes and delays?

3. To what degree can the systematic variations be predicted, and how can the characteriza-
tion of the random variation be used to provide probabilistic volume forecasts over various
timescales?

4. What is the potential of anticipatory urban traffic management, in particular a social
rerouting strategy, while accounting for different user requirements?

Research approach

The individual research questions will be treated in the subsequent chapters. For each re-
search question, we outline the approach.

Research question 1 is addressed in Chapter 2. In this chapter, we study the variations
in the 24h volume time series using 15min increments as collected throughout the Enschede
traffic network for two years. Since a share of the systematic variations is recurrent, we infer
underlying yet recurrent patterns from the volume data. In this complex setting where pat-
terns are not known in advance, and noise influences our estimates regarding the systematic
variability, we develop a ‘gray-box’ neural network architecture that is not only able to infer
non-linear relations, but also extracts the regularities in volumes expressed by of recurrent
(long and short-term) profiles. In fact, our method infers physically-meaningful profiles to
support application for traffic management purposes and policy making. By allowing small
adaptations of the profiles over the days, we reconstruct the systematic variability in the 24h
flows over the days while accounting for the noise. To do so, we introduce and estimate a
noise-level function, characterizing the natural stochastic fluctuations in the flow as a func-
tion of the underlying volume, and adapt the neural network loss function as well as the
overall procedure to jointly estimate both the systematic variability and the volume noise
characteristics.

Chapter 3 discusses research question 2. We use raw data from induction loop detectors
regarding arrival events to statistically characterize arrival processes at signalized intersec-
tions. To examine the arrival events while including the inter-dependencies with upstream
signals and the dynamics over time and space, we study the arrivals as a point process over
different timescales. Using a reconstruction method, we determine the time increments in
which demand can be assumed stationary and thereby account for the systematic variabil-
ity in the arrival rate. For a given interval, we study the arrival process in two ways. We
examine the series of events as a counting process, measuring the number of arrivals in
an interval, and as a sequence of inter-arrival times. Although these perspectives are fun-
damentally related, they have very different second-order properties (Daley & Vere-Jones,
2003). We use both the time domain as well as a frequency domain approach to reveal the
regularities in the arrivals. In addition, we use simulation to assess the impacts of the arrival
structure on the variations in delays.

Chapter 4 addresses research question 3. In this chapter, we study the predictability of
systematic variations in urban traffic volumes by developing and consequently evaluating
a prediction mechanism. The prediction method uses historical latent profiles to provide
volume estimates over multiple timescales, ranging from 15min to 24h in advance. Since
profiles yield predictable fluctuations over various horizons, the forecasting task reduces to
estimating the magnitude of the profiles over the day. By using the profiles to build up 24h
volume time series, we introduce sufficient degrees of freedom to be flexible to adapt the
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forecast to a range of scenarios, including situations where recurrent events occur. We start
with an initial prediction based on explanatory variables, and construct the 24h, remaining-
day and short-term predictions by comparing previous estimates with measurements that are
revealed over time. We estimate a systematic error using the noise level function not only to
update the forecast over time using state-space smoothing, but also to develop a framework
for constructing full density forecasts over the considered timescales. Evaluation is based on
an error estimate in the density forecasts relative to the system’s predictability as expressed
by the statistical characterization of the random variation.

Chapter 5 discusses research question 4. Anticipatory decision making in the context of
urban traffic management requires that feedback effects are incorporated in the predictions.
To explore the potential of anticipatory traffic management, we propose a social routing
strategy that steers the network towards a system optimum while explicitly accounting for
the behavioral response of travelers in terms of route choice. We adopt a game-theoretic
approach, where a leader (traffic manager) and a follower (travelers) interact according to
a Stackelberg game (Josefsson & Patriksson, 2007). In our setting, the response to route
advice is anticipated by the leader of the game to propose the best possible advice in terms
of total travel time. The corresponding (continuous) optimization problem is formulated as
a bilevel program, and we use an implicit reformulation together with parametric analysis of
the lower-level solution set to develop and apply a descent method. We explore the potential
of the social routing strategy by numerical experiments in test networks.

1.7 Research relevance

The research in this thesis makes several contributions to the literature and to practice. We
discuss the scientific relevance in Section 1.7.1, and the relevance for practice in Section
1.7.2.

1.7.1 Scientific relevance

For each chapter in this thesis, we outline the contributions to the literature. A proper
theoretical embedding follows in the respective chapters.

» Chapter 2: Despite the attention for the statistical properties of noise in image and
signal processing literature, only a few studies statistically characterized the random
variation in traffic volume measurements. Although there is evidence that the amount
of random variation depends on the underlying systematic patterns, many estimation
and prediction methods make restricting assumptions regarding the noise. We intro-
duce a generic noise level model that describes the distribution of the random varia-
tion in traffic volume measurements as being signal dependent. Whereas the estimate
of the variance of the noise depends on the underlying systematic variation and vice
versa, we introduce a method that captures the systematic variability in the shape and
the height of the 24h volume time series over the days, including days where events
occur. In fact, we reconstruct the systematic variation in volumes using meaningful
long and short-term temporal patterns while simultaneously estimating the noise level
from the flow measurements;
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» Chapter 3: A major share of the variation in volume measurements is the result of
the dynamics that occur near signalized intersections. Where many delay estimation
methods use naive assumptions regarding the arrival events, we use high-resolution
loop detector data to statistically characterize arrival processes. Our approach al-
lows for a comprehensive characterization of an arrival process by considering it as
a sequence of inter-arrival times as well as a counting process - in both the time do-
main and the frequency domain. Correlations over time as well as variations due to
upstream interruptions are incorporated, since arrival processes are determined for a
high degree by the short-term periodicities related to upstream signals and the platoon
dispersion.

* Chapter 4: We introduce a method for predicting urban traffic volumes on various
timescales, including a quantification of the uncertainty in the form of full density
forecasts. Where long-term patterns are used for forecasts up to 24h ahead, short-
term patterns provide predictable fluctuations that cover less time and should not nec-
essarily influence long-term forecasts. Each density prediction accounts for (i) the
random variation in volume measurements, (ii) the uncertainty in the current state es-
timate using a generalized state-space model, and (iii) the systematic prediction error
that decreases over time. The method provides accurate and narrow prediction inter-
vals for the various timescales on both minor and major urban roads during recurrent
conditions as well as during events.

* Chapter 5: Traffic management measures route drivers towards socially-desired paths
in order to achieve a system optimum. In previous attempts, the behavioral response
to advice is oftentimes not accounted for since some drivers need to take significantly
longer paths in favor of the system. We propose a novel fully anticipatory traffic
management strategy called social routing that steers the traffic network towards an
efficient but also fair, and therefore achievable and maintainable traffic state. We show
that the best possible paths to be proposed by a social routing strategy, while explicitly
accounting for behavioral responses to the advice, can be found by solving a bilevel
program having a non-unique lower-level solution. A generalized derivative of the of
the lower-level link flow solution however exists, and is used in a descent method to
find locally-optimal solutions. The strategy can be implemented in a rerouting service
to steer traffic towards a fair state with improved network performance.

1.7.2 Practical relevance

The results from this research are relevant for decision makers operating in the urban traf-
fic domain, such as LSPs, traffic managers and individual travelers, as follows. We list a
selection of the contributions.

» The data used in this thesis were collected throughout the traffic network of Enschede.
The Enschede traffic system is becoming increasingly congested (De Jong, 2020,
2021), and the proposed state-space model together with the inferred temporal pat-
terns can be used, e.g., by urban traffic managers, for monitoring and policy purposes
to relieve or mitigate congestion and to meet societal goals in general. In fact, the
state-space model provides an estimate of the traffic conditions while accounting for
the uncertainty in the aggregated measurements. Although the data were collected in
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the Enschede network, the methodological applications go well beyond this network
and also apply to traffic conditions-related time series as collected in other urban en-
vironments.

* The prediction mechanism developed can be used by LSPs, traffic managers, and
traveler information systems to forecast the network-wide traffic volumes on differ-
ent timescales. In combination with other data sources or models, these predictions
can be used to provide probabilistic forecasts regarding delays, travel times or travel
speeds. Such forecasts could improve the efficiency of logistics operations in ur-
ban areas, mentioned as one the challenges by the Alliance for Logistics Innovation
through Collaboration in Europe since urban freight is responsible for 25% of the
CO5 emissions in urban areas (ALICE, 2014).

* The Dutch project ‘Talking Traffic’ (Partnership Talking Traffic, 2022) focuses, among
other things, on reducing fuel and CO, emissions for carriers. Trucks communicate
with traffic lights and will be provided priority when approaching a signalized inter-
section in order to prevent the vehicles coming to a standstill. Our developed simula-
tion model based on actual arrival processes under a variety of conditions support au-
thorities in optimizing these dynamic signal plans as well as evaluating the network-
wide effects, e.g., by using very short-term predictions regarding the demand, delays
and queues at the different approaches.






Chapter 2

Patterns and noise in urban traffic
volumes

2.1 Introduction

Traffic networks are increasingly utilized and become less reliable at the same time. Nu-
merous management measures have therefore been designed to improve the utilization of
networks. These measures typically react to the prevailing conditions but may fail to achieve
their intended outcome since conditions can rapidly change over time. Ideally, management
measures are deployed in a pro-active rather than reactive manner in prospect of future
conditions resulting from both periodic variations in demand and supply as well as the feed-
back, e.g., of drivers, in response to the measures and the changing conditions. Making
such predictions in limited time is challenging, particularly in an urban setting, which is
highly irregular compared to freeways. In any case, to support the development of fast and
reliable predictions methods, there is an increasing need to understand the complex urban
traffic dynamics.

Fluctuations that occur in traffic networks are typically examined on an accumulated and
aggregated level. Network usage is oftentimes expressed by traffic flow (or: volume) time
series with regular intervals in the order of 5-15min. These traffic flow time series show
clear patterns in time and space, and these patterns can therefore improve predictions and
consequently support management decisions since future fluctuations can be anticipated.
Apart from the systematic variability, a large share of the fluctuations in time series can be
considered random and unpredictable, i.e., noise (Bates et al., 2001; Breiman & Lawrence,
1973; Thomas et al., 2010). Particularly for real-time monitoring and prediction purposes it
is important to separate the systematic from the random volume differences so that changing
conditions are rapidly recognized in a situation where stochastic high-frequency fluctuations
occur in parallel.

Traffic volumes and demand are well known to show systematic variability over various
timescales, e.g., within a day and from day to day (Crawford et al., 2017; Rakha & Van
Aerde, 1995), and therefore typically examined using 24h time series. Although the intra-

This chapter is based on the following paper: Eikenbroek O.A.L., Thomas, T., Mes, M.R.K., &
van Berkum, E.C. Patterns and Noise in Urban Traffic Flows.
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day and day-to-day systematic differences are often considered in isolation (e.g., Rakha
& Van Aerde, 1995; Stathopoulos & Karlaftis, 2001; Thomas et al., 2008), there is less
known regarding the systematic changes in the 24h pattern over the days (Crawford, 2017,
Guardiola et al., 2014; Weijermars & Van Berkum, 2005). A simultaneous consideration
of both the intra-day and day-to-day variability is however necessary, e.g., to estimate ro-
bustness of measures in light of a gradually changing height, width and time of the morning
peak (Crawford, 2017). This double timescale examination of traffic volume time series
also reveals the systematic variations on timescales longer than 5-15min but shorter than
24h, e.g., due to events and incidents. In fact, these short-term differences are less struc-
tured but can still be recurrent. Nevertheless, their frequency of occurrence and magnitude
are highly variable, and short-term systematic variations need to be assessed relative to an
unknown pattern that would have been realized without the event (Chen et al., 2012; Li
et al., 2015). Even though these short-term patterns yield highly valuable information for
traffic managers, relatively little is known about such systematic variations in the volumes
(Olabarrieta & Lana, 2020; Polson & Sokolov, 2017; Thomas & Van Berkum, 2009) but
yield highly valuable information for traffic managers since control actions can deployed to
mitigate negative impacts.

Apart from the systematic variability that in theory is predictable, we define the ran-
dom variation in traffic volume time series as the portion of the fluctuations that shows no
pattern and is uncorrelated (Thomas et al., 2008, 2010). With the urban traffic system be-
ing inherently variable, an accurate quantification of the distribution of the noise allows for
the assessment of measurements and estimates relative to the unpredictability of the system
(e.g., by using probabilistic forecasts), but also identifies to what degree control actions can
influence the future. In fact, without careful consideration of the random variation during
the modeling exercise, one could infer patterns from true noise (overfitting) — putting the
reliability of forecasts at risk (Makridakis et al., 2018).

Although the systematic variation is the only variability that can be predicted, the true
systematic variability in the volumes is rarely revealed. With measurements only providing
a single realization of the stochastic and natural variation around the trend, a model is re-
quired to separate the signal from the noise. Such a decomposition is highly challenging,
since the underlying variability-generating processes are typically far from stationary in an
urban environment. In addition, aggregated volume measurements can show patterns over
many different timescales which are difficult to model using basic exogenous variables only.
An a priori quantification of the noise is nonetheless difficult since systematic volumes can
show sudden shocks and there are inter-dependencies between the estimates of the noise
characteristics and the systematic variability (Ghosh et al., 2010; Guo et al., 2015; Guo &
Williams, 2012; Thomas et al., 2008). Hence, although it is important to disentangle the
systematic from the random variation to identify what can(not) be predicted, doing so is
challenging in an inherently variable urban traffic environment.

The focus in this chapter is to provide an a posteriori estimate of the amount of repe-
tition and inherent uncertainty in 15min urban traffic volume measurements. In fact, 24h
urban traffic volume time series show recurrent patterns that express a major share of the
systematic variations. Indeed, time of day and day of the week are important predictors for
volumes (Crawford, 2017; Weijermars, 2007), yet traffic flow time series are also impacted
by short-term events and show gradual changes over other timescales. Therefore, the mea-
sured flows may not necessarily reveal the recurrent patterns as such, since the shape, width,
and height of the patterns changes over time while noise corrupts the measurements at the
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same time. Although these systematic variations show natural variability, they are in fact
recurrent and can therefore be incorporated in a model to separate the systematic from the
random variation.

Since the characteristics of the noise may depend on the underlying systematic vol-
umes, and vice versa, we propose and apply a data-driven method to infer both jointly.
Therefore, we develop a novel uncertainty-aware neural network architecture that retrieves
the recurrent patterns in 24h traffic volume time series while accounting for the natural yet
systematic variations in these patterns. In addition, we account for the inherent uncertain-
ties in urban traffic volume measurements using a generic noise model that describes the
random variation in traffic flow measurements as signal or volume-dependent noise. We
apply our method to two years of traffic flow measurements in the city of Enschede, the
Netherlands. We discuss throughout the chapter the relevance of the results in light of esti-
mation and prediction methods. The noise model and the results can be used to extract and
analyze patterns to be used in predictions with a corresponding confidence interval (Chen
et al., 2012; Guardiola et al., 2014; Habtemichael & Cetin, 2016), but also to understand
why travel speeds and thus travel times deviate (Li & Rose, 2011).

The remainder of the chapter is organized as follows. In Section 2.2, we discuss a
generic volume-dependent noise model. Additionally, we discuss the relevance of esti-
mating the systematic patterns and the amount of random variation. Section 2.3 reviews
methods to extract temporal patterns and the noise level. In Section 2.4, we introduce our
method to jointly infer patterns and the noise level in urban networks from historical data.
We apply our method to study traffic flows in the city of Enschede and show that noise is
volume dependent (Section 2.5). Section 2.6 draws the conclusions.

2.2 Systematic and random variations

Separating the systematic from the random variations based on historical measurements
requires assumptions on both the dynamics in traffic volumes as well as the source and
nature of the noise. In this section, we therefore introduce a generic noise model (Section
2.2.1), and discuss the challenges in distinguishing and estimating systematic and random
variations in order to quantify the (un)predictability of volumes (Section 2.2.2 and 2.2.3).

2.2.1 Traffic flow measurements and volume-dependent noise

In urban networks, traffic flow is typically monitored using induction loop detectors near
(signalized) intersections. For a fixed loop detector, the signal or measurement x is a
mapping x : D x T — N°, with D the set of days, and T the time domain for a sin-
gle day. Here, a measured 24h traffic flow time series x4, at day d € D, is a vector
Tg = (de,:ch, e ,xd7‘T‘), with |[T'| = 96 in our case with 15min measurement in-
tervals. The observed signal x4, is a realization of a random variable described by the sum
of the underlying deterministic systematic flow sq, and random variable ¢4 ; (noise), i.e.,

Sdt + Edyt- 2.1

Hence, volume measurements can be considered outcomes of an experiment due to ran-
dom and unpredictable behavior of users from an observer’s perspective (see Section 2.2.3).



28 2 Patterns and noise in urban traffic volumes

Assuming that a large share of the random variation can be attributed to the random ar-
rival processes, the theory on renewal processes (e.g., Cox & Lewis, 1966) hints on a noise
variance in aggregated volume measurements as a function of the underlying arrival rate.
Hence, we adopt a general volume-dependent noise model (see Foi et al., 2008; Liu et al.,
2014) in the real space with

Ed,t = U(Sd,t)nd,u

where o : RT — R is the noise level (as a function of s) and 74 is a zero-mean inde-
pendent random variable with 14, ~ N'(0,1). Then, the noise is distributed according to a
heteroscedastic Gaussian with volume-dependent variance, i.e.,

Ed,t‘sd,t ~ N(Oa 02(5d,t))7

for each (d, t). In this chapter, we estimate a noise function o (s) of the following form (Foi
et al., 2008; Liu et al., 2014):

Var(e|s) = 0%(s) = as®” + 3, (2.2)

with parameter vector § = («, 3, 7), where «, 3,y > 0. This generic noise-level function
(2.2) can in particular take the form of additive white Gaussian noise (o« = 0), and ‘Poisson’
noise (« =1,8=0,7 = %). The latter noise model would be the result of a renewal pro-
cess with the inter-arrival times being exponentially distributed (with an interval-dependent
arrival rate).

A direct and accurate estimation of the parameters of the noise model o2 () requires a
reconstruction of s from z, see (2.2). The true s, however, is not available. Where ‘local’
information can be used to obtain a smoothed estimate of s in case of slowly-varying or
stationary conditions, traffic volume time series may show rapid changes over the 15min
intervals. Moreover, without prior knowledge on s, extracting patterns from historical data
is a difficult task: the measurements are corrupted by noise that depends on the systematic
flow (Chen et al., 2012; Chen et al., 2008; Thomas et al., 2008). Consequently, noise
quantification can only occur by making prior assumptions using domain knowledge about
the noise (process) and/or the underlying traffic flow patterns.

2.2.2 Systematic variations

Traffic flow measurements show systematic variations over various timescales. Many of
these patterns are recurrent, and can therefore improve prediction and estimation methods
(Vlahogianni et al., 2014), by matching recent measurements to historical ones. Such pat-
terns are known to exist in time and space, and often assumed to be the result of the variabil-
ity in the demand (Thomas et al., 2008). Typical 24h time series show an M -shaped curve,
with the exact intra-day shape being dependent on the day of the week (or groups thereof)
(Li et al., 2015; Rakha & Van Aerde, 1995; Weijermars & Van Berkum, 2005). Apart from
the changing shape of different days of the week, variations also occur on timescales longer
than 24h, e.g., due to seasons that can be described using a slowly-changing yet variable
magnitude (or: height) (Crawford et al., 2017; Weijermars & Van Berkum, 2005; Zhong
et al., 2020).

Not only long-term volume variations are recurrent, but also repeating short(er)-term
variations exist that cannot be explained by a daily pattern, e.g., due to events. Such fluctu-
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ations are more variable in their frequency of occurrence and accompanying magnitude and
shape. The short-term patterns are difficult to recognize and predict, since occurrence might
be unpredictable (e.g., accidents). Nonetheless, in particular these patterns can improve es-
timation and prediction but occur, from a modeling perspective, in the residual time series
and therefore requires an estimate of the latent trend. The regularity in the resulting volume
differences (relative to the trend) is challenging to capture since impacts highly depend on
time and location-specific factors such as the residual capacity.

24h time series are not necessarily the same as the recurrent temporal patterns or profiles
as we will call them. On the contrary, seemingly different 24h time series may actually
consist of the same latent profiles. The 24h time series then look different because the
underlying basic profiles are subject to small transformations (e.g., height) that change from
day to day. Identifying profiles from historical data is challenging, since additional variables
are possibly be needed to explain the occurrence and shape of the pattern (Crawford et
al., 2017; Guardiola et al., 2014). Yet, it is virtually impossible to identify and collect
all variability-inducing factors. This is particularly true for recurrent patterns related to
events and incidents and these fluctuations should not be captured by the intra-day trend.
Therefore, we adopt an unsupervised approach in this chapter. In any case, the profiles
could be incorporated in prediction methods to quickly anticipate future conditions since
the prediction task then occurs in a space with fewer dimensions than the measurement
space. For example, provided a recurrent 24h volume shape, a remaining-day forecast can
be reduced to predicting a single scaling magnitude thereby providing an estimate for the
flows over time (Wagner-Muns et al., 2018).

2.2.3 Random variation

A noise term such as € in (2.1) is inevitable for any measurement time series. Random
variation in traffic flow time series is due to random variation in physical dynamics (pro-
cess noise) (e.g., ad-hoc decisions, stochastic road capacity, queuing dynamics, unknown
traffic management measures in place - see, e.g., Breiman and Lawrence (1973) and Chen
et al. (2008)). The noise characteristics are not fixed but depend on the information of the
observer and the aggregation level (in time and space) (e.g., Oh et al., 2005; Son et al.,
2014; Vlahogianni & Karlaftis, 2011). For example, the impact of traffic signal cycles
might be systematic and apparent when using short measurement intervals, but is part of the
(quasi-)random variation using 15min increments (Thomas et al., 2008), i.e., within 15min,
individual red and green times cannot be identified and therefore contribute to the noise.
Also, incidental errors in signal processing (measurement errors) are included to the noise.
Although many researchers are aware of noise due to measurement errors (e.g., Briedis &
Samuels, 2010; Yang, Wu, et al., 2019) and noise estimation is intrinsically attached to any
traffic measurements-related exercise, less has been published about the amount of variation
in traffic time series due to the inherent randomness of the processes (see Section 2.3.2).
Knowledge about the amount of noise supports inference of the current state or trend
based on recent measurements, including an accompanying estimate of the level of uncer-
tainty. For example, an abrupt change in measurement volume x4; compared to z4,;—1 can
indicate a change in the system, while in practice (a part) the of the fluctuations can also
occur due to the inherent variability of the system. A (3-)sigma clipping approach (Chen
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et al., 2012; Guo et al., 2015; Li et al., 2015) identifies an outlier if

|Zar — Fau(y)| > 30(sa.) 2.3)

holds for some (d, t), with F; ;(y) an estimate for s, ; using parameters y (see Section 2.3),
e.g., naive estimate F;;(y) = x4,—1. Obviously, various estimates of o%(s) lead to the
identification different sets outliers. Since outliers as in (2.3) potentially contain informa-
tion about the prevailing state and the underlying physical dynamics (Koen & Lombard,
1993), an accurate estimate of o2 () is required to distinguish random and systematic varia-
tions. Moreover, noise levels are explicitly used in the estimates of the systematic variation
and accompanying confidence bounds. For example, the widely-applied particle filter tech-
niques (e.g., Kalman filter - see Kalman (1960)) require an estimate of the noise (co)variance
to relate systematic flows to measurements. Guo et al. (2015) developed therefore a filter
that incorporates the conditional variance of the noise in traffic flows. Hence, even if pa-
rameters of the statistical noise model are not of primary interest, they also influence the
estimate of other parameters particularly with small data sets (Aravkin & Van Leeuwen,
2012; Kamarianakis et al., 2005).

The stochastic setting makes the noise level function o2 (s) provides a lower bound with
respect to the best-possible accuracy of prediction methods. We show that the difference
between the total squared error and variance of the random variation in a prediction model
indicates the size and nature of the error in the estimate of the systematic variation, i.e., the
systematic error (Hunt et al., 2007; Thomas et al., 2010). A prediction scheme continuously
estimates Z 4, for some (d, t) in the future. It is typical to evaluate an estimate by comparing
it to measurements. The error (T4 — (Sa,t + €4,¢)) is a random quantity, and the expected
squared error E[(Zq+ — (Sa.t + €a,¢))?] should thus be small on average (Karlin & Taylor,
2012). The squared error becomes (see Karlin and Taylor (2012) for a derivation)

E[(Za: — (sa, + €d,t))2] = Uz(Sd,t) + (Zae — Sd,t)Q-

Hence, the best predictor Z 4 ; for measurement x4, is 4+ = Sa,¢, but still has an expected
squared error that equals the conditional variance of the noise. In any case, a perfect pre-
diction scheme can only achieve (on average) a squared error that equals the variance of
the noise. Interestingly, the previous exercise also provides a network-invariant measure to
compare different prediction schemes z. Since prediction methods are difficult to compare
(Vlahogianni et al., 2014), we propose metric (Z4; — s4.¢)?, that requires however an esti-
mate on the amount of random variation (which might be dependent on the network or other
factors).

2.3 Estimation in urban traffic networks

In the previous section, we indicated the relevance of labeling variations as either systematic
or random. In this section, we show that extracting systematic variations is inter-related with
estimation of the noise level function o2(s).

Provided an identification of similar traffic conditions, one could estimate the systematic
value and noise variance using standard statistical techniques (e.g., sample mean and vari-
ance). However, identification of more or less uniform conditions is rather difficult in our
setting due to the variations with different resolutions. Therefore, a model is used to capture
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the systematic variability. Reconstruction problems aim to infer the systematic variations s
from noisy historical observations x. Typically, a forward model F(y) is defined, mapping
parameter y € R™ to s so that (see, e.g., Scherzer et al., 2009)

F(y) =s.

Ideally, either the underlying parameters y and/or model F'(y) are known in advance. Given
a forward model F(y) (known parameters y), inverse problems compute parameters y
(model F(y)) using measurements 2 (Hansen, 2010). Reconstruction problems usually
solve a variation of the optimization problem

(P): min f(z,y,0)

to choose the best reconstruction among all available ones (Aravkin & Van Leeuwen, 2012).
Objective function f(x,y, ) in (P) measures the reconstruction error between F'(y) and
x, using noise model o2 (s) parameterized by 6. Y C R™ is the feasible set that restricts the
choice of y, which appears as variable in (P). F(y) can be non-linear or even ‘black box’
(e.g., a neural network). In general, (P) is a complex optimization problem that is hard to
solve to global optimality. Where an estimation method as (P) makes a trade-off between
domain knowledge and fit, the estimated noise level should capture random variations due
to the underlying processes rather than being solely a result of the modeling exercise.

F(y) contains beliefs about the patterns in traffic dynamics and the relation with mea-
surements. With respect to a freeway setting, forward model F'(y) is often based on partial
differential equations (Lighthill & Whitham, 1955) and a fundamental diagram (e.g., Nantes
et al., 2016), and dynamics are then assumed to be ‘smooth’ among neighboring measure-
ment loops. For the urban case, there is less consensus about the forward model F'(y). In
fact, the underlying network structure is irregular compared to freeways, due to a vast va-
riety of trip types, activities, modes, etc. At the same time, the amount of noise is usually
not known apriori, and noise parameters should then be inferred from historical data. In the
remainder of this section, we discuss methods to extract patterns that compose s and the
statistical properties of ¢ from z, respectively.

2.3.1 Pattern extraction methods

Optimization problem (P) is not always solved explicitly, but assumptions about the traffic
dynamics are used to find systematic variations. Due to the high repetitive nature of activi-
ties in time and space, a typical daily pattern is often constructed as the intra-day trend. In
line with this assumption, clustering, principal component analysis, and non-negative ma-
trix factorization group similar time series (Chrobok et al., 2004; Jiang et al., 2015; Xing
et al., 2015; Yang, Wu, et al., 2019). These approaches retrieve m features, and each feature
y' € RITI 4 =1,2,...,m, typically describes a 24h recurrent pattern for a measurement
location.

Although the above-mentioned methods are intuitively appealing, and can relatively
easily be used to infer spatio-temporal patterns for stretches of freeways, they are not well
applicable in the context of an irregular urban system. In general, temporal and spatial pat-
terns show gradual changes in time and space. Clustering does not capture these changes
well. In addition, different measurement locations might show different dynamics on dif-
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ferent time scales, which need to be considered simultaneously.

In principle, there is a set of underlying yet unobservable profiles that together describe
the variations s. These variations might be highly dependent on the location and, from a
computational perspective, on the noise characteristics. Because of the location-dependent
characteristics, it is natural to analyze network-wide variations by extracting temporal pat-
terns for each location, and then cluster these patterns based on their variations (Ji & Geroli-
minis, 2012). These profiles should capture the temporal systematic variations over various
timescales, without making any assumptions about spatial variations (Koen, 2003). In fact,
recent evidence shows that distant locations may still possess strong cross-correlations (Er-
magun & Levinson, 2019). It is therefore that also recent big-data methods that scan the
state of the network as images (e.g., Ma et al., 2017) are less-suitable for our case since they
implicitly define a neighborhood for each measurement location. In an urban setting where
oftentimes only a very small share of the network is covered with roadside sensors, such a
neighborhood is not trivially defined and can even be dynamic.

2.3.2 Noise level estimation

The noise level is usually not known in advance, and noise parameters are then to be in-
ferred from historical data. A traditional time series approach uses a Fourier Transform and
labels all high-frequency fluctuations over time as noise. Disaggregated approaches identify
correlations among variations in demand, supply, and measurement devices under different
conditions. This approach is frequently applied to estimate random variation for uninter-
rupted flow in unsaturated conditions (e.g., Breiman & Lawrence, 1973). For aggregated
measurements in an urban setting, random variation with respect to arrivals and intersection
capacity should then be quantified. Such an approach requires high resolution event data,
which is typically less easily accessible. Here, we therefore discuss data-driven approaches
using aggregated measurements.

Data-driven approaches often involve some form of detrending, i.e., find F(y) so that
residuals e statistically follow €. It is difficult to define termination criteria with respect to
detrending since the statistical properties of € are not known in advance. Therefore, one can
either compare F'(y) with other fits, or test e for randomness (Koen, 2003). When there is
no autocorrelation in e, the noise level can then be estimated by relating the variance of the
noise with the underlying estimated systematic flow. In an abstract form, one solves

(@:  winf(z,y,0),

where x,y are fixed, and f (x,y,0) measures the distance between noise level function
02(3) and residuals e (as function of s). Nonetheless, assuming no autocorrelation in e, the
variance in the residuals only provides an upper bound with respect to the variance of the
inherent variability of the urban traffic system: the variance in e consists of (i) measurement
errors, (ii) random variation in the underlying dynamics, and (iii) an inaccurate estimation
of the systematic variation (Hunt et al., 2007).

Despite the strong interest for the statistical properties of noise in image and signal
processing (e.g., Foi et al., 2008; Liu et al., 2014), relatively few studies (Chen et al., 2008;
Ghosh et al., 2010; Guo et al., 2015; Guo & Williams, 2012; Huang et al., 2018; Thomas
et al., 2008; Tsekeris & Stathopoulos, 2006) investigate the noise properties and volatility
in traffic measurements. Although there is evidence that the amount of random variation
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depends on the underlying (systematic) flow (e.g., Breiman et al., 1977; Chen et al., 2012;
Chen et al., 2008; Luttinen, 1996; Thomas et al., 2010), many estimation and prediction
methods (e.g., Wang & Papageorgiou, 2005) assume white Gaussian noise. We cite some
exceptions: Li and Rose (2011), Thomas et al. (2010), Wagner-Muns et al. (2018), and
Yang, Yang, et al. (2019) on traffic volumes, and Nantes et al. (2015), Tang et al. (2018),
and Yang et al. (2010) on travel times.

The (conditional) heteroscedastic nature of the noise induced time series models such
as (G)ARCH to model the variance of the noise over time (Guo et al., 2015; Huang et al.,
2018; Tsekeris & Stathopoulos, 2006). Only a few (Breiman & Lawrence, 1973; Chen et
al., 2008; Ghosh et al., 2010; Thomas et al., 2008), however, tried to estimate the random
variation as a function of the systematic flows. In contrast to our research, the mentioned
studies were limited to either only a few measurement locations, or made a relatively simple
estimate for the systematic flows - typically independent of the (conditional) variance in the
noise. Some other studies use characteristics of random variation in their approach. For
instance, Ermagun and Levinson (2019) assume that systematic variations are captured if
the autocorrelation in the residuals is null. Different measures that quantify the amount of
random variation are discussed in Tang et al. (2014), Wang et al. (2013), and Yin and Shang
(2016).

2.3.3 Joint estimation

Based on previous subsections, an estimate of the conditional noise variance is required
to infer temporal patterns, and systematic variations should be captured to estimate the
noise variance. Standard clustering estimates with a dominant day-of-the-week dependent
volume pattern do not suffice in this case, since only a share of the systematic variations is
then captured - which is likely to lead to an overestimation of the noise variance.

We estimate the predictability of the volumes by quantifying the amount of systematic
and random variation in the data set, i.e., we solve (P) and thereby find y and 6 jointly.
Specifically, we use an estimate on 6 to initialize an iterative procedure that finds both y and
0. Here, it is natural to explicitly incorporate the estimate with respect to noise parameters in
the optimization problem (P). Therefore, we consider the maximum likelihood estimation
(MLE) problem for y given by

. 1 (zar — Fas(y))®
Pu) : — ([ log (2702 —_— s
(Pwr) gg{} B <0g( 7rUd,t) + 0.(21)75 )

)

with 04+ = 0(Fy.(y)). In the next section, we describe our method in detail.

2.4 Method

With different daily traffic patterns from day to day (e.g., Zhang et al., 2022), we aim to
reconstruct these systematic flows using long and short-term recurrent temporal patterns
as building blocks. Due to the dependencies between estimating systematic variations and
the statistical properties of random variation, we require a method that is able to infer both
from historical data. Therefore, we introduce a general unsupervised learning procedure to



34 2 Patterns and noise in urban traffic volumes

extract the temporal patterns in presence of volume-dependent noise with unknown char-
acteristics in Section 2.4.1, and discuss termination criteria in Section 2.4.2. We use a
neural-network architecture (Section 2.4.3 and 2.4.4) as a data-driven method to extract the
temporal patterns.

Before we discuss our procedure in detail, we provide a high-level overview in Al-
gorithm 1. This method extracts recurrent profiles y and noise-level parameters 6 from
measurements x.

1: Initialize noise-model parameters 6;

2: for each measurement location in the network do

3:  Initialize the number of long-term profiles m! = 0, and number of short-term profiles
m® = 0;

Find the long-term profiles as follows:

s:  Let m! = m! + 1, and use the neural network (Section 2.4.3) to retrieve long-term
profiles %, i = 1,...,m!, by solving (Pyy) using forward model F(y) (Section
2.4.1) and noise model parameters 0,

6:  If termination criterion of the long-term profiles (Section 2.4.2) is met,
goto line 7 (possibly, m! = m! — 1), else goto line 5;

7. Find the short-term profiles as follows:

8: Letm® = m® + 1, and use the neural network (Section 2.4.3) to retrieve short-term
profiles y*,i = m! +1,...,m! +m®, (PuL) using forward model
F(y) (Section 2.4.1) and noise model 6;

9:  If termination criterion of the short-term profiles (Section 2.4.2) is met,
goto line 2 (possibly, m® = m® — 1), else goto line 8;

10: end for

11: Update noise model-parameters 6 by solving (@) (Section 2.3.2) based on all measure-
ment locations;
if 6 is unchanged, terminate, else goto line 2;

Algorithm 1: High-level overview of the procedure to find profiles and noise level parame-
ters.

2.4.1 Profiles

Although 24h traffic time series show a high degree of regularity, they also show gradual
changes in the shape and height over the days (Coogan et al., 2017; Crawford, 2017; Weijer-
mars & Van Berkum, 2005) including shorter-term deviations relative to the intra-day trend,
e.g., due to events. A large share of these patterns are recurrent yet show natural variations
in their time of occurrence but also in their shape and magnitude. We aim to capture these
recurrent variations by means of profiles.

We define a normalized (basic) profile as a recurrent sub time series (temporal pattern)
that starts at midnight (00:00h) and has a total flow of 1. Basically, we describe the sys-
tematic intra-day flow using a linear combination of these (transformed) profiles. Distinct
from earlier approaches (see Section 2.3.1), we explicitly consider profiles of different tem-
poral scales to distinguish long- (24h) and short-term (less than 24h) variations, and use the
transformations to capture the natural yet systematic differences over the days.
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We introduce the long and short-term profiles. A long-term profile is a 24h time series,
while a short-term profile is (a part of a) 7.5h time series. We hypothesize that a 7.5h
time series is sufficient to capture short(er)-term fluctuations while excluding long-term
variations. The profiles correspond to the temporal recurrent patterns in the time series.
Although time series for a measurement location show a high degree of correlation from day
to day, there are small and gradual but natural variations in, e.g., period between morning
peaks, which should not be included in the random variation and are in fact systematic.
To appropriately capture these natural fluctuations, we introduce transformations on the
profiles. In our case, measurements occur with 15min increments but we define the profiles
on time domain 7, which is finer than the measurement domain 7 (i.e., T C 7). That
is, each profile i has a corresponding shape, described by a 24h time series * with 3min
increments.

We use domain knowledge to assure that our method extracts profiles that are physically
meaningful. To capture natural variations in systematic flows over the days, we introduce
transformations with respect to magnitude (scale in magnitude), period (shift in time), and
shape (scale in time). Since the (shape of the) underlying profiles are fixed over days (i.e.,
day-invariant), we allow transformations to change from day to day (and from location to
location) so that the variations are captured on different temporal scales. First, the mag-
nitude (height) of each profile is variable. Second, we introduce shift § € N, with & the
shift in time (in 3 X ¢ minutes) that the start time of the profile deviates from midnight.
Short-term profiles are allowed to start throughout the day, long-term profiles are assumed
to be highly related to the daily demand and can therefore only shift for a maximum of 15
minutes (e.g., to capture a small shift in rush hours). Finally, we allow short-term profiles
to be stretched (scaled in time).

We formally discuss these possible transformations in our forward model F'(y). Each
measurement location has a corresponding set of profiles Z. Each profile ¢+ € Z is trans-
formed and then contributes to the final reconstruction F,;(y) € RI”! for a day d by means
of 24h time series 2/, = 2/,(y) € RI7|. Note that the resulting 15min reconstruction Fj ;(y),
for some (d, t)-combination, is the sum of 5 consecutive 3min volumes:

5t
Fauly)= > >z, (2.4)

T=5(t—1)+1 i€T

We discuss how the resulting flow vector z} for profile i at day d is the result of a set of
transformations, expressed by a, C' and F:

2h = a} (C‘S]:(yi)) .
We formally introduce these transformation mappings:

* Scale in magnitude; a’, > 0 describes the magnitude of profile i at day d € D. Hence,
the magnitude a, is equal to the net flow that profile i contributes to Fy +(y);

* Shift in time; C° denotes a shift operation of § = 8% € NO of profile i at day d. For
long-term profiles we assume that this shift is cyclic, i.e.,

oUTI=8)xs  r(IT1=9)

0
¢ g 05><(\7-|—6) ’
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with I and 0 the identity and null-matrix, respectively. For short-term profiles, we
introduce a conventional shift, i.e., for 6 € NO,

5 05><(|T\75) 06
= | [T=s gUTI=8)xs |5

e Stretch in time; for a short-term profile, F(y) denotes the discrete-time convolution
of profile y with kernel g? (¢ > 0), i.e.,

Fly) = (y* g% Z Yigr 1, 2.5)

l=—0c0

with g7 being a discretized Gaussian distribution N (0, ¢). The convolution operator
approximates a ‘stretch in time’.

We underline that the above approach allows multiple short-term profiles at the same day
by considering copies of, e.g., one short-term profile. Note that it is not necessary that all
profiles are active at day d, i.e., possibly a’, = 0 for some i.
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Figure 2.1: Extracted profiles for measurement location A from Figure 2.4. The upper and
middle figure show the long-term profiles. The lower figure shows the extracted
and the stretched (single) short-term profile.

Figure 2.1 displays the normalized profiles y for a measurement location in Enschede
(A in Figure 2.4, see Section 2.5.1). We show the extracted long-term profiles (upper and
middle figure) and the short-term profile (lower figure, with an example of the short-term
profile being stretched) on time domain 7'. After analyzing the patterns and corresponding
activations, we interpret the shape of the profiles as follows: the upper long-term is the
‘peak profile’, the middle pattern is the ‘base profile’, and the short-term profile mostly
corresponds to additional traffic due to soccer matches. Note that the short-term profiles are
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only limitedly stretched, i.e., many of the short-term systematic variations show a similar
pattern in time. In Section 2.4.3 we describe the computational method used to extract
profiles.
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Figure 2.2: Upper figure: measurements (dashed line) and reconstruction (solid line) for
three consecutive days (January 30, 2016 (Sat) - February 1 (Mon)) at mea-
surement location A. Lower figure: each reconstruction is a linear combination
of the same - but transformed - underlying profiles of Figure 2.1. The different
colors indicate the different profiles.

Together with the possible transformations, the profiles capture systematic deviations
in the measurements over various timescales. Figure 2.2 depicts a set of reconstructions
(upper figure) of our model. In the lower figure, we show that the two long-term profiles
(peak profile in blue, base profile in red) together with the short-term profile (black) are
cumulatively used to reconstruct measured time series.

We remark that the peak profile might not be apparent in resulting measurements (e.g.,
in the left and middle time series in Figure 2.2), but is actually part of the underlying flow.
The short-term profile is used in the middle of the reconstructed 24h time series to capture
short-term variations. Although these short-term deviations look different, they are captured
by transforming a single profile. The profiles of Figure 2.1 are similarly used to reconstruct
every 24h time series of this measurement location in the data set. As such, we accurately
capture the changing shape and height of the volume pattern over the days.

2.4.2 Termination criteria

In the previous subsection, we explained the reconstruction method for a given number of
long and short-term profiles, which we denote here by m! and m?, respectively. Theoret-
ically, we could add as many profiles as days, and obtain a perfect reconstruction of the
measurements (including the noise), which would lead to poor performance of a foreseen
prediction method (see Section 2.2.3). Hence, a crucial question is thus the number of pro-
files that is needed to capture systematic variations without fitting noise. Here, we use an
iterative approach, i.e., we begin with a single (unknown) profile and iteratively add profiles
(and solve corresponding (Pyy.)) until a termination criterion is met.

Our goodness-of-fit procedure compares a reconstruction (for an estimated noise model
6) assuming m (either m' or m?®) profiles with the reconstruction having m + 1 profiles. In
fact, if the reconstruction using m + 1 profiles is not substantially improved compared to
the previous one, we reject profile m + 1, and conclude that we found all m profiles.
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The likelihood function in (Pyy.) allows us to adopt a set of statistical termination cri-
teria, i.e., to test the relative improvement among different reconstructions. We mention the
theoretically-appealing likelihood-ratio, Wald, and Lagrange multiplier test (Greene, 2003),
and the intuitive ‘elbow’-test (finds the number of profiles for which an added profile is not
substantially improving: the ‘elbow’ in the profiles-error graph (Yang, Wu, et al., 2019)).
Both type of methods are not well-suited for our setting. The first set of tests requires a
regularity condition to hold, which is not necessarily true in our case. Current ‘elbow’-tests
might be highly dependent on the estimate @ of §. We desire a generic yet practical method
that is relatively independent of this estimate.

We propose a goodness-of-fit method that uses a characteristic of the noise: the noise
is uncorrelated in time and space. The statistical test uses the empirical distribution of
the autocorrelation among successive residuals. With respect to long-term profiles m!, we
basically add long-term profiles until on average no correlation in successive residuals is
left. We iteratively increase the number of short-term profiles m?® until the outliers do not
follow a systematic pattern.

In the remainder of this section, let pg be the remaining autocorrelation with lag 1 in
residuals ey of day d (for a given number of profiles m!). We are mainly interested in the
correlation in an aggregated sense (i.e., over days), since large absolute values of p, are
highly influenced by disruptions that cover a substantial amount of time, but should not
be covered by a long-term profile. For a given number of profiles m!, let G,,,:(p) be the
corresponding cumulative distribution function of the remaining autocorrelation among the
residuals over the days. We use the two-sample Kolmogorov-Smirnov (K-S) test

D =sup|Gpii1(p) — G (p)] (2.6)
p

to test whether G,,,: and G, have the same underlying distribution. The K-S test is
mainly sensitive with respect to changes in the median value and the shape (Babu & Feigel-
son, 2006). Other tests (Stephens, 1974) that use a distance between empirical distribution
functions are typically more sensitive to differences in the tails of the distributions. Whereas
these tails are mainly caused by short-term systematic variations that should not be covered
by long-term profiles, we use the two-sample K-S test (2.6) to identify whether a new profile
should be added. If the null-hypothesis that distribution functions G,,,: and G,,,:, ; have the
same underlying distribution is rejected, we accept the new profile m! 4 1. Otherwise, we
conclude that there are m' underlying long-term temporal profiles. Figure 2.3a shows an
example of a measurement location in which we decide on two long-term profiles. Indeed,
the third profile is rejected based on (2.6).

To decide on the number of short-term profiles m?, we proceed as follows. We deter-
mine the cumulative distribution function of the outliers for which

|€d’t| > 3U(Sd,t) (27)

holds. Given that there is only random variation left, we still expect some outliers that
occur by chance (approximately 0.3% of the measurements). Therefore, we compare the
empirical distribution of the outliers (2.7) with the distribution of outliers under 4 ~
N(0,02(s4.)). We use the one-sample K-S test to test whether the cumulative distribution
of outliers is different from outliers arising from noise. If, according to the K-S test, these
distributions are not different, we conclude that there are m® underlying short-term profiles



2.4.3 Neural network architecture 39

°
o

= 1 Profile |
—— 2 Profiles / / //
—— 3 Profiles / i

J

-04 02 00 02 04 06 08 4 3 8 10 12 14 16 18 20
Daily average correlation successive residuals Abs. Error (o)

o
&
s o
5 &
—
—
\\\\

°
S

°
S

—— Random variation
—— Long-term profiles
— 1 Profile
—— 2 Profiles

Cumulative fraction of days
°
9

Cumulative fraction of outliers

° °
o S
————.
——

°
°
°
°

(a) Distribution function of the remain- (b) Empirical distribution function for
ing autocorrelation over the days. outliers as in (2.3).

Figure 2.3: Illustration of termination criteria for long-term profiles (left figure), and short-
term profiles (right figure) at location A in Figure 2.4.

(which could be 0). Similar to the procedure to determine the long-term profiles, we adopt
a two-sample K-S test to test whether cumulative distribution function of outliers in m® + 1
is different from m?°. Figure 2.3b shows an example in which we have one underlying short-
term profile, because adding a second one does not improve the distribution of the outliers.
We underline that the different empirical distributions in Figure 2.3b are not necessarily
based on the same set of outliers. After termination, there are still outliers left which cannot
be explained by the noise. These outliers are probably caused by disruptions or events with
no recurrent pattern.

Our procedure is quite powerful, because the cumulative distribution function of the
residuals turns out the be sensitive to large outliers. These are exactly the outliers we are
interested in, and thus should be captured by the profiles.

2.4.3 Neural network architecture

Neural networks are able to derive complex and non-linear relations that appear in large-
scale data sets. Typically, neural network methods require very few assumptions in advance
and show impressive performance in prediction tasks (e.g., Lv et al. (2015), Ma et al. (2017),
and Polson and Sokolov (2017)). On the other hand, neural networks are often criticized
for being ‘black box’ approaches, i.e., the derived relations can only be limitedly extracted
after the learning process. Concurrently, there is increasing need to extract patterns that
are physically meaningful (Bascol et al., 2016). In this chapter, we develop a convolutional
neural network (Bascol et al., 2016; Krizhevsky et al., 2012) that reproduces the flow s from
x following the conditions in Section 2.3: the method is designed such that it is capable to
recognize and extract temporal patterns (profiles) from measurements.

We use a convolutional autoencoder (see Appendix 2.7). We divide this architecture into
two levels; the upper level is designed to extract long-term profiles (Line 4-6 in Algorithm
1), the lower level is such that it finds the short-term profiles (Line 7-9 in Algorithm 1). To
simplify the presentation in this section, we assume here that there is only a single long and
short-term profile (V'°"¢ and V*h°", respectively) to be learned.

We define a noisy softmax function to replace some of our scaling functions to improve
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convergence. The softmax function for vector z € R™ is defined as follows:

eLZJ +n;

SOftmaX(z)j = ZJW, j
1

=1,2,...,m,
with 7; randomly sampled from N (0, 1) during training, and 1); = 0 during reconstruction.
Here L > 0 is a sufficiently large number.

Consider time series vector ¢ = x4 € R™ with n = 96 as input of the network. Let
Wmagnl ¢ R™ be a filter to extract the magnitude from input z with [ = 1,2,...,10. Then,

amagn,l — g(Wmagn,ll, + bmagn,l)

and

magn magn,l )

a™e = mlax(a
is the final magnitude corresponding long-term profile Vlong n parallel, we learn the shift
of the long-term profile. Therefore, let W*hift! ¢ R™ be a filter to find the shift in time,

m
azhm’l =g (Z Wshiﬁ’les_l) , t=1,2,...,0+1
s=1

and
shift _ shift, !
= max(a; ),

a
with m = 96 — 6, and ¢ is the shift in time (see Section 2.4.1). Scaling function g is the
leaky relu function (Maas et al., 2013).
We construct a single activation vector that indicates the magnitude of the profile at time
t,1.e., for each ¢,
a; = (softmax(a"™))a™e",

Hence, the magnitude and shift of the profile for a day d are learned independently, and
activation vector a indicates the magnitude of the profile at each activation time. To ob-
tain reconstruction z, we apply the transposed convolution operation with cyclic shifts, see
(2.13). Formally,
Zlone — Zmax{at, O}C’t_l(VIO"g). (2.8)
t

Note that 171°"2 ¢ R™ is the (in this case) long-term profile (i.e., temporal pattern) of interest.
Then, z € R” is the contribution of this profile to the final reconstruction of z, see (2.4).
Intuitively, activation vector a is O for all but one entry that corresponds to the non-negative
magnitude and the cyclic shift.

We use a similar approach to learn short-term profile V*"". Now, we feed the lower
level with residuals elo"8 = g — zlong interpolated, so that it is a vector in RITI, We discuss
the changes compared to the upper-level architecture. For the lower level we use (2.13)
rather than (2.8), since we consider a conventional shift rather than a cyclic shift. Second,
we allow short-term profiles to be stretched in time. Therefore, we add separate filters to
choose among 4 different stretch operations (see (2.5)). One stretch operation is the identity
mapping (i.e., no stretching). We already showed examples of learned stretched profiles in
Figure 2.1 (lower figure). In addition, we allow short-term profiles to be activated before
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the day starts, in order to capture short-term variations at night.

We make some comments regarding the case with multiple profiles. The upper-level
architecture is naturally extended; there is however explicit interaction among short-term
profiles. Based on Bascol et al. (2016), to assure that short-term profiles independently cap-
ture systematic variations, an activation of a single short-term profile implies no activation
of any other profile 2.5 hours before and after.

2.4.4 Initialization and learning process

The procedure to find the temporal patterns and the noise-level parameters (Algorithm 1)
has outer and inner iterations. In the outer iterations, the statistical parameters 6 are learned.
Therefore, we initialize our procedure with an estimate @, learn the profiles for each mea-
surement location until the termination criteria are met (Section 2.4.2), and then obtain a
new estimate §*! of @, by relating the variance in the residuals with the mean flow (i.e.,
solving (@), see Section 2.3.2). This procedure is repeated, until 0, i =0,1,..., con-
verges. During the inner iterations, we use the neural network to solve (Pyy.), using estimate
6%, and thereby extract the profiles for each measurement location.

Our neural network procedure of the previous section basically re-trains the neural net-
work after we added a new profile (see Algorithm 1). However, what is learned by the neural
network does not need to be learned again. Therefore, we feed the neural network with in-
formation obtained during the process of previous profile(s). That is, each time we learn a
new profile, we provide an initial estimate of the shape of the profile to the neural network.
This estimate is for the first long-term profile the mean flow over all days. For the other
long-term profiles it is the standard deviation of the residuals since a large standard devia-
tion is a possible indicator for a poor fit. The estimate for the shape of a short-term profile
is the 7.5h time series of residuals with maximum error with respect to |eq,¢| /o (Sq,¢)-

Note that in our above-mentioned setting, there might be multiple long and short-term
profiles active at a day. To speed up the learning process, we do not allow multiple ac-
tivations of the same short-term profile for a single day. During the final reconstruction
(i.e., after training for a fixed number of profiles), we allow multiple activations of the same
short-term profile, as long as the magnitude is at least 10% of the maximum magnitude
among all days (for the same profile) as in Bascol et al. (2016).

We implemented our neural network in Tensorflow, and trained the network using the
stochastic gradient descent-method ADAM (Kingma & Ba, 2015) (parameters: 7 = le ™4,
B1 = 0.9, B2 = 0.999), with 2400 iterations for each long-term profile, and 600 iterations
for each added short-term profile. We use a batch size of 25. We note that parameters after
adding a new profile can still be updated. This does not apply to the shape of the long-
term profile while learning short-term profiles, since it might highly impact the number of
short-term profiles to be learned (e.g., when short-term profiles cover long-term variations).
Notice that our objective is to infer the systematic variation from the measurements. There-
fore, we do not have a separate training and test set. The procedure in Algorithm 1 is so that
an overfit is prevented (i.e., our iterative procedure finds the minimum number of profiles to
explain the variations).
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Figure 2.4: City of Enschede, the Netherlands. Dots indicate the signalized intersections
with (multiple) measurement locations (source map: OpenStreetMap, 2019).

2.5 Results

We apply our procedure to estimate systematic variations and statistical properties of the
noise in traffic volumes measured by loop detectors in the city of Enschede.

2.5.1 Data

We study traffic volumes in the city of Enschede (+/- 160.000 inhabitants). Data were col-
lected at 49 signalized intersections (see Figure 2.4), from January 2016 until December
2017. Vehicles were detected at each approaching lane by inductive loop detectors a few
meters from the stop line, and were aggregated to measurements with a 15min interval.
At the junctions under consideration different modes of transport interact, including, de-
pending on the intersections, buses (with possible priority), cyclists, and pedestrians. The
intersections are located at both major and minor urban roads and include intersections near
freeway off-ramps and on-ramps.

We inspected the data, and rejected volume measurements based on straightforward cri-
teria. We rejected a complete day of loop measurements if either the time series has missing
data, or contains a consecutive 6 hours of measurements with no counts between SAM and
midnight. The measurements for lanes that share directions (i.e., origin and destination are
locally shared) were summed. 326 loops are in our data set after disregarding loops with
less than 365 (of the possible 731) complete 24h time series.
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mean flow [15min]

(a) Noise level estimation using a fit (line) with the mean flow (x-axis) and mean squared of
the residuals (y-axis). Each dot corresponds to a single measurement location.
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(b) Distribution of mean autocorrelation in residuals with lag 1 over the measurement loca-
tions. The solid line corresponds to the reconstruction with only long-term profiles, the
dashed line corresponds to the final reconstruction.
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(c) Distribution of outliers for locations with at least one short-term profile (black lines),
and the cumulative distribution function for outliers of random variation (blue line).
The solid line corresponds to the reconstruction with only long-term profiles, the dashed
line corresponds to the final reconstruction.

Figure 2.5: Results of noise level estimation in the Enschede traffic network.
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2.5.2 Noise level estimation

We applied Algorithm 1 and reconstructed, for each location under consideration, the sys-
tematic volumes in the historical data by means of long and short-term profiles. We ini-
tialized the procedure with noise parameters 6° so that 4, is assumed to be distributed ac-
cording to NV (0, s4,¢) for each (d, t)-combination (i.e., Poisson-like noise). After we solved
(PuL) using the neural network (Section 2.4.3), we estimated the noise parameters 6 for the
next (outer) iteration as follows.

Per location, we estimate the variance in the residuals using the mean square of the
residuals, i.e.,

1 2
3 2.9
[DI|T] 4 St @9

and relate it with the estimated mean of the reconstructed systematic flows. We applied
robust regression for v € {0,0.5,1} to estimate the parameters of (2.2). We used robust
regression to prevent overestimates of the conditional variance, since time series can still
include outliers that have no recurrent character but dominate the estimate (2.9). After re-
estimation of 6, we repeated the procedure.

The algorithm terminated after the third iteration. Figure 2.5a shows the estimate of the
noise quantity. The random variation in this network is roughly distributed according to a
heteroscedastic Gaussian distribution:

e~ N(0,1.3s), (2.10)

ie, a = 13,8 = 0,7 = 0.5. A noise quantity of ¢ ~ N(0,s) was found when we
applied our framework with an initial estimate of white Gaussian noise A/(0, 1), which will
eventually lead to the same random variation as we found. Estimate (2.10) indicates that
variance in the noise is proportional to the volume, and there is typically no additive noise.
Thomas et al. (2008) found a lower bound £4,; ~ N(0, 1s4,) in a comparable urban setting.

The estimate (2.10) is based on the assumption that there is no correlation among suc-
cessive residuals, i.e., all systematic variation is captured. Figure 2.5b shows the distribution
(over the measurement locations) of the mean remaining autocorrelation (with lag 1). This
distribution indicates that on average there is still some serial correlation left. However,
for each location, the addition of another profile does not substantially improve reconstruc-
tion and one can conclude that a majority but not all systematic variations have a recurrent
character.

Regarding the short-term profiles, Figure 2.5¢ shows that the distribution of outliers (30)
is different from A(0, 1.3s). Further research should investigate whether these outliers can
be explained by spatial and/or spatio-temporal correlations. On the other hand, the noise
distribution may also have a different shape (e.g., with a heavy tail) (Buckley, 1967), or
depend on other factors such as the weather conditions. In any case, a large share of the
systematic variations occur on timescales longer than 15min.

In Figure 2.6, we show the number of extracted long and short-term profiles per loca-
tion in the network. Interestingly, traffic volume time series show much more regularity
than can be expected from the volumes as such. That is, not only the typical day-of-the-
week dependent 24h pattern can be expressed by only a few underlying recurrent profiles,
also the day-to-day variations in the daily traffic pattern can be captured by these profiles.
Most locations under consideration require only two or three 24h profiles and at most one
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short-term profile, adapted over various timescales, to express a majority of the systematic
variations. For prediction purposes, however, it can be necessary to explain the time of oc-
currence, the magnitude and the shape of these profiles. This may require significant efforts,
since additional variables may need to be collected.

g
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Number of measurement locations
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Extracted long-term profiles Extracted short-term profiles

Figure 2.6: Number of extracted profiles over the network.

2.6 Conclusion

Patterns in urban traffic flow time series can be used for accurate predictions of urban traffic
flows. At the same time, a portion of the variations in measurements is unpredictable. In
this chapter, we analyzed urban traffic dynamics by means of systematic (predictable) and
random (unpredictable) variations in 15min traffic flow time series. Many of the systematic
variations are recurrent, and can therefore be incorporated in a prediction method. Cap-
turing these systematic variations, however, is a challenging task since they may occur on
various timescales, they are not revealed by the noisy measurements, and the patterns may
show small yet natural adaptations over time. In this chapter, we proposed a framework to
reconstruct systematic volumes from historical data by means of recurrent long- and short-
term patterns. In fact, we use a neural network to extract profiles and show that for many
locations the systematic variation can be captured using a few temporal profiles. This de-
scription of the volume variations allows for a lower-dimensional estimation and prediction
method, since a profile provides the predictable fluctuations over multiple time horizons.

Random variation makes that a part of the flow measurements is unpredictable. In this
chapter, we estimate the statistical parameters of the volume-dependent noise. We found
that on a network-wide level the random variation has roughly a conditional variance of 1.3
times the underlying systematic volume. This result can directly be applied for incident and
outlier detection, probabilistic density forecasts (see Chapter 4) or measurement interval
choice (Smith & Ulmer, 2003).

Our approach is generic in the sense that it can be applied to any (traffic) time series. In
a future study, we intend to expand our architecture to study traffic speeds and extract urban
network-wide, thus spatio-temporal, profiles. Such long and short-term profiles express
network processes under different conditions. In particular, short-term profiles may reveal
the impact of disruptions over the network, which can be used to efficiently predict traffic
speeds on a network-wide scale.
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2.7 Appendix: Convolutional autoencoder

We briefly discuss the concept of a simple autoencoder that aims to reproduce the input
by means of a parse (hidden) representation (cf. Goodfellow et al., 2016). Consider input
vector x € R™, the hidden state a' € R with respect to filter I = 1,2,..., N;, (with N; the
number of filters) that corresponds to z is a' = a!(z) with

al(x) = g(Wlz + bh). (2.11)

Here, W! € R™, and b' € R are the weights and bias, respectively, of filter [. g(x) is a
function that scales a (Goodfellow et al., 2016). To construct output z = F(y) € R”, an
autoencoder uses profiles V! € R™ so that

N;
zl:alVl7 and z:Zzl. (2.12)
=1

The neural network estimates the parameters y = (V, W, b) using a training set of x.
In a convolutional autoencoder (2.11) is replaced by convolution operation

m
ai:9<ZW£$t+s1>, t=1,2,...n—m+1
s=1

with W' € R™, and m < n, in which we assumed b' = 0. A transposed convolution
(Zeiler & Fergus, 2014) operation decodes the hidden state a to the input space. Then, the
first equation of (2.12) becomes

zi:ZVjai_sH, t=1,2,...,n, (2.13)
s=1

with V! € R™. Remark that not all these equations are well-defined, and therefore padding
(Goodfellow et al., 2016) is applied.



Chapter 3

A statistical characterization of
arrival processes at urban
signalized intersections

3.1 Introduction

Delays at signalized intersections determine the travel times in urban traffic networks to a
high degree. Numerous studies (e.g., Akcelik, 1980; Boon & Van Leeuwaarden, 2018; Viti
& Van Zuylen, 2010a) have therefore been conducted to model the operations that occur at
such junctions. These models are consequently used for strategic, tactical, and operational
decision making by, for example, road authorities to optimize the level of service, both on a
local level as well as on a network-wide scale.

A share of the fluctuations in delays is recurrent and is related to the patterns in demand
over time (Viti, 2006). Many of the models are therefore concerned with the demand-
dependent average level of service (see Cheng et al. (2016) for an overview). Even though
the average performance for various demand scenarios is relevant on a strategic level, it is
increasingly recognized that also the distribution of the delays is important (Chen et al.,
2017; Fu & Hellinga, 2000; Zheng & Van Zuylen, 2010). Whereas decision makers are
particularly concerned with the reliability of their services, delay fluctuations, e.g., faced
by logistics service providers, may cause that under comparable conditions an intended
time of arrival is exceeded or not. Indeed, accumulated local and short-term variations
significantly impact operations, and thereby impose serious costs since substantial slack
must be introduced in route plans. Despite the fact that many of the longer-term variations
in the level of service are periodic and can therefore be anticipated well-before departure,
road users suffer from variations that occur on shorter timescales. In an urban network,
these uncertainties mainly originate from the dynamics near (signalized) intersections.

Where delays and travel time information are of interest for road users, volume informa-
tion improve predictions regarding these variables, e.g., in near-saturated conditions when

This chapter is based on the following paper: Eikenbroek, O.A.L., Thomas, T., Mes, M.R.K., &
van Berkum, E.C. Statistical characterization of arrivals at urban signalized intersections.
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the onset of congestion needs to be predicted. In fact, traffic management decision making,
at least in the Netherlands, is typically based on stop-line departure volume measurements
(counts). With future travel conditions being inherently variable, even if one accounts for
the predictable variations in demand and supply (Viti, 2006; Zheng et al., 2017), these un-
predictable fluctuations impose an inevitable uncertainty to decision makers. As such, point
predictions for traffic conditions-related variables are not sufficient when evaluating route
plans and designing robust management measures. Anticipatory decision-making processes
allow stochastic and robust optimization techniques to be applied, but at the same time re-
quires that the underlying variability-inducing processes are accurately captured in a model.

Anticipatory decision making requires an understanding and quantification of the un-
certainties that occur. In the lower urban network, travel time uncertainty is largely caused
by interrupting processes at signalized intersections. To account for the variability in travel
times, delays, and volumes, several studies focused on describing such fluctuations on an
aggregated scale (Chen et al., 2017; Luo et al., 2019). Anticipating uncertainties, however,
requires not only that the resultant variability is described but additionally asks for an un-
derstanding of the contributing factors (Zheng et al., 2017). This is particularly relevant in
the context of anticipatory decision making in which predictions have a feedback loop with
control measures and therefore require a model to incorporate the dynamics at signalized
intersections due to the emergent behavior of travelers.

A large share of the fluctuations in delays at signalized intersections can be traced back
to the arrivals of the vehicles at the different approaches, and the inter-dependencies with
the signal timings particularly in case of vehicle-actuated signals. Although the importance
of these dynamics for decision makers operating in the urban traffic domain, and the wide
availability of models and simulation tools to mirror the interactions, these tools are rarely
validated based on empirical data. Fortunately, the increasing availability of a variety of
measurement devices and data-processing tools allows us to assess the empirical consistency
of, and possibly improve, existing models.

In this chapter, we use empirical data to study arrival processes at signalized intersec-
tions on different spatial and temporal scales, and quantify how these processes contribute
to the shape of the delay and volume distributions under a range of conditions. In fact, we
provide a statistical description of arrival processes and include the inter-dependencies with
(upstream) signals, and the dynamics over time and space. Therefore, arrival patterns are
studied on various scales simultaneously to not only account for the change in the demand
between days and within a day for different parts of the network, but also to incorporate
the dynamics on a much smaller level, e.g., due to traffic signal cycles upstream. We illus-
trate that failing to accurately capture the structure of arrivals in a simulation setting might
underestimate the variations in volumes and overestimate delays and thereby have serious
implications particularly for tactical and operational decisions, e.g., when designing the
cycle settings.

We collected millions of arrival events in an urban network, and study real-world arrival
processes using the data collected at various intersections on different parts of an urban net-
work. We introduce a comprehensive statistical framework to examine the structure of the
arrival processes accounting for both correlations over time as well as for the variations in-
troduced by upstream interruptions, thereby incorporating short-term periodicities related to
upstream signals, the formation of platoons, and the changing structure as traffic proceeds.
By studying the arrivals on such a detailed resolution, we are able to assess the information
loss by using counts on aggregated scales as is typical for many road authorities. In fact, the
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local fluctuations introduce noise on an aggregated scale, making it difficult to anticipate
or respond quickly to changing situations. However, very short-term variations and predic-
tions are highly relevant so that preemptive control or coordination actions can be deployed
to mitigate or optimize network-wide performance (Li, Yang, et al., 2022; Vlahogianni et
al., 2004), e.g., by recognizing changes in the arrival process or for using coordinated traffic
signal systems (Robertson & Bretherton, 1991).

The remainder of this chapter is organized as follows. In Section 3.2, we formally
introduce the problem and explore the relevance of studying arrival dynamics as both a
counting process as well as a sequence of inter-arrival times '. Section 3.3 discusses the
data collection and filtering process. In Section 3.4, we introduce our statistical framework
which we use consequently in Section 3.5 and Section 3.6 to assess the structure in the
inter-arrival times and the counting process, respectively. Based on this characterization,
we discuss the impact on the variations in delays in Section 3.7 and draw conclusions in
Section 3.8.

3.2 Problem formulation

A substantial share of the variability in delays and volumes at signalized intersections can in-
directly be traced back to the arrivals of vehicles (or cyclists, pedestrians) at the approaches.
Arrivals are typically modeled using a stochastic process, i.e., the exact inter-arrival times
cannot be predicted. The changes in arrivals occur on different scales, typically studied on
scales exceeding 5-10 minutes, but fluctuations also occur in the time gaps in the order of
tenths of seconds (Banks, 1999; Breiman & Lawrence, 1973).

Variations that occur in the order of several minutes indicate the varying conditions or
regimes in network usage, oftentimes related to the demand that is known to show system-
atic variability in time and space (Crawford et al., 2017). Changes in the arrival rate regime
separate, for example, the rush hour from a quiet period. Considering a fixed time of day, the
demand also shows systematic variation over space with some parts of the network heavily
utilized while other parts perform well below capacity. The variability in the regime for
a fixed point in the network can be captured using a time-varying mean arrival or demand
rate, ideally considering both the day-to-day as well as the within-day variations in the de-
mand. This rate is slowly changing compared to fluctuations in the inter-arrival times of the
individual vehicles under regular conditions. Typically, a location-dependent 24h pattern
is used to express the non-stationarity in the demand - thereby incorporating that ‘normal’
or random fluctuations naturally exist even under stationary demand (Breiman et al., 1977;
Breiman & Lawrence, 1973; Sparks, 1976). Very short-term fluctuations, in the order of
tenths of seconds, roughly describe the non-predictable (random) fluctuations in the arrival
events (Dion et al., 2004; Gwiggner & Nagaoka, 2014). Considering a fixed location in an
urban setting, short-term fluctuations show bursts: short periods of many arrivals alternate
with longer periods in which there are no arrivals (Goh & Barabadsi, 2008; Vazquez et al.,
2006). Indeed, arrivals typically occur in clusters or platoons, separated by relatively long
periods without any arrival.

The two timescales are fundamentally related, perfectly illustrated by renewal theory
(e.g., Karlin & Taylor, 2012), and the point process describing the random occurrence of
events over time is a building block of the aggregated time series of volumes (Brillinger,

IThroughout this chapter, we use inter-arrival times interchangeably with (time) headways
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2008; Cox & Lewis, 1966). Even though there has been considerable attention for describ-
ing the demand over time (Crawford et al., 2017; Weijermars, 2007), empirically, very little
is known about the stochastic fluctuations in the arrivals in the complicated context of ur-
ban traffic - and typically some form of aggregation is applied (Guo et al., 2007; Li, Yang,
et al., 2022; Oh et al., 2005; Vlahogianni & Karlaftis, 2011). At the same time, it is widely
recognized that the arrival pattern impacts delays at signalized intersections (Akcelik, 1980;
Chen et al., 2017; Olszewski, 1990; Transportation Research Board, 2000; Zheng & Van
Zuylen, 2010). For a given demand rate, the impact of the arrival pattern on the delay can be
considerable (Van Leeuwaarden, 2006), although its effect is expected to be less compared
to the time-changing demand (Olszewski, 1990).

In this chapter, we provide a statistical characterization of arrivals in urban networks
based on a large set of recorded arrivals. Compared to the mathematically-tractable pro-
cesses often assumed in models and simulations settings (Luo et al., 2019; Mohajerpoor et
al., 2019; Zheng et al., 2017), real-world arrival processes show a different structure which
is only revealed when studied on different scales. We use data collected throughout an urban
network to provide evidence that it is important to account for the actual arrival process for
estimates regarding the variability in aggregated volumes and delays.

3.2.1 Exploratory analysis

In this subsection, we provide exploratory evidence regarding the characteristics of real-
world arrival processes.
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Figure 3.1: Examples of measured 10min volume time series at an approach of an intersec-
tion.

The non-stationarity in the demand under regular conditions is mainly related to the
variability in within-day and day-to-day travel behavior. Figure 3.1 provides examples of
24h volume time series collected at an approach of an intersection, measured using 10min
increments (see Section 3.3). The M -shaped pattern provides a first indication of the within-
day variability, and, as illustrated, day-to-day variations are oftentimes considered to be less
compared to the within-day variations. Hence, a typical daily pattern, deterministic in na-
ture, can be constructed where stochastic fluctuations occur around the time-varying mean
demand rate (Sparks, 1976). Even if the day-to-day variability is explicitly addressed, days
can either be divided into (mutually exclusive) sub-intervals with each interval assumed
to have a constant arrival rate, or there is a continuously-varying latent process describ-
ing the time-varying rate. Using the first approach, the arrival process is then said to be
piecewise stationary or piecewise constant (Law et al., 2007; Paxson & Floyd, 1995) -
and shows sudden shocks or ‘piecewise discontinuities’ over time when implemented on
volume time series such as the ones in Figure 3.1 (Shone et al., 2021). Determining inter-
vals with a constant arrival rate is not trivial since also systematic variations may occur on
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timescales shorter than the interval. In addition, short (e.g., events) and longer-term (e.g.,
seasonal) variations exist, which makes that spatio-temporal changes in the demand are
natural. Continuously-changing demand patterns have only recently been introduced in a
traffic context (e.g., Guardiola et al., 2014), but a non-homogeneous Poisson process where
a stochastic process describes the time-varying arrival rate has found its way in literature in
different contexts and was shown to capture real-world dynamics accurately (e.g., Kim &
Whitt, 2014). The majority of the studies in our context (e.g., Breiman & Lawrence, 1973;
Webster, 1958), however, assume that a day can be divided into different subintervals with
fixed demand, and model the interactions between arrivals and intersection performance for
a given interval. A mathematically-appealing arrival process for an interval is the (fixed-rate
or homogeneous) Poisson process, in which inter-arrival times of vehicles are assumed to be
independently distributed and follow an exponential distribution. Such a process is not only
tractable, but also shows agreement with stochastic 5-15min volume fluctuations (Thomas

et al., 2008).
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Figure 3.2: Comparison of a sample empirical inter-arrival times (top row) and inter-
arrival times from a homogeneous Poisson process (bottom row).

Although arrival counts resemble a Poisson process on a resolution in the order of 5-
15min, the empirical arrival times show a very different structure. Figure 3.2 shows a sample
of recorded inter-arrival times (top row, measured with 0.1s increments) and a sample of
exponentially-distributed inter-arrival times (with the same arrival rate). For a Smin interval,
we plotted a vertical line for each arrival, under more or less stationary conditions, assuming
in both cases that the first arrival occurs at ¢ = 0. When comparing both figures, the
exponential distribution allows very small inter-arrival times that are physically impossible
due to a minimum spacing between two vehicles. Second, the top row indicates that the true
arrivals are more clustered compared to a homogeneous Poisson process. Third, visually,
the relatively long gap times seem to show more regularity compared to the bottom figure,
e.g., the top row hints on a periodicity in the absence of arrivals and approximately every
100 seconds there is a longer period in which no arrival occurs. To further illustrate this,
Figure 3.3 provides a real-world sample for the number of arrivals per 15s for a 30min
interval, and indicates a higher degree of regularity in arrival events over time than can be
expected from a homogeneous Poisson process. Moreover, the regularity in the arrivals is
already ‘lost’ when considering 2min increments (blue line in Figure 3.3).

Based on this exploratory analysis, we cannot reasonably expect to model arrivals using
a simple (non-)homogeneous Poisson process or by solely using a headway density function
(see Section 3.2.2). In fact, a stochastic arrival model that aims to realistically mimic real-
world urban arrivals should, at least, consider the following aspects:
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15sec arrivals
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Figure 3.3: 30min sample of arrival counts, measured with 15sec increments (dashed line).
The blue line provides the counts on a 2min scale while the dotted line indicates
the 30min average.

* the non-stationarity in the demand over time and space due to the location-specific
arrival rate, including its intra-day and day-to-day variability;

* the marginal distribution of inter-arrival times, where the left-hand side should reflect
the minimum physical and the desired time gap between vehicles, while the right-
hand tail of the marginal distribution should reflect the burst structure related to both
non-interacting vehicles as well upstream disturbances such as traffic lights;

* the periodicities in the arrival events, indicating that stationary demand and a headway
distribution are not sufficient to capture the regular patterns in the arrivals, e.g., due to
platoon forming and upstream traffic light influences. Indeed, trends and periodicites
might be particularly observed as a function of time rather than as a trend in the inter-
arrival times only (Lewis, 1970).

We refer to Goh and Barabdsi (2008), Kim and Whitt (2014), Lancia and Lulli (2020), and
Paxson and Floyd (1995) for similar observations in different contexts. In the following
subsection, we discuss earlier approaches to capture the above-mentioned characteristics.

3.2.2 Literature review

We discuss studies from literature on modeling arrival processes regarding the non-stationarity
in the demand, marginal distribution of inter-arrival times, and the periodicities in arrival
events.

Considering the arrival rate (and possibly, departure rate) as a piecewise constant func-
tion of time and space makes that even the early models (e.g., McNeil, 1968; Miller, 1963;
Webster, 1958) can implicitly account for the changing demand scenarios. This is a possible
reason why many of these models are still used in design manuals such as in CROW (2006).

Frequent studies (e.g., Fu & Hellinga, 2000; Webster, 1958)) assume a homogeneous
Poisson arrival process where inter-arrival times are independent and identically distributed
(iid) and follow an exponential distribution. That the distribution of inter-arrival times
is not exponential was already recognized decades ago (Branston, 1976; Buckley, 1968;
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Wasielewski, 1974, 1979). Nonetheless, the (semi-)parametric estimation of the distribution
is typically limited to headways measured at freeways (see, Ha et al., 2012; Hoogendoorn,
2005; Luttinen, 1996). In any case, these studies point out that one should distinguish
leaders and followers when studying inter-arrival times. Leaders have, by definition, no
interaction with the preceding vehicle and typically have a relatively long inter-arrival time
compared to its predecessor - reflected in the right tail of the distribution (see, e.g., Vogel,
2002). Followers interact with the preceding vehicle leading to a relatively short inter-arrival
time reflected in the left part of the distribution. Where the (right) tail of the distribution
is due to the lack of interaction between two vehicles, in interrupted networks it is highly
influenced by the arrivals, clearance time and red times upstream. Traffic signal control in
our setting is vehicle-actuated but becomes more or less static when saturation levels are
approached, meaning that, in general, the tail of the distribution statistically reflects a com-
bination of the variable red times and inter-arrival times upstream. The speed patterns of
individual vehicles and traffic lights upstream lead to a different probability of medium and
high inter-arrival times compared to an exponentially-tailed inter-arrival distribution. When
the arrivals are measured close to but downstream from another intersection, the inter-arrival
times are expected to be similar to the inter-departure times, reflected in the left part of the
headway distribution (Li & Chen, 2017).

Clustered arrivals occur at an approach mainly due to interacting vehicles and upstream
interruptions, which makes that inter-arrival times are likely to be correlated (Boon & Van
Leeuwaarden, 2018), in contrast to the iid assumption often assumed in literature (Viti &
Van Zuylen, 2010b; Zheng & Van Zuylen, 2010) and in manuals (CROW, 2006). Fur-
thermore, this means that the variance-to-mean or standard deviation-to-mean ratio in the
headways is not sufficient to characterize arrival processes in delay models (Hutchinson,
1972; McNeil, 1968; Miller, 1963; Olszewski, 1990; Webster, 1958), and that formulat-
ing a mathematically-tractable stochastic arrival process that mirrors the true structure is
difficult since standard renewal theory assumptions do not hold (Wang et al., 2018). For
departures from the Poisson process assumption in traffic queuing models we refer to, e.g.,
Boon and Van Leeuwaarden (2018), Chen et al. (2016), Li (2017), Van As (1991), Wang
et al. (2018), and Yang and Shi (2018) - typically considering the variance-to-mean ratio for
discrete time increments. The arrival process is however continuous in nature, and the struc-
ture in the urban traffic arrivals - particularly its periodicities - can potentially be revealed in
the frequency domain. Yet, we are only aware of the empirical evidence provided by Miller
in Miller (1970) and in the discussion following the paper of Bartlett (1963). In the latter, a
point-process periodogram shows a dominating frequency corresponding to the cycle peri-
odicity at the upstream signal. Such periodicites were shown to exist in high-resolution but
aggregated volume measurements (Touhbi et al., 2018).

In different contexts, it was shown that the structure of arrival processes is only revealed
when studying the arrival patterns over multiple timescales (Crovella & Bestavros, 1997;
Gwiggner & Nagaoka, 2014; Paxson & Floyd, 1995), and that bursts and regularity in the
events highly influence the second-order characteristics of the delays and counts. These
phenomena are, to the best our knowledge, not yet studied in a comprehensive manner for
the urban traffic network. In this chapter, we use high-resolution loop detector data collected
throughout an urban traffic network to characterize arrivals on different temporal and aggre-
gation scales - accounting for the travel distance relative to other interruptions. In fact, we
explore volume and location-(in)variant properties of the bursts in arrivals. Furthermore, we
use a simulation approach to explore the implications of using real-world rather than naive
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arrival processes in the light of delay variations.

3.3 Data

To empirically study arrival patterns, we use high-resolution event data collected at ap-
proaches of signalized intersections. In this section, we discuss the data collection process
in Section 3.3.1. In Section 3.3.2, we discuss our data filtering approach. Based on 10min
volume counts, we identify volume noise properties (Section 3.3.3), that we consequently
use to identify 10min volume regimes in Section 3.3.4.

3.3.1 Data collection

We study arrival patterns in the city of Enschede, the Netherlands (+/- 160,000 inhabitants).
Data were collected at 14 signalized intersections (see Figure 3.4), from August 2019 until
March 2020 for 11 intersections, and from April 2020 until December 2020 for three inter-
sections. The intersections are located throughout the network, include off-ramps, and the
corresponding operations are thus location-dependent and complex in the sense that differ-
ent modes of transport might interact, including cyclists, buses (possibly, with priority), and
pedestrians.

=0
N%‘/
Figure 3.4: Map of Enschede (OpenStreetMap, 2021), where dots indicate the signalized
intersections in Enschede where data are collected.

Intersections are equipped with a set of induction loop detectors at each arm to detect
approaching or waiting vehicles. Figure 3.5 shows a sketch of a possible configuration for
a single signal group. Here, each lane is equipped with a stop loop detector, typically 1 to 2
meters from the stop line, to request green. A long loop, 10 to 15m from the stop line, detects
queues. An upstream or advance loop detector, often 1m long, is installed 60 to 100m from
the stop line to detect approaching vehicles. In our case, we focus on arms with a single-
lane approach in which there is an, often additional, upstream loop detector that is able to
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detect spillback or upstream blocking. These distant loops are located up to 300m from the
stop line. Such distant upstream loop detectors are better able to measure arrivals compared
to other loops. We note that Figure 3.5 is only an example of a possible configuration with
here left, straight and right-only lanes, although at other arms and intersections, direction of
travel from a lane can be shared.

@00

Figure 3.5: Sketch of a typical loop detector configuration, with the stop loop detectors in
green, long loops in blue, and upstream loop detectors in pink.

In total, we have 24 different arms under consideration, to which we refer as measure-
ment locations. Two of these measurement locations are at off-ramps, while the other are
at urban road segments. To support our results throughout the chapter, we often provide the
type of road segment as well as the distance to the midpoint of the closest major upstream
intersection (ranging from 20m to 2km). Note that the arrivals at measurement locations
with a very short distance to an upstream intersection can be assumed to mainly reflect a
combination of the various discharge processes at the corresponding signals. However, in
this case, these discharge processes characterize the arrival process at the next intersection.
In any case, the variety of locations in combination with the fact that volumes are collected
over long periods allow us to study arrival processes under different conditions.

3.3.2 Data filtering

We use high-resolution event data from the induction loop detectors. For loop detectors,
these events are the time instants that the loop status is switched ‘on’ (i.e., becomes occu-
pied) or ‘off’. The data are collected in a continuous fashion at 0.1s increments for each
individual loop detector, typically stored in batches with the events that occurred during a
Smin interval. Errors that occurred during data collection and processing makes that for
each intersection full days and individual batches might be missing from the data set. Fur-
ther, we removed public holidays and parts of days with recurrent events such as football
matches from the data set.

We filtered data as follows. First, in order to extract vehicle defections from the loop
statuses, we assumed that every ‘on’ status of a loop detector should be followed by an
event that the loop status is ‘off’, and we filtered those that did not follow this assumption
or had an unrealistically long inter-event time between them. In the remainder, we define
a vehicle detection as a pair of ‘on’ and ‘off” loop statuses. Second, we checked for flow
conservation, i.e., a full batch is deemed unreliable if the volumes measured at the stop loop
detectors showed significantly more or less counts compared to the distant loops. Despite
the fact that it is difficult to assess the quality of this procedure directly, the induction loop
detectors generally show reliable performance - and are in practice used for the vehicle-
actuated control.
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3.3.3 Non-stationary demand

Time of day and day of the week are important predictors for the arrival rate. However,
variations occur over different timescales (see Chapter 2) and 24h patterns with a changing
shape and height over the days explain almost all non-stationarity of the arrivals (Craw-
ford et al., 2017; Weijermars & Van Berkum, 2005). We need to explicitly account for
non-stationarity, since (i) we are particularly interested in the natural variation in arrival
patterns, delays and counts under similar conditions, and (ii) the character of the arrivals is
heavily related to the underlying demand. Here, we discuss our method to identify similar
conditions. Therefore, we infer the systematic variations from the historical data, which we
then use to find subintervals where the arrival rate is assumed to be constant.

We now introduce the notation. For a single upstream loop detector, we construct aggre-
gated 10min volumes. In fact, let x4,; € Z>( denote the 10min volume count at day d € D
attime t € T'. Here, D is the set of days, and T is the time domain with 10min increments
for a single day. The 24h volume time series x4 consists of a latent yet deterministic sys-
tematic flow s4 and a residual vector eg so that x4 = s4 + e4. Assuming that residuals eg;
are a realization of an independent random variable €4 ;, we infer an underlying estimate of
s4,; based on patterns that exist in the 24h volumes over the days.

We refer to € as volume noise, and identify the random arrival process as the major
source of this random variation. Indeed, variation in inter-arrival times is one the causes that
84, + €4t 1s a random variable (Banks, 1999; Thomas et al., 2010). We assume that ¢ is
uncorrelated over time, i.e., the actual (realized) number of arrivals relative to the systematic
demand is unpredictable when considering 10min timescales. As mentioned, correlations
exist when considering very short timescales (e.g., when vehicles arrive in platoons) and
also spatial correlations exist over different timescales, e.g., an increase in volume at the
upstream loop detector is a predictor for an increase in volume at the stop loop or down-
stream locations. In this case, we are both interested in s; as well as in the noise-level
function o2 (s) that describes the volume noise variance as a function of the underlying
systematic flow, i.e.,

var(eq ¢|Sa,) = 02(5d7t), de D, teT.

In fact, we use s to identify conditions with similar arrival processes (see Section 3.3.4),
while the noise-level function gives the volume dispersion resulting from the randomness
in arrivals when considering 10min timescales. Based on literature (Chen et al., 2012; Guo
& Williams, 2012; Thomas et al., 2008), we assume that the noise variance 02(sd}t) scales
linearly with volume s, i.e., the (conditional) noise variance is a linear function of the
underlying systematic volume. Although different mechanisms exist to estimate s from
x (Habtemichael & Cetin, 2016; Lancia & Lulli, 2020; Thomas et al., 2008), in the next
section we use an approach that explicitly accounts for volume-dependent noise as further
elaborated upon in Chapter 4.

3.3.4 Demand patterns and interval selection

We identify similar traffic conditions based on the 10min systematic variation s as measured
at the upstream loop detector. In fact, we partition the raw detection data occurring within
batches of 10min increments into mutually exclusive bins so that arrivals are piecewise
stationary: within each bin the mean arrival rate is assumed to be constant. This partition is
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Figure 3.6: 10min aggregated arrival measurement time series (dotted line) and systematic
variation estimate (solid line) for three days at three different approaches (up-
per, middle, and lower row of figures).

based on the 10min systematic volume estimate s, and, in the remainder of this chapter, we
study the arrival processes within each bin.

Figure 3.6 shows examples of 10min volume time series (dotted line), including the es-
timate of the systematic variation (solid line). Here, we clearly observe different volume
patterns for the different measurement locations and days, typically M -shaped for week-
days. Visually, we quite accurately cover the patterns in the 24h volume time series within
a day and between days - and we conclude that a major share of the variations in the ar-
rival volumes is accounted for. However, changes in the arrivals on a shorter timescale in
the range of minutes might still exist, e.g., due to temporary blockages or slowly-moving
heavy vehicles. It is difficult to account for such variations explicitly since they occur on
timescales shorter than 10min. At the same time, simulation processes might need to explic-
itly incorporate such conditions as well whereas they naturally arise in a real-world setting.
Short-term deviations compared to the pattern occurring on relatively short timescales that
take longer than 10min, e.g., additional demand due to events, also occur but such situa-
tions are excluded from further consideration by using a sigma-clipping approach. In fact,
we remove 10min instances from further consideration if (i) the residual |e, ;| is more than
40(sq,) away from the pattern-based estimate sq; or (ii) if two consecutive 10min inter-
vals each have a deviation larger than 20 (s4,,.) compared to the estimate. In any case, the
estimate of the systematic variation might be such that a majority but not all arrival rate vari-
ations are accounted for. However, longer-term variations (on timescales of at least 20min)
are captured using our approach.

When the queue length exceeds the distance from the stop line to the used upstream loop,
a departure process rather than a series of arrival events are measured by the distant detector
(see Figure 3.5). We refer to such a situation as (over)saturation, which should be excluded
from our analysis. We therefore remove a full 10min batch of events if either (i) a single
long occupancy time is measured at the upstream loop, (ii) the mean occupancy time at this
loop suggests that traffic is slowly-moving, or (iii) the 95th percentile in occupancy times
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indicates that traffic was in saturated condition for a shorter period. We further remove a full
day from further consideration if the serial correlation (at lag 1) of the 10min residuals ey
has an absolute value larger than 0.25. After accounting for these situations, we are left with
a large number of reliable recorded arrival times ranging from 35,000 to 1,250,000 events,
dependent on the location. Using this filtering approach, our aim is to obtain intervals with
uniform conditions (Son et al., 2014; Tan et al., 2016; Vlahogianni & Karlaftis, 2011).
We note, however, that we remove some 10min intervals with many arrivals if the queue
length exceeded the distance to the upstream loop detector, and therefore underestimate the
variation in the actual arrivals. Therefore, we only consider those demand bins in which less
than 30% of the days are excluded from analysis. Combined with the relatively long distance
from the stop loop to the used loop detector, we can be confident that we characterize actual
arrival processes.
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Figure 3.7: Noise-level estimates, with each square indicating the mean-variance estimate
for a bin. The solid line gives the least squares estimate, the dashed line shows
the estimate in case of Poisson noise.

The unpredictability of the actual number of arrivals is quantified by the noise variance
compared the mean volume. We illustrate estimates of 10min volume linear noise-level
functions in Figure 3.7, including the 90% confidence interval of the estimates assuming
that volumes have a Gaussian distribution on a 10min level. On average, the random volume
variation shows slight overdispersion relative to Poisson noise, i.e., var(e|s) > E[s], and
the linear noise-level function gives quite a good fit. In fact, there is little variation in the
noise level between the different locations. We underline that by this binning approach,
there is systematic flow variance left within each bin. However, this variation is very small
compared to the noise variance and therefore we neglect this remaining variation in the
underlying arrival rate in the remainder of this chapter. In any case, the absolute noise
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variance increases approximately in a linear fashion with growing volumes independent of
the location under consideration. Hence, a heteroscedastic Gaussian distribution or even a
Poisson distribution are appropriate to capture natural stochastic fluctuations on timescales
longer than 10min. Based on this observation, we cannot invalidate the assumption of a
renewal arrival process yet since the asymptotic distribution of a renewal process, under
minor assumptions, also scales linearly with the demand. In the next sections, we therefore
study the arrivals within each volume bin on shorter timescales.

3.4 Framework

In previous section, we identified increments with similar arrival rates on a 10min level.
Consider a fixed roadside measurement location with a stationary demand in that all reg-
ularities in the arrival process occur on shorter timescales. At this location, we measure
arrival events over time (see Figure 3.2), which we consider as a point process with binary
events in (continuous) time ¢, with the probability of more than one event in an interval
At > 0 being o(At), At — 0. The arrival process can be characterized in two ways. Ei-
ther by a counting process N (t), measuring the cumulative number of events in an interval
(0, t] assumed to start from but not including an arbitrary event (as is typical in traffic en-
gineering), or by the sequence of inter-arrival times { X} between successive subsequent
events. These two aspects of the process are directly related since (see, e.g., Karlin and
Taylor (2012))

Sn::ZXj>t ifandonlyif N(t)<n, n=1,23,...

j=1

For all At > 0, we consider the difference process corresponding to N (¢) as follows:

an@y = YEEAD=NE o Ao,
At
or the differential process {dN (t)} being AN (t) with At — 0.

Under minor assumptions, the first-order properties of the intervals are directly related
to the first-order properties of the counts. Indeed, let M (t) = E[N(t)] be the expected
number of arrivals in an interval, and assume that E[dN(¢)]/d¢ exists for all ¢. Then for
constant arrival rates we have \(t) = dM(¢t)/dt = ﬁ, that is, the mean inter-arrival
time can be inferred from the flow rate. The second-order properties, on the other hand, are
not equivalent (Daley & Vere-Jones, 2003) but reveal much more and different information
about the process. We discuss in the following subsections the second-order properties of
both the inter-arrival times as well as the counts.

3.4.1 Statistical characterization of inter-arrival times

The first-order properties do not reveal the structure in the arrival events, e.g., the fluctua-
tions in the inter-arrival times. The set of intervals or inter-arrival times {X;} is a sequence
of random variables, assumed to have a common marginal distribution function denoted by
Fx(x). A relatively simple and often-used metric to assess the dispersion in the intervals
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under different conditions is by means of the ratio

C2(X) = var(X)7
E[X]?

i.e., the squared coefficient of variation C(X). C?(X) measures departures from the Pois-
son process driven by exponentially distributed inter-arrival times for which C?(X) = 1,
and thereby provides a first indication for invalidating the Poisson process in the setting
under consideration. We note that in some cases, however, this coefficient is not meaningful
if the tail of the distribution is such that the variance is infinite. Here, however, we do not
cover this case as we have no evidence of long-range dependency in the process.

The memory structure over the intervals {X,}, i.e., the dependency between consecu-
tive inter-arrival times, however, cannot be revealed using the coefficient of variation. For
example, it could be that a short inter-arrival time is followed by another short one. Such
dependencies can be examined using the serial or autocorrelation sequence

L COV(Xi,Xi+k) k= 101
pk.—ivar(x) y = ..., ,U Loy
with p_j = pi in our case. Alternatively, the Fourier transform can be employed to charac-
terize the autocorrelational properties using

™
Pk = / gx (w)cos(kw)dw, k=...,—-1,0,1,...,
—T
where
1 «— "
_ —tkw
gX(CU) ~or Z PLE )
k=—oc0
with i2 = —1, is the corresponding power spectral density for discrete time series. These

techniques are well known for time series collected at regular (time) increments (Stathopou-
los & Karlaftis, 2001; Sun et al., 2018). In our case, however, the increments are the con-
secutive vehicles, and the time series reflects then the inter-arrival times over the vehicles.

Looking directly at the autocorrelational sequence between consecutive inter-arrival
times may not provide one with a clear picture regarding the impact of the memory structure
over a multitude of vehicles. When looking at k& consecutive stationary inter-arrival times,
the corresponding variance function (of k)

e 3.1)

= kvar(X) + QZZCOV(X]',XJ'_H),

j=11=1

reveals the correlation structure in that the variance of a sum of random variables possibly
deviates from the sum of variances (Fendick et al., 1989; Gusella, 1991). Using V}, and
allowing direct comparison with a Poisson process by a demand-independent metric, we
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define the dispersion index (for inter-arrival times X)) at lag k as

Vi 2 -— ]
Ji = —C(xx1+2§]1_gpﬂ

KE[X]2

For renewal processes, pr, = 0 for all k& # 0, hence Jj, is a constant independent of &, and
has therefore a flat power spectral density (so-called ‘white noise’ spectrum in the typical
time series setting). Even stronger, J;, = 1 for a Poisson process. For long-range dependent
processes, i.e., with Z?:l pr — 00 as k — oo, it follows that J; — oo. In our setting,
as we will see, Jj, converges rather quickly. In any case, the dispersion index .Jj reveals
the persistence of the correlation in consecutive inter-arrival times, even if the individual
serial correlation coefficients are weak. Disadvantage, however, is that the true structure
of the arrival events in an urban setting is likely to be a function of time. This structure is
difficult to reveal using the characterization of this subsection, but can be revealed using the
second-order properties of the counts.

3.4.2 Statistical characterization of the counts

We consider the second-order properties of the counts following the conventions in Bartlett
(1963), Cox and Lewis (1966), Hawkes (1971), and Lewis (1970). Consider an arrival
process with a constant arrival rate over time A = A(t) = %t(t) - also known as the
intensity function. We consider the covariance properties of the counting process N (t).

Therefore, we introduce the cross-intensity function y(t,t + 7) so that
E[dN(t + 7)dN ()] = v(t,t + 7)(dt)?,
or, equivalently,
v(t,t + 7) = Prob{event at (¢ + 7, t + 7 + dt] and event at (¢, ¢ + dt]},

roughly, the probability that an arrival occurs at ¢ and ¢ 4 7 (see also Miller, 1970). Here,
dt is the differential of ¢. Under stationarity assumptions, the arrival rate is independent of
t, and (¢, ¢ + 7) is a function of the time difference 7 only. Then, the covariance density
w(7) of the differential process {dN (t)} becomes (Bartlett, 1963)

_ E[dN(t 4 7)dN(1)]
M(T) - (dt)2

— A2 0#T1€eR

The case 7 = 0 needs to be considered as well, and we extend the definition of u(7) to
f(7) so that i(7) = X for 7 = 0, and (1) = p(7) otherwise. Indeed, E[dN(t)] =
var(dN (t)) = A. The Bartlett power spectrum gy (w) - corresponding to signal N (¢) - is
the Fourier transform of ji(7) = §(7) A+ u(7), with §(7) the Dirac-delta function. Bartlett’s
spectrum is thus defined as

1 [ ; 1 [ -
gy (w) = 2—/ Ad(T)e™"Tdr 4+ 7/ w(r)e="7dr, weR
™ — 00

2 J_ o
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For comparative purposes, we normalize gy (w) and only consider frequencies 0 < w < 7
by defining

29N (w)

IR (W) = =

, w>0
\ 2>
We estimate Bartlett’s spectral density g (w) of a point process N (¢) using a periodogram.
For a recorded series of n ordered arrivals t1,to,...,t,, in an interval of length ¢, the

estimated spectrum g, (w) corresponding to g (w), w > 0, is estimated using (Cox &
Lewis, 1966)
1 n n )

’L(.d(tj*tl)
7

N (w) = e

Ato j=11=1

which, in our case, is smoothed by averaging over the periodograms corresponding to the
individual 10min batches each containing a sequence of recorded arrivals. As illustrated,
e.g., in Bartlett (1963), Cox and Lewis (1966), and Hawkes (1971), Bartlett’s spectrum
can be used - similar to the traditional power spectral density - to reveal initially-hidden
periodicities. However, in this case we aim to extract periodicities in the arrival events.
Note that for the memoryless Poisson process 1(7) = 0, so that the corresponding spectrum
gj{, (w) = 1, i.e., it plays a similar role as white noise in the standard time series approach
(Lewis, 1970).

For volumes collected on longer timescales in the order of seconds, the dispersion in
the counts can be measured as the variance-over-mean ratio using the increment of interest.
The variance-time curve V (t) := var(N(t)) - a continuous function of aggregation level ¢
- can be expressed as

t v
V(t) =M+ 2/ / p(u)dudv, t>0, (3.2)
o Jo

and the corresponding dispersion index (of counts or volumes) I(t) is defined as (Gusella,
1991)
V(t)
I(t) = ——= >
®) M(t)’ -

Directly calculating I(¢) is difficult, and therefore we apply discretization as follows based
on Cox and Lewis (1966) and Paxson and Floyd (1995). We calculate the number of arrivals
during a 1s interval, and smooth over consecutive 1s intervals similarly as in (3.1). In this
way, we construct a variance-time curve over different timescales.

In general, the second-order properties of the inter-arrival times and the counts provide
complementary information. For example, dominant frequencies in the arrival events due to
upstream interruptions are difficult to recognize using the correlational structure the inter-
arrival times only. Yet, the dispersion indices are related in that (Gusella, 1991)

lim I(¢t) = lim Jg,

t—o0 k— o0

assuming both limits exist. Before we consider the real-world arrival data, we consider
second-order properties under theoretical arrival processes in the upcoming sections.
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3.4.3 Headway distribution and platooning

First, we consider the influence of the headways and the platoon distribution on the statis-
tical characterizations of the arrival process. In fact, under minor assumptions, we can find
a theoretical Bartlett spectrum which we can use to examine the periodogram for the mea-
sured arrival events. For example, for stationary renewal processes with each inter-arrival
time X having distribution function Fx (x) (Daley & Vere-Jones, 2003),

L{Fx }(iw) n L{Fx}(—iw)
1— L{Fx}(iw) ' 1— L{Fx}(—iw)’

gh(w) =1+

Here, L{Fx }(s) = [, ¢**dFx () is the Laplace-Stieltjes transform of X. As mentioned,
if inter-arrival t1mes are exponentially distributed, the normalized Bartlett spectrum is flat
with gi;(w) = 1 for all w > 0. Hence, departures from a Poisson process can directly
be observed in this manner. In literature, more realistic yet complicated headway distribu-
tions were proposed, for example Branston’s Generalized Queuing (BGQ) model (Branston,
1976; Hoogendoorn & Botma, 1997; Luttinen, 1996), in practice estimated solely based on
the recorded inter-arrival times (and not the order therein). While this headway distribution
model accounts for the fraction of leaders and followers, it cannot be directly used in a
simulation model since the platoon structure does not follow from the distribution function
alone.

Assume that vehicles are classified as either a leader or a follower (see Luttinen, 1996).
A platoon P is then assumed to consist of one leader and zero or more followers. Let us
model the platoon size distribution according to a discretized Weibull distribution (Khan
et al., 1989; Nakagawa & Osaki, 1975), i.e.,

Prob{P = k;¢,8) = (¢)* V" — (9®", k=1,2,3,..., (3.3)

with 8 > 0, and 0 < ¢ < 1. The distribution as defined by its probability mass function
(3.3) has two parameters, with 3 determining the failure rate. 0 < § < 1 indicates a de-
creasing failure rate, while 8 > 1 expresses an increasing failure rate relative to a Geometric
distribution (where 8 = 1). In our context, 0 < 8 < 1 means that the probability of an-
other vehicle (follower) in the platoon increases when platoons grow in number (so-called
overdispersion). For a given 10min volume estimate s, we can assess the platoon dispersion
by solely considering (3, since the other parameter ¢ can be considered to follow directly
to match the moments of the headway distribution. Indeed, the fraction of leaders p; and
followers py = 1 — py, respectively, are usually part of the parametric headway distribu-
tion. In any case, one can use, e.g., the correlation in consecutive headways pg (or Vi),
the variance-time curve V(t), or the estimated spectrum §7;(w) to infer both the platoon
structure simultaneously with the headway distribution.

Figure 3.8 shows the platoon distribution, the Bartlett spectrum and the covariance den-
sity function under a variety of scenarios regarding the fraction of leaders and the platoon
dispersion index. Here, we model the distribution in inter-arrival times for followers and
leaders according to the BGQ model. We note that for a given fraction of leaders - inde-
pendent of 8 - the distribution in inter-arrival times is fixed. Hence, a changing platoon
structure cannot be revealed based on the headway distribution only but can be clearly dis-
tinguished based on the spectrum. In the short-term, with overdispersion, the probability
of another arrival increases and thereby the covariance density function is more slowly de-
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Figure 3.8: Impact of platoon dispersion on platoon distribution (left), spectral density
(middle), and covariance density function (right) under different settings.
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creasing compared to a geometric distribution. According to (3.2), 8 < 1 would introduce
variance in the counts on longer timescales. However, the noise-level function indicates
that the (count) dispersion index is volume and location-invariant and thus almost constant.
Hence, increasing overdispersion in the platoons is likely to introduce positive yet minor
serial correlations in consecutive inter-arrival times (compare the limit of J; with the one
of 1(t)).

3.4.4 Traffic light

We consider the influence of a traffic signal directly upstream of the location of interest
on the second-order properties of the counts and the inter-arrival times. For the sake of
illustration, we assume that one traffic signal with static, fixed-time, control filters an up-
stream Poisson arrival process having arrival rate \°. Therefore, we introduce a stochastic
continuous-time signal Y (¢) roughly mirroring the traffic light cycle phases, with Y (¢) = 1
if the light is green at ¢, and Y (¢) = 0 otherwise. For a single realization y(¢) of Y (¢), the
arrival rate at the measurement location is no longer constant, i.e., A\(t) = A\Oy(#), and it
follows that

E[dN(t + 7)dN(t)] = (\")2y(t)y(t + 7)(dt)?. (3.4)

By taking expectations over Y (t), u(7) = ()\O)Q(COV(Y(t),Y(t + 7)), and the co-
variance density function is proportional to the autocovariance of the signal Y (¢). Indeed,
straightforward calculus shows that in this case

o0

gh(w) =1+ )\OO'%/ py (T)e " ™Tdr, w > 0.

— 00

Here, 0% is the variance of Y (t), and py (h) is the corresponding continuous-time autocor-
relation at time lag h. It follows from the definition of the Fourier transform of a continuous-
time signal that the power spectral density of the traffic signal’s phase times is revealed in
the Bartlett spectrum of the point process. Slightly more complicated but similar calculus
indicates that periodicities in the (dynamic) traffic light cycles are also visible in g;(, (w)
under more complex and merging arrival processes upstream. In Figure 3.9, we show the
covariance density function and the theoretical Bartlett spectrum assuming that the upstream
signal is static and both the green and red time are 30sec. Both the spectrum and the density
function clearly reveal the impact of the traffic signal, i.e., we can expect sine wave-like be-
havior in the covariance density function and clear spikes in the spectrum when considering
interrupted arrival processes. If no information regarding the traffic light signal control is
available, its corresponding autocovariance structure can be revealed by comparing the ratio
between the modeled and the observed density function, see (3.4).

The downstream headways are also impacted in the sense that sine wave-like behavior is
introduced in its distribution function and is likely to introduce variance in the inter-arrival
times. In any case, the spikes in the frequencies cause that the variance time-curve V (t)
shows a more complicated and sinusoidal-like structure over time and highly impacts the
serial correlation coefficients py of the inter-arrival times.
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Figure 3.9: Theoretical covariance density function and Bartlett spectrum for an arrival
process interrupted by a static traffic light upstream.

3.4.5 Spatial dynamics

Arrival processes at locations can be considered in isolation, but, e.g., for traffic control pur-
poses, the changes in the process over space are of interest. These dynamics are much more
difficult to capture since so-called displacements in time are far from independent with ve-
hicles clearly interacting due to the limited take-over opportunities in an urban setting, i.e.,
typically first-come first-serve properties should be guaranteed. At the same time, complex
urban dynamics make that even for small stretches conservation of flow is not guaranteed
(e.g., due to on-street parking), and the arrival rate is thus not necessarily constant over
space - not even for short stretches.

For the sake of the example, consider the case of random displacements with flow con-
servation, that is, an artificial setting in which vehicles depart from one lane and then each
vehicle travels in its own lane at their desired speed. We label the upstream location 1, and
the downstream (cross-section) location as 2. We can model the displacement according to
the density function h(z) - likely to be similar to a Gaussian or Gamma density function
with the mean and standard deviation a function of distance and (average) speed. Following
Brillinger (1975) and Cox and Miller (1977), the resulting Bartlett spectrum g N’Q(w) of the
superposed process downstream can be expressed as a function of the upstream spectrum

g (w) by
(9% (w) = 1) = (9" (W) = DF[h(z) * h(—2)], w >0,

with F[h(x) * h(—x)] the Fourier transform of the difference of two independent random
displacements. Hence, only the non-Poissonian part of the spectrum is influenced. Con-
sidering the setting in which a displacement is modeled by a Gamma distribution, it is
interesting to see that the low-frequency periodicities are preserved over space, while high
frequency-parts of the spectrum rapidly become flat. In other words, the variations in the
short time gaps will become similar to an exponential distribution, while the longer-term
gaps introduced by the upstream interruptions will be preserved for a longer period of time.

Obviously, the dynamics in practice are much more complex and difficult to model
directly. Yet, one can estimate relations by comparing the spectra or by using the cross-
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intensity function v12(¢, ¢ + 7) between upstream location 1 and 2:
12 (t,t 4+ 7) = Prob{event at 2 at(t + 7,¢ + 7 + dt] and event at 1 at (t,t + dt]}, (3.5)

or the corresponding cross-covariance density function p!+2(t, ¢ + 7) and its Fourier trans-
form. We note that ;*2(¢,t + 7) makes no assumptions regarding the order among the
vehicles nor on the conservation of flow and thus can be used in a variety of settings.

3.5 Statistical characterization of inter-arrival times

We statistically characterize inter-arrival times based on the marginal distribution and the
correlation in consecutive inter-event times. The dispersion is assesses relative to the math-
ematically appealing Poisson process, where the marginal distribution is exponential, and
there is no serial correlation in successive inter-arrival times. In this section, we investigate
the arrivals under different conditions for the approaches under consideration using a set
of metrics describing the empirical distribution and the autocorrelation structure relative to
Poisson.

3.5.1 Marginal distribution

The characterization of the noise in the 10min volumes (Section 3.3.4) indicates that, ne-
glecting the slight overdispersion, it shows agreement with the Poisson distribution. In fact,
earlier studies (e.g., Mahalel & Hakkert, 1983) mention that the exponential distribution
provides an adequate description of the marginal distribution in inter-arrival times beyond a
certain cut-off point. We further study the distribution of the empirical inter-arrival times in
detail.

0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40 0 5 10 15 20 25 30 35 40
7 [sec] T [sec 7 [sec]

Figure 3.10: Three examples of the mean excess function of the inter-arrival times, as a
function of threshold T. The left figure shows the mean excess function for an
approach with an upstream intersection at 1.9km, the middle figure shows the
mean excess function for an approach with an upstream intersection at 0.2km
and the right figure corresponds to an approach with an upstream intersection
at 30m. The dotted line provides the mean excess function in case of a Poisson
process.

The distribution function can be considered to be a mixture of simpler distributions. We
use the mean excess function,

exc(r) = E[X —7|X > 7],

as a function of 7 > 0, as a tool to recognize different regimes in the distribution by indicat-
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ing the information change provided by the ‘age’ 7. Figure 3.10 shows a sample estimate

S (X =) L(X > 1)
Yo (X > ) ’

with 1(A) the indicator function of event A (see, Markovich & Krieger, 2010), for two
approaches under similar demand conditions. With the excess function being a constant
for all 7 > 0 in case of a Poisson process (i.e., memoryless), in our case, we roughly
observe a mixture of three distributions. In the left figure, we can identify leaders beyond
10-12 seconds with an exponential or Weibull-like tail. In the right figure, we have a clear
follower distribution for 7 € [0, 5], an intermediate regime showing similarities with an
exponential distribution (7 € (5,15]), and a light-tailed regime for 7 > 15. This light
tail indicates an increasing probability of an arrival in case no arrival occurred for a longer
period, and is in that sense less bursty compared to a Poisson process. With the right figure
mirroring the inter-arrival times closer to an intersection, the follower distribution shows
less variation possibly since in this case it is mirroring the inter-departure headways under
near-saturated conditions. The mean excess function for a location directly downstream of
another intersection is substantially more complex, and it is difficult to distinguish leaders
and followers due to the highly variable curve additionally reflecting the all-red time for the
approaches towards the location under consideration. When comparing the different figures
as a function of distance, we observe that an increasing distance filters the inter-arrival
times between 5-15 seconds, and the light-tailed regime becomes more like an exponential
one. In any case, a one-size-fits all headway distribution is unlikely particularly due to
the complicated structure introduced by traffic lights upstream. In fact, we were only able
accurately capture the distribution in inter-arrival times using the BGQ model provided that
the traffic light (visually) played no prominent role.

excy, (1) =

3.5.2 Correlational structure and platoon dispersion

Without any further information on the memory structure in the intervals, we can try to
model arrivals according to a renewal process where inter-arrival times are iid. This as-
sumption can relatively easily be tested if both the headways and aggregated volume noise
are available, since the asymptotic distribution of the counting process is known in is such
a case. One can assume that this limiting distribution is achieved at a 10min level. Hence,
we compare the renewal process-assumed variance at a 10min level with the volume noise
variance of Section 3.3.4, and any significant difference indicates the persistence of serial
correlations pg, on this resolution.

We calculate for each approach and each bin under consideration the sample C? (X) of
the squared coefficient of variation, and under the renewal assumption the (noise) variance
in the counts on a 10min level is approximately C?(z) x s, with s the bin-dependent 10min
demand. Figure 3.11 shows the 10min volume variance as a function of the demand for
four different approaches - representative for all the approaches in our data set. In fact,
independent of the location, C?( X)) can be assumed to scale in a linear fashion with respect
to the demand, meaning that in the renewal case the 10min volume variance is a quadratic
function of the underlying volume.

Figure 3.11 illustrates that C%(X) is not volume-invariant in general, that the renewal
assumption does not hold, and that the dispersion index highly differs from location to
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Figure 3.11: Coefficient of variation multiplied by mean 10min volume (red squares) - in-
cluding quadratic fit (red line) as a function of 10min volume for different
approaches. Black dots and black line provide the 10min noise variance and
linear fit, respectively. The dashed line indicates the volume-dependent vari-
ance corresponding to a Poisson process.

location. In fact, where we see slight underdispersion when the distance to the upstream in-
terruption increases (similar to freeway observations in Luttinen (1996)), obvious overdis-
persion occurs directly downstream of another intersection. The relative dispersion be-
comes more prominent when volumes increase - indicated by the quadratic nature of the
red line in Figure 3.11. The difference between the black and red line in the figure reflects
the persistence of the serial correlation coefficients on a multitude of inter-arrival times
(see (3.1)). Hence, when looking on a 10min scale, negative serial correlations dominate
near-intersection headways while positive serial correlations dominate the locations further
downstream.

Although the distribution of inter-arrival times alone is not sufficient to describe the vol-
ume noise variance, the individual correlation coefficients tend to be very small (typically,
absolute values less than 0.05). Hence, they persist over many intervals as indicated by Fig-
ure 3.11. We briefly consider the dispersion index .J; as a function of k, i.e., the variance in
inter-arrival times over a multitude of vehicles (Figure 3.12). The volume dispersion index
is an exponential function of the lag. Where absolute serial correlation coefficients damp be-
yond 3-5 lags, their relative impact on a multitude of vehicles is substantial. Comparing the
dispersion indices for the different locations, these serial correlation coefficients grow when
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volumes increase and are particularly prominent for near-traffic light locations. For such
locations, the correlation structure might only be revealed when looking at the headways of
dozens of vehicles in a row.

dispersion index Jj
dispersion index Jj

Figure 3.12: Examples of estimates of the volume dispersion index at two approaches under
high volumes.

It is difficult to assess the origin of the serial correlation coefficients if the headway
distribution is impacted by the traffic light upstream. To assess the impact of platooning,
we consider the arrival structure (see Section 3.4.3) for those locations and volume bins
where the traffic light has visually little impact on the headway distribution (uninterrupted
processes). We estimated the platoon dispersion at these locations as follows. We use a
cutoff point, and identify the followers as those having an inter-arrival time (compared to
the preceding vehicle) of less than this cutoff value. The other vehicles are identified as
leaders. Provided this characterization we can identify the distribution of platoons using the
discretized Weibull distribution (3.3), where for 5 < 1 the distribution has a stronger peak
compared to a Geometric distribution to which we refer as overdispersion (i.e., an increasing
chance of very long platoons).
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Figure 3.13: Platoon dispersion index 3 as a function of the volume for uninterrupted pro-
cesses. Black squares provide the dispersion index estimates using 5 seconds,
black dots provide the dispersion index using 4 seconds and black crosses is
the dispersion index provided a cutoff point of 6 seconds.

Figure 3.13 shows the estimate of S under a variety of conditions, using cutoff points
of 4, 5 and 6 seconds. For all cutoff points, we observe a similar trend, with increased
overdispersion as volumes increase, i.e., the probability of another vehicle in a platoon
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increases as the platoon size grows. In fact, this is confirmed by small yet significant serial
correlation coefficients when considering the inter-arrival times, as is in line with the theory
of Section 3.4.3. In this case, the probability of single-vehicle platoons increases as well
meaning that arrival processes are characterized by alternating short and long platoons.

3.6 Statistical characterization of the counts

In the previous section, we considered the arrivals based on the inter-event times, showing a
very different burst and memory structure compared to a Poisson or renewal process. This
structure persists over a multitude of vehicles. In this section, we consider the variations in
the counts at different scales.

The dispersion in counts is typically measured using variance-to-mean ratio I(t) as a
function of the aggregation interval ¢ > 0. Thereby, one assesses the burstiness of the
process by ‘smoothing’ over time (Paxson & Floyd, 1995). The corresponding variance-
time curve V'(¢) converges rapidly and scales in a linear fashion with the inverse of the
mean inter-arrival time if the autocorrelation function is rapidly decaying. Yet, this curve
shows more complex behavior under interrupted settings. The covariance density function
u(7) - and thereby V' (t) according to (3.2) - is then expected to show damped wave-like
behavior. Hence, V() is expected to converge only slowly, if at all.

Figure 3.14 shows typical examples of the (count) dispersion index over different ac-
cumulation intervals, estimated using 1sec increments. Considering the behavior of I(t)
over t, one is mostly interested in obtaining ‘stable’ counts for time series analyses in the
sense that the random fluctuations in consecutive volume measurements are uncorrelated.
On the other hand, the existance of serial correlation in volume measurements can benefit
predictions. When the increment-levels approach 0 (from above), the dispersion index ap-
proaches 1 since E[dN(t)] = var(dN(t)). In the order of a few seconds, counts follow
a Bernoulli distribution, and the dispersion index is less than 1 by definition. The curves
in Figure 3.14 indicate that correlations in consecutive small increments are substantial,
i.e., variations on shorter timescales are predictable when considering short time intervals
but are unpredictable when aggregation levels increase. In addition, this substantiates that
discrete-time arrival processes are solely useful if the correlations are incorporated (Boon
& Van Leeuwaarden, 2018). Further, as illustrated by Figure 3.3, the volume measurements
using 15-45sec increments may show substantial overdispersion particularly when traffic
control influence arrival processes (see also Ritchie, 1983). Then, stable volume increments
are only reached on 3 to Smin level, compared to the Imin level in the uninterrupted case.

Rather than looking at the density or intensity function directly, we consider the point
process periodogram to reveal the underlying reason for the behavior of the count dispersion
index over time (Figure 3.15). As already illustrated in Section 3.4.4, interrupted processes
can be characterized by the dominant frequencies in the power spectrum, while uninter-
rupted processes show a much smoother spectral density under similar demand conditions.
When volumes grow, dominant periods appear even for locations that are relatively far from
the traffic light upstream. Yet, the limiting value gX,(O‘*) is relatively stable over the lo-
cations and the different volume scenarios. Indeed, the influence of signal control fades if
aggregation levels increase.

For a few measurement locations, we have additional information of the realized traffic
light cycles upstream, and we confirm that the dominating frequencies in the estimate g]f, (w)
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Figure 3.14: Estimates of the count dispersion index 1(t) at three approaches. The dashed
line indicates the 10min noise-level estimate, while the dotted line is the dis-
persion index at a 1sec level
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Figure 3.15: Estimated spectral density for the arrivals measured at three different loca-
tions under comparable demand levels.

correspond to the periodicities in the cycle times. For the scenario considered in Figure
3.15a, Figure 3.16 shows the covariance density function, and the cycle-time densities and
the spectral density of the traffic light cycles upstream - solely considering those upstream
legs with the appropriate direction of travel. Here, we normalized the spectrum so that it
reflects the relative volume contribution of the legs upstream and depict a virtual line at the
frequency where the point process spectrum has its peak. The periodogram in Figure 3.16c
is in agreement with the one in Figure 3.15a. In any case, the covariance density function
shows clear sinusoidal behavior, indicating that there is a higher probability of no arrival
approximately 35 seconds after an arrival event. This is also reflected in the second smaller
peak in Figure 3.16c¢.

When considering the spectrum as a function of the volume, we observe as expected that
the spectrum shows a smaller spike with a higher peak at lower frequencies when volumes
increase - see Figure 3.17 for illustrative examples. Indeed, vehicle-actuated signals tend to
behave similar to a traffic light with fixed-time control in near-saturated and saturated condi-
tions and thus introduce clear periodicities in the arrival events. For very low volumes, there
are no clear periodicities. Such periodicity-corresponding peaks in the spectrum appear to
be less prominent if the distance to the closest upstream intersection increases. In fact, we
tried to relate the spikes in the periodogram with the (log10) distance to the closest upstream
intersection. Although with increasing distance, less-strong periodicities occur, the inverse
relation is not true in general. Even during high-volume occasions, some locations show
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Figure 3.16: Covariance density function (a) for the location-regime combination depicted
in Figure 3.15. For the traffic light signals directly upstream, we indicate the
cycle-time distribution (b), including its periodogram (c).
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Figure 3.17: Bartlett’s periodogram as a function of volume.

no major spike. Hence, complex location-dependent characteristics such as the capacity are
necessary to account for.

We further study the space-time dynamics by comparing the discharge processes up-
stream with the arrival process at the location of interest as follows. For two measure-
ment locations of interest, we have accurate upstream stop loop detector data available from
which we construct an artificial superposed process including all departure event times at
the stop loops of interest. Under conservation of flow, this process shows much similarities
with the arrival process downstream provided that the corresponding distance is short. One
might expect that spikes decrease in height over space - but the dynamics over space, again,
are highly link dependent. Considering two close points in the network, we can estimate
a cross conditional-intensity function expressing the probability of an arrival at ¢ 4+ 7 at a
downstream location provided a departure occurs at t. As expected, the cross covariance
density functions for points that can be assumed to be on the same link (in both cases, ap-
proximately 250m apart) show Gaussian-like behavior (top row in Figure 3.18), with its
mean roughly reflecting the distance in relation to the average speed which can be used
to predict arrival events downstream. Note, here, that conservation of flow does typically
not occur and is also not assumed. The corresponding estimated spectra at the individual
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locations (bottom row in Figure 3.18) show different characteristics. The left periodogram
indicates that the dominant periodicities fade out, while the right one indicates that they per-
sist over space. For all locations, however, we observe a change in the spectrum at the higher
frequencies. Indeed, discharge headways typically have limited variability - but variation in
these short headways is rapidly introduced just after departure.

0.02 0.02
0.01 0.01
= =
(3] 3]
— —
3 3
° frihay, °
-20 0 20 40 60 -20 0 20 40 60
T [sec] T [sec]
Departures Departures
3 Arrivals ] 3 Arrivals

Frequency w Frequency w

Figure 3.18: Cross-covariance density function between departures (upstream) and arrivals
(downstream). The bottom row provides estimates of the power spectral den-
sity of the point processes at the individual measurement locations.

3.7 Variations in delays

We statistically characterized arrival processes in an urban setting over different temporal
and spatial scales. In this section, we discuss the implications of our results for the variations
in the delays experienced at intersections.

Although the stochastic fluctuations in 10min volume measurements are appropriately
modeled using a Poissonian framework, such a process fails to reflect the structure in the
arrival process on short timescales. Yet, the most popular and still widely used delay approx-
imation function of Webster (1958) is estimated with exponentially distributed inter-arrival
times. As Van Leeuwaarden (2006) already pointed out, differences in delay estimates under
various stochastic arrival processes can be considerable — even under static traffic light con-
trol. We further study this statement in the light of our results in a simulation environment
with vehicle-actuated traffic signals.

We simulate a setting with an artificial signalized intersection having three single-lane
approaches. Traffic signal control is vehicle actuated, i.e., phase timings are variable, there-



3.7 Variations in delays 75

fore using two loop detectors. A stop loop is used for green requests, while an upstream
loop is employed for green time extension (see Figure 3.5). Provided a signal turns green, it
remains green for at least 6 seconds and is extended as long as a vertical queue is present, or
arrivals occur at the upstream loop. If the queue is dissolved, and there has been no arrival
(with constant speed) at the upstream loop detector for 3 seconds, the light turns amber and
then red for at least 6 seconds. Now, a different service point is provided with green — as-
suming there is a pending green request since a queue is present there or a vehicle arrived
at the corresponding stop loop. Alternatively, an all-red period occurs until such a request
is made. During the green period, vehicles can depart instantly if they arrive during a green
time, the queue is empty, and the ‘server’ is available. After every departure, the server
remains unavailable for 2 seconds.

We mirror the real-world arrival process at a measurement location using data regard-
ing the realized phase timings as follows. In (near-)saturated conditions, the realized phase
timings can be assumed to be roughly independent from the arrival process. For the mea-
surement point under consideration, we confirm this assumption since a BGQ point process
- expressed as a signal - ‘multiplied’ with the continuous-time binary signal corresponding
to the realized phase timings (see Section 3.4.4) mirrors the measured intensity, covariance
density function and the Bartlett spectrum at the stop loop quite accurately. We simulate an
arrival process by superposing the artificial departure processes each consisting of a sim-
ulated BGQ point process filtering out those arrivals that occur during red times, whereby
we randomly sample from 10min phase timings as a whole to capture within-cycle and
between-cycle variations. When comparing the simulated arrival process with the measured
one, we see that we quite accurately mirror the dynamics — including the periodicities and
thus the dominant frequencies - particularly under high volume occasions.

In the simulation setting, we consider one major approach and two minor approaches as-
suming a stationary demand for 35min (including the Smin warm-up period). For the major
approach, we consider varying arrival rates expressed in 10min volumes, while the minor
approaches have independent arrival processes with the same characteristics (compared to
the major approach) but with a relative arrival rate of 40 or 60% by independently filtering
arrival events. We use 500 replications for each considered scenario and compare the delay
estimates using the constructed so-called periodic arrival process with the Poisson process.
We assume a maximum green time of 60s for the major approach, and 30s for the minor
approach if the relative arrival rate is 40%, and 40s otherwise.
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Figure 3.19: Impact of arrival process on the mean delay and 10% CVaR for different vol-
ume levels.

Figure 3.19 expresses the impacts of the arrival process on two indicators regarding the



76 3 Statistical characterization of arrival processes

delay distribution, the mean delay and the 10% conditional value at risk (CVaR). The CVaR
provides the mean delay of the worst 10% of the travelers, i.e., an indicator the tail of the
delay distribution. We observe that the arrival process can have considerable impact on the
delay distribution, in particular in unsaturated conditions. In fact, the mean and CVaR of
the delay is overestimated when using a Poisson process by approximately 1.5-2s. Even
though these impacts seem limited, they can be considerable when designing strategies
for coordinated control. However, when volumes grow these delay differences become
smaller, indicating that in saturated condition the actual arrival process has little impact on
the delay estimates - although other performance indicators may be considered as well (Viti
& Van Zuylen, 2010a). The difference in performance can be explained by the predictive
behavior of real-world arrival processes. Indeed, in practice, an arrival event increases the
probability of another arrival within limited time because of the platoon structure and the
periodicities in the arrival events - see, e.g., the covariance density function in Figure 3.16a.
Conditioning on an event in a Poisson process provides no additional information regarding
the next event, one can substantiate that traffic signals with extended green times are likely
to perform better in practice than can be expected from a simulation environment assuming
exponentially distributed inter-arrival times.

3.8 Conclusion

A major share of the variability in travel times in urban networks is determined by delays
imposed at signalized intersections. A full understanding of the delay-contributing factors
is required for decision makers explicitly anticipating the evolution of uncertainty in delays
under various conditions. In this chapter, we provided a statistical characterization of ar-
rival processes at signalized intersections using real-world data regarding the arrival events
collected throughout an urban traffic network.

The structure of arrival processes can only be truly uncovered if it is studied on various
scales. Indeed, arrivals show a different memory and burst structure when considering it as
a sequence of inter-arrival times compared to looking at it as a counting process. There-
fore, we studied the arrival processes using both perspectives, and applied both a time and
frequency-domain approach. Arrival processes, in general, can be characterized as bursty:
longer periods with no arrivals alternate with short periods with relatively many arrivals
(platoons).

Non-stationarity occurs in the arrival rate, indicating that the demand - and thereby the
phase timings - substantially deviates in time and space. The arrival rate is typically captured
using a 24h pattern, and provided that the systematic variability in the network usage is
captured, the corresponding fluctuations around this pattern provide a rough estimate of the
arrival process on a larger temporal scale. These natural fluctuations were shown to have a
slight overdispersion compared to Poisson noise.

When considering the marginal distribution of the inter-arrival times, the headway dis-
tribution functions as suggested in literature do not provide an adequate description under all
conditions. In an urban setting, there is a higher probability of medium and high inter-arrival
times compared to an exponential tail. This excess probability is introduced by traffic lights,
and statistically reflects a combination of variable red times and the (interaction with) inter-
arrivals upstream. The left-hand side of the distribution shows minor variation during the
discharge processes under high-volume occasions, but the variability is rapidly introduced
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after departure. In addition, inter-arrival times turn out to show (weak) serial correlation -
but this effect accumulates to a significant level when looking at a multitude of vehicles.
For uninterrupted processes, serial correlation is introduced due to the platoon formation.

By using the power spectral density corresponding to the sequence of arrival events, we
revealed the periodicities in the arrivals that were not visible when looking at a sequence
of inter-arrival times. These periodicites are shown to correspond to the cycle times of the
traffic light upstream and can be significantly influencing the dispersion indices even under
lower arrival rates. As a matter of fact, in particular on shorter temporal scales of less than
30sec, the dispersion in counts can be very high when looking at interrupted processes. The
power spectrum density is smooth for uninterrupted processes and dominant frequencies do
not appear. Hence, for such processes, the dispersion index is a much smoother function of
the aggregation level. Nonetheless, almost all effects smooth out when aggregation levels
increase beyond 4-5min.

In general, theoretical delay and queuing models and simulation tools typically make
naive assumptions regarding the arrival processes in urban networks. It is complex to ac-
curately capture the structure of the arrivals, since regularities appear on many different
scales. In any case, failing to capture this structure for the benefit of tractable arrival pro-
cesses can underestimate the variations in volumes and overestimate the delays. In case of
vehicle-actuated control, in particular for lower volume occasions, a Poisson arrival process
overestimates both the mean as well as the CVaR of the delays. Hence, delay estimates - and
thereby traffic management control - need to account for location-dependent characteristics
although the true impact should be assessed further using real-world delay measurements.

In this research, we limited ourselves to signalized intersections with single-lane ap-
proaches. In future research, one could further investigate the arrival dynamics on a corri-
dor and a multi-lane setting. The burst and memory structure of the arrival process become
more complex in such a case and dominant frequencies can even be amplified over space.
In any case, arrival processes in an urban setting remain an important topic to study.






Chapter 4

Pattern-based prediction of urban
traffic volumes

4.1 Introduction

Logistics service providers (LSPs) construct route plans days or hours before execution
(e.g., Agatz et al., 2008) but can only base these plans on approximate travel times. Unex-
pected variations in traffic conditions (e.g., volumes, speeds, delays) make that the actual
travel times may strongly deviate from the estimates with initially small deviations poten-
tially accumulating and propagating throughout the plan. Updating route plans while being
en route, alongside robust planning, could mitigate a share of the negative impact of the
uncertainty on performance. With the initial route plan accounting for the uncertainty in the
longer-term prediction of travel times, the route is then adapted during execution in response
to changing short-term forecasts so that service requirements are met.

Nowadays, the en-route adaptation of route plans is possible since LSPs continuously
monitor the position of their fleet, and can communicate with drivers directly. However,
dynamically updating route plans requires a control center monitoring and forecasting not
only the travel times on current routes, but also throughout the network (Fleischmann et al.,
2004). Network-wide traffic volumes (or: flow rates) support the prediction of travel times
as follows. First, delays occurring at intersections mainly determine travel times in urban
areas and strongly depend on traffic volumes, in particular when these volumes approach
capacity. Second, traffic speed measurements are often collected by external companies
making it costly to use this data source on a continuous basis. Volume measurements, on
the other hand, are, at least in the Netherlands, more easily accessible and provided by
induction loop detectors near intersections. Finally, directly predicting driving times under
different conditions based on historical travel time measurements is less appealing with
many variability-inducing factors changing over time. For example, routes might change
from day to day or even within a day, with conditions on different parts of the network
continuously changing.

This chapter is based on the following paper: Eikenbroek, O. A. L., Thomas, T., Mes, M.R.K.
& Van Berkum, E. C. (2023). Pattern-based probabilistic prediction of urban traffic volumes. Under
review.
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For logistics operators it is important to have accurate forecasts for different timescales
including a 24h forecast, an updated forecast for the remainder of the day, as well as a short-
term prediction. Indeed, offline route plans are typically constructed overnight which makes
that long-term predictions are needed. Dynamic (re-)planning calls for updates of these
predictions (remaining-day predictions), as well as short-term forecasts. In this chapter,
we therefore include these types of forecasts for volume predictions. Robust (re-)planning
demands that also the uncertainty in predictions should be accounted for since solely using
point forecasts is treacherous: they give the impression being accurate (Makridakis et al.,
2020). In this chapter, we construct predictive densities for both the long and short term
explicitly accounting for the uncertainties that occur on the different timescales.

The remainder of this chapter is organized as follows. In Section 4.2, we provide a liter-
ature overview on traffic volume prediction methods and discuss the research contributions
of the chapter. In Section 4.3, we discuss the data, the uncertainty in predictions, and the
relation with patterns and random variation in volume time series. Section 4.4 introduces a
novel method to jointly extract the noise-level characteristics as well as recurrent patterns
from the data. These patterns are used in Section 4.5 to construct a 24h prediction. We use
smoothing in order to update the remaining-day prediction as well as the short-term fore-
cast based on the measurements (Section 4.6). In Section 4.7, we evaluate the prediction
mechanism and compare our prediction with the predictions using a method from literature.
In Section 4.8, we draw conclusions and discuss topics for further research.

4.2 Literature overview and research contribution

Although the traffic system shows repeating behavior, there is a typical discrepancy between
the time of decision of route planners and the available information in that some relevant
data is only revaled during execution. Hence, LSPs use predictions with various spatial and
temporal scales to make or update route plans.

Many traffic volume prediction methods have been proposed in literature, with a vast
majority focusing on short-term point predictions for recurrent freeways conditions (see
Vlahogianni et al., 2014). Taking into account the considered application for route planning,
volume forecasting methods should (i) offer reliable forecasts for different network settings
(urban and freeway) and conditions, (ii) provide predictions for both the long and short term
and (iii) quantify the uncertainty in predictions by producing probabilistic forecasts.

We roughly distinguish between data-driven and model-based methods when classifying
volume prediction mechanisms. Data-driven methods include time series methods, cluster-
ing methods, neural networks, etc. Model-based methods use a traffic model (e.g., CTM
(Tampere & Immers, 2007), METANET (Wang & Papageorgiou, 2005)) to describe the
underlying state. Obviously, both types of methods use data to update future forecasts, pos-
sibly with a filtering technique to relate the measurement space to the state. Model-based
methods use a theoretical description of the traffic dynamics in time and space (Van Lint &
Van Hinsbergen, 2012), while data-driven models (implicitly) relate recent measurements
to (a part of a) historical pattern with the remainder of the pattern providing the predictable
fluctuations. Although a merit of using model-based methods is that they are able to provide
reasonable forecasts under different conditions, even for situations for which the model has
neither been validated nor calibrated, it is difficult to capture the complex dynamics of lower
urban roads, including on-street parking and slowly-moving vehicles with limited take-over
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opportunities, in a single model. In addition, they are often not designed for long(er)-term
forecasts. Taking into account the LSP-imposed requirements that forecasts should cover
various timescales and network settings, we limit therefore our discussion in the remainder
of this section to data-driven methods.

Conventional time series approaches, most notably autoregressive methods (e.g., ARIMA),
identify trends in measurements by decomposing the time series into different underlying
series and use extrapolation for forecasts (Ahmed & Cook, 1979; Kumar & Vanajakshi,
2015; Lippi et al., 2013). Such methods have been widely applied for predictions, typi-
cally with a focus on freeways, yielding impressive performance for short-term predictions
(Lippi et al., 2013). With the more recent development of generalized autoregressive con-
ditional heteroscedasticity (GARCH) models (Kamarianakis et al., 2005; Shi et al., 2014;
Vlahogianni & Karlaftis, 2011), time series methods are in addition able to provide reason-
able prediction intervals (Guo et al., 2014). Yet, conventional approaches assume that recent
measurements strongly correlate with the predicted value(s), i.e., performance is expected to
decrease with sudden changes or when prediction horizons increase. Therefore, time series
methods are to be used in conjunction with clustering or pattern recognition, e.g., an autore-
gressive model then captures the behavior of the residuals compared to the intra-day pattern
(Chen et al., 2012). Machine learning methods, e.g., neural networks, often use unsuper-
vised learning to infer systematic variations and thereby reconstruct measurements. Learned
relations then implicitly (neural networks (Van Lint & Van Hinsbergen, 2012)) or explicitly
(clustering methods (Weijermars & Van Berkum, 2005)) contain the patterns in the time
series, and how they relate to recent measurements. Such methods benefit from including
domain-specific knowledge, e.g., dynamics are ‘smooth’ among adjacent segments when
considering freeways (Polson & Sokolov, 2017). Machine learning methods are shown to
provide good predictions in the short term (Lv et al., 2015). Disadvantage is the ‘black-
box’ nature and the often time-intensive learning procedure attached. In addition, machine
learning methods do not generalize well beyond their training data meaning that conditions
that have not been seen during training cannot be predicted accurately. Indeed, only a minor
share of the training set consists of measurements corresponding to non-recurrent condi-
tions, and the training set should then be enriched with additional yet difficult-to-collect
variables to particularly focus on such situations. In comparison to time series methods,
uncertainty has not been well-accounted for when applying machine learning methods (see
also Chapter 2 and Makridakis et al., 2018), and there is evidence in literature that combin-
ing statistical methods with machine learning can improve performance (Makridakis et al.,
2020).

Probabilistic forecasts provide estimates beyond the point predictions, typically using
prediction intervals or density functions. The prediction uncertainty depends on (i) the un-
certainty in our knowledge about the current and previous states of the network, (ii) the lim-
its of predictability, i.e., the inherent random behavior of the system, and (iii) the (stochastic)
prediction error. Uncertainty in the state is often accounted for by using state-space filtering
or smoothing (e.g., Wang & Papageorgiou, 2005), while the uncertainty in a prediction can
be accounted for by fitting a distribution to previous prediction errors or by sampling from
the residuals. For example, quantile regression is applied by Dutreix and Coogan (2017)
to provide density forecasts. Concerning the unpredictability of the system, there has been
relatively limited attention for the flow or time-dependent random variation (volatility) in
traffic measurements. Regarding volume-dependent random variations, Guo and Williams
(2012) apply a transformation to the data (see also Guo et al., 2014), while Thomas et al.
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(2010) account for the random variation when constructing and evaluating point predictions.
Shi et al. (2014) and Huang et al. (2018) estimate a time-dependent (i.e., time-of-day and
day-of-week) variance of the random variation based on an underlying SARIMA model.
More authors (e.g., Guo et al., 2014; Guo & Williams, 2010; Yang et al., 2010) construct
probabilistic forecasts for the short term by applying a (variant of a) GARCH model. Al-
though probabilistic predictions are provided, evaluation is difficult and often limited to a
measure for a single or a few prediction intervals (e.g., Guo et al., 2014; Huang et al., 2018;
Khosravi et al., 2011; Li & Rose, 2011; Wagner-Muns et al., 2018; Zhang et al., 2014).
Among others, Guo et al. (2014) and Huang et al. (2018) stress the need for a uniform
performance measure for constructing and evaluating probabilistic forecasts.

The choice of the prediction method highly depends on the situation under concern, and
a direct quantitative comparison of methods - in particular of probabilistic forecasts - is
difficult. With a vast majority of literature focusing on short-term predictions for freeways,
LSPs require a method that additionally provides long(er)-term forecasts and accompanying
uncertainties for urban networks. In an urban context, time series show a high degree of reg-
ularity. In fact, many of the systematic patterns are recurrent on timescales longer than 24h
and the explicit incorporation of 24h patterns in prediction mechanisms might substantially
improve performance (see Chapter 2). At the same time, the intra-day pattern provides the
predictable fluctuations for longer prediction horizons (e.g., Ma et al., 2021; Song et al.,
2018), particularly useful for constructing offline route plans. Hence, in this chapter we use
a pattern-based method for probabilistic urban traffic volume predictions, for 15min to 24h
ahead.

We discuss recent approaches using a pattern-based method. Wagner-Muns et al. (2018)
applied a functional data approach to freeway data where an underlying set of 24h patterns
(so-called components) are fitted to measurements. These patterns provide the intra-day
variations in volumes given a corresponding scaling magnitude (‘score’). This method pre-
dicts component scores using a time series approach, with magnitudes updated based on
recent measurements. The uncertainty in forecasts is accounted for by bootstrapping resid-
uals. Although useful for longer-term predictions, shorter-term fluctuations that cover less
than 24h, e.g., events with varying starting times, are not incorporated. 24h patterns are
also used by Lafia et al. (2019), where several clusters of time series are constructed using
a neural network. Based on extracted features, a 24h prediction is constructed by selecting
the mean time series of the corresponding cluster. Throughout the day, the remaining-day
prediction is replaced if the measurements substantially deviate from the initial prediction.
Although prediction intervals are not provided, uncertainty is implicitly accounted for when
detecting substantial deviations from the predictions. However, small deviations are not
used to update forecasts. Habtemichael and Cetin (2016) used a pattern-based approach, to
which we refer as the K-Nearest Neighbor (K-NN) method, where recent measurements are
compared with volumes from other days. The short-term prediction is a weighted average
of succeeding measurements on similar days. This method is straightforward and effective,
but neither anticipatory nor adaptive (i.e., there is no feedback between previous errors and
current forecasts). In our case, some locations show a Wednesday-noon peak in volumes,
which are difficult to predict using the K-NN method since volumes preceding this peak
are very similar to the ones on other weekdays (without a peak). This might be a reason
that the performance of point predictions is shown to decrease when the forecasting hori-
zon increases. Longer-term point predictions improving a baseline forecast in the order of
hours for the benefit of timing plans are constructed using partial least squares in Coogan
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et al. (2017). There, events with variable starting times are not explicitly incorporated, and
the (24h) forecast is not updated based on previous errors. Recently, Ma et al. (2021) pre-
dict traffic flows for future days using a neural-network accounting for inter- and intra-day
variations. They, however, do not consider short- and mid-term predictions.

In summary, a multi-timescale prediction method benefits from using long- and short-
term patterns to capture the systematic variations. Compared to the afore-mentioned stud-
ies, we make the following contributions in this chapter. First, we identify long- (24h)
and short-term (related to events) recurrent patterns in measurements and use these pat-
terns for predicting volumes over time. Observed patterns in measurements are assumed
to be a combination of underlying recurrent temporal patterns (profiles) and we use small
adaptations (or: transformations) of these profiles to predict volumes. In contrast to the
above-mentioned studies, in this chapter we do not only use long-term patterns for fore-
casts up to 24h ahead, we explicitly incorporate short-term patterns that provide predictable
fluctuations that cover less time and should not necessarily influence long-term forecasts,
e.g., in case of events. Second, we go beyond point predictions and provide probabilistic
forecasts in the form of density functions which we evaluate as a whole. We show that this
density function is actually a natural result of the volume-dependent random variation in
the measurements and the (stochastic) prediction error. Third, where most studies focus on
freeways or major arterials, our data set also covers minor inner-city roads characterized by
low speed limits and very low average volumes.

4.3 Patterns and uncertainty in predicting urban traffic
volumes

This section describes the traffic volume data we use (Section 4.3.1). In Section 4.3.2, we
outline our prediction method. In addition, we discuss the relevance of labeling variations
in volume measurements as either being systematic or random and explain how such a
decomposition supports probabilistic forecasts (Section 4.3.3).

4.3.1 Data

We predict traffic volumes in the city of Enschede, the Netherlands (+/- 160,000 inhabi-
tants). Volume data were collected at signalized intersections throughout the city (see Fig-
ure 4.1) from January 2016 until December 2017. At the arms of the intersections, vehicles
were detected through an induction loop at each lane, a few meters from the stop line.
These detections are aggregated to 15min-interval count data. The dynamics that occur at
the intersections under consideration are complex in the sense that different modes of trans-
port interact, including, depending on the intersection, buses, cyclists, and pedestrians. The
intersections are located at both major and minor urban roads, include intersections near
off-ramps and on-ramps, and have a speed limit of 30, 50, 70, or 80km/h.

In the remainder of this chapter, we study 36 collections of 24h time series. Each time
series consists of elements with 15min volume measurements as measured by a single stop-
line loop detector. These time series correspond to multiple stop loop detectors when lanes
share direction of travel. We refer to the resulting segments as measurement locations, and
predict volumes for each of the 36 measurement locations in isolation.
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Figure 4.1: City of Enschede (source map: OpenStreetMap (2021)). Dots indicate the
signalized intersections under consideration with (multiple) measurement lo-
cations. The red square gives the location of the FC Twente stadium.

Throughout the chapter, we particularly focus on the impact of the football matches of
FC Twente on the volumes. FC Twente plays its matches in the stadium with a capacity of
30,000 and is located in the north-western part of Enschede (see Figure 4.1). In our data set,
we have 32 different matches, including league, cup, and women’s matches. These matches
were played at different days of the week, with varying kick-off times.

We briefly introduce notations. For a measurement location, let 24, € Z>o denote the
15min volume measurement at day d € D attime ¢ € T'. Here, D is the set of days in the
database, and 7' is the time domain with 15min increments for a single day. Throughout
the chapter, depending on the context, we use both x4 and z; to refer to a 15min volume
measurement.

After inspection of the data, we rejected volume measurements based on the following
criteria. First, we excluded a complete day of volume measurements from further consid-
eration if more than 20 elements of a daily time series (of the maximum-possible 96) were
either missing or had zero volume. Subsequently, we checked for longer-term shocks in
the demand caused by local road works and closures. Since reliable information regarding
historical road works and closures was not available, we used the following approach to
identify outliers in the weekly demand (see also Thomas et al., 2008). For each location, a
simple estimate for the 24h pattern is

1
=5 > w44, teT. (4.1)
Pl ieh
Based on this 24h pattern Z, the mean squared error
1 . 1 _\2
=15 S ra, with 7= il > (wae — 70 (4.2)
d teT

gives a sample estimate for the squared deviation of a single day compared to the 24h
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pattern. For each week w C D, we calculate the mean distance compared to the 24h
pattern, and compare it with /C. In fact, we exclude a full week w of measurements if

I> 7a>2/¢ (4.3)
dew

holds. Visual inspection confirms that this criterion identifies weeks with unrepresentative
high or low demand. After the identification of weeks with unrepresentative demand, we
used a modification of the above criterion to diagnose individual days with unrealistic high
or low 24h demand. Directly comparing 7; with { turns out to be overly sensitive to events
or incidents that cover only a few hours. Therefore, we recalculate ¢ and 74 as in (4.2) but
restrict the time domain by excluding the first two hours of each day. We identify days for
which 75 > 24/ holds. We use an iterative approach by recalculating ¢ and 74 and only
excluding the next two hours compared to previous iteration. We remove those days from
the data set for which 74 > 2+/C holds for all possible sub time domains.

We note that data were collected in batches, with each batch covering 3 months of data.
For some of the intersections, a single batch is missing from the data set. The considered
measurement locations have at least 500 representative days in the database. Here, the above
criteria led typically to a rejection of 1 — 3% of the 24h time series. We underline that we do
not artificially replace (missing) data, making that the resulting time series still include days
with missing elements, miscounts, temporarily malfunctioning loops, events, incidents, etc.
For each measurement location, the final data set is divided into a training and a test set.
The training set is used for model development and covers the first two thirds of the data,
while the test set consists of the last third of the days in the database and is only used for
evaluation in Section 4.7.

4.3.2 Outline of the prediction method

Observed patterns in the 15min volume measurements are considered to be a combination
of underlying recurrent temporal patterns, or profiles as we will call them. Not all variations
in 24h time series can be explained using exogenous variables, but can be expressed using
small yet systematic transformations of long- and short-term profiles that change from day
to day. Although extracting the underlying profiles is a difficult task (see Section 4.4), these
profiles benefit a prediction mechanism as follows. First, only a few underlying profiles with
day-dependent adaptations were shown to be needed to explain almost all intra-day and day-
to-day volume variations - even with recurrent events (see Chapter 2). Given such profiles,
the prediction task then reduces to forecasting which profiles are active at which part of
the day. Second, the profiles and corresponding magnitudes typically yield a physically-
meaningful interpretation albeit additional variables might be needed to explain or forecast
the variations. Hence, the impact of external factors or determinants can possibly be incor-
porated. Third, by decomposing 24h volume time series, we introduce additional degrees of
freedom compared to, e.g., clustering and time series approaches that solely consider varia-
tions in the resulting (accumulated) volumes. Since underlying profiles can be transformed
independently, we are flexible in adapting the prediction to a variety of situations occurring.

The pattern-based prediction method of this chapter provides three types of point and
density forecasts: a 24h prediction, a remaining-day prediction and a short-term predic-
tion. The 24h forecast provides a prediction for a full day before the start of the day. The
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remaining-day prediction gives at any time of day a forecast for the volumes during the
remainder of the day (i.e., up to 24h ahead). Short-term predictions cover up to 1.5h. For
all these predictions, we use the underlying volume profiles (extracted in Section 4.4). Con-
sidering the application for LSPs, a 24h prediction is particularly useful for offline planning
(at night), while the remaining-day and short-term forecasts are to be used for dynamically
updating initial plans. Now, we provide a brief outline of the substeps of our methodology,
with each type of prediction being an update of a longer-term prediction.

We start with an initial prediction, to which we refer as the baseline prediction, that
can be constructed a long time in advance using day-dependent features (i.e., exogenous
variables such as the day of the week). The baseline prediction gives a typical 24h volume
pattern, based on the feature-dependent scaling magnitudes of the profiles.

We construct the 24h, remaining-day and short-term predictions by comparing a previ-
ous estimate with initially unavailable measurements that now can be used to improve the
forecasts. We do this in several steps, with each step having its own modifications that we
discuss in detail in the corresponding sections:

» The 24h prediction (Section 4.5.2) for day d € D is a prediction for the volumes
throughout the day. This prediction is an update of the baseline prediction for the
same day by scaling the initial forecast based on the relative difference in 24h vol-
umes between measurements and the baseline during previous days. Thereby, the
24h prediction accounts for slowly-changing variations such as seasonal variation. In
addition, the 24h prediction incorporates traffic flow rate changes due to recurrent
events;

* The remaining-day prediction (Section 4.6.2) accounts for systematic errors that are
correlated over longer time periods (but less than 24h), which are assumed to be
manifested in a changing demand for (a part of) the day. We begin with the 24h
prediction at the start of the day and update the prediction for the remainder of a
day by comparing the initially unavailable measurements throughout the day with the
previous remaining-day prediction;

* A short-term prediction (Section 4.6.3) is the prediction for the next 15min to 1.5h by
comparing recent measurements to the remaining-day prediction.

The collected 24h measurements x4, d € D, are noisy in the sense that typically a
slowly-changing pattern and high-frequency fluctuations can be recognized by eye. The
systematic part s of these measurements need to be predicted, and is in fact the only vari-
ability that can be predicted. Random variations, on the other hand, are the fluctuations
that show no pattern: they are uncorrelated and these deviations are therefore unpredictable
(noise) (see Chapter 1). Although a perfect prediction scheme estimates s, ; over time, the
true systematic flow is unavailable and random variations make it difficult to distinguish
systematic from random errors. In any case, an estimate of what can(not) be predicted iden-
tifies potential ways to improve the forecasts. However, the presence of noise complicates
this process.

Roughly, we make use of two techniques to reduce the negative effect of the noise
when updating the predictions. For the 24h prediction, we use aggregation among previous
residuals to reduce the relative impact of the noise (compared to the systematic variations).
When constructing remaining-day and short-term predictions, we only use a relatively short
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history of measurements for updating. Rather than using the recent measurement directly,
we adapt the prediction based on a smoothed estimate of the volumes. In fact, in Section
4.6.1 we introduce a state-space smoothing method to relate recent volume measurements
to the underlying profile magnitudes (the state), while explicitly accounting for noise as
well as for model and prediction errors. In the next subsection, we discuss the relevance of
decomposing systematic and random variations for our probabilistic predictions.

4.3.3 Patterns, noise and uncertainty when predicting volumes

Many of the patterns in the time series are recurrent, and can therefore in principle be
predicted. In our urban traffic time series, intra-day patterns show a high degree of regularity
over the days. With the use of 24h patterns, we can thus describe a major share of the
variations, in particular when a variable scaling magnitude is used for variations covering
timescales longer than 24h (e.g., seasons). Also short(er)-term systematic variations that
cover less than 24h exist, often related to temporarily changing demand and/or supply due
to events, incidents, etc. Time-of-occurrence and magnitude of these short-term patterns are
much more variable and therefore more difficult to predict (Vlahogianni et al., 2014). Where
most prediction methods forecast regular conditions, i.e., days without any events occurring,
forecasts can be improved when explicitly accounting for these short-term fluctuations.

Random variation, or noise, in our traffic flow time series is mainly due to the inherent
variability in the dynamics that occur near signalized intersections (process noise) (e.g.,
random arrival processes and variable traffic signal cycles), but also measurement errors
contribute to the noise. These variations might show patterns on timescales shorter than
15min yet they are uncorrelated on longer timescales and considered to be unpredictable
and uncorrelated noise in our case. We assume that residuals eq; = T4+ — Sq.t, d € D,
t € T, are realizations of independent random variables €4 . There is evidence (Chen
et al., 2008; Guo et al., 2015; Thomas et al., 2010) that the amount of random variation
depends on the underlying pattern. Indeed, count time-series (e.g., of random arrivals) are
often modeled using a Poisson distribution (with the variance equal to the mean). Here,
we model that the noise is distributed according to a heteroscedastic Gaussian distribution
eat|sat ~ N(0,03(sq,)), with the noise-level function o3 (s) linear in s so that

o3(s)=0-5, withd € R,. (4.4)

Note that for § = 1, the noise function approximates a Poisson arrival process (for suffi-
ciently large s). In this chapter, we explicitly account for the statistical properties of the
noise for predicting volumes over time as follows.

First, we jointly estimate systematic patterns together with the noise level so that we
obtain a robust estimate of the temporal profiles while preventing overfitting. In addi-
tion, for short-term predictions, the random variation substantially influences our updating
scheme. Therefore, we infer a denoised estimate of the measurements by using a Kalman-
like smoothing method that explicitly incorporates the volume-dependent noise.

Second, an accurate estimate of the statistical properties of the noise is important when
making volume point forecasts, since the conditional variance of the noise provides a lower
bound on the best-possible accuracy of the point prediction method, and therefore indicates
the model and prediction error (Hunt et al., 2007). Consider a point predictor y;p; for
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time ¢ + h made at time ¢, the corresponding expected squared error becomes

El(Yesnie — Xern)® | sevn] = 04 (sen) + Wegnpe — se1n)?, 4.5)

with Xy the random variable for the 15min volume at ¢ + h. Although at time ¢ the best-
possible point prediction for ¢ + h is given by Y, p|; = St4h, in general we have a biased
prediction. In the remainder, we assume 4, p|¢ = S¢4-h+T¢yn|t» With random variable 74 p,|,
so that E[7; 4 j¢|s¢+s] = 0 and E[Terhlt\sHh] = (Cesn|tSt+npe)? With ¢y € Ry Hence,
when predicting similar conditions, on average we have a good forecast but we consistently
have a relative error of c. Our prediction of the corresponding (Gaussian) density function
is

ft+h\t($) = ¢(; Yt4-n|ts Ug(yt+h|t) + (Ct+h|tyt+h|t)2)a (4.6)

with ¢(x; i, 0?) the probability density function of a Gaussian distribution with mean . and
variance o2, The 100(1 — )% prediction interval directly follows from (4.6) and is given

by
[yt+h|t — Ra/24/ E[et2+h‘t]7 Yt+hlt + Ra/24/ E[6?+h|t]], 4.7

with z, /o the a/2-corresponding z-score of a standard Gaussian distribution (Chatfield,
2001). Here, E[e? oy ,] follows from the error (4.5) and is thus approximated by o3 (y; hlt)+
(ct+h|tyt+h‘t)2. Hence, our goal is to minimize (ct+h|t)2, which in parallel narrows the
quantile forecasts as in (4.7). One should note that the density forecast f;p;(x) can be
considered to be a direct result of the point prediction y; ,p; by assuming normality and
estimating the variance of the Gaussian distribution using ]E[ef iy .]. However, one can also
relax the normality assumption and construct y;|; by combining a series of quantile pre-
dictions (e.g., using the median) (Hong et al., 2016), or one could consider both prediction
tasks independently. In our case, we use an intermediate approach, and estimate f;,)¢()
from y, |, with some additional tuning parameters (see Section 4.5.3 for details).

Even with the best-possible prediction 4, p|: = S¢1 and a prediction interval as in
(4.7), still 100a% of the volume measurements are expected to fall outside the interval
(4.7). The intuitive absolute coverage difference (ACD) metric measures the absolute dif-
ference between expected and true coverage (Makridakis et al., 2020) and is similar to the
kickoff percentage in, e.g., Guo et al. (2014). For example, when 89% of the measurements
fall within the prediction interval, and we expect on average that 90% are within the bounds,
then the ACD will be |0.89 — 0.90| = 0.01. Using the ACD (and other measures, e.g., score
interval as in Makridakis et al. (2020)) for a single confidence level allows for carefully-
crafted prediction intervals (Diebold et al., 1998; Khosravi et al., 2011). These measures are
therefore more appropriate to use when, in addition to the point forecast 3, p|;, also a full
density forecast f; h‘t(:z:) is offered. In order to evaluate the density forecast, for each pre-
diction, we additionally extract the 1st, 2nd, ..., 99th quantiles, denoted by ¢1, g2, - - . , @99,
respectively. An integrated measure to evaluate these quantiles is the pinball loss function
(Hong et al., 2016)

Liga,a) = ¢ 17 100)a =) iz <da a=12.,99 (4.8)
ﬁﬁ(l’_(ﬁx) ifoQOz

averaged over all target quantiles. In the remainder of this chapter, we employ the pinball
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loss function (to be minimized) to evaluate and optimize predictive densities as a whole.

4.4 Temporal volume patterns

In previous section, we discussed that the estimate of the noise level depends on the system-
atic variation and vice versa. In this section, we show how the noise level can be inferred
based on a reconstruction of the systematic variation and the other way around (Section
4.4.1). In Section 4.4.2, we introduce a method to jointly infer both at the same time. In
Section 4.4.3, we give an overview of the noise levels and the extracted temporal patterns
that we use for our predictions in the remainder of the chapter.

4.4.1 Noise levels and pattern recognition

In Section 4.3.3, we showed that metrics measuring the performance of a prediction method
actually capture both the variance of the random variation as well as the true prediction error
(see (4.5)). To disentangle these two components, we need an estimate for the noise-level
function o (s).

We introduce a segmentation-based approach to estimate the volume-dependent noise-
level function. Here, we partition an a posteriori estimate (i.e., reconstruction) of the sys-
tematic variation s of s into different bins 2, k¥ € K, so that ‘similar’ data is in the same
group. That is, the reconstructed volumes 5 of days in training set can be divided into
mutually-exclusive bins, and within each bin the noise level is assumed to be constant. Al-
though the segmentation can be based on e.g., time of day or the week (seasonal noise level)
(see also Shi et al., 2014), in our approach we model the noise as being volume-dependent
(see Section 4.3.3) and relate therefore the bins to the flow rate. In fact, for a given interval
size w > 0, we define clusters

0(3) = {(d,t) € D x T'| 5y € [w(k —1),wk)}, k=1,...,|K]|.

Hence, € includes all time intervals for which the underlying systematic flow estimate s
is in the interval [w(k — 1), wk). Under the assumption that for each cluster the underlying
random noise process is similar, we can relate the sample volume mean

1
@)= S S,
|2
(d,t) e
of cluster & to the corresponding variance of the residuals
_ [ I _
oi(s) = Z W(ed,t)zv with €41 = Ta,t — Sd,t-
(d,t)eQy k

We estimate the parameters of the noise-level function by relating the sample mean and the
variance, i.e., by solving the least-squares problem (see (4.4))

Q(): min Y (0(5) — u(3)”.

00
k=1,2,...,| K]
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Figure 4.2 shows two examples (of two different measurement locations) of the noise-level
estimate for a given estimate S of s, which is estimated in Section 4.4.3. Here, a black
square shows a (pu, o )-combination for a cluster k € K, and the solid line shows the least
squares estimate 6 of @ (i.e., the optimal solution of (Q(5))). The dashed line illustrates the
estimate with § = 1 (so-called Poisson noise). Our assumption having a linear noise-level
function leads to quite a good fit. We noticed that by segmentation we introduced some
variation of 5 within a bin, yet this variation is very small compared to the noise variance
and is therefore neglected.
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Figure 4.2: Noise-level estimates, with each square indicating the mean-variance estimate
for a cluster. The solid line gives the least squares estimate, the dashed line
shows the estimate in case of Poisson noise.

The noise-level fits as in Figure 4.2 are solely valuable if a majority of the systematic
variation is captured. Therefore, we need a method finding a systematic variation estimate,
and a criterion (independent of #) that determines if the desired systematic flow rate is
captured. Here, we discuss how to estimate the systematic volumes, while in Section 4.4.3
we discuss the criterion we employed.

Given a noise-level parameter @, the problem to estimate the systematic volumes s ex-
plicitly accounting for the noise can be considered to be optimization problem

. ~ 1 (JUd t — Sd t)2
m == |log(2n07 R 4.
Selgf(sae) 9 — og( 9(8d,t)) g(sd,t) s 4.9)

with § denoting the feasible set regarding s.

As mentioned, we hypothesize that observed 24h patterns in the measurements are a
combination of underlying and unobservable profiles. Many of the variations within and
between days can be explained by a linear combination of these profiles. In this chapter,
we apply non-negative matrix factorization (NMF) as a framework to find 24h profiles and
thereby estimate s in (4.9).

Let us assume for now that we know that we need m profiles to capture the 24h sys-
tematic variations. Denote the shapes of the (normalized) profiles by matrix W & Rf‘ xm,
i.e., a profile covers 24h and consists only of non-negative elements. The corresponding
day-dependent magnitudes H € RTX d express the scaling of each profile. Together we
have s = WH e RITIXIDPI a5 estimate for the systematic variation. Having m as estimate
of the number of 24h profiles, we can apply NMF within the optimization framework, by
solving (4.9) using s = W H. In Section 4.4.3, we discuss a criterion to find an estimate for
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4.4.2 Joint estimate of noise levels and patterns

To estimate 5 and , one could follow an iterative approach. First, an initial estimate 69 of
noise-level parameter @ is required to solve (4.9), which leads in return to an estimate s* of
the systematic flow rate. By solving (Q(s')), one obtains a new estimate 8! of §. However,
such an iterative approach does not anticipate the changes in the noise level while finding
a new estimate of the systematic variation. Here, we propose an alternative optimization-
based approach that jointly estimates the temporal volume patterns as well as the parameter
of the noise-level function for each location in isolation.

We formulate an optimization problem to find patterns 5 € R™ and noise-level parame-
ters f € Rﬁ_. Note that, without loss of generality, we assume s to be in vector form rather
than in matrix form. Also notice that § € R (i.e., kK = 1) is a variable in this framework.
In a general form, the optimization problem can be written as (Aravkin & Van Leeuwen,
2012)

(P): Lxin f(s,0),
where f : R xR* — R is the reconstruction error between measurements x and systematic
variation estimate s, depending on the noise-level function parameterized by 6. S is the
feasible set regarding s, and © is the set resulting from the box constraints restricting the
choice of 6. Typical examples of f(s,#) include the (negative) log likelihood of x given s
and 6 (as in (4.9)), or the sum of squared residuals.

In iterative approaches, one finds noise parameters 6 based on an estimate 5 of s. Here, 6
is the optimal solution of a parametric optimization problem, i.e., § results from an estimate
of s and in that sense should explicitly depend on it. Formally, 6 is the optimal solution
corresponding to

(Q(s)) : m@ing(s, ), with parameter s = 3.

Here, g : R™ x R* - R, and is, e.g., a least squares estimate between the volumes s and a
variance estimate as in (Q(s)). However, in our case the least-squares solution to (Q(s)) is
unique for all fixed 5, and it follows that the corresponding optimal solution 6 is an implicit

function of s,i.e., 0 : R" — R’j_ with
6(s) = {0 | 6 is a global minimizer of Q(s)}.

This allows us to rewrite problem (P)~as an optimization problem only in s, since 6 directly
follows from optimization problem (Q(s)). Indeed, we solve

/ .
(F): min f(s,6(s)),

rather than (P). This reformulation (P’) is shown to have some advantages compared to

(P) (Bell et al., 1996). Under some additional assumptions 6(s) is continuously differ-

entiable in s (Klatte & Kummer, 2006), and sometimes even a closed-form expression is

possible (Aravkin & Van Leeuwen, 2012). However, under more general assumptions, 6(s)

is typically not continuously differentiable everywhere.
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For the remainder of this section, we rewrite (P’) as a bilevel optimization problem, i.e.,

(P"): Isne%l f(s,0) st 0 solves (Q(s)).

We have that (()(s)) is a convex optimization problem with linear (box) constraints (see
(Q(s))). Under these assumptions, the Karush-Kuhn-Tucker (KKT) conditions are both
necessary and sufficient for optimality and we can replace the difficult constraint in (P’"")
by its system of KKT equations, abstractly written as

H(0,s) =0,

with H : R™ x R — R™ being a C' 1_function (Klatte & Kummer, 2006; Still, 2018).

The implicit function theorem (IFT) states under additional conditions the following,
for some reference point (6, 5) with @ solving (Q(5)). If H(#,5) = 0, and VoH (0, 35) is
non-singular, there exists a neighborhood in s around 5, and a C' 1_function 0(s) for which
(5) = 0 so that H(0(s),s) = 0. Moreover, in this neighborhood in s around 3, V40(s)
exists and is given by

V.0(s) = —(VH(0,5) 'VeH(0,s).

Intuitively, the IFT says that the noise-level parameter 6 is a locally continuous function of
the systematic variation s around 5, and, in addition, is continuously differentiable in this
neighborhood. Now, we can use this information for solving (P’) and thereby jointly find
the noise-level parameter as well as the patterns in the measurements.

This framework does not directly apply to finding the patterns and the noise level as in
Section 4.4.1. At some points in the domain, the IFT conditions might not hold and 6(s) is
shown to be only piecewise smooth at some s (Dempe & Vogel, 2001). In addition, (4.9)
is not defined everywhere, and we replace therefore o3 (s) with 63 (s) = max{3,6 - s} to
prevent the estimate to be overly sensitive to fluctuations during very low-volume occasions
(e.g., at night). We ignore possible nonsmoothness and apply a Gauss-Newton method with
inexact line search to solve the problem at hand.

We found that the solution @ corresponding to Q(s) is highly influenced by outliers,
and we use therefore a sigma-clipping approach to diagnose and remove outliers while
estimating the noise level. Visually, we should mark measurements as outliers if they are
either 3 to 4 standard deviations y/o?(s) away from s, or two consecutive measurements
having a distance of 2 to 3 standard deviations. Hence, we applied a 3.5 and 2.5-sigma
criterion, respectively. Obviously, outliers and clusters depend on estimate 5 of s and are
therefore re-identified after updating 5.

4.4.3 Extracted patterns and estimated noise levels

The optimization framework of Section 4.4.2 is applied in conjunction with the noise-level
estimation and NMF framework of Section 4.4.1. This resulting optimization problem can
be applied to find m profiles assuming to describe the underlying systematic variation for
a single measurement location, together with an accompanying noise-level function. A
remaining yet essential question to answer is the number of profiles needed to capture the
systematic volumes without fitting noise. After all, m is is not known beforehand.
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Here, we use an iterative approach and begin with a single (unknown) profile and solve
(P’). Then, we add profiles until a termination criterion, diagnosing if on average all sys-
tematic variations are captured, is met. Where the noise is assumed to be uncorrelated over
successive increments (see Section 4.3.3), the reconstruction does not capture all slowly-
changing systematic variations if there is still correlation in successive residuals (serial cor-
relation). In fact, we add 24h profiles until on average no correlation in the successive
residuals is left. We iteratively add profiles 1,...,m (and solve the corresponding (P’))
until the two-sample Kolmogorov-Smirnov (KS) test indicates that the daily-average serial
correlation in the reconstruction using m profiles is not a significant improvement compared
to the correlation with m — 1 profiles. Then, we decide on m — 1 profiles. We found that a
significance level o« = 0.001 is suitable in our case.
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Figure 4.3: Distribution function of the remaining serial correlation of the residuals over
the days for reconstructions using different number of profiles. The black-
colored line gives the distribution function for the final number of profiles.

Figure 4.3 shows two examples of measurement locations where we decide on 2 and 4
profiles, respectively, since the reconstruction with an additional profile does not substan-
tially improve the distribution of the serial correlation in residuals (according to the KS
test). The corresponding noise-level estimates are given in Figure 4.2. Similarly, we ap-
plied this method to extract 24h patterns and the noise levels for all measurement locations.
On average, the random variation has slight overdispersion relative to Poisson noise (i.e.,
Var(e|s) > Els]). The variation in the noise-level parameter between the different locations
under consideration is depicted in Figure 4.4.
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Figure 4.4: Noise-level parameter estimates for the different measurement locations as
function of the mean 15min volume.
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Figure 4.5 shows examples of reconstructions obtained using the 24h profiles for three
different measurement locations. Interestingly, with only limited degrees of freedom (in
this case, 2 or 3 profiles with a day-dependent magnitude per profile), we can capture a
substantial share of all the systematic variations. In fact, these profiles are able to capture
the different intra-day patterns as well as long-term variations by day-to-day adaptations of
the underlying patterns (i.e., inter-day variations).
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Figure 4.5: For three days, measurements (dashed) and reconstruction of the system-
atic variation (black). The systematic variability uses the profiles with day-
dependent magnitudes as building blocks (cumulative volume illustrated by the
different colors).

We found short-term patterns related to football matches and other recurrent events as
follows. Based on the days in the training set with an event occurring during that day, we
use the long-term reconstruction as obtained by the long-term profiles and fitted a Gaus-
sian curve on the daily residuals. Although the measurements do not necessarily follow a
Gaussian curve, it occurs to be quite a good fit. As a result, we have a short-term pattern
describing the change in volume (compared to the 24h reconstruction) due to a recurrent
event. Figure 4.6 shows examples of time series of two measurement locations where the
Gaussian curve expresses the additional volumes due to traffic to and from the stadium. In
fact, Figure 4.6 shows the same dates (with a FC Twente football match). Where the time
series in the upper row show additional traffic before the match, the series in the lower row
indicate more traffic after the match. We find that the occurrence of this curve is highly
related to the (varying) kick-off time of the matches. Hence, these short-term profiles are
incorporated in the forecasts as well. In the next sections, we use these profiles and the noise
level for predictions.
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Figure 4.6: Volume measurements (dashed) for three days with football matches, and recon-
struction using the long-term profiles (black) and a short-term profile (blue).

4.5 Baseline and 24h prediction

The 24h prediction provides an estimate of the upcoming-day volumes before the start of
the day. This prediction is an update of the baseline forecast: a typical 24h pattern based on
predictable features accompanying a day, i.e., characteristics of the day that can be identified
a long time in advance using straightforward exogenous variables.

We construct the final 24h prediction in two steps. First, we construct a baseline forecast
using the predictable features. Then, we update this baseline prediction based on the realized
difference between the measurements and the baseline predictions of the previous days.
Rather than predicting the resulting volumes directly, we predict the flow rate by means
of forecasting the scaling magnitude of each profile as found in previous section. In the
remainder of this section, we first discuss the baseline (Section 4.5.1) and the 24h point
prediction (Section 4.5.2). In Section 4.5.3, we discuss the estimate of the density function
forecast.

4.5.1 The baseline prediction

The baseline forecast is constructed based on day-dependent features. Indeed, there is a
large share of variation from day to day, and we therefore group days based on assigned
labels to the dates. We used the following labels to differentiate between varying 24h pat-
terns from day to day: day of the week (Monday - Sunday), shopping Sunday, and (school)
holiday period. Since various labels might be assigned to a single day, we identified 15 mu-
tually exclusive groups of days: Monday - Saturday outside school holiday period, Monday
- Saturday during school holiday period, (regular) Sunday outside school holiday period,
Sunday during school holiday period, and shopping Sunday. An alternative method uses
features extracted from the data, e.g., as in Lafia et al. (2019), but here we use straightfor-
ward features, independent of the time series and location, that can easily be predicted in
advance.

Consider a group of days G in the training set, i.e., G C D. In Section 4.4, we recon-
structed the systematic volumes of all training days with the use of m underlying profiles
w1y, Wa, . . . , Wy, (the column vectors of W), with corresponding day-dependent magnitude
vectors hi, ..., hg of H g (i.e., the columns of H corresponding to the days in G with
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the scaling magnitude for each profile during these days). For a single group, the baseline
prediction s” gives a typical 24h pattern. This prediction is constructed by means of the
scaling magnitudes, i.e., s" = Wh"'. Here, h*' is the vector h € R that solves (4.9) given
W and noise-level function o2 (s) - restricting ourselves to the training set and the days in
group GG. We repeat this process for all identified groups thereby constructing a typical daily
pattern for each group of days.

In Figure 4.7, we show examples (in red) of the baseline reconstruction of days in the
training set, and find that this baseline forecast incorporates location-dependent characteris-
tics including day-to-day variation in the shape of the 24h volumes. For example, the most
right time series in the lower row of figures shows the recurrent Wednesday-noon peak,
which does not occur on the preceding weekdays.

<+ meas.
baseline
24n pred
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Figure 4.7: Example of baseline (red) and 24h (blue) point predictions for three consecutive
days, with measurements (dashed line).

4.5.2 24h prediction

Although the baseline provides quite an accurate forecast regarding the shape of the 24h
volumes during regular days, we found that it can be improved in two ways. First, the
baseline prediction does not incorporate recurrent events. Second, we found that under
regular conditions the measurements show an almost constant relative error over the days
compared to the prediction. These deviations are consistent in the sense that these variations
occur on timescales longer than 24h (i.e., slowly changing), and thus could be accounted
for when making a long-term prediction.

During events, measurements do not follow the baseline for a shorter period of time.
We have reliable information regarding the occurrence of football matches and university-
related events (e.g., open days). We observe that in particular the football matches influence
volumes at some locations, typically leading to a substantial increase in flows before or after
the match (see Figure 4.6). We also found other days with comparable short-term variations,
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but we could not identify the underlying event that caused this. Hence, in the 24h forecast
we only account for short-term variations due to the football matches and university-related
events as follows. In the previous section, we showed that a Gaussian curve approximates
the short-term deviations compared to the long-term pattern. Although some variability in
the short-term patterns is observed, they are relatively consistent over the different events
when accounting for varying starting and ending times. Two Gaussian curves are therefore
used to predict short-term variation; one for the volume changes due to FC Twente matches,
and one for changes due to university-related events. The corresponding parameters (scale,
time of occurrence relative to starting time, and width) are the average over the individual
fits in the training set. The resulting curve is then the short-term pattern, which is included
in the 24h prediction (see Figure 4.8 for an example).

volume [15min
@
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| | | -A\' R
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Figure 4.8: Example of baseline (red) and 24h (blue) point predictions during days with FC
Twente matches, with measurements (dashed line).

We update our baseline prediction to arrive at a 24h prediction by using the residuals as
follows (see also Thomas et al., 2010). We found that the relative daily residual

doter(Tae — SZ{t)

Abl — ,
dter Szl,t
at day d, is highly correlated with the relative daily residual Afll_ , of the previous day. Now
we construct the 24h prediction of the scaling magnitude h?* of profiles i = 1,2,...,m at
day d so that
hia = hia(1+ B1AG 1 + B2A,), (4.10)

with §;, j = 1,2, location-dependent parameters that are optimized using the training set
with the objective function of (4.9). Here, we note that for a weekday d, d — 1 and d — 2
refer to previous most recent weekdays, while for days in the weekend we take into account
the daily residuals at the previous weekend days. We note that A is not very sensitive to
noise, since we aggregate the residuals over a complete day.

After accounting for the slowly-changing demand, we also update our prediction of the
individual 24h profiles. Indeed, at some locations, the residuals in the scaling magnitudes
show strong serial correlation over the days. Here, for each profile, we use a similar mech-
anism as in (4.10), but only take into account the absolute residual in scaling magnitude of
the previous day. Based on this method, we have a matrix H2* denoting the 24h prediction
of the scaling magnitude of each profile. Since the profiles cover 24h, the long-term volume
point predictions are given by 24 = W H?%, In addition, we have a prediction of the change
in volume (compared to the 24h prediction) due to recurrent events. This is also included in
y24,

Figure 4.7 shows examples of the 24h prediction (in blue) on the training set, including
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a comparison to the baseline prediction. We see that the method is adaptive in the sense
that the prediction is improved over time based on previous prediction errors. At the same
time, the update of the baseline is slowly changing over the days, i.e., comparable scaling
is used for the consecutive days, although these corrections might change for weekdays
compared to weekends. Figure 4.8 shows time series illustrating the 24h prediction during
days with events. Here, including recurrent events improves the prediction, and the forecast
quite accurately covers the substantial deviations compared to the long-term pattern.

4.5.3 From point prediction to density prediction

Following Section 4.3.3, the error of the 24h point prediction on the training set is used to
provide a 24h density function forecast. In fact, let us denote by cﬁf‘t the relative prediction
error (here: reconstruction error) of the 24h reconstruction based on the training set. We
find that this relative error is related to the time of day. Using the law of total expectation,
we have an expected squared error

El(ya — Xa¢)?] = Es[E[(777 + €a.0)%[54.¢]]
=E[0sa,: + (c?[ftsm)z].

Hence, we estimate the time-of-day prediction error by comparing the mean squared error
of the residuals minus the noise sample variance with the mean quadratic volumes, i.e.,

; 1
s _ 1 Taenlea i~ b0 Taen il

(c)? = 7
o] Edep(y%)Q

Interestingly, assuming a constant relative error over time, large volumes dominate the
mean squared error. Figure 4.9 shows an example of the relation between the mean squared
error of the 24h residuals and the corresponding error for days in the training set. Where
the mean squared error is large for higher volumes, the relative error as in (4.11) shows
that predictions are actually worse during the night. In addition, days of the weekend are
typically more difficult to predict and the relative error is 50% larger compared to week-
days. Therefore, we estimate independently a time-of-day prediction error for weekdays
and weekends.

Based on the relative error, we construct a first estimate of the density predictions f24(x)
with

@11

at(@) = ol vy, o5 (vay) + (i )?)-

The corresponding quantile predictions g, = 1,2,...,99, then follow from the density
function additionally taking into account that flows are non-negative, i.e., ¢, > 0. We can
improve this density forecast by introducing additional degrees of freedom and allowing 6
and c?* to be optimized. However, (4.11) reveals a direct relation between # and c. For the
sake of improving the density forecast, we add 6 as an additional degree of freedom for the
sake of the prediction, and use the resulting ¢ from (4.11) so that the relative pinball loss is
minimized, i.e., the solution of optimization problem

11
1 Zl |@ZdeD,a:Lz,...,ggLd,t(Qa,x)

n—
1
920 |T| teT D] ZdED ytzijlt
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Figure 4.9: Relation between mean squared error (solid line in top row of figures) and rela-
tive error (bottom figures) for both weekdays (left figures) and weekends (right
figures) at a high-volume location. In the top figures, the dashed line shows
the mean 15min volume. In the bottom figures we additionally show the (1h)
moving mean of the relative error.

with L as in (4.8). Then, f2*(z) accounts for both the model and prediction error as well as
the random variation in the volumes. Figure 4.10 provides examples of the 90% prediction
interval derived from the 24h density function forecast. We note that the 90% prediction
interval is only used for illustration purposes. The relative width of the prediction interval
mainly differs due to the difference in prediction error. We assess the quality of the 24h
point and density prediction on the test set in Section 4.7.

4.6 Remaining-day and short-term prediction

Over the course of the day, we are able to adapt the prediction since the initial 24h forecast
can be compared with the recently realized volumes. Adaptive predictions over shorter time
horizons are difficult to construct since (i) measurements are noisy making it difficult to
distinguish random from systematic errors particularly when only a few measurements are
available, (ii) during the night prediction errors increase and volumes can wrongly indicate
that the remainder of the 24h prediction is off, and (iii) the 24h prediction accounts for day(-
of-week)-dependent characteristics which might or might not need to be maintained when
updating.

In this section, we use state-space smoothing to relate recent volume measurements
(space) to the underlying profile magnitudes (state), while explicitly accounting for volume-
dependent noise and prediction errors (Section 4.6.1). This smoothing method is used to
update our point and density forecast by adapting the scaling magnitudes of the profiles
throughout the day (Section 4.6.2). In Section 4.6.3, we use similar techniques for forecasts
in the short term.
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Figure 4.10: Examples of 24h point predictions and 90% prediction intervals for three dif-
ferent measurement locations at three consecutive days, with measurements
(dashed line).

4.6.1 State-space smoothing

Recent measurements used to adapt the remaining-day prediction are highly influenced by
noise, since aggregation (as used for the 24h forecast) is only partly possible and desirable.
We use state-space smoothing to denoise measurements by obtaining an estimate of the
systematic flow in a continuous fashion, and at the same time infer the underlying scaling
magnitudes of the profiles. Many traffic prediction methods (e.g., Wang & Papageorgiou,
2005) make use of a filtering or smoothing technique, most notably the linear Kalman filter
and Rauch-Tung-Striebel smoother (Haykin, 2004; Kalman, 1960). However, this widely-
adopted method is rather restrictive in our case since it does neither account for volume-
dependent noise nor for constraints. We cite Huang et al. (2018), who incorporated the
time-of-day dependent noise variance using a rolling horizon framework combined with a
Kalman filter approach, but independent of the underlying systematic flow estimate. Since
we assume to have non-negative scaling magnitudes & (demand is non-negative), and the
noise variance is modeled to be a linear function of the volume, we use a nonlinear smoother
that does account for these two complicating phenomena.

In the previous section, we predicted the counts throughout a day using a single scaling
magnitude h?* per profile. In fact, the scaling magnitude together with the profiles W pro-
vided the 24h prediction. Here, we expand our state and let the profile-scaling magnitudes
to be variable throughout the day. With abuse of notation, we denote the magnitude vector at
time ¢ by hy, for which we already have a 24h prediction, denoted by h?%. Since the profiles
are fixed, we have a linear system and can adopt the constrained Kalman-Bucy model

M = Ne—1 + U,
T = Wt).(h%l + Th) + Et, (412)
ht:nt+h?420
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Here, 7, € R™ is the unknown state vector measuring the deviation in profile magnitude
compared to the estimate h?*. u; € R™ is the noise in the underlying state dynamics,
x¢ € Ry is the measurement at time ¢, and ¢; € R is the random volume-dependent error in
the measurements. The noise vectors are assumed to be i.i.d. and Gaussian with

Ut NN(O,Uf), and 5t|5t NN(O,O’g(St)),

with s, = W, hy, so that the measurement noise is a function of the systematic variation
(see Section 4.3.3). Using the model in (4.12), we assume that the scaling magnitude h; =
n¢ + h?* is slowly changing over time. In fact, the majority of the variation in the volumes
is expressed by the 24h volume profiles 1.

Before adapting our prediction, we are concerned with state estimation at time instant
N. That is, we infer an estimate of the underlying state 7, of 7; (and thereby also flow
estimate gy of x¢) at time N. If ¢ < N, we are concerned with smoothing, and we can
use all information up to time instant N for the estimation. If £ = N, we have a filtering
problem (Aravkin et al., 2017; Haykin, 2004).

We follow arguments and notations from Aravkin et al. (2017) and Bell et al. (2009).
For a state sequence denoted by {n; }¥ ,, the negative log likelihood of the (normal) density
for the measurements {x;}¥ ; given {n;} Y, is

—logp({ze 1oy {m} i) =
N
% S log det (270 (s1)) + (2 — W, ()T (02(50)) (20 — Wi(hi):

t=1

Before retrieving the measurements, the negative log of the probability density of the state
sequence is given by

N
1 _
—logp({m}iLy) = 5 E log det (2U¢) + (e — ne—1) " U; " (ne — me—1).

t=1

Since p({x¢}i21, {m}iZ,) = p({z: L1 [{m}iZ1)p({ne}iL1). The optimization problem
to infer estimate {7 ~ 1Y, at time N based on the measurement sequence becomes

(Rn) : {mi{]l —logp({x 3N 1{n X)) —logp({n})) st hy>0,t=1,...,N.

Mt sp=1

As shown by Aravkin et al. (2017), under volume-independent noise and without the linear
constraint, the problem (R ) can be solved using the Rauch-Tung-Striebel scheme, with
7N~ part of the optimal solution of (R ), the (Kalman) filtered state. However, the gen-
eral formulation (Ry) can be applied to our problem at hand with linear constraints and
signal-dependent random variation.

We use a similar framework as in Aravkin et al. (2017), and solve (Ry) by solving
a sequence of quadratic sub-problems. For every quadratic problem, we fix o2(s;) based
on the estimate of s; resulting from the previous subproblem. Moreover, since (Ry) is an
optimization problem essentially growing in time, we only use the most recent 24h measure-
ments when solving the program. We found that this smoothing method is highly sensitive
to new measurements supposedly being outliers. Therefore, we use a 4-sigma clipping cri-
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terion to exclude outliers in the last hour while solving (Ry). When N increases over time,
these initially considered outliers are again incorporated.

Before applying this method, we need an estimate of the error covariance U;. The
estimate for the resulting model error covariance matrix is based on the training set. The
(relative) model error is denoted by b. We apply this relative model error independently to
the scaling magnitudes hq, hao, ..., hy,, thereby having higher absolute errors when profile
volumes increase. Since the relative error is time-of-day dependent (see Section 4.5.3), we
scale the model error to arrive at

U= (bc?4)2 'diag({(h%)Q}izl,Q,mﬂn})7

with (location-dependent) c§4 as in (4.11). Visual inspection showed that the smoothing
method shows reasonable performance with b = 0.03. Here, the model error is both volume
and time(-of-day) dependent. Again, we observe that the relative model error is typically
larger during the night, which means that the smoothing method should follow the measure-
ments more closely during these intervals compared to, e.g., the between-peak period (see
also Figure 4.9).

Figure 4.11 shows time series examples of days where the smoothing method improved
the systematic volume estimates by solving (Ry). As illustrated, the state-space smooth-
ing method is able to obtain an visually-accurate estimate of the systematic variation by
independently adapting the scaling magnitudes of the underlying 24h volume profiles.
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Figure 4.11: Measurements (dashed) for three days and smoothed reconstruction of the sys-
tematic variation (black) and the 24h prediction (blue) .

When events occur, performance of the smoothing method deteriorates since the un-
derlying state equation in (4.12) does then not mirror the actual dynamics. In fact, the
state-space model in its current form only accounts for long-term profiles. To allow for both
long- and short-term systematic variations, in parallel to solving (Ry) we solve a similar
problem with an extended space model

Ty = Wt,.(h§4 + )+ Vi +e,

where V; corresponds to the volumes of the short-term pattern (i.e., following the Gaussian
function as estimated). We switch to this alternative space model if we expect a short-term
pattern to be present (e.g., when football matches occur), or when a substantial improve-
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ment compared to the original problem’s state estimate can be obtained. In order to check
for improvement, we apply a y2-test on the likelihood ratios. After accepting the alternative
space model, we adapt the parameters of the Gaussian curve so that we minimize the nega-
tive log likelihood. Initial tests on the training set with the alternative space model showed
that continuously updating V; often decreases performance if only a very small share of the
short-term deviations is revealed. Therefore, we solely adapt the parameters corresponding
to V; after a substantial share of the short-term pattern is revealed. In Figure 4.12, we show
three examples of smoothed measurements in which we switched to the alternative space
model, with the most-right time series an example of a day with an event that was initially
not accounted for.
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Figure 4.12: Measurements (dashed) for three (non-consecutive) days and smoothed recon-
struction of the systematic variation including short-term patterns (black) and
the 24h prediction (blue) .

4.6.2 Remaining-day point and density prediction

Systematic prediction errors in the 24h forecast are often correlated over time, and we hy-
pothesize that a major share of the systematic error is due to a short or longer-term yet tem-
porarily changing demand compared to what was expected. In this section, we update the
volume forecast for the remaining day by comparing smoothed volume sequence {§;}i¥ ;
with the initial 24h prediction {y?*} ;. The predictions for the short-term are considered
in Section 4.6.3.

We adopt a (point-)adaptive updating mechanism, i.e., the prediction is updated based
on the errors in the point estimate during previous time intervals. Consider time N at day d.
Just before the measurement x4 n is processed, we assume to have a current prediction of
the 24h volumes, {gjt| N_1tteT, i-€., a full-day estimate based on the measurements before
N. We compare the filtered volumes with the prediction, and adopt the recursive updating
mechanism

(4.13)

. ¥
Zk:o ...,3 max {37yN7k\N}
— — , |, teT
Zk:07,,,,3 max {3ayN—k|N—l}

YN = Yt N-1 (

with v > 0 a location-dependent updating factor. In (4.13), we adapt our complete under-
lying 24h estimate (even for a few time intervals in the past) based on the ratio between
the smoothed and the expected volumes in the last hour. In this way, we quickly adapt
the prediction to a changing demand while maintaining day-dependent characteristics. We
included the max operator in (4.13) to prevent being sensitive to changes in low-volume es-
timates. Preliminary tests show that it is difficult to distinguish noise from slowly-changing
yet systematic changes in the demand. To make the prediction more robust against noise,
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we combine predictions and therefore use a combination of the initial 24h prediction and
the updated prediction (4.13). In fact, the final remaining-day prediction {ytrﬁv}tT: Ni1isa
linear combination of both so that

yity = UnTyn + (L= Yn)yiy, t=N+1,...,|T], (4.14)

where 0 < ¢y < 1 is the weighting factor. With more substantial deviations in the demand
we aim for ¢y — 1, while small changes should lead to 1)y — 0. To continuously balance
between the two predictions, we employ a bell-shaped membership function, i.e.,

wN:‘g<Z:yNk““’N|N>7 WithS(g;):2~min{1,1}-
2714

Zy?\ﬁkw.,mz\f %1’%

We determine the parameters a and b of the membership function S(z) based on the training
set. In addition, changes during the night are shown to be substantial yet often unrelated to
deviations in demand during the rest of the day. Therefore, we let 1) = 0 for the first part of
the day - again so that the prediction is optimized using the training set.

To arrive at a sequence of remaining-day density function predictions { ft’““fv (z) @ N4l
at time NV, we use the method as outlined in Section 4.5.3. We tune the parameters corre-
sponding to the density function independently for each horizon v, thereby accounting for
the model (estimation) error and the noise as well as for the horizon-dependent prediction
error.

Figure 4.13 shows three examples of 24h time series predictions, and for each day three
remaining-day predictions with the accompanying 90% prediction intervals based on the
density forecasts. Here, we see the adaptive but also robust behavior of the method. The
initial 24h prediction is in the first two cases underestimating volumes for a share of the day.
Throughout the day, we adapt the remaining-day forecast. In the top figure, the increased
demand covers almost the whole day, and the prediction is updated accordingly. In the
middle row, the increase in demand was actually short-term in nature but covered several
hours. Hence, the remaining-day forecast is initially predicting an increase in demand for
the remainder of the day, but adapted again. The lower set of time series shows that the
remaining-day prediction is not very sensitive to sudden but temporary shocks in the flow
rate. Note that the width of the 90% prediction interval is rather robust, i.e., even for longer
horizons the intervals are relatively small.

4.6.3 Short-term prediction

Thus far, we concentrated on the long-term and the remaining-day forecast. We further
update our prediction to also incorporate short-term variations. Where in the remaining-
day prediction we aimed at capturing longer-term changes in the demand, here we focus on
taking short-term changes into account that not endure in the longer term. The short-term
prediction provides forecasts up to 1.5h ahead with 15min increments.

We use the underlying and individual temporal profiles to update the prediction as fol-
lows. We compare the magnitudes ﬁt| N = h#* + 7¢ v from the smoothing method (see
(4.12)) with the remaining-day forecast h:ﬁv regarding these scaling magnitudes as inferred
from (4.14). The short-term prediction h*® follows from the mean difference between the
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Figure 4.13: Examples of remaining-day predictions at different measurement locations.
The solid blue line gives the point predictions for the remaining day, and the
shaded blue area is the 90% prediction interval. The solid black line is the
initial 24h prediction, and the dashed line shows the measurements.

two estimates, so that the vector-estimate for the profile magnitudes becomes

1 .
htoln :h?\;lw\N*"YsTf Z (hN*k|N_hﬁ—k\N)7 v=1...,6.
Y k=0,1,...,(Ty,—1)

The final volume prediction y° at time N for forecasting horizon v is then

s _ s
YN+to|N = WN+v,.hN+u\N-

We determine the parameters v* € [0,1] and T,, € Z>( based on the training set. By
increasing the history parameter 7, the prediction becomes less sensitive to the noise in the
recent measurements, but we did not observe an improvement in our prediction. The short-
term density function predictions f3; +ol y(@), v =1,2,...,6, at time NV, are constructed
following the method of Section 4.5.3. The parameters accompanying the density forecast
are independently optimized for each prediction horizon v.

Figure 4.14 shows examples of the 15, 30, and 45min point predictions, including the
90% prediction intervals derived from the accompanying density forecasts. We observe
that where the remaining-day prediction might substantially differ from the 24h prediction,
short-term predictions show less-strong improvements over time since the remaining-day
forecast turns out to be quite accurate already. We further assess the quality of the point and
density forecasts in Section 4.7.
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Figure 4.14: For different measurement locations, examples of the short-term point predic-
tion and 90% prediction interval (red) with different forecast horizons (15min,
30min and 45min), including the remaining-day forecast (blue) and the mea-
surements (black).

4.7 Prediction results

In the previous sections, we constructed point and density function forecasts for timescales
ranging from 15min up to 24h. In this section, we assess the quality of the predictions
using the test set. First, we discuss in Section 4.7.1 the forecast errors for point and density
predictions for longer prediction horizons (i.e., the 24h and remaining-day forecast). In
Section 4.7.2, we assess the quality of the short-term predictions in the test set by comparing
the prediction error with the lower bound as indicated by the noise level. In Section 4.7.3,
we compare our volume forecasts with point predictions using a mechanism from literature.

4.7.1 Longer-term predictions

We use an a posteriori comparison between the longer-term predictions and the measure-
ments in the test set, independently for each measurement location under consideration. In
this subsection, we compare three different predictions: the baseline (point) prediction, the
24h prediction and the remaining-day prediction. We first consider the point forecasts, and
then discuss quality of the density predictions.

Figure 4.15 shows the prediction error as in (4.11) for the remainder of the day at three
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different time instants (10:00, 14:00 and 18:00). Here, for each time interval, we calculate
the prediction error for each measurement location based on the volume-dependent noise
variance (Figure 4.4) and depict the mean over all locations. We note that the baseline as
well as the 24h prediction are not adapted throughout a day.
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Figure 4.15: Relative prediction error for weekdays (left) and weekends (right) for the base-
line (dashed), 24h (black) and remaining-day prediction (blue) at three time
instants.

We observe that the 24h prediction substantially reduces the relative prediction error
compared to the baseline forecast. This improvement is consistent over time, meaning that
a large share of the variations in volumes can be explained by seasonal (i.e., longer than
24h) variations. When comparing weekdays with weekends, we see an increased predic-
tion error during the weekend suggesting that the seasonal variations are more dominant
during weekdays. For weekends, a large share of the improvement is obtained by incorpo-
rating recurrent events in the 24h prediction. The larger prediction error during the weekend
can partly be explained by local (non-recurrent) events that are difficult to account for on
timescales longer than 24h. A similar observation is made when comparing the error dur-
ing the night with the relative error during the day: variations during the night show less
repetitive behavior on longer timescales.

For shorter prediction horizons (i.e., the first few hours after the start of the blue line), the
improvement of the remaining-day update is substantial. However, for long time horizons
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(several hours after the most-recent update of the remaining-day forecast), the remaining-
day prediction is not much better than the 24h prediction. Larger improvements are obtained
for weekends where volume fluctuations seem to show repetitive behavior over shorter
timescales. In any case, Figure 4.15 shows that the prediction is improving over time.
However, the adaptation of the remaining-day forecast is insensitive to deviations during
the night. Possibly, variations during the night can better be explained by volume fluctua-
tions from the day before even though the prediction error also increases at the end of the
day. We also note a small peak in the error between 6:00-7:00, i.e., the start of morning
congestion is more difficult to predict than the peak itself.

We constructed 24h and remaining-day point and density function predictions, which
can be used for forecasting volume intervals. As mentioned, increased point-prediction
errors lead to wider intervals. Now, we consider the optimized density forecasts and assess
the quality of the accompanying 90% prediction interval for a remaining-day forecast as a
whole. Ideally, the 90% prediction interval for the forecast for the remainder of the day
covers - on average - 90% of the measurements. Figure 4.16 shows the average absolute
coverage difference (ACD) for the forecast for the remainder of the day, as a function of
time of day. Here, we calculated the ACD for the 90% prediction interval independently for
each location, which we averaged over all locations. This ACD does not reflect the width of
the interval, but the width can directly be derived based on an estimate of the noise variance
and error as in Figure 4.15. In Section 4.7.2, we evaluate the density forecasts in more
detail.

The constructed density predictions are accurate in the sense that on average 88.5 to
91.5% of the remaining day’s measurements are within the 90% prediction intervals. Hence,
the uncertainty accompanying a forecast and the random variation in the volumes is well-
accounted for in the probabilistic predictions. Although the prediction intervals for the 24h
volume predictions are wider compared to the remaining-day forecast (see Figure 4.15), the
intervals are accurate in the sense that before the start of the day we expect an ACD of 1.2%
for the daily volumes. At the same time, the probabilistic prediction is less accurate during
weekends and during the night. Here, the ACD’s for this particular uncertainty level can be
improved by optimizing the ACD over the training set.
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Figure 4.16: Absolute coverage differences for the volumes during the remainder of the day
using the 90% prediction interval for weekdays (left) and weekends (right).
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4.7.2 Short-term predictions

We assess the quality of the short-term point predictions by comparing the forecast error
with the lower bound as provided by the noise level as in (4.5). Figure 4.17 shows the 15min
relative prediction error as in (4.11) for both weekdays and weekends, with averages over
the time-of-day forecast errors for the different locations under consideration. In general,
relative prediction errors are small during weekdays (on average around 10%), in particular
for the between-peak period, and increase during weekends, during the night and in the early
morning. These intervals have typically (very) low volumes, and higher-volume increments
are thus shown to be easier to be predicted overall. As already mentioned (Section 4.7.1),
longer-term variations do not fully express the fluctuations in the volumes during the night
and in the weekend. Although the remaining-day prediction shows comparable performance
with the short-term prediction after the early morning, Figure 4.17 shows that the short-term
prediction reduces the prediction error substantially during the night.
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Figure 4.17: Time-of-day average 15min prediction errors for weekdays (left) and weekends
(right).

We can draw similar figures as in Figure 4.17 for forecast horizons from 30min to 1.5h.
Overall, point predictions can be improved by 10 to 15%, with prediction errors growing
with an increasing horizon. Figure 4.18 shows the prediction errors for forecasts covering
15min, 60min and 24h. Indeed, the prediction error of the 60min forecast is worse com-
pared to the 15min one, yet improving the 24h estimate. Interestingly, many measurement
locations show similar performance for both the 15min, 60min and 24h forecasts which
means that 24h patterns are particularly useful for these locations. The largest prediction
errors occur during the weekend at major arterials serving traffic to and from the freeways.
24h patterns are then less beneficial to explain volume variability, and short-term and spatial
relations are likely to explain a larger share of the variation.

Regarding the predictive densities, we assess the quality of the constructed target per-
centile forecasts for the 15min horizon using the ACD in Figure 4.19a. A decreasing ACD
for updated forecasts for the different quantile predictions shows that improving point pre-
dictions are accompanied with improved density forecasts. Overall, the proposed frame-
work for constructing probabilistic forecasts results in quite accurate coverage, with the
ACD for the short-term 15min prediction fluctuating around 2%. Further improvements can
be obtained by relaxing the normality assumption and/or constructing independent quantile
forecasts. Figure 4.19b shows the ACD for the constructed quantile predictions for different
prediction horizons. The quality of the density forecasts for increasing forecasting horizons
is very similar, again substantiating that the proposed framework provides accurate density
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Figure 4.18: Average prediction errors for point predictions with different horizons for the
measurement locations under consideration.

forecasts over different timescales.

0.05 T T T r 0.05
+  Short-term + 15min
+  Remaining day +  30min
0041 + o2an 1 004f| + eomin

1.5hr

£
#
0.02 Ay
+
+
0.01 |-
+
e
0 0
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
15min o quantile prediction a quantile prediction
(a) ACD for 15min forecasts (b) ACD with different prediction horizons.

Figure 4.19: Target quantiles - absolute coverage differences (ACD) for predictions cover-
ing different timescales.

4.7.3 Prediction comparison

In previous subsections, we assessed the quality of the predictions by comparing the forecast
error with a lower bound as suggested by the noise level. In this subsection, we compare our
short-term point predictions with forecasts by the K-NN method of Habtemichael and Cetin
(2016) that has shown to outperform some other point-prediction methods for motorway and
freeway traffic. First, we briefly discuss the adopted K-NN method and then we compare
the results based on several performance metrics.

K-NN Method

We adopted the K-NN method as in Habtemichael and Cetin (2016) as follows. At time
N of day d, we have measured a part of the traffic volume for that day, i.e., sequence
{x; 4}, is observed. The K-NN method compares a part of this sequence {x; 4}'_n_,,
(the m-lagging part) with flow rates in the historical data set. In fact, we select the K -best
days d’ < d with {z¢ ¢ }i_N_,, similar to {z; 4}i_,_,,. Hence, we have a set (of size
K ) of nearest neighbors which have shown a similar traffic pattern in the past, and can
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therefore be used for predicting volumes. In fact, the prediction for time ¢ + v is then a
weighted sum of the succeeding measurements in the past, i.e., yf}r‘g 4= 2og Tigu,d Wdr
with wg a normalization weight so that >, wy = 1.

As in Habtemichael and Cetin (2016), we use the weighted Euclidean distance (see
Eq. (4) and (10) in the aforementioned paper) to measure similarity between candidate and
subject profiles. We also apply Windsorization, loess-smoothing on the lagging-part of the
historical data (span of 0.2), and the Rank-exponent method (with Z = 2) of weight assign-
ment as suggested. In contrast, for each location we solely use the data set that corresponds
to that location, and when predicting we are only allowed to select neighbors from the his-
torical data set. For each prediction horizon v, we select the location-specific lag m and
value of K based on the mean squared error of the residuals on the training set. Compared
to the study of Habtemichael and Cetin (2016) with K =~ 10, we observe that it is benefi-
cial to increase K so that typically K > 30. In addition, we found values of m typically
exceeding 20 while Habtemichael and Cetin (2016) found values of m ~ 4.

Comparison

We compare our prediction method with the K-NN mechanism. For the different predic-
tion horizons we use the following three metrics to compare forecasts y with measurements
x: the relative prediction error as in (4.11); the (low-volume adjusted) mean absolute per-
centage error (MAPE) % Do - 100%; and the root mean square error (RMSE)

Yt —Tt
max{3,z:}

L3, (yr — x4)2. Here, n is the number of out-of-sample measurements. In Section 4.3.3,
we argued that the latter two performance indicators are biased but we use them here since
they are widely adopted to assess quality. Moreover, we use the relative prediction error to
explicitly account for the random variation when comparing the different predictions.
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Figure 4.20: Time-of-day average 15min prediction errors for the forecasts of the K-NN
method and the proposed short-term prediction method during weekdays (left)
and weekends (right).

Figure 4.20 shows the relative prediction error of our 15min prediction and the K-NN
method relative to the time of day. Overall, our method shows slightly better performance
regarding this metric, with more substantial improvements during weekdays. The K-NN
prediction error is smaller during the nights preceding weekends. This difference can be
explained by the fact that we use - in this case restricting - 24h profiles, while the K-NN
method looks more explicitly at volumes in the recent past, which might occur during the
previous day.
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When the prediction horizon increases to 60min, our method shows more substantial im-
provements regarding the performance metrics. Figure 4.21 shows the difference in MAPE
for the 15min and the 60min forecasting horizons, and Figure 4.22 compares the RMSE for
both mechanisms with a 15min and 60min timescale for each location under consideration.
These results suggest that our method is on average better able to predict traffic volumes in
the urban setting we consider, with an average reduction of about 3-7% per metric. Further-
more, the underlying patterns benefit predictions when the forecasting horizon increases.
Yet, performance of each method might differ from day to day.
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Figure 4.21: Comparison of the MAPE our short-term forecast and K-NN prediction for
15min (left) and 60min (right) predictions for the different measurement loca-
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Figure 4.22: Comparison of the RMSE our short-term forecast and K-NN prediction for
15min (left) and 60min (right) predictions for the different measurement loca-
tions.

The difference in the prediction error metrics does not fully express the differences in
predictions. For example, the K-NN method is in its current form not capable to incorporate
short-term patterns with varying starting times. In fact, the time domains between subject
and candidate profiles are assumed to be shared. For instance, the upper row in Figure
4.23 shows days in which our method has a smaller prediction error compared to the K-
NN method. The most-left figure shows the difference in the 15min prediction on a day
where a weather (snow) alarm was issued during the day. Although our method requires
some time to adapt, it slowly converges to the measurements. Since the training data did
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not include such patterns, the K-NN method shows almost no adaptation. The middle figure
shows that event-induced volume changes are not accounted for by the K-NN method. The
most-right time series illustrates that the K-NN method does not well-anticipate the regular
Wednesday-noon peak at this location. The lower row of 24h time series in Figure 4.23
shows examples of days at the same location with the K-NN reducing the error compared to
our method on a 15min timescale. Here, absolute differences are less substantial. In fact, for
this measurement location, our 15min short-term prediction leads to an overall improvement
of the RMSE and MAPE of about 5%.
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Figure 4.23: Comparison of our 15min predictions (black) with forecasts using the K-NN
method (blue).

4.8 Conclusion

Logistics service providers are faced with uncertain driving times when designing route
plans. Therefore, they desire network-wide travel time predictions for different timescales
to construct robust route plans that can be dynamically adapted over time. Predictions of
the traffic volumes support the anticipation of travel time fluctuations in particular when the
saturation rate approach capacity, i.e., when the onset of congestion is to be predicted. Un-
certainty on different timescales influence predictions, and can only be reduced to a limited
extent. Probabilistic forecasts express the uncertainties in conditions and predictions, and
are, ideally, offered for both the long and short term for a range of settings and conditions.

In this chapter, we provided a prediction mechanism for urban traffic volumes from
15min to 24h ahead. Where most prediction mechanisms in literature offer point forecasts
for regular freeway conditions, our model provides both point and full density function esti-
mates for regular days as well as for days with special events. In fact, the model constructs
three types of point and density function predictions: the 24h prediction, a remaining-day
prediction and a short-term prediction. The 24h prediction accounts for the day-specific pat-
tern and seasonal variations, and can be predicted before the start of the day. The remaining-
day prediction updates the 24h forecast to account for deviations in the demand by com-
paring the initial 24h forecast with the smoothed measurements. The short-term forecast
additionally accounts for fluctuations covering shorter timescales.

We presented a framework for constructing density forecasts by explicitly quantifying
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the uncertainties accompanying a prediction. The uncertainty cannot be eliminated (Gneit-
ing et al., 2007), since next to the natural but random variation in the counts, also the pre-
diction error and the measurement errors or limitations are part of the remaining variation.
The predictions use a set of 24h and short-term profiles that together describe the 24h vol-
umes. These temporal profiles turn out to be very useful for longer-term predictions. Indeed,
the provided predictions are shown to be accurate, with point predictions having an aver-
age prediction error of 10-15%, while density forecasts have coverage differences of 1-3%.
Forecasts are robust in the sense that the prediction error and the coverage difference only
marginally increase when the prediction horizon increases. When comparing our predic-
tions with the forecasts of the K-NN method from literature, we reduce the error metrics
with up to 7%.

Further research includes improving the prediction mechanism, particularly for incre-
ments during the night and during the weekend for major arterials with higher volumes.
Here, 24h patterns express a smaller share of the variation, and spatial correlations can ben-
efit predictions. In fact, shorter-term variations due to events and incidents can then be
anticipated. In addition, where we have focused on predicting traffic flow rates, forecasting
travel times based on volume estimates is a non-trivial task and topic for further investiga-
tion.



Chapter 5

Improving the performance of a
traffic system by fair rerouting of
travelers

5.1 Introduction

Transport authorities face the daily challenge to reduce congestion. Traditionally, this was
solved by increasing road capacity through building new or expanding existing infrastruc-
ture. However, the construction of infrastructure is costly, and may also lead to an increase
in demand. Nowadays, authorities implement management measures alongside to improve
utilization of existing roads.

The need for policy measures in general stems from the observation that individuals
typically behave selfishly, i.e., travelers are mainly concerned with their own utility when
making decisions. The resulting traffic state (i.e., flow distribution) with respect to route
choice, the user equilibrium, does mostly not correspond to the system optimum: the traffic
state with minimum (total or average) travel time (Wardrop, 1952). Without intervention,
in particular with the increasing use of real-time routing apps, the real-world traffic state
is likely to be closer to the inefficient user equilibrium than to the system optimum (Klein
et al., 2018). In the user equilibrium, travelers with the same origin-destination pair have
equal travel times. The system optimum, on the other hand, is ‘unstable’ since it is unfair:
some drivers may travel longer than others for the same origin-destination pair. Hence,
we can characterize the system optimum as (perfectly) efficient but unfair, while the user
equilibrium is inefficient and perfectly fair.

Recently, traffic management measures, e.g., social routing, have been proposed that
steer or nudge travelers towards socially-desired routes. The ‘pure’ system optimum is
difficult to achieve (Klein et al., 2018) and maintain over time, because only some travelers
use and comply with advice from information systems, and the individual intra- (within the

This chapter is based on: Eikenbroek, O. A. L., Still, G. J., & Van Berkum, E. C. (2022). Improv-
ing the performance of a traffic system by fair rerouting of travelers. European journal of operational
research, 299(1), 195-207. Available at: https://doi.org/10.1016/j.ejor.2021.06.036
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system optimum) and inter-state (compared to the user equilibrium) travel time differences
might be substantial (Jahn et al., 2005; Van Essen et al., 2020). Hence, any social routing
strategy should in essence anticipate user responses and persuade travelers to comply with
socially-oriented advice.

Empirical evidence (e.g., Djavadian et al., 2014) shows that some (travelers) are recep-
tive for advice that proposes reasonable routes for the system’s benefit. A possible expla-
nation is that individuals have a so-called indifference band (Simon, 1997), which means in
our context that when a route is only slightly longer than the best one, it is still acceptable
to use (Vreeswijk et al., 2015). A social routing strategy can ‘exploit’ the indifference band
and propose acceptable routes (possibly, sub-optimal from an individual’s perspective) to
receptive drivers (those that use and comply with advice from the service), and thereby po-
tentially steer the network to a state close to the system optimum. Compared to the system
optimum, the resulting distribution is easier to achieve and maintain over time.

In this chapter, we propose and evaluate a centrally coordinated social routing strategy
that improves overall efficiency, while we explicitly account for the above-mentioned prac-
tical requirements. The routing strategy incorporates user-induced constraints in the sense
that travel time differences in the resulting state are explicitly limited, and only a fraction
of the travelers is asked to take an acceptable detour to the system’s benefit. We note that
a routing service adopting the strategy, in practice, offers a single route advice using a per-
sonalized information device to its users before departure.

Research contribution

Although empirical research has shown that social routing has great potential in real life,
there is not yet a corresponding routing strategy that improves efficiency while explicitly
incorporating user responses to advice in terms of route choice behavior. Route choice be-
havior is crucial for the strategy’s performance in practice. Compliance is expected to be
much higher when the advised route is only slightly longer than the shortest route. Behav-
ioral responses influence the travel times, and should thus be anticipated in order to advise
routes that are acceptable with respect to travel time.

In this chapter, we propose a social routing strategy that explicitly accounts for be-
havioral responses to a routing service. In fact, changes in route choice may occur from
travelers that comply with the advice but also from those that do not comply, but are now
confronted with altered travel times on routes as a result of behavioral changes by others.
We introduce a bilevel optimization problem that calculates the best possible paths (with
respect to efficiency) with a limited (realized) detour to be proposed to the compliant travel-
ers. Although in this chapter we limit ourselves to a static environment, the bilevel problem
is already highly challenging to solve. Many of the theoretical difficulties that occur in
our case, also apply to a real-world social route guidance service in which limited detours
are suggested in a dynamic fashion. Hence, before considering such a guidance system we
should address the theoretical challenges and potential impact in a static traffic assignment
first. In particular, the service as proposed in this chapter can serve as a proof-of-concept
for a dynamic variant.
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Related social routing approaches

We discuss related social routing approaches from literature. Jahn et al. (2005) proposed a
routing strategy that limits the ‘normal length’ difference before and after implementation,
assuming that the normal length is independent of the traffic flow. This mechanism was nu-
merically evaluated on realistic network instances, and showed performance (with respect
to efficiency) close to the system optimum. The intra-state time differences, however, were
not explicitly limited. A related approach by Angelelli et al. (2016) considers a mathemati-
cal program that tries to achieve an optimal flow with a regularization term to minimize the
‘total inconvenience’ alongside. Here, the travel time is assumed to be independent of the
flow. Both studies assume a full market penetration of the routing service. Bagloee et al.
(2017); Van Essen et al. (2020) and Zhang and Nie (2018) proposed systems to route a frac-
tion of the demand onto social routes. We refer to Li et al. (2018) and Zhou et al. (2017),
for dynamic (day-to-day) variations on such routing policies.

In contrast to the above-mentioned studies, we propose a routing strategy that steers
the network to a system optimum while explicitly limiting the intra-state time differences
whereas we argue that travelers evaluate acceptability of routes in terms of realized travel
time rather than free-flow travel time or distance. This necessary user-induced constraint
makes the accompanying optimization problem substantially harder to solve, which might
be a reason that a majority of the studies relax this real-life constraint or introduce heuris-
tic approaches (e.g., Angelelli et al., 2018; Roughgarden, 2005). Recently, Angelelli et al.
(2020) studied a similar setting, with a so-called ‘constrained system optimum’. They used
an integer linear program and matheuristic to formulate and solve the corresponding opti-
mization problem, respectively. In contrast to our study, they do not incorporate the route
choices of travelers that do not comply with route advice. Angelelli et al. (2021) proposed a
fast heuristic to find the constrained system optimum and use a piecewise linearization of the
travel time function. In our chapter, we formulate the problem as a continuous optimization
problem and keep the nonlinearity of the travel time function.

We note that our optimization problem is a generalized case of finding the boundedly
rational user equilibrium (BRUE) with minimum travel time. Although there is a body of
literature on BRUE (e.g., Di et al., 2013; Lou et al., 2010), a thorough quantitative analysis
of this problem is still lacking. Thus far, analyses have been based on relatively strong
assumptions which reduce the complexity of the problem but might not hold in practice.

Bilevel problem

The success of the social routing strategy, as discussed, hinges on the (travel time of the)
paths suggested to the drivers. We show that best possible paths can be found by solving a
bilevel optimization problem. Our bilevel problem (see Section 5.2.2) can be seen as a game
between a leader (authority) and a follower (travelers) (Josefsson & Patriksson, 2007). The
leader chooses the paths to be proposed, while the travelers update their route choice based
on this advice. The compliant travelers follow the advice if the travel time differences (based
on the route choice of the travelers) compared to the fastest paths are limited, while non-
compliant travelers find the cheapest paths available. These dynamics should be anticipated
to find the best possible advice in terms of total travel time.

Bilevel problems are typically difficult to solve directly, and therefore often reformu-
lated as single-level problems. In this chapter, we use an implicit reformulation, and require
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parametric analysis of the lower-level problem to describe the behavior of the corresponding
solution set as a function of the upper-level variable. Parametric analysis is either quantita-
tive or qualitative in nature (Fiacco & Ishizuka, 1990b). The qualitative analysis is mainly
concerned with the continuity of the optimal solution set. Here, we require a - local -
quantitative analysis that focuses on the estimation of generalized derivatives of the opti-
mal solution set, e.g., to be used in numerical procedures. We refer to Eikenbroek et al.
(2018) for the qualitative analysis of this problem (the mentioned paper’s setting is however
different).

Techniques from variational analysis are used to study the quantitative behavior of the
lower-level problem. We refer to Luo et al. (1996), Mordukhovich (2018), and Rockafellar
and Wets (2009) for an overview of theoretical results. Many of these results, however, are
presented in general form and require relatively strong conditions when applying an implicit
reformulation. A critical issue in our case is that the lower-level solution is not unique
for a given upper-level variable. This leads to practical and theoretical challenges, since
the desired lower-level solution might not be realized, and small changes in the parameter
might lead to major changes in the solution (Dempe, 2002). Hence, at first sight, many of
the algorithms designed for bilevel problems do not apply in our context.

In this chapter, we theoretically assess the lower-level problem and use techniques from
variational analysis to show that we can guarantee the existence and calculation of a gen-
eralized derivative of the lower-level solution projected onto a subspace. The generalized
derivative of the solution of the lower-level problem contributes to the understanding of the
optimization problem finding the best possible paths. Indeed, the theoretical analysis in this
chapter allows one to formulate the necessary optimality conditions of the bilevel problem.
Moreover, the derivative can be used in exact numerical procedures to find descent direc-
tions. Hence, not only can the generalized derivative be used in standard algorithms to solve
bilevel programs, it can also support the assessment of heuristic procedures (e.g., Angelelli
et al., 2020). Although a comparative analysis of algorithms that solve the formulated pro-
gram is beyond the scope of our research, we provide nonetheless a numerical procedure
and refer to related algorithms that could be applied.

In a static traffic assignment context, bilevel problems are well-known, mainly in Net-
work Design Problems (NDPs) in which optimal network settings (e.g., link tolls) are de-
termined. Parametric analysis has been topic of a body of literature in this context (Chung
et al., 2014; Josefsson & Patriksson, 2007; Lu, 2008; Lu & Nie, 2010; Outrata, 1997; Pa-
triksson, 2004; Patriksson & Rockafellar, 2002, 2003; Qiu & Magnanti, 1989; Robinson,
2006; Tobin & Friesz, 1988; Yin et al., 2009). Mainly, these papers concern perturbations
that occur in the (parameters of the) link cost function and/or demand vector. Our research
is different from the aforementioned studies since we basically consider perturbations in a
path-dependent parameter. It turns out that the analysis and the computational results rely
on the choice of a suitable route flow corresponding to a link flow solution. This forces us to
study the behavior of the (multi-valued) route flow solution set in dependence of the param-
eter. In the context of perturbations in the parameter of the demand vector, the analysis of
Qiu and Magnanti (1989) also depends on the choice of a specific route flow solution. How-
ever, Patriksson and Rockafellar (2002) show that the results of Qiu and Magnanti (1989)
are actually independent of a specific choice. In our context, this does not hold (as we will
show in Example 1). Some of our findings show similarities to the results for parametric
optimization problems with a unique minimizer but non-unique multipliers (Dempe, 1989;
Dempe, 1993; Ralph & Dempe, 1995). There, a generalized derivative of the optimal solu-
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tion can be calculated by choosing a suitable multiplier (which might be difficult to find).
In our case, we consider a setting with a non-unique optimal solution.

Considering the practical application, we assess a possible implementation of the social
routing strategy. Specifically, we evaluate the interaction among compliance rate, acceptable
travel time differences, and network-wide performance in a static setting. The numerical ex-
periments provide insight which minimum penetration rate and indifference band might be
required to substantially lower the total travel time in the network, and, thus, how much
some travelers have to sacrifice for the network’s benefit. These experiments substantiate
the opportunities for a real-life implementation of a social routing service or guidance mech-
anism.

Summarizing, the main contributions of this chapter are as follows:

* We propose a social routing strategy that steers the traffic network towards an efficient
but also fair, and therefore achievable and maintainable, traffic state. We show that the
best possible paths to be proposed by a social routing service can be found by solving
a bilevel program that explicitly accounts for behavioral responses to the service;

* We use parameteric analysis to prove that the generalized derivative of the lower-level
link flow solution problem exists and can be calculated efficiently. The generalized
derivative can be used to find descent directions and to formulate optimality condi-
tions of the bilevel problem;

* We use the generalized derivative in a descent algorithm to solve the bilevel problem
and numerically evaluate our proposed social routing strategy in test networks. Here,
only a small fraction of the travelers need to take a limited detour to substantially
improve the traffic system’s performance.

The remainder of our chapter is organized as follows. We formally introduce our social
routing strategy in Section 5.2. In Section 5.3, we analyze qualitatively the ‘behavior’ of
the optimization problem that relates to our social routing strategy. In Section 5.4, we
investigate the existence and calculation of the directional derivative of the link flows, which
we use in Section 5.5 in a descent algorithm for solving the bilevel problem. Section 5.6
reports on numerical experiments and management implications. Section 5.7 draws the
conclusions.

5.2 Problem formulation

We study the static traffic assignment with fixed demand. Given is a directed traffic network
G = (V,E), with V being the set of nodes, and F is the set of directed edges (roads or
links) e = (4,7), with 4,j € V. The network has a set of origin-destination pairs (OD
pairs) L C V' x V, with static demand dj, > 0, k € K. Each OD pair k£ € K is connected
by the set P}, of simple directed paths. The set P of all paths in the network is the union of
the path sets per OD pair, i.e., P = Ukex Pk.

A feasible traffic flow or flow for given demand d € lel (we denote by |.| the cardinality
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of a set) is a pair of vectors (f,z) € RIPI x RIFI = (fps0 € P;xe,e € E) so that
Af=d, Af—xz=0, f>0. (5.1)

The matrix A € RIFIXIPl ig the OD-path incidence matrix with Ay, = 1if p € Py, and
Ayp = 0 otherwise. A € RIFIXIPI denotes the link-path incidence matrix: A, = 1 if edge
e is in route p, and A, = 0 otherwise. For each edge, e € E, lo(z.) is the non-negative,
continuous, and non-decreasing link cost (or: travel time) function for a given flow x. on
that edge. The cost of a route ¢, (f), p € P, is the sum of travel costs of all edges in that
path, ¢, (f) = > - ¢, le(@e).

Throughout our chapter we make the following (natural) assumption regarding the travel
time function (we refer to Patriksson and Rockafellar (2002) for a study that relaxes this
assumption).

Assumption 1. We assume throughout the chapter that the travel time functions l.(x.) are
continuous, convex, and strictly monotone: l.(z.) < l.(29), for z. < 2%, forall e € E.

5.2.1 A social routing strategy

We consider the setting in which a central authority asks travelers to take a small detour for
the system’s benefit (see Section 5.1). The social travelers comply with such an advice if
the alternative route is reasonable, i.e., the route is not perceived to be substantially worse
(in terms of travel time) compared to the fastest path. The remaining drivers do not comply
with travel advice and behave in a selfish manner, i.e., choose the fastest path available.

The demand vector d° € lel (dj, < dy for all £ € K) denotes the travelers that
receive and comply with a route advice from the authority (superscript s refers to the social
travelers). The remaining demand d"” € RIXl, g0 that d = d* + d", behaves selfishly.
(Superscript n refers to Nash equilibrium - see (5.2b) below: a driver cannot improve travel
time by changing strategy (route)).

We define F as the set of feasible flows. Formally,

Ag=d’ g>0,
F=1 (9.h2) eRPI xRPIXRIFI | Ah=d" h >0,
Alg+h)—2=0

Obviously, any (g, h,z) € F is aflow as in (5.1) for f = g + h.

The advised routes to compliant travelers d° have to be fair in the sense that the real-
ized (i.e., traffic flow-dependent) travel time differences are limited. We assume that social
travelers accept any travel time difference (compared to the shortest path for the same OD
pair) with a maximum of €, > 0,k € K. Hence, the resulting state in the network is so
that no social traveler for OD pair k& € K can improve travel time with more than 5 by
unilaterally changing routes. At the same time, the selfish travelers choose the fastest path.
The following definition (Definition 1) formalizes our notion of the resulting state among
social (receptive) and selfish travelers. We refer to this state as a mixed equilibrium.
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Definition 1 (Mixed equilibrium). Given ¢ € R‘f‘, a traffic flow (g, h,x) € F with corre-
sponding path costs c(f), f = g+ h, is called a mixed equilibrium among social and selfish
travelers if for all k € K, the following conditions are satisfied for all p € Py:

gp > 0= cp(f) S;ggi cq(f) +en (5.2a)
hp>0:>cp(f):£%§kcq(f) (5.2b)

Assuming only selfish demand, in a traffic state in user equilibrium as in (5.2b), travelers
with the same OD pair share travel times. However, it is well-known that this state does not
necessarily minimize total travel time ) zcle(w.). The traffic state (f,z) as in (5.1)
which minimizes the total travel time, is referred to as the system optimum (Wardrop, 1952).
Typically, it may be assumed that in practice, without intervention, a state close to a user
equilibrium arises.

Condition (5.2a) gives a range of acceptable travel times for a receptive user. We assume
that any social traveler that is routed onto an acceptable path (i.e., any route p € Py, k € K
for which ¢, (f) < mingep, ¢q(f) + ) complies with such an advice although the user
might be aware that it is not necessarily the fastest path available. The condition as defined
in (5.2a) is equivalent to the BRUE condition (see Section 5.1). The mixed equilibrium
as in (5.2), i.e., (5.2a) and (5.2b), has the user equilibrium as a special case and does not
correspond (even if € — o0) to a mixed user equilibrium and system-optimal flow, e.g., as
in Yang et al. (2007).

In (5.2a), we model the band ¢ as being additive. In particular for shorter travel times,
an additive indifference band is more appropriate compared to a multiplicative one as in,
e.g., Roughgarden, 2005. In combination with ¢, k € K, being OD-pair dependent, we
allow a range of scenarios regarding the maximum detour to be modeled using the condition
in (5.2a).

The mixed-equilibrium conditions (5.2) do not provide a unique state (yet all travelers
are satisfied with their route), which is key for the social routing strategy. We exploit this
range of allowed distributions to find one which is the best for the system. That is, our
routing strategy is designed so that we achieve - among all (g, h,x) € F that satisfy (5.2)
- the one with the minimum total travel time. Hence, the optimal strategy can be found by
solving the following optimization program for a known € > 0:

i 1. ,h, tisfies (5.2), 5.3
(9’2{1;1)16}_@(:0) s (g, h, z) satisfies (5.2) (5.3)

where ©(z) = ) Tele(e) is the total travel time.

For a routing service, the optimal solution of (5.3) with respect to g is typically the vari-
able of interest, since g represents the distribution of the social travelers over the different
acceptable paths. The selfish demand basically responds to the choices of the social de-
mand in the sense of (5.2b). In fact, selfish travelers are confronted with a change in travel
times on routes due to the choices of others. When determining the best distribution g (with
condition (5.2a)), the authority needs to anticipate the travel times depending on the route
choices of both the social and selfish demand. This Stackelberg mechanism is implicitly in
(5.3). After solving (5.3), the route to be suggested to a social traveler can be extracted from
solution g.

One should note that, in principle, while solving (5.3), one is free to choose any (g, h, x)
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satisfying (5.2). In practice, for a given g, the distribution h is a result of the route choice
behavior of the selfish travelers and cannot be precisely predicted (if there are multiple h
satisfying (5.2b)). However, as we will see in Theorem 1, the response to g with respect
to the link flows x is uniquely determined. Since z is the only variable appearing in the
objective function, it is therefore not necessary to consider a pessimistic variant of (5.3).

5.2.2 Bilevel reformulation

The optimization problem in (5.3) is difficult to solve. Indeed, Eikenbroek et al. (2018) and
Lou et al. (2010) show that the feasible set corresponding to (5.3) is in general not convex,
does not satisfy a regularity condition, and different local minimizers can coexist. We use
the following proposition (Proposition 1) to reformulate our problem. In the remainder of
the analysis we drop parameter ¢ in the notation: we assume it is known and fixed. During
the experiments (Section 5.5 and Section 5.6), we numerically investigate the impact of a
varying €.

Proposition 1 (Di et al. (2013); Eikenbroek et al. (2018)). The following are equivalent for
(g, h, w):

1. (g,h,x) € F is a mixed equilibrium as in (5.2);

2. There exists
peE:={ peRPI|0<p<ATe }

such that (g, h, x) solves the convex optimization problem

Qp) : ((Ijnhilalc) 2(p,g,x) = 20(x) + plg s.t. (g, h,z) e F, (54)

where 20(z) =Y e Jo le(w)dw.

We omit the proof, which is a generalization of Proposition 2.2 in Di et al. (2013) or
Proposition 1 in Eikenbroek et al. (2018). These references use objective function zo(z) —
p" g, but the two problems are equivalent by selecting 5 = A”c — p. We prefer our objective
function in (5.4) whereas it eases the upcoming analysis. We note that p does not necessarily
have an intuitive interpretation.

Problem (5.3) is a mathematical program with equilibrium constraints. According to
Proposition 1, we can rewrite (5.3) as a bilevel problem. We use the following reformula-
tion, which eases the parametric analysis in Section 5.3 and 5.4 (Eikenbroek et al., 2018):

. . pEE
(BL): (g2hoerp) pla) st (g, h, x) solves Q(p).

(BL) is a technical reformulation of the bilevel problem in which the leader finds the best
possible paths to be proposed, while anticipating route choices. Basically, Q(p) describes
the route choice behavior of both the social and selfish travelers for a given p.

In the remainder, we refer to parametric optimization problem Q(p) as the lower-level
problem. Here, p is a parameter in the lower-level problem but a variable in the upper-
level problem. Note that in (BL) both lower-level variables (g, h, x) as well as upper-level
variable p appear as variables. Even in case there is no upper bound with respect to p, i.e.,
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the social travelers can be routed onto any path, the problem (BL) might be difficult to
solve. In the upcoming sections we rewrite and (numerically) solve (BL) as a single-level
optimization problem.

5.3 Parametric analysis

Based on reformulation (BL) of previous section, one basically needs to find an appropriate
p € E so that the corresponding (g, h, ) that solves Q(p) minimizes total travel time
©(z). In this chapter, we apply parametric analysis with respect to problem Q(p), i.e., we
investigate the ‘behavior’ of (g, h, x) that solves Q(p) under perturbations in p.

The purpose of the analysis is, from a computational perspective, as follows. The para-
metric analysis provides an estimate for the rate of change in the lower-level solution as the
lower-level parameter (which is an upper-level variable) changes (Patriksson, 2004). Then,
we use this estimate to move into a direction that decreases the total travel time. In this
and next section (Section 5.4), we provide the parametric analysis of the lower-level prob-
lem. The results of these sections are used to reformulate and solve (BL) as single-level
optimization problem (Section 5.5).

5.3.1 Notation, definitions and preliminary results

We introduce notations that correspond to lower-level problem Q(p) (see (5.4)) with param-
eter p:

v(p) = min{z(p,g,x) [ (9, h,x) € F},
S(p) = {(g,h,2) | (g, h,x) is a global minimizer of Q(p)}.

We refer to F as the feasible set, v(p) as the optimal value function, and to S(p) as the
solution set at p.

To study the parametric problem Q(p), we introduce definitions that describe the be-
havior of functions. In this chapter, we consider both single and multi-valued functions (or:
mappings). A multi-valued function F' assigns to each ¢ € X C R" a possibly empty
subset F'(¢) C Y C R™. We denote by dom(F) := {¢ € X|F(e) # (} the domain of
multifunction . We further define for 7 > 0, § > 0, the neighborhoods U, (F(£%)) :=
{z € R™|||z — 2/|| < 7 for some 2’ € F(°)} and Us(¢) := {z € R"|||z — ¢ < 4} .

We use the following definitions (Bank et al., 1983; Robinson, 1982):

Definition 2. A multifunction F(c) is said to be:

1. closed at £° if for any sequences ezl le N, withe! — €0, 2t € F(sl), the condition
ol — 20 implies 2° € F(°);

2. upper/outer semicontinuous at €°, if for any T > 0, exists § > 0 such that

F(e) CU.(F(£%)), forall e € Us(e°);

3. lower/inner semicontinuous at °, if for any T > 0, exists § > 0 such that

F(%) C U, (F(e)), forall e € Us(e°);



124 5 Improving the performance of a traffic system by fair rerouting of travelers

4. (locally) upper Lipschitz continuous at ° if there exists a § > 0 and Lipschitz con-
stant L < oo such that

F(e) C F(°) + L|je — "B, forall e € Us (&%),
where B := {x € R™ | ||lz|| < 1};

5. (locally) Lipschitz continuous at €° if there exists a § > 0 and Lipschitz constant
L < oo such that

F(e) CF(¢') + L|e — €'||B, forall e, e € Us(£°).
The following results are from Eikenbroek et al. (2018). Here, S*(p), S9(p), S"(p)
denote the projections of S(p) onto the z, g, and h-space, respectively.
Theorem 1 (Eikenbroek et al. (2018)).
1. S(p°) # 0 forall p° € Z;
2. 8(p%), S9(p°), and S"(p°) are (polyhedral) convex sets for each p° € =;

3. 5%(p%) is a singleton for each p° € Z, ie., S*(p°) = {x(p°)}, and z(p) is a con-
tinuous function on =, i.e., x(p) is upper and lower semicontinuous at each p° € =.
Moreover,

Vip)=1{ pTg | geSip) }

is uniquely determined at each p° € Z;
4. The mappings S(p), S9(p), and S (p), are upper semicontinuous at each p° € Z;

5. The mapping S(p) is not injective, i.e., different p° # p' € = might have a common
solution (¢°, Y, 2°) € S(p°) N S(pt).

We underline that in our setting we cannot expect Theorem 1 to be stronger in the sense
that S9(p) is also lower semicontinuous at each p°. The route flow set

s = { g™ | 3n

Ag=d*, Ah=d", A(g + h) = z(p), }
g>0,h>0,p"g="1(p) ’

is a polyhedral convex set at each p € Z. So, although the x-part of the solution to Q(p)
is uniquely determined, there might be multiple route flow solutions that correspond to a
single link flow solution z(p). In the context of perturbations of a parameter in the link-cost
and/or demand vector, the route flow set is a continuous mapping relative to its domain (Lu
& Nie, 2010), given that the link flow changes continuously. We demonstrate later (Section
5.4) it is in fact the absence of lower semicontinuity of S9(p) at some p® € = that causes
the practical difficulties for the calculation of the directional derivative z/(p°; ) of z(p) at
p° in direction - € RII.

Remark 1. 7o improve readability, we assume for now that d° = d (i.e., d” = 0). We prove
in Section 5.4.4 that we can extend the results to the more general case d™ # 0.
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5.3.2 Directional derivative of the optimal value function

This subsection covers the parametric analysis of the optimal value function v(p). We
show that the directional derivative v’(p°;7) of v(p) exists for any p® € = and direction
r, ||[r]| = 1, and we use - in Section 5.4.3 - the sensitivity of the optimal value function to
find a specific route flow.

Definition 3 (Directional derivative). A function f(p) is said to be directionally differen-

tiable at p° € dom(f) in directionr, ||r|| = 1, if

ooy e J0 ) — F(P°)
i) = i

exists.

The following proposition (Proposition 2) demonstrates that the optimal value func-
tion v(p) is directionally differentiable at any p® for any direction r, ||r|| = 1. This is a
well-known result in parametric optimization (see Fiacco & Ishizuka, 1990a), but the ac-
companying proof (provided in the Appendix) is easier in our case.

Proposition 2. The optimal value function v(p) is directionally differentiable at each p° €
E and in each direction v € RIP!, ||r|| = 1. In fact, v'(p°;r) is the optimal value that
corresponds to a solution of the parametric linear program

P(r): minr’g st g€ S9(p°).

In this section, we proved that the directional derivative v'(p°;7) of v(p) exists for
any p° and direction r (||r|| = 1). In the upcoming section, we treat the (existence and
calculation of the) directional derivative of the link flows x(p). The sensitivity analysis of
v(p) can also be used to formulate a single-level problem, see, e.g., Dempe and Zemkoho
(2012) and Mordukhovich (2018).

5.4 Parametric analysis of the optimal solution

Intuitively, directional derivative x’(p%; ) is the rate of change of the optimal solution z(p)
at p¥ along r. This section investigates the existence and calculation of the directional
derivative, which we use in Section 5.5 to formulate a solution method for bilevel program
(BL).

In the remainder, we repeatedly use the following assumption (Assumption 2), which
states that the Jacobian of the link cost function is a positive definite matrix. This assumption
is stronger than necessary for some of the upcoming results, and it does not follow directly
from Assumption 1 (e.g., when using the Bureau of Public Roads-function (Bureau of Public
Roads, 1964) with . = 0, for some e € E). See Lu (2008) for conditions that can replace
Assumption 2.

Assumption 2. Assumption 2 is said to hold at 2° if V2zo(z)(= V.l(z)) is a positive
definite matrix at «°.

Let p° € Z be in the remainder of this section a reference value and we consider refer-
ence point (p°, 2°), with 20 € 5% (pV).
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We prove that the Karush-Kuhn-Tucker (KKT)-set mapping corresponding to Q(p) is
an upper Lipschitz continuous multifunction at p°, given that Assumption 2 holds at z°.
Consider therefore the system of KKT optimality conditions for Q(p). For each p, this
system can be written as

ATB—y=ATA+p=0 (g,2) € F, '

with accompanying Lagrange multiplier vector ¢ := (3, A,),y > 0. The KKT-set map-
ping Sk k7 (p) is the function that maps p onto the set of (g, x, ¢) that satisfies (5.5), i.e.,
for p € =:

SKKT<p> = { (g,a:,¢) ‘ (g,x,(b) satisfies (55) 7Y > 0 }

In our context, the Lagrange multiplier vector ¢ is uniquely determined at p°. Indeed, for
each fixed p°, 20 = S(p°) is a singleton, which implies that /(x°) and thus 3° are uniquely
determined (with (g%, 20, ¢°) € Sk xr(p°)). Whereas p° is fixed, and there exists at least
one p € Py, for which 72 = 0 (which is true by dj, > 0) for all k£ € K, it follows that also
A? (and thus 4°) are uniquely determined given p°.

We state the main result of this section (Theorem 2): Sk g7 (p) is (locally) upper Lips-
chitz continuous at p°. We moved the (rather technical) proof to the Appendix.

Theorem 2. Let Assumption 2 hold at x°, the multifunction S k1 (p) is upper Lipschitz
continuous at p° € =.

We need the auxiliary result of this section in the upcoming subsections to prove exis-
tence of the directional derivative z’(p°; ), under Assumption 2 at 2°.

5.4.1 Directional derivative of the link flow solution

This and upcoming subsections (Section 5.4.2 and 5.4.3) are devoted to treat the existence
and calculation of the directional derivative

04 ) — 40
2'(p%7) = lim —x(p tir) -2

t—0+ t ’

with 20 = x(p°), since in particular the link flows are of interest for authorities (i.e., the
upper-level objective function ¢(z) in (BL) is a function of x). Some of our arguments are
taken from Dempe (1993) and Pang and Ralph (1996).

Let p° be the reference value and » € RIPI, ||| = 1, is an arbitrary direction. Let
t* >0, k € N, so that t* — 0. From previous analysis (Theorem 2), we know that, if
Assumption 2 holds at 29, for each

(g%, 2%, ¢%) € Skrr(p*), o~ = p° + 1tk
exists
(5", 2°,¢°) € Skxr(p°) (5.6)
so that
tk

(5.7)
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is a bounded sequence, and thus has (for a certain subsequence) a limit point w = (w9, w®, w®).
We investigate whether w® of w is unique and independent of the choices of t* and g*.

The complexity of the analysis lies in the fact that S9(p) is only upper semicontinu-
ous at p°. Intuitively, for some p¥ — p°, not all g € S9(p°) can be reached by some
(sub)sequence g* € S9(p*). We follow the strategy of Dempe (1993), and introduce reach-
able set V(S9(p°); 1) of S9(p) at p* € = into direction r:

exists sequence t* > 0,k € N, t* — 0,
V(T) = V(Sg(po);r) = { gc RIPI and gk eqsg(pk) <o that gk Sy } .

We first show that V(1) is nonempty, and that it is a subset of SP(r) (and thus S9(p")) (cf.
Dempe, 1993). SP(r) is the solution set corresponding to problem P(r) with parameter r,
ie.,

SP(ry={ g€ 59p°) | gsolves P(r) }.

Lemma 1. For arbitrary direction r,

r||=1:
0#V(r) S SP(r) C 59(p°). (5.8)

Proof. We prove the lemma in two parts. First, we prove that ) # V' (r), and then we prove
that V(1) € SP(r). Itis trivial that SP(r) C S9(p).

(0 # V(r)). Consider p*, k € N, so that p¥ converges to p°. Choose g* € S9(p").
Since ||g*|| is bounded, there exists subsequence g¥i of g* so that g/ converges to some
g". S9(p) is a closed mapping at p°, and thus g° € S9(p"). So, V (r) # 0.

(V(r) € SP(r)). Choose any g° € V(r). By definition, there exists g* € S9(p*) so
that g* — g° € S9(p°). In the proof of Proposition 2, we established that

v(p*) —v(p")

T,TgO > ’Ul(po; 7,) — kli{l;o o > kli)ngo TTgk — 7,TgO
So, 77g% =o' (p%7) = minge g (p0) rTg. Thatis, g° € SP(r). O

In general, it holds that V() is a proper subset of S9(p") (as we show in Example 1 in
Section 5.4.3), and V (r) = S9(p°) follows if S9(p) is lower semicontinuous at p°. S9(p)
is lower semicontinuous relative to its domain if p is a parameter in the link cost function
(see Lu & Nie, 2010).

Lemma 2. Let Assumption 2 hold at x°. For direction r,
(5.7) satisfies the following system:

r|| = 1, any limit point w of

0=AT(Vol(a")w”) + p° = ATw* = >~ (w]))1,;

P
p€I(g)
Awd —w”® =0, Aw9d = 0;
wd =0,pel(g’):yy > 0; (5.9)

wg >0,p e 1%
wy 2 0,p:, =0;

wywy =0,p € 1°,
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for some I° C 1(g°), with ¢° € V (r).

Here, 1, € {0,1}/”! is the indicator vector. I(g) C P denotes the active index set at
g e FI:
Hg)={peP|g=0}.

Proof. We prove this lemma in three parts. In the first part of the proof, we prove that for
g° € V(r), §* of (5.6) converges to g°. In Part 2, we prove that the limit point w satisfies
the first equality of (5.9), that w satisfies the (in)equalities of (5.9) is proven in Part 3.

(Part 1). Note that we can assume (by passing to a subsequence) that g* — ¢°, i.e.,
g° € V(r). We prove that for g° € V (1), §* as in (5.6) converges to ¢°. Let g° € V(r). By
definition there exists a sequence t* > 0, with t* — 0, and g* € S9(p*) so that g* — ¢°.
Since

1(g", 2", ¢*) — (5", 2% ¢")| — 0,

and g¥ — ¢° as k — oo, it follows that §* — ¢°.

(Part 2). Consider the set Sk r7(p*) for each k € N. Recall, for each k € N, and
g* € S9(p") exists unique (2%, ¢*) so that (g%, 2%, ¢*) € Sx rr(p*). That is, for each k,
(g*, 2%, ¢*) satisfies the KKT conditions that correspond to Q(p*), i.e., with v* > 0,

I(z%) - BF =0 (g")Ty* =0

AT@F 4 0 4 thy — ATAF — 4k =0 (g*,a%) € F. ©-10)

Since g° € V(r), g — ¢° with ¢° € S9(p°). Hence, g) > 0 implies g& > 0 for
sufficiently large k, and thus I(g*) C I(g°) for these k. Now, we can rewrite the first three
KKT conditions in (5.10) as

0=ATI(z") + p° 4+ thr — ATAF — Z VoL, (5.11)
pel(g®)

Taylor’s expansion of () around x° says that
1(z") = U(z°) + V(%) (z* = 2°) + o([|=* — 2°|)), (5.12)

where o(||z* — z°||) /t* converges to zero for k — oo.

We repeat a similar argument for (¥, 2%, ¢°). We have that §* converges to ¢°, and thus
I(§*) C I(¢°) forlarge k. The KKT conditions of Q(p°) say that (¥, 2°, ¢°) € Sk 7 (p°)
satisfies (at least) the following condition for sufficiently large & (using the uniqueness of

7%
0=A"TI") +p° = ATN — 3" 401, (5.13)
pEI(g?)

Subtracting (5.13) from (5.11), and using the Taylor expansion (5.12), we obtain

0= AT(Va:l(ato)(xk —2%)) + thy — AT()\k -0 — Z (’yﬁ — Vg)lp + O(ka —20).
p€I(9°)

(5.14)

We divide (5.14) by ¢, using that the quotient in (5.7) is bounded by upper Lipschitz con-

tinuity of Sk (p) at p°, then the limit point w of (5.7) satisfies (at least) the following
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equation:
0=AT(Vl(z")w”) +r—ATw* = Y~ (w])1,. (5.15)
p€I(g°)
(Part 3). The last KKT condition in (5.5) for p* and p" says that for each k € N,
(g%, 2%) € F and (g*, 2°) € F. Therefore,

Awd —w* =0, and Aw? =0.

Also, for any p € P, we find that (for a subsequence)

k Nk . . O
(g —g) —>w9{0’ if 7p >0
p

tk Pl =20, if v, = 0ands.t. exist infinitely many & with g;; =0,
which yields
=0, pel(g®):72>0
g ) P
Wp { >0, peld, (5.16)

for some 1° C 1(g°).
By the non-negativity constraint with respect to multiplier v in (5.5), in combination
with the fact that «y is a singleton for each p, we have that for p € P,

E_ A0
(W) Sw) 20, i A2 =0)
p

Finally, note that also a complementarity condition arises:
wlwd =0, forallpe I° (5.17)
O

We recall that, in order to determine whether directional derivative z'(p"; 7) exists, we
have to show that the limit point w® of a* ;1-0 does not depend on choices of t*, g*, §*, and
I° = I°(g*). Based on the result as presented in Lemma 2, even in the case that V(r) is a
singleton, different choices of I° could possibly lead to different solutions w® of (5.9). In
the following section, we present a method that finds ’(p°; ) without the trouble finding

an appropriate 1°.

5.4.2 A quadratic program reformulation

Recall reference point (p°, 2°). As mentioned, even if V' (r) is a singleton (V (r) = {g°}),
different 1° C I (go) in (5.16), (5.17), might be possible, which makes it difficult to calculate
() limit point w. In this subsection, we demonstrate that, under the assumption that V' (r) =
{g"}, w® is actually independent of I° and can be found efficiently by solving a convex
optimization problem.
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Before we continue, we define T'=(g, ) as the tangent cone to F at (g, x) € F, i.e.,

Awd =0
Tr(g,z) ={ (w9,w”) € RIPIxRIPI | Awd —w® =0
wy >0 p€l(g)

We introduce the following parametric (convex) quadratic optimization problem (with
parameter (g°, ), and for now V (r) = {¢°}):

1
QP(gO, T): min §(wx)Twa +7rTw? st (w9, w®) € C(go, 20, gi)o),

where A := V,I(z%) = V22¢(z°), and
C(g°,2%,¢°) == Tr(g° 2°) N Tp(40)(g°)
is the critical cone to F at (¢°,2°, ¢°). Here,
Tpoy(g°) ={ w9 eRPI |wi=0,peP:7)>0 }
is the tangent cone to
D(¢") = { g € RIPI ‘gsz,pE’P:'yg>O I8
at g, Under Assumption 2 at 2°, QP(g°,r) is a convex problem (strictly convex in w?®).

Lemma 3. Let Assumption 2 hold at x°. For direction r, ||r| = 1, for which V (r) = {g"},
w® of any limit point w of (5.7) is the (global) optimal solution of QP (g°,r).

Proof. Consider a limit point w of (5.7). We prove that the w?-part of w is the optimal solu-
tion of QP(g°, r) with V() = {g"}. Therefore, we first show that w?, with accompanying
w9, is a feasible solution of QP (g°, 7), then we prove (w?, w®) is a global optimal solution
of QP(¢°, 7).

(Feasibility). For given direction r and V (r) = {¢°}, with g* — ¢°, we note that for
sufficiently large k, (g%, 2*) € S(p*) are also optimal solutions to

Q(p) : min zo(z) + pLg st (g,2) € F:= FND(¢"),
with p = pF. So, 2* € F (the projection of F onto the x-space) for all these k, and
therefore w® of any limit point w of (5.7) satisfies w® € Tz, (x°). Since Frisa polyhedral
set (the projection of a polyhedral set is a polyhedral set), z' = 20 + aw® € F* for
some « > 0. Hence, exists g1 € F9Y so that Agl = z! (see Rockafellar & Wets, 2009,
Theorem 6.43). Now, let w9 = 91290, then w9 € Tﬁ(go), since g' = ¢° + awd € F9.
In particular, it holds that w3 > 0 forall p € T (g"). Thus, limit point w® of (5.7) is in the
feasible set C* (g%, 2°, ¢°). We underline that w9 is different from the w9-part of w in (5.7),
i.e., it might hold that w9 # w9.

(Optimality). We showed that w” of the limit point of (5.7) with an accompanying w9 is
a feasible solution of QP(g°, 7). Now, we demonstrate that (w7, w®) is the optimal solution

of QP(g°,7).
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Note from (5.15) that there exists w? so that (w?®, w?) satisfies

AT (V2" w") + 7= ATw* = > (w])1, =0
p€l(g°)

Then let (u?,u®) € C(g°, 2°, ¢°) be arbitrary, we find that

0= (AT(Val(a®)w”) +7)Tud — (ATw ) ud — >~ ((w))1,)"u?
pel(g°)
< (AT(V1(z"Yw®) + r)Tuf,

which is exactly the first-order optimality condition of convex problem QP(g°,r). Note
that the latter inequality holds whereas w; < 0 for some p € [ (¢°) implies that 7}9 > 0,
and thus u§ = 0. Since C (g°,2°,¢°) is a polyhedral cone, and by strict convexity of
the objective function in QP(g°,r) with respect to w?, the limit point w® is contained in
the optimal solution w (unique with respect to w®) of QP(g°, 7). We show in the proof

accompanying Lemma 4 that the optimal solution is bounded. a

For any given direction 7 (||r|| = 1), in combination with the extra assumptions that
|V (r)| = 1 and Assumption 2 holds at 2°, we proved that the directional derivative 2’ (p%; )
exists. This directional derivative is the optimal solution (with respect to w?®) of QP(g°,)
with V(r) = {¢°}. An opportunity to force uniqueness of V() (and also S9(p")) is to
include a regularization term in the objective function of the lower-level problem.

5.4.3 V/(r) not a singleton

The more interesting case occurs when V (r) is not a singleton. Note that only a finite
number of different 1(g°), g° € V/(r), can occur, and, under Assumption 2 at z°, finitely
many w” exist.

The previous analysis in Section 5.4.2 relied on the choice of ¢g° € V(r). One might
ask the question whether we can choose any g € S9(p°), and solve QP(g°, r) to obtain
directional derivative w?, if it exists. The following example illustrates that an arbitrary
g° € S9(p°) may lead to an unbounded solution of QP(g°, r).

()

Figure 5.1: Example traffic network

Example 1 (Unbounded Solutions). In this example, we show that optimization program
QP(g°,7) with g° € S9(p°) \ V(r), may have a corresponding unbounded solution.
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Figure 5.1 shows the single OD pair (|IC| = 1) network we consider. The network has
4 links with travel time function l.(x.) = x. for all e € E. Demand for the OD pair is 1.
The paths

P11 = {CL,C}, b2 = {avd}a b3 = {ba 0}7 and P4 = {bad}a
connect the OD pair (O, D). Define p = (pp,, Pps, Pps+ Pps ) and let
p(t)y=t-r, withr=(1,0,0,0), andt € [0,1],

for the sake of this example. We solve Q(p(0)): the traditional user equilibrium problem
(Beckmann et al., 1956). We denote this solution with respect to x by x™ and find

1111
o= bt = (3 555):

Since the link cost functions are strictly increasing, we find the optimal solution vector
z(p(t)) as a function of t: x(p(t)) = z™,t € [0,1]. Consider SI1(p(t)), the route flow
solution g on path py, as a multifunction of t:

0,3] ift=0;
sy =g 3 T

0 ift € (0,1].
Itis clear that S971 (p(t)) is not a lower semicontinuous function att = 0. Moreover, choose
g° € S9(p(0)) so that g5, > 0. It is easy to check that QP(g°,r) gives an unbounded
solution for r = (1,0,0,0). In fact, g° ¢ V(r) and observe that ¢° is not a solution of
P(r).

Example 1 illustrates the practical difficulties calculating the directional derivative. In
fact, if we choose g° € S9(p") arbitrarily, we might not be able calculate z’(p°; ) using
QP(g° ) (even if it exists - see Theorem 3). We should select therefore g% € S9(p")
carefully. From a practitioner’s perspective, this result is undesirable since some ¢" €
S9(p") is often a by-product of the algorithm that solves Q(p°). In the upcoming analysis,
we prove that g° € S9(p") could be selected so that g° € SP(r).

rl =1, QP(¢°, 1), with ¢° €

Lemma 4. Let Assumption 2 hold at x°. For arbitrary r,
SP(r), has a bounded solution w which is unique in w®.

Proof. Let ¢° € SP(r), and (¢°,2°,¢%) € Skxr(p°). From Corollary 2.1 in Lee et al.
(2005) it follows that Q P(g", r') has a solution if and only if

(ug’um)’(,wg’,wm) GC(QO,$O,¢O) z\T T T, g

> 0. .
()T Au = 0 = (u”) Aw® +r*u? >0 (5.18)
By Assumption 2, A is a positive definite matrix, and (u®)” Au® = 0 implies u* = 0 and it
automatically follows that (u®)” Aw® = 0. Suppose now that the right-hand side of (5.18)
is not satisfied, i.e., rTu9 < 0 for some (u9,u®) € C(g°, 2°, #°). Note that

Vazo () Tu® + (p°)Tu? =0, (5.19)
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for any (u?,u”) € C(g°, 2%, ¢°) (see Luo et al., 1996, p. 225). Since u* = 0, by (5.19),
(p°)Tud = 0. So, for small t > 0, (¢° + tu?) € S9(p°) and 77 (g° + tu9) < r7g°,
which contradicts that ¢° € SP(r). The uniqueness of w with respect to w® can then
be concluded from the fact that A is positive definite matrix and that C(g°, 2%, ¢°) is a
polyhedral cone. O

Hence, selecting g° € SP(r) makes that the issue as described in Example 1 cannot
occur. Now, we prove the main result of the chapter. For direction 7, rather than explicitly
using V(r), we can choose an arbitrary ¢° € SP(r) to calculate directional derivative
a'(p% ) of 2(p) at p°.

Theorem 3. Let Assumption 2 hold at z°. For arbitrary direction r, ||r|| = 1, 2'(p%; )
exists and is the optimal solution (with respect to w®) of optimization problem QP (g°,r),
g € SP(r).

Proof. Based on Lemma 3 and 4, we only need to prove that for any 7 the solution w® of
w that corresponds to QP (g°, ) is independent of the choice ¢° € SP(r). Assume 7 to be
fixed, and let g' # g% € SP(r). Suppose (w9!, w®1) solves QP(g',r), and (w92, w®?)
solves QP(g?,r), but w®! # w*2. Note that both problems have an optimal solution by
Lemma 4.

We may assume, without loss of generality, that

§(w.L,1)TA(w‘L71) _’_rng,l S (w‘L72)TA(w.L,2) +Tng’2.

DN =

Since w*'! # w2, and the optimal solution of QP(g?,r) is unique with respect to w®-2,
we have

1 1

i(wm’l)TA(le) +rTwdt < i(wx’l)TA(ww’l) + rT92, (5.20)

for all @92 so that (w92, w®l) € C(g% 2, ¢°). It directly follows from (5.20) that

rTws! < rT@9? for all such w92, given that there exist such (w92, w™') € C(g?,2°, ¢°).
Note that for all sufficiently small o« > 0, g' + aw?! € F. Hence, for any such «, let

1 1 2
ge2_ 9 tawh —g
«

Then, ¢? + aw9? € F, hence (@092, w™') € C(g? 2°,¢°). Since 7 (g + awd') =
(g% + aw9?), it follows that rT'g' > 77 g%, which contradicts that g* € SP(r). ]

Theorem 3 proves that z’(p°; r) exists for any p° in any direction r, ||r|| = 1, provided
that Assumption 2 holds globally (i.e., for all 2(p") with p° € Z). Now, for p° € =, we can
estimate z(p') ~ 20 + ta’(p%; r), with p* = p® + tr, ¢t > 0 small, and ||r|| = 1. To do so,
we have to choose g' € SP(r), and subsequently solve QP(g°,r). We use this result to
formulate an optimization method for (BL) in Section 5.5.

We compare the result of Theorem 3 with Theorem 2 in Ralph and Dempe (1995).
There, the directional derivative of a solution of a parametric nonlinear program (with a
locally unique minimizer) can be calculated (under a constraint qualification) by selecting
a suitable KKT multiplier as a solution of auxiliary program. In our case, we have a non-
unique solution, and need a linear program to find directional derivative z’(p"; ) of the link
flows z(p) at p°.
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5.4.4 General results

In previous sections, we assumed d” = 0. We extend the results to the case d" # 0.
We omit the corresponding proofs which are straightforward extensions of the proofs in
previous sections.

For p® € Zand r, ||r|| = 1, arbitrary, and (¢°, h°, 2°) € S(p°), the linear program

P(r): mihang st. (g h) e SOM (%),
9,

finds (¢°,h°) € SP(r). The quadratic (convex) optimization problem to find directional
derivative 2’(p°; 1) of z:(p) at p° in direction r corresponds to

1
QP(g°, 0, r): min iwg’TAw“J +rTw? st (w,w",w®) € C(g° h°, 20),
with

wy >0 p € Py
wé =0 D € Py
w% >0 D E P

C(goa hoaxo) = (wga wha wx) U)p = 0 p S Ph,2
A(w9 +w) —w® =0
Awd =0
Awh =0

Here, we decompose path set 1(g°) C P, I(hY) C P, as follows
Pga1={p € P,k € K|p € I(g0), (cp(z°) + p) — ;relgi(cq(xo) +py) =0},

Pg,2 = I(go) \Pg,l’

Pri=1{p € Pr,k €K |peclIhg),cy(z) — II€1}]>I1 cg(2?) =0,}
A<k

Pho=1(h°)\ P

Pg.2,Pn,2 are the path sets that consist of the paths with an accompanying positive mul-
tiplier. Note that QP(g°, h°,r) can be interpreted as a traffic assignment problem with a
restricted path set (cf. Patriksson, 2004). In comparison with Q(p), the link cost function is
linear, some paths might carry negative flows, and each OD pair has zero demand.

5.5 Algorithm and numerical experiments

Thus far, we proved the existence of the directional derivative of the link flows under per-
turbations in the parameter, and found a constructive method to calculate it. In this section,
we solve optimization problem (BL) using a feasible descent method. The algorithm is so
that we solely need to solve convex optimization problems and, thus, it can be implemented
in standard optimization toolboxes.
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5.5.1 Algorithm

Consider optimization problem (BL). We can reformulate it as (BL'), a nonsmooth opti-
mization program in which z is an implicit function of p, i.e.,

(BL') : ming(z(p)) st p€EE.
p
Consider p° with solution 2° = x(p") of lower-level problem Q(p°). We proved that
the directional derivative z/( pO; r) into direction r exists, i.e., for ¢ > 0 small,

o(x(p’ +tr)) — o(2°) = Voo ()" (x(p” + tr) — 2°)

5.21
Vo) (7). 2D

So, any direction 7, ||7|| = 1, that satisfies V,(z°)T2'(p%7) < 0 yields a descent
direction for (BL’). This allows us to formulate the necessary optimality conditions for
(BL).

The calculation of a steepest descent direction 7 is difficult and is the optimal solution
of a linear-quadratic optimization problem, which can be found using an expensive branch-
and-bound technique (Bard, 1998). To reduce computational intensity and to enhance ap-
plication by traffic engineers, we use an algorithm that assumes that x(p) is differentiable at
any p°, i.e., V,z(p") exists (see Josefsson & Patriksson, 2007). Algorithms that explicitly
use the nonsmoothness of the objective function in (BL’) can be found in Outrata et al.
(2013).

Atevery iteration ¢ € N, with iteration point p° € =, we find a feasible descent direction
by solving convex optimization problem

1 i i
min §||—Vp<p(x(p ) —v|? st veD(p), (5.22)

with feasible cone

D@ﬁ{ueRW

v,>0 peP ={pePlp,=0}
v, <0 peP’={pePrkek|p,=cr} |

Summarizing, the algorithm is as follows (based on Faigle et al., 2013; Josefsson &
Patriksson, 2007):

Step 0 Initialize p° € =, > 0 small, Armijo line search factor 7 > 0 and multiplier #, set
1:=0;

Step 1 Solve Q(p) to obtain z(p*);
Step 2 Construct the approximate Jacbian, V ,z(p") by solving for each p € P:

(@) letr = 1,;

(b) find (g, h) € SP(r), i.e., solve P(r).
(c) find w that solves QP(g, h,r);

(@) let (Vz(p?)), = w®.

Step 3 Solve (5.22) to find /%;
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Step 4 Use the inexact Armijo line search (using «) to find m > 0 that satisfies :

o(z(p") < plz(p") — mm((v") (V,e(z(p"))), (5.23)

where p' is the projection of (p* + mv') onto =, let p'* = p’ and i := i + 1, goto
Step 1. If there is no such m, terminate.

5.5.2 Implementation and settings

We implemented our method in MATLAB, and adapted a path-based algorithm to solve
Q(p) for a fixed p. Therefore, we used an adapted version of the gradient projection method,
with a quadratic approximation line search (Gentile, 2014; Perederieieva et al., 2015). We
used the built-in linear programming method of MATLAB to solve P(r) rather than P(r).
Here,

P(r) : minrTg sz (g,h) € SN (p),

where S is equivalent to S(9") except that we replace

plg=1v(p) with  pTge[(p)— 6 ¢(p)+ 6],

in which 6 > 0. To solve QP(g, h,r), given (g, h, ), we use the algorithm as described by
Josefsson and Patriksson (2007). In order to apply our algorithm based on sensitivity anal-
ysis, one needs to solve Q(p) with high accuracy. Therefore, we introduced the following
metric to measure accuracy (for simplicity, here assuming d" = 0):

Ace — Zke;c Zpepk 9p ((Cp(f) + p) — min (Cp(f) +p))
Zkelc ZpE'Pk gp(cp(f) +p) ’

and stopped when an accuracy of 10712, or a maximum number of iterations, was achieved.
In the remainder, we assumed § = 5 x 10~% in ]5(7') and used 7 = 0.1 and k = 0.5 in the
backtracking line search.

Two networks are implemented to provide insight into the potential of social routing in
practice. We use the network of Nguyen and Dupuis (1984) (|XC| = 4), with the settings
of Ohazulike et al. (2013) and the demand scenario of the latter paper of 400, 800, 600,
and 200, respectively. To assess performance in larger networks, we used the Sioux Falls
network (Transportation Networks for Research Core Team, 2019), with || = 528. For
the first network the path set is known a priori, in the latter network the path set needs to be
constructed iteratively while solving the bilevel problem. Therefore, we add (if necessary)
the k-shortest paths (k = 2) for each commodity every time we accept the Armijo condition
(5.23). To initialize the path set, we used the path set generated while solving the user
equilibrium and system optimum.

The main computational burden of the presented algorithm - compared to approaches
solving NDPs - is the construction of an approximate Jacobian V ,x(p"), which requires
P(r) and QP(g, h,r) to be solved | P| times for each outer iteration. In particular for dense
networks with many OD pairs this might lead to increasing run times. For example, for the
Sioux Falls network, we ended with about 2050 paths in the path set. Therefore, we limited
the outer iterations to 25. For practical purposes, one might relieve the computation time by
aggregating zones.
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Figure 5.2: Impact varying social demand, acceptable travel time difference ¢, and com-
pliance rate o with respect to system performance in the Nguyen & Dupuis
network.

5.6 Results and management implications

We explore the potential network impacts of a social routing service adopting the proposed
strategy: we apply the algorithm (Section 5.5.1) to two test networks (see Section 5.5.2).
In Section 5.6.2, we draw some preliminary conclusions about social routing for traffic
management purposes.

5.6.1 Network impact

We provide insight in the potential network efficiency, by assuming varying social trip rates
d®, and acceptable travel time differences €. In these experiments, we assume that only a
portion of the travelers is receptive for advice. Receptive drivers might be unequally dis-
tributed over the network, and, therefore, we consider for each network eight social demand
scenarios. We assume that 25%, 50%, 75% or 100% of the largest OD pairs (in terms
of trips) can be reached or targeted by a social routing service. Furthermore, only a por-
tion of this demand is assumed to comply with the advice, hence we assume d° = ad
(d" = (1 —a)d)) for these OD pairs, with o € {3, 1}. To allow comparison with the unfair
system optimum, we express the OD-pair dependent maximum detour € as a percentage of
the maximum detour needed in the system optimum (for the same OD pair). For each sce-
nario we determine the distribution of social demand over the network by solving problem
(BL).

Figures 5.2 and 5.3 show the performance of the routing service (in terms of total travel
time) for the Nguyen & Dupuis and Sioux Falls network, respectively, under different sce-
narios. In each figure, the upper and lower dashed lines depict the total travel time in user
equilibrium and system optimum, respectively. In general, a larger share of social trips, and
a less equitable (i.e., larger values of ¢€) routing strategy leads to a better performance in
terms of total travel time.

When analyzing the results for the Nguyen & Dupuis network (Figure 5.2), we observe
that the routing strategy is able to approach the performance of the system optimum (Figure
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Figure 5.3: Impact varying social demand, acceptable travel time difference €, and compli-
ance rate o with respect to system performance in the Sioux Falls network.
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Figure 5.4: Cumulative distribution of relative travel time detours compared to the fastest
paths in the Sioux Falls network. Figure 5.4a corresponds to the scenario of
Figure 5.3a with € = 50%, Figure 5.4b corresponds to the demand scenario of
Figure 5.3b with ¢ = 50%.

5.2b). However, targeting the right (amount of) OD pairs is crucial, since we see in Fig-
ure 5.2a almost no travel time improvement with only one OD pair reached. This can be
explained by the minor detour in the system optimum for this OD pair. Further increasing
the social trip rate to 75% and 100% does not substantially change performance and the
corresponding results are therefore not shown. Interestingly, the compliance rate « has only
limited impact on the results.

In the Sioux Falls network, the total travel time improvement is 2.7% compared to the
user equilibrium (Figure 5.3); the system optimum shows an improvement of 3.8%. With a
compliance rate of 50%, the strategy has a maximum improvement of 1.9% in total travel
time. The results with 100% of the OD pairs targeted are comparable to the results as
depicted in Figure 5.3c and therefore not shown. If only 25% of the largest OD pairs can
be targeted by a routing service, improvements drop (Figure 5.3a). Again, we observe only
a minor change in total travel time when OD pairs targeted increase above 50% (compare
Figure 5.3b and 5.3c).
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In Figure 5.4, we depict the cumulative distributions of the detours (in travel time, rel-
ative to the shortest path available) in the resulting states (assuming € = 50%) for the dif-
ferent demand scenarios. We also show the distribution of detours in the system optimum
(SO). We note that in user equilibrium, all travelers take the fastest path (i.e., no detour) -
see (5.2b). Here, we see that - although more than 50% of the drivers receive advice - only
about 12% of the drivers need to take a small detour to obtain 2.4% total travel time im-
provement (Figure 5.4b), i.e., a major share of the social travelers is still advised to take the
shortest route. At the same time, the detours, if advised, are less than 26% worse compared
to the fastest path. For a system-optimal assignment, detours might potentially take 60%
longer. Figure 5.4a shows that here only a very small fraction (2.1% of all trips) of social
trips is needed to obtain already 1% improvement in total travel time.

5.6.2 Management implications

A real-life implementation of a social routing system adopting the proposed strategy re-
quires a travel information service, using, e.g., a smartphone application. Based on the
market penetration rate, (expected) compliance rate, and acceptable travel time differences,
a central system calculates the paths for each user by solving (BL). These paths, provided
to the drivers, are the best possible ones for the traffic system while meeting user constraints
alongside. Based on the results of Section 5.6.1, we provide some preliminary management
implications.

The numerical experiments show that a social routing system is a potential powerful
measure to improve efficiency, and preserve fairness at the same time. Even if a small
portion of travelers can be rerouted onto social routes, the resulting traffic state might show
a major improvement in total travel time compared to the user equilibrium.

We note that the spatial distribution of the social travelers, in combination with the
maximum acceptable travel time difference of users, might highly impact the strategy’s per-
formance. In the experiments, advised detours are usually fairly limited which is expected
to lead to high compliance rates. In addition, travelers can be motivated to take a detour,
e.g., by providing rewards. Obviously, also autonomous vehicles might be routed onto such
paths (Speranza, 2018).

Even for the relatively simple setting we considered in this chapter, finding the opti-
mal solution of the bilevel problem is highly complex. The algorithm as proposed in Sec-
tion 5.5.1 finds an improving solution over the iterations. This procedure is however time-
consuming. Evaluating the potential of the strategy on real-world network instances requires
therefore an alternative procedure. The theoretical analysis and algorithm can nonetheless
be used to assess the quality of faster heuristics that find a good solution of (BL).

An application of the social routing system in real life requires further research. First,
we only considered fairness of the resulting state, but one might also evaluate the inter-
state travel time differences, i.e., before and after implementation of the service (see Jahn
et al., 2005). Second, we used a relatively simple procedure to construct the path set. In
practice, one might consider column generation that further explores the path set while
solving the bilevel problem. Finally, we focused ourselves to the equilibrium state in an
assignment with static demand. Developing a similar routing strategy for the dynamic case
is much more complex, in particular since a range of possible behavioral responses should
be accounted for.
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5.7 Conclusion

In this chapter, we consider a social routing strategy that explicitly accounts for the route
choice behavior of drivers. The routing strategy asks a portion of the travelers to take a
small detour for the system’s benefit. Recent empirical research proved that such a strategy
is implementable in a routing system in real life.

We showed that the best possible routes (with respect to efficiency) to be proposed by
a routing system can be found by solving a bilevel optimization problem that anticipates
the route choice behavior of compliant and non-compliant travelers. We used parametric
analysis to study the behavior of the solution set of the lower-level problem as a function of
the upper-level variable. Under mild conditions, we can efficiently calculate the directional
derivative of the lower-level link flow solution by solving a convex quadratic optimization
problem. A numerical procedure uses this directional derivative to find the paths to be
proposed. The numerical experiments show the potential efficiency gain of such a system
in practice. Indeed, only a small portion of the travelers need to take a fairly limited detour
to achieve a substantial travel time improvement.

This chapter assumed a static setting, but finding the best possible paths to be proposed
to the receptive travelers is already difficult. Nonetheless, the chapter introduces a strategy
(and proves it potential) worth considering for application in a general traffic engineering
context. For instance, in the case of incidents, authorities can particularly apply a similar
routing strategy to mitigate the impact on the network with respect to the total travel time,
but at the same time limit the detour of individual drivers.

5.8 Appendix

Proof of Proposition 2

For a single-valued function f(p) we define, for p° € dom(f) and r, ||r|| = 1,

f-?-(PO‘T) := lim sup f(po +1tr) — f(PO)
7 . t—0+ t

£ (00 r) = liming L) = ()

t—0+ t

)

where f/ (p°;7) = f”(p";7) holds if and only if f’(p%;r) exists.

Proposition 2. The optimal value function v(p) is directionally differentiable at each p° €
Z and in each direction v € RIP|, ||r|| = 1. In fact, v'(p°;r) is the optimal value that
corresponds to a solution of the parametric linear program

P(r): minr’g st g€ S9(p°).

Proof. Assume that p° € Zand r, ||r|| = 1, are given. We first show that v/, (p%;7) < r7¢°
for all g° € S9(p°). Let p(t) := p® + tr with t > 0.



5.8 Appendix 141

Given t, let (¢°,2°) € S(p°) be arbitrary. Then, the following holds:
v(p®) = 20(2°) + (0°)"g°

20(2%) + (") 79" + (0° + 1) 79" = (p° + 1) g"

> v(p® +tr) —tr’gP.

It directly follows that v(p(t)) —v(p®) < trTg° for any g° € S9(p°) and any ¢ > 0. Hence,

/ 0 : T
v ;)< min 71
+(,0 ) ) — 9€59(p0) 9,

for all ¢ > 0. Similarly, we can show that v(p(t)) > v(p°) + trTgt, with g* € S9(p(t)),

M >rTg', gt e S9p(t), t > 0.

By definition of v’ (po; 1), there exists sequence t¥ > 0, v € N, with ¥ — 0, so that

) — tim YOED) =)

V—00 tv -

R L ()

By the (uniform) boundedness of S9(p) and the upper semicontinuity of S9(p) at p°, we
can assume (for a subsequence of V) that g*" — ¢° € S9(p°) and thus

vl (p%r) = rTg" > S rTg.
It follows that
(%) = (%) = V') = min r'g.
Note that for every r, a solution of P(r) exists, and that the corresponding optimal value is
finite and unique. m|

Proof of Theorem 2

This appendix gives the proof of Theorem 2. Therefore, we linearize problem Q(p) around
reference point (p°, 2°), with 2° € S¥(p°). The linearized Lagrange dual problem of Q(p)
(at p¥, 20), with parameter p, is

1(2°) + V(2% (z —2°) - B=0 ¢Ty=0 5.24)
. :

ATB—y—ATAN=—p (g,2) € F,
and we denote the corresponding mapping by
LSKKT(p) = {(gvxa ¢) | (g,-T, ¢) satisfies (524) , Y > 0}

By Assumption 2, LSk x7(p°) = Sk r7(p?) (note that (5.24) are the optimality conditions

for a strictly convex quadratic program), and the solution 20 of the KKT system that corre-

sponds to Q(p) is also the unique solution (with respect to x) of the KKT system (5.24).
Before we continue, we state a classic result of Mangasarian and Shiau (1987).
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Theorem A (Mangasarian and Shiau (1987)). Let the multifunction F(€) be defined as
F(e) ={z e R™ | Ax < Cye, Bx < Cge},

with matrices A, B,Ca,Cp. Let €°, &' € dom(F). Then, there is some constant K > 0 so
that for each 2° € F(£9) exists 2 € F(e') so that

lz* = 2°|| < Klle* = €°].

Theorem 2. Let Assumption 2 hold at x°, the multifunction Sk k1 (p) is upper Lipschitz
continuous at p°.

Proof. We decompose the set LSk 7 (p) into a finite number of smaller subsets. For each
T C P, consider (with parameter p)

1(2°) + V(2% (z —2%) - B=0 g,=0,peZ
AT —~—ATX=—p (g,2) € F (5.25)
Yp :0,p§éz,

with corresponding mapping

LSE kr(p) == {(9,7,9) | (9,7, ¢) satisfies (5.25),7 > 0}.

It is trivial that, for any p,

LSkrr(p) = U LSk k7 (p)-
ICP

Notice that only a finite number of LSZ ,..-(p) can occur. Also, for any (g°, 2°, ¢°) €
LSk k1(p) there is a corresponding Z C P so that (¢°, 2%, ¢°) € LSE 11 (p). LSE o1 (p)
is a Lipschitz continuous multivalued mapping (with parameter p) relative to its domain
dom(LS% .7) (see Theorem A).

The remainder of this proof consists of two parts. First, we show that LSk k7 (p) is
upper Lipschitz continuous at p°. Then, we use this result to prove the claim of the theorem.

LSk xr(p) is upper Lipschitz continuous at p°.
Let p¥ be given, we prove that there exists & > 0 so that for any Z C P

p! € dom(LSkgr) : [t = p°ll < 8 = p° € dom(LSE k)

holds. Otherwise, there would exists a sequence p! — p°, with p! € dom(LSZ ,...) but
p° ¢ dom(LS% ). This contradicts that the domain is closed. Indeed, dom(LS% 1) can
be considered to be a projection of LSZ ;.»(p) onto the p-space. Since the projection of a
polyhedron is a polyhedron, dom(LSZ ,..) is closed.

Let p! be so that [|p! — p°|| < §. Let 2! := (¢!, 2%, ¢') € LSkxr(p*). Obviously,
then there exists Z C P, Z = Z(z1). so that 2! € LSEL .- (p1).
Since LSZ ;. (p) is a Lipschitz continuous multifunction for any p in its domain, there
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exists z2° € LSE ;.1 (p°) so that
I = 2l < K[lp" = o]

for some Lipschitz constant K > 0, K = K(Z). Note that there are only finitely many
Z. So, we can put K = maxzcp K(Z). Since the choice of 2! was arbitrary and 2° €
LSk rr(p?), the claim follows.

Sk (p) is upper Lipschitz continuous at p°.
We use arguments from Robinson (1982) in the remainder of the proof.
We make the following observations:

1. LSk x7(p) is upper Lipschitz continuous at p°, i.e., exists 6* > 0 and K > 0 so that
LSkxr(p) € LSkxr(p’) + Klp — p°|IB, for all p € U1 (p°);

2. S%(p) is in particular upper semicontinuous at p° (see Theorem 1): for any 7 > 0
exists 62 > 0 so that

S%(p) C S*(p") + 7B, for all p € Us2(p");

3. I(z) ((ATi(z)) is continuously differentiable at 2°, i.e., for any n > 0 exists a corre-
sponding § > 0 so that

|AT (1(x') = 1(2°) = Vo1 ()T (2 = 29))|| < ||zt =20, for all 2! € Ugs (2).

Choose 7 < min{%, 5=}, 7 < min{é*, 6°}, and p* so that |[p! — p°|| < min{34', 62}
Pick an arbitrary 2! € Sk xr(p'). Then

2t € LSkrr(pt +¢Y),  with ¢t =AT((ah) —U(2°) = V,l(2%)T (2! — 7)),

and choose z° € LSk (p?) so that |21 — 29|| is minimized.
From observation 2 and ||p! — p°|| < 62 one should notice that ||z — 2°| < 7 < §2.
From observation 3 and ||z — 2°|| < &%, we arrive at [|(?|| < 3|2 — 2°||. Then

1 1
I+ =l < ot = "l + IICH] < 50" + 50" =o',

since ||zt — 20| < 7 < 8. So, p* + ¢ € Usi (p°).
Observation 1 tells us the following:

Iz =2 < Klp" +¢' =00
< Klp" = p°| + K|I¢*

1
< Kllp' = )| + K5 flat = o)

1
< Kllp' =l + K ll2t = 2|

where the third inequality is the result of [|C*|| < n|z! — 2°|| with n < k.



144 5 Improving the performance of a traffic system by fair rerouting of travelers

Hence ||z! — 2% < 2K]||p! — p°||. Since 2! € Skxr(p') was chosen arbitrarily, and
20 € LSkrr(p°) = 2° € Sk xr(p®) by Assumption 2, the claim of the proof follows. O



Chapter 6

Conclusion

In this thesis, we investigated the variability in urban traffic systems on various scales. We
mainly focused on the variations in traffic volumes measured near signalized intersections.
Variations in the order of seconds typically reflect fluctuations in arrivals and departures,
while the variations on timescales longer than 5-15min are often used to characterize chang-
ing traffic conditions.

Aggregated urban traffic volumes or counts are usually studied using 24h time se-
ries, and at a single location these time series show systematic differences over various
timescales. A large share of the systematic variations can be expressed using recurrent
but latent temporal patterns, and only a few of these patterns express the within-day and
day-to-day changes in the 24h time series - even when recurrent events occur. Apart from
systematic differences, measurements also exhibit volume-dependent random fluctuations,
introducing an inherent uncertainty to decision-making processes partly based on informa-
tion regarding volumes such as route planning by logistics service providers.

The arrival and departure processes near signalized intersections highly determine the
properties of the random variation. A statistical characterization of recorded arrival events
indicates that arrival processes show a very different structure compared to the typically-
assumed Poisson or renewal processes, mainly due to the periodicities in arrivals introduced
by traffic signal control at upstream intersections. Although these variations show patterns
on a very high resolution, when the aggregation levels of the volume measurements in-
crease, information on the arrival process is lost in that volume noise shows similarities
with random variation from standard renewal processes. In any case, the understanding of
these processes is used to forecast volumes for different prediction horizons while account-
ing for both systematic and random variations. The statistical characterization of the noise is
used, together with the underlying temporal patterns, to provide point and density estimates
of urban traffic volumes 15min to 24h in advance. Such a prediction scheme is valuable
in the context of proactive decision-making processes of different actors utilizing infor-
mation regarding urban traffic, since volume changes may precede travel time and delay
variations. We illustrated an anticipatory decision-making mechanism in the context of the
demand-based traffic management measure social rerouting, where overall traffic network
performance is improved while explicitly accounting for the behavior of users in response
to the measure.

In this chapter, we summarize our conclusions (Section 6.1). Furthermore, we discuss
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implications of our research for practice (Section 6.2), and examine topics for further re-
search in Section 6.3.

6.1 Conclusions and discussion

During different stages of the decision-making processes of LSPs, urban traffic managers
and individual road users, information regarding the conditions throughout the urban traf-
fic system is utilized. These processes benefit from information about the evolution of the
conditions, particularly when accompanied with a dynamic characterization of the uncer-
tainty. Volume measurements of different resolutions collected near signalized intersections
support such predictions and enhance anticipatory and uncertainty-aware decision making.
The research aim of this thesis was therefore as follows: Quantifying and understanding
variations that occur in urban traffic volumes at different spatio-temporal levels. In Section
1.6, we formulated a series of research questions. We discuss our findings with respect to
these questions one by one.

Research question 1: To what degree do 24h urban traffic volume time series show sys-
tematic variations, and how to characterize the random variation in volume measurements?

Traffic volumes measured at regular intervals at a single location show systematic and
thus predictable variability within a day and from day to day. Although within-day and
between-day systematic differences are widely studied in literature in isolation (see Craw-
ford, 2017), there is less known considering the systematic variation in 24h urban traffic vol-
ume time series over time. Indeed, changes in both the shape and height of the time series
occur over the days (Crawford, 2017; Weijermars & Van Berkum, 2005), including devia-
tions relative to the 24h pattern due to events, incidents, etc. In this thesis, we showed that a
large share of the systematic variation is in fact recurrent and exhibits clear volume patterns.
That is, the recurrent variations in the 15min volume measurements can be expressed using
a combination of underlying recurrent temporal patterns (profiles), that due to its periodic
character in theory can be predicted. Various 24h time series look different whereas they
exist of profiles (representing the shape) that are subject to small yet systematic transfor-
mations (shift and scaling) changing from day to day. Longer-term profiles are designed to
express the shape of a volume pattern occurring on a 24h scale, while short-term profiles
represent recurrent deviations on timescales longer than 15min but shorter than 24h. Using
two years of volume data collected at almost every signalized intersection throughout the
Enschede traffic network, we showed that only a few recurrent and physically-meaningful
profiles with natural transformations express almost all systematic variations at a point in
the network, indicated by the fact that only weak serial correlation is left in the remain-
ing residuals. Hence, 24h volume time series show a high degree of systematic variation -
even in the case of events with various starting times - only revealed when simultaneously
assessing the variability over various timescales.

Apart from systematic variations, many fluctuations in the volume time series in the
order of several minutes can be considered to occur by chance (noise or random variation)
(e.g., Bates et al., 2001; Thomas et al., 2010). A so-called noise level function incorporates
knowledge regarding the noise for a wide variety of conditions. This noise level function
characterizes the stochastic fluctuations around a deterministic volume estimate and pro-
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vides a generic relation between the underlying systematic variations and the variance of
the noise on an aggregated level. Adopting this flexible probabilistic framework allows
for a full density characterization of the random variation under all conditions. Since an
inferred noise level depends on the systematic volumes and vice versa, a joint estimate pro-
cedure is required and designed. It was estimated that on a network-wide level the variance
of the noise is linearly dependent on the underlying systematic 15min volume with slight
overdispersion compared to Poisson noise. In fact, the noise distribution widens when vol-
umes grow and decision making occurs in an increasingly uncertain environment when road
usage increases.

Research question 2: What is the influence of the arrival processes near signalized in-
tersections on the variations in urban volumes and delays?

A major share of the variability in travel times in urban networks is determined by delays
induced at signalized intersections. An understanding of the delay-contributing factors is re-
quired for decision-making processes explicitly anticipating the evolution and the accumu-
lation of (uncertainty in) delays under various conditions. Although numerous studies have
been conducted to model the operations at such intersections, many prefer a mathematically-
tractable arrival process over a realistic one. Yet, the structure of the stochastic arrival
process should be accurately captured to estimate the delays and the uncertainty therein.
Using millions of arrival events collected throughout the Enschede traffic network, theo-
retical stochastic arrival models are challenged by studying arrivals on different scales. In
fact, urban arrival events can be characterized as a sequence of inter-arrival times and as
a continuous-time counting process, and analyzed using both a time-domain as well as a
frequency-domain approach. The combination of characterizations assesses the burst and
memory structure of arrivals, thereby accounting for short-term periodicities related to up-
stream signals, the formation of platoons, and the changing structure as traffic proceeds.

The systematic variability in network usage provides an indication for the time-varying
arrival rate (see Chapter 2 and 4). At the same time, stochastic fluctuations around this
estimate occur. These natural yet random variations show volume and location-invariant
properties in that on a 10min scale the variability is well captured using a heteroscedastic
Gaussian distribution with limited overdispersion compared to Poisson noise. Hence, the
typically used aggregation scales can be considered stable in the sense that locations and
conditions are easily compared without explicit consideration of the local dynamics. Using
shorter aggregation intervals than 5min in this context, however, is delicate since volume
measurements collected near but downstream of a signalized intersection may show sub-
stantial overdispersion even under stationary demand conditions. Nonetheless, in this case,
significant changes in arrival processes can be recognized using the second-order properties
of the counts.

Although the 10min stationary volume measurements at a fixed point in the network
show similarities with the counts resulting from a Poisson arrival or renewal process, the
latter processes fail to reflect the structure in the stochastic inter-arrival times on shorter
timescales. When considering individual inter-arrival times by statistically characterizing
these intervals in an urban setting, there is a higher probability of medium and high inter-
arrival times. This excess probability (compared to headway distributions for freeway traf-
fic) is introduced by traffic signal phase times, and statistically reflects a combination of
variable red times and the inter-dependencies with arrival events upstream. In addition,
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consecutive inter-arrival times turn out to show (weak) correlations — but this effect accu-
mulates to a significant level when examining a multitude of vehicles.

When looking at the arrivals as a point process in time, clear periodicities appear at some
measurement locations close to an upstream signalized intersection. These periodicites were
shown to correspond to the cycle times of the traffic signal upstream and can significantly
influence the dispersion index. Using Bartlett’s spectrum, the dominant frequencies are
easily recognized. Such periodicities tend to persist over long distances when volumes
grow. For uninterrupted processes, the power spectrum is smooth, and the count dispersion
index is a much smoother function of the aggregation level.

Although empirical data regarding delays or speeds were not available in our case, the
structure of arrival processes as revealed in Chapter 3 were shown to influence delays in
a simulation environment with vehicle-actuated control settings. Indeed, the distribution
of delays differs systematically when comparing a real-world mirroring arrival process
with the mathematically-tractable Poisson process. Particularly in low volume situations,
both the mean as well as the variability in the delays are overestimated using iid exponen-
tially distributed inter-arrival times. Real-world arrivals contain predictive behavior in that
conditioning on an arrival event provides additional information about near-future events.
Nonetheless, it is complex to accurately capture the structure of the arrivals since regular-
ities appear on many different scales. In any case, failing to capture this structure for the
benefit of tractability can underestimate the variations in delays and volumes and thereby
have serious implications for tactical and operational decisions.

Research question 3: To what degree can the systematic variations be predicted, and
how can the characterization of the random variation be used to provide probabilistic vol-
ume forecasts over various timescales?

Systematic variations are the patterns in the measurements, and is the only part of the
variability that can be predicted. The presence of noise, however, makes that the realization
of a volume measurement cannot be predicted exactly, i.e., many fluctuations occur by
chance. Predictions should only capture the systematic changes, but uncertainty remains
an integral part due to the stochastic setting. As such, the amount of random variation
provides a lower bound regarding the predictability of urban traffic volumes. The quality
of the predictions needs to be assessed relative to the predictability of the system — and the
difference is the true systematic prediction error. This prediction error can be expressed
using a relative error based on the point prediction or by using a coverage difference. The
latter indicator expresses the deviation between expected and true coverage of a density
forecast. It is important to evaluate densities as a whole to prevent overfitting to a single
confidence level (Diebold et al., 1998; Khosravi et al., 2011), e.g., by adopting the absolute
coverage difference or the pinball loss function (see Chapter 4).

Not all systematic variations can be predicted a long time in advance using straight-
forward exogenous variables only (e.g., time of day, day of the week), but many of the
variations can be well predicted in a statistical sense, i.e., residuals compared to an initial
forecast based on basic exogenous variables were shown to be highly correlated. Hence, a
large share of these differences are systematic on timescales longer than 15min. A predic-
tion scheme accounting for such regularities can be used as an indicator for the predictability
of the systematic variations over various timescales. In this thesis, longer-term variations in
the order of multiple hours are captured in a 24h forecast providing a prediction for a full
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day before the start of the day and a remaining-day prediction that gives at any time of day
a forecast for the volumes during the remainder of the day. Short-term predictions cover the
next 15min to 1.5h.

Considering the 15min predictions, we found a point prediction error of 10 — 15%,
suggesting that systematic variations can be predicted to a high degree. A large share of
the variation was possible to predict well in advance, at the beginning of the day when ac-
counting for the day-dependent characteristics. Interestingly, predictions are substantially
improved over the course of the day, but short-term forecasts only provide a minor improve-
ment compared to the remaining-day prediction. That is, many variations in the 15min
volume measurements are systematic over timescales in the order of hours. The density
forecasts naturally resulting from an estimate of the random variation and the point predic-
tion error are accurate and show an absolute coverage difference of about 2 — 3%. Hence,
not only the deterministic yet systematic volumes can be predicted, but also the stochastic
fluctuations that occur around estimates (subway uncertainties) are predictable over various
timescales.

Compared to the mean prediction error, urban traffic counts during the night and week-
ends are more difficult to predict but are characterized by very low volumes. Systematic pre-
diction errors also increase when considering higher urban roads, for which spatial rather
than temporal correlations appear - to be used as input to improve the 15min predictions
(see, e.g., Ermagun et al., 2017). In addition, volume variations due to football matches
relative to the 24h pattern show a high degree of regularity and can be predicted well in
advance. However, when deviations compared to the short-term pattern are recognized,
adaptation is difficult since only a few measurements are available to adapt the prediction in
a robust manner.

Probabilistic forecasts in the form of predictive densities quantify the remaining uncer-
tainty accompanying a prediction. A perfect prediction method forecasts only the systematic
volumes, and the predictive density then accurately accounts for the random yet natural fluc-
tuations that are unpredictable. In practice, however, not only the random variation in the
counts is part of the uncertainty. Also the systematic prediction error and limitations and
errors of measurements are part of the uncertainty and should therefore be incorporated in
probabilistic forecasts. In theory, the systematic error can be reduced and has a significant
impact on the width of the distribution.

Research question 4: What is the potential of anticipatory urban traffic management, in
particular a social rerouting strategy, while accounting for different user requirements?

A social rerouting strategy improves overall network efficiency by advising socially-
beneficial routes to users but needs to explicitly account for the response of travelers to
advice. In fact, only some drivers can be assumed to receive and comply with advice that
reroutes them onto possibly sub-optimal routes for themselves. Here, behavioral responses
influence travel times and should thus be anticipated to advise routes that are acceptable.
However, behavioral changes occur from travelers complying with advice but also from
those that do not comply but are now confronted with changing conditions on routes as a
result of changing behavior of others. Although empirical research has shown that social
routing has great potential in real life, there are theoretical challenges to be addressed be-
fore a real-world implementation of a service providing social route advice. Under minor
assumptions, a bilevel optimization problem can be formulated that implicitly calculates
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the best possible paths (from a system’s perspective) to be proposed to receptive travelers
(those that use and comply with advice) and limits the realized travel time differences in the
resulting state.

A critical issue in solving the bilevel problem is that the lower-level optimal solution
is non-unique. Nonetheless, the directional derivative of the lower-level link flow exists.
This generalized derivative can be efficiently found as a solution of a quadratic optimization
problem but requires a suitable route flow solution as parameter which can be found using
an auxiliary linear program. Even in a static setting the bilevel problem is difficult to solve
in general. This becomes even more pressing in a dynamic environment since a range of
feedback effects needs to be anticipated - further increasing the complexity.

Numerical experiments show the potential efficiency gain of a social rerouting system
in practice and only a small portion of the drivers need to take a fairly limited detour to
achieve a substantial travel time improvement overall. Experiments in the numerical Sioux-
Falls network show that if the right origin-destination pairs are targeted by a routing service
that accounts for user requirements by limiting the maximum a posteriori travel time detour,
2.7% improvement compared to the user equilibrium can be obtained. If only about 12% of
the drivers take a fairly small detour of at most 20% compared to fastest path, 2.4% travel
time improvement is obtained. The system optimum, not accounting for user requirements
by rerouting travelers onto routes that might take 60% longer than the fastest path, shows
an improvement of 3.8%. With a compliance rate of 50%, the strategy has a maximum
improvement of 1.9% in total travel time. Hence, anticipatory management systems are
a potential powerful measure to improve efficiency while anticipating user responses and
therefore worth to be considered in a general traffic engineering context.

Summarizing, traffic volume time series support LOS predictions and show systematic
and random differences over time and space. A substantial share of the temporal system-
atic variation in volumes can be predicted hours in advance. At the same time, the random
variation introduces an inherent uncertainty to decision making but needs to be explicitly
anticipated in decision problems to assure robust solutions that perform well under a range
of scenarios. In an urban context, random variation in aggregated measurements mainly
originates from the departure and arrival processes at signalized intersections. These pro-
cesses show much more regularity on a disaggregated scale than one could expect from the
typically used counts. In any case, actors operating in the context of urban traffic potentially
benefit from information regarding the dynamics in LOS during their decision-making pro-
cesses, as illustrated by the improvement in network efficiency using the anticipatory urban
traffic management measure social rerouting.

6.2 Implications for decision making

We discuss implications of the results of this thesis for the decision-making processes of the
actors under consideration: LSPs, urban traffic managers and road users employing ATIS.
LSPs involved in home delivery aim for accurate and robust predictions regarding the
ETA under a range of scenarios with respect to the traffic conditions. However, they de-
sign their route plans usually hours, or even days, in advance (Agatz et al., 2008) while not
all necessary information regarding the evolution of the LOS of the urban traffic system is
available by then. Hence, LSPs are faced with a decision-making process that is charac-
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terized by uncertainty. They use travel time predictions to reduce the uncertainty. Volume
forecasts support such predictions since the counts may show much more variability and
thereby allow the anticipation of travel time changes. In this thesis, we showed that many
of the systematic variations including the stochastic fluctuations in urban traffic volumes
throughout a traffic network can be well predicted - even in the long term. In fact, the re-
current variations and the remaining uncertainty can be predicted using long and short-term
temporal patterns combined with a noise level function, and an estimate of the systematic
error. The information regarding the dynamics at signalized intersections, and with vol-
umes being an indicator for the delays under a variety of conditions, support LSPs in their
offline route planning process. Furthermore, not only an estimate of the temporal evolution
is available, also the accompanying inherent uncertainty can be described. Consequently,
LSPs have at the beginning of the day already quite a good indicator for the variability in
volumes using probabilistic forecasts. Relatively speaking, volumes during the weekend
and the night seem to be more difficult to predict compared to weekdays, and in this sense
LSPs should introduce more flexibility in their plan during these time windows although the
impact on the delays can be expected to be limited. In any case, provided an appropriate
volume-delay function and a framework for the offline routing problem with time-dependent
and stochastic travel times, LSPs can use the developed prediction model to facilitate a shift
towards anticipatory decision making.

Probabilistic forecasts are improved over the day, reducing the relative prediction error
for the remainder of the day. Now, plans can be refined during execution since dispatchers
have not only information regarding the recorded travel times of the fleet, but also have
access to partial information regarding the realized volumes throughout the traffic network
and an updated dynamic characterization of the (uncertainty in the) future volumes. With the
largest share of the systematic variations predictable using remaining-day forecasts, LSPs
should aim for plans that have sufficient degrees of freedom for adaptations throughout the
day using forecasts in the order of hours - even under ‘business-as-usual’ conditions.

Offline route plans, and dynamic adaptations thereof, can also anticipate recurrent events
which show clear patterns in time and space relative to the 24h pattern. Still, a plan must
be re-evaluated based on unexpected disruptions. Significant changes in the volumes can
be rapidly recognized using a noise model, providing a probabilistic characterization of the
random variation over time, useful to filter deviations that are likely to impact operations.
In fact, re-optimization of the route plan at every time epoch is not necessarily required
when the environment remains stable. Re-planning only needs to be executed or triggered
in case a significant deviation from what was expected occurs. A framework for this kind
of decision making is considered by Bijl (2016).

Urban traffic managers concerned with decision making on longer temporal scales can
employ the profiles that explain almost all intra-day and between-day volume variations
to capture trends and thereby find projections about future volumes as input for a junction
design process. Also on shorter timescales, typical volume patterns can be extracted from
current data sources and serve as an input for policy evaluation and adaptation. If external
factors are additionally incorporated, the profiles support policy making since the underly-
ing volume-contributing factors over various timescales can be investigated independently
rather than by studying the noisy measurements as such.

Not only typical 24h patterns exist, also recurrent events are shown to have a high degree
of regularity. In this thesis, we illustrated this using football matches. Although these
matches occur on different days and have varying kick-off times, the location-dependent
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impacts on volumes were shown to be comparable — provided one accounts for variable
starting times. Hence, these typical patterns support traffic managers in equipping them
with quantitative evidence for anticipatory event-based management measures (see CROW,
2008), e.g., event-dependent traffic light control settings. Considering the variations on
timescales in the order of 5-15 minutes, it is difficult to adapt predictions in case the event-
based impact substantially deviates from what was expected in advance. Indeed, (one-
off) events might cover only a limited timescale meaning that only a few measurements
are available to update forecasts. Nevertheless, using the generic noise-level model, these
type of deviations and other disruptions such as incidents and accidents can be recognized
in a timely manner although future impact projections remain difficult without additional
information.

A substantial share of the variation in volume time series in the order of 5-15min can
be considered random. We can model this noise as being distributed according to a het-
eroscedastic Gaussian, with the variance as an increasing function of the underlying sys-
tematic flow. Specifically, the random variation shows slight overdispersion compared to
Poisson noise and the absolute amount of noise increases when volumes grow. For monitor-
ing and decision-making purposes, this complicates issues since actual changes in the condi-
tions could be confused with a random fluctuation. In fact, in particular under high-volume
conditions, monitoring is important and management measures might need to be deployed
to prevent congestion or to mitigate its negative impact. Hence, the increasing amount of
noise when volumes grow makes that decision making occurs with additional uncertainty
under high-volume occasions. At the same time, the systematic error of high-volume situa-
tions in an urban setting decreases in the relative sense, i.e., one can quite accurately cover
the density function of such conditions, and are in that sense well predictable.

In the context of traffic control of a corridor with a series of signalized intersections,
anticipatory decisions require very short-term predictions regarding the actual arrivals of
all vehicles. Indeed, to minimize consecutive delays, it is beneficial to form platoons of
vehicles that face no stopping delay at a string of consecutive traffic lights (e.g., ‘green
wave’). In an urban setting, arrival events show a high degree of regularity introduced
by upstream interruptions and the formation of platoons. Therefore, arrivals can be pre-
dicted on a very short timescale but a continuous data stream is required to do so. Control
schemes in general can be improved by additionally using predictions of the actual arrival
times of vehicles at all arms rather than the realized arrival times only (as is current practice
with vehicle-actuated traffic signals). Also changes in arrival processes might be recog-
nized using high-resolution information, e.g., the onset of congestion or the occurrence of
incidents. Further, many manuals are still based on relatively old delay estimates based
on theoretically-appealing yet naive arrival processes. Our results suggest that these arrival
processes are highly volume and location dependent, and that corresponding delay estimates
in manuals may need to account for such characteristics as well.

Historically-average conditions do not always provide a reliable estimate of the LOS
for users to make optimal travel decisions (Zhang et al., 2007). Indeed, the largest share
of the systematic volume variation is predictable using remaining-day forecasts in the order
of hours, indicating that the information provided by ATIS as well as the advice by such a
system should be adapted not only on a day-to-day basis but also throughout the day. Rel-
atively speaking, low-volume occasions such as nights and weekends are more difficult to
predict — although the absolute impact on travel times is likely to be small. In any case, vol-
ume information can be incorporated in travel time and speed predictions in particular for
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near-saturated conditions — with speeds and travel times showing little variation compared
to the volumes. In addition, one can quite accurately cover the density function of volumes
over different timescales. Provided that the uncertainty in volumes is used to provide relia-
bility estimates regarding delays and travel times, ATIS can anticipate future uncertainties
and thereby communicate robust ETAs, and dynamically adapt estimates as well as advice
based on newly-arriving measurements.

To allow proactive rather than reactive decision making, short-term predictions of the
network-wide traffic state under all conditions are required. Such forecasts are inherently
difficult - particularly in an urban setting - with the traffic system being complex having
variations in supply and demand on different timescales. Predictions become even more
difficult with limited information regarding traffic management services and incidents in
place. In addition, projected measures of all involved parties need to be included, as well as
the behavioral responses of travelers and operators to those measures (feedback effects). On
a strategic level with limited uncertainty in the predictions, anticipatory traffic management
accounting for user responses can improve overall network performance in terms of total
travel time. For instance, in the case of incidents, authorities can particularly apply a social
rerouting strategy to mitigate the impact on the network with respect to the total travel time,
but at the same time limit the a posteriori detour of individual drivers.

6.3 Topics for further research

In this thesis, we mainly considered variations that occur in the volume measurements.
For many of the actors in the urban traffic domain, variations in volumes are not of direct
interest. In fact, they are mainly concerned with changes that occur in, e.g., travel speeds,
queues, and travel times, as a result of the interaction between demand and supply. Data
regarding volumes support such estimates, particularly under lower-to-medium saturation
levels, but further research is required to accurately capture the interrelations. Moreover,
we mainly focused on local variations rather than network-wide dynamics. For freeways, it
is well-known that adjacent locations in space show clear (cor)relations, and measurements
from neighboring locations can be used to refine predictions. In a complex urban network,
these relations are less trivial since flow does not need to be conserved, e.g., due to on-street
parking. In any case, data from different sources — all with their own uncertainty — can
be used to get a grip on the spatio-temporal variations in a network-wide context. Such
variations are particularly interesting to examine after incidents and accidents, but further
research is required to capture or model volume fluctuations resulting from non-recurrent
events and the accompanying feedback effects.

We have shown that LSPs and ATIS can potentially improve the reliability of their com-
municated ETAs by incorporating volume data and accounting for local supply-based vari-
ations particularly at signalized intersections. Often, private parties do not have access to
volume data as measured by induction loop detectors or other roadside measurement devices
as both the data and equipment are owned by the local road authority. Although recently
significant efforts have been made in practice to change this, in our context, the continuous
exchange of data and information between public and private parties happens infrequently.
Collaboration between parties means that data and information are shared - so that a full
picture arises of the current traffic conditions, making it possible to improve individual ser-
vices. However, far-reaching collaboration of different parties with typically conflicting
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objectives is difficult if there is no benefit for some of the parties involved (Cruijssen et al.,
2007; Hrelja et al., 2018; Van Heeswijk, 2017). Initiation of cooperation in practice there-
fore requires an identification of different collaboration models and the possible benefits for
the individual actors.

In this thesis, we focused on identifying and quantifying sources of uncertainty in urban
traffic conditions in the context of decision-making processes using information systems.
In addition, we considered an anticipatory traffic management service in which drivers are
rerouted onto paths for the system’s benefit. Here, we formulated an optimization problem
and made simplifying assumptions regarding the range of feedback effects. It is particularly
interesting to incorporate the identified uncertainties in decision-making mechanisms and
the associated optimization problems. These problems are often stochastic in nature and aim
to find robust solutions that perform well under a range of scenarios, e.g., by incorporating
an objective function aiming to reduce risk (Rockafellar & Uryasev, 2000) or by anticipating
stochastic feedback effects (Rockafellar & Wets, 2017).
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Summary

Variations in urban traffic

In many urban areas, the traffic network is operating close to capacity. In such networks,
unexpected and small fluctuations in traffic flow can result in a disruption in the level of
service (LOS), e.g., travel speeds, delays and travel times. In fact, accumulated local and
short-term fluctuations pose a serious risk to actors operating in the urban traffic domain
who aim for decisions with stable performance under all conditions. Robust decisions an-
ticipate the uncertainty in the sense that the potential effects of local, yet natural fluctuations
are incorporated during the decision-making process. Albeit the increase in available traffic
data sources, still very little is known about the dynamics and the uncertainty in urban traffic
networks compared to freeways. In this thesis, we therefore investigate urban traffic varia-
tions on different scales and explore the potential of information regarding the variations on
anticipatory decision making.

We distinguish three illustrative actors using urban traffic information during their de-
cision making processes: logistics service providers (LSPs), urban traffic managers, and
individual road users. LSPs concerned with home delivery use, e.g., travel time predictions
with different time horizons to construct robust offline route plans that can be dynamically
refined over time. Urban traffic managers mainly use typical volume patterns based on his-
torical data for policy making and use near real-time data to trigger management scenarios.
Individual road users employ advanced traveler information systems (ATIS), e.g., naviga-
tion devices, to support them in their travel decisions before departure and while being en
route. These decision-making processes benefit from information regarding the develop-
ment of the urban traffic conditions. Estimates about the accompanying dynamics in the
uncertainty are often not considered but are also important for anticipatory decision making
and the limitations thereof. Hence, the inter-relations between the systematic (predictable)
variability in traffic and the uncertainty on various spatio-temporal scales should be under-
stood and quantified.

In this thesis, we use historical data to get a grip on the systematic and random variations
in urban traffic measurements. Since the conditions that occur in an urban network are for a
major share determined by the dynamics near signalized intersections, we particularly focus
on the variations there. Estimates regarding future travel times and delays are typically of
interest for the actors under consideration and traffic volumes (or: flows, counts) throughout
the network are an important source for explaining and predicting driving times and delays.
Urban volume fluctuations are typically monitored and analyzed using measurements in the
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order of minutes but express only a share of the actual variations. Hence, volume fluc-
tuations need to be studied on various scales to not only account for the spatio-temporal
variability in network usage, but also to incorporate the dynamics on a detailed level that
introduce uncertainty on an aggregated scale. Therefore, our research objective is a follows:
Quantifying and understanding variations that occur in urban traffic volumes at different
spatio-temporal levels.

In Chapter 2, we examine urban traffic volume time series that explain a share of the dy-
namics occurring in an urban network. By eye, these time series show clear patterns, many
of which are recurrent and can therefore in principle be predicted. Apart from systematic
variations, a portion of the fluctuations in the measurements shows no pattern and should
therefore not be predicted (noise). For monitoring purposes, it is important to separate the
systematic from the random variability in the volumes to recognize changing conditions in
a situation where high-frequency fluctuations occur in parallel.

24h traffic volume time series show systematic differences within a day and between
days, and time of day and day of week are important predictors for network usage. We
examine the changes in the 24h volume time series over the days, thereby considering the
variability in volumes within the day but also the changing time-of-day volumes over the
days. This simultaneous consideration supports one in revealing trends in the width and
height of the peak and to accurately assess the impact of shorter-term systematic variations
such as events and incidents. In particular the short-term deviations provide valuable in-
formation for management decisions but are more variable in their frequency of occurrence
and the accompanying magnitude.

24h time series at a single point in the network basically consist of a combination of
underlying recurrent temporal patterns or profiles. Distinct time series look different since
they exist of latent profiles that are subject to small transformations changing over time.
Extracting the underlying profiles is a challenging task since the profiles are not known
in advance and the measurements are corrupted by noise. Moreover, what is considered
systematic depends on a priori assumptions regarding the random variation and vice versa.
In any case, many of the systematic variations are recurrent and, therefore, we develop a
neural network architecture that infers long and short-term profiles together with a noise
level estimate. Longer-term profiles express a volume shape occurring on a 24h scale, while
short-term profiles represent the systematic differences compared to an underlying intra-day
pattern. The random variation is captured using a so-called noise level function, expressing
the probabilistic character of the fluctuations around a deterministic systematic pattern. The
generic relation between the variance of the random variation and the underlying pattern
allows for a full density characterization of the natural stochastic fluctuations.

Using two years of volume data collected throughout the Enschede traffic network, we
show that only a few recurrent and physically-meaningful profiles are needed to express
almost all systematic variations. Hence, 24h volume time series show a high degree of sys-
tematic variability - even in the case of events with variable starting times - only revealed
when assessing variations over various timescales. It was estimated that the variance of the
noise is linearly-dependent on the underlying systemic volume with slight overdispersion
compared to Poisson noise. In fact, the noise distribution widens when volumes grow and
decision making occurs in an increasingly uncertain environment when network usage in-
creases.
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In Chapter 3, we study urban arrival processes at signalized intersections. In fact, a
large share of the fluctuations in the delays at signalized intersections can be traced back
to the arrivals of vehicles at the approaches. Because of the importance of the dynamics
in the delays for decision makers, there is a range of models and simulation methods that
aim to capture the interactions at intersections. We use millions of recorded arrival events
to statistically characterize arrival patterns and thereby assess the empirical consistency of
the existing models.

Changes in the arrival patterns on a fixed location can be measured on different temporal
scales. The underlying demand or arrival rate is assumed to be slowly varying and to change
on timescales exceeding 5-10 minutes. Very short-term fluctuations, in the order of tenths of
seconds, describe the stochastic (random) fluctuations in the actual arrival events. However,
the two timescales are related and the point process describing the random occurrences of
events over time is typically aggregated for monitoring and prediction purposes. Although
on a 10min level arrival volumes show strong similarities with a Poisson or a renewal pro-
cess, the latter processes fail to reflect the true structure in the arrivals. In fact, a stochastic
arrival model in an urban setting should capture the non-stationarity in the demand over
time and space, the marginal distribution of inter-arrival times accounting for both physical
interactions as well as excess probabilities due to traffic signal control, and the periodicities
in the arrival events because of upstream interruptions and platoon formation. In general,
arrivals show bursts: periods with many arrivals alternate with periods in which no arrivals
occur.

We develop a statistical framework to study arrivals as both a sequence of inter-arrival
times as well as a counting process using a time-domain and a frequency-domain approach.
When considering the distribution of the inter-arrival times, there is an excess probability
of medium and high inter-arrival times, introduced by traffic lights upstream, statistically
reflecting a combination of variable cycle times and the interaction with arrival events up-
stream. While consecutive inter-arrival times show only a weak serial correlation coeffi-
cient, this effect accumulates to a significant level when looking at a multitude of vehicles.
The Bartlett power spectrum corresponding to the sequence of arrival events reveals dom-
inant frequencies corresponding to the periodicities in the traffic signal cycles upstream.
These dominant frequencies introduce dispersion in the counts using lower aggregation lev-
els. Nonetheless, different arrival processes are indistinguishable when aggregation levels
increase beyond 4-5min.

In a simulation setting, real-world mirroring arrival processes were shown to influence
the variability in delays compared to the Poisson process. With vehicle-actuated traffic sig-
nal control, delay estimates obtained using a Poisson process overestimate both the mean as
well as the variability in the delay particularly under lower volume occasions. The regular-
ity in the real-world arrivals can be used to optimize vehicle-actuated signal control settings
since arrivals contain predictive information about future events - in some cases even up
to minutes in advance. In any case, not accounting for the interrupted characteristics of
urban arrivals for the benefit of tractability overestimates the variations in delays while un-
derestimating variations in volumes in the short-term, and thereby impacts decision-making
processes.

Volume predictions support the decision-making processes of the considered actors.
Many decisions of the actors operating in the traffic domain face decision problems charac-
terized by uncertainty covering longer timescales, conflicting with the fact that most existing
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prediction methods consider short-term point forecasts. Therefore we develop in Chapter 4
a volume forecasting methods that (i) offers reliable forecasts for different urban network
conditions, (ii) provides predictions for both the long and short term and (iii) incorporates
uncertainty in predictions in the form of probabilistic forecasts.

Traffic volume time series were shown to have a high degree of regularity, which can
be well-expressed using latent profiles of different temporal scales. We use these flexible
profiles for our prediction method since almost all systematic variability within a day and
between days can be explained by using a few profiles. We constructed a prediction method
to forecast systematic variations. The 24h forecast provides a prediction for a full day be-
fore the start of the day and the remaining-day prediction gives at any time of day a forecast
for the volumes for the remainder of the day. Short-term predictions cover the next 15min
to 1.5h. Since not all systematic variations can be expressed using basic exogenous vari-
ables only, we update initial forecasts based on the systematic differences in the residuals
over various timescales. The inferred noise-level function is used to construct full density
forecasts and to update the prediction based on the error of previous predictions relative to
the inherent variability. Updating the prediction is rather difficult since noise makes it dif-
ficult to recognize changing conditions. Therefore, we apply smoothing by means of error
aggregation and state-space filtering.

The quality of predictions is tested relative to the predictability of the system - and this
difference is the true prediction error. The prediction error is expressed using a relative error
based on the point prediction and using the coverage difference - reflecting the difference
between the expected and true coverage of a density forecast. Considering 15min predic-
tions, we found a point prediction error of 10- 15% suggesting that systematic variations
for a major share can be predicted. A large share of these variations was actually possible
to predict well in advance, at the beginning of the day when accounting for day-dependent
characteristics. Although predictions are improved over the course of the day, many vari-
ations are systematic over timescales longer than hours. The density forecasts anticipating
natural fluctuations are accurate and have an absolute coverage difference of 2-3%.

Traffic management measures such as rerouting under higher penetration levels suffer
from feedback effects in the sense that current decisions influence future developments.
Forecasts need to anticipate the emergent behavior of travelers so that intended outcomes
are achieved. In Chapter 5, we investigate the potential and complexity of anticipatory
traffic management by means of a social rerouting strategy.

Various traffic management measures have been proposed to reroute drivers towards
socially desired paths. The main goal of these measures is to achieve the system optimum:
the traffic state with minimum total travel time. The behavioral response to route advice
needs to be anticipated since drivers are likely to ignore advice if the strategy reroutes
them onto substantially longer paths for the system’s benefit. In essence, any social routing
strategy should anticipate user responses and persuade travelers to comply with socially
oriented advice.

We propose a social routing strategy that explicitly anticipates the behavioral responses
to a routing service so that an upper bound on the realized detour can be guaranteed. Com-
pliance can be expected to be much higher when the advised route is only slightly longer
than the shortest route. However, the realized travel time depends on the responses with
respect to route choice that may occur from travelers that comply with the advice but also
from those that do not comply but are now confronted with altered travel times on routes
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because of behavioral changes by others.

The developed social routing strategy steers the traffic network towards an efficient but
also fair, and therefore achievable and maintainable, traffic state. We show that the best
possible paths with explicit a posteriori detour bounds to be proposed by a social routing
service can be found by solving a bilevel optimization problem. A critical issue in solving
the bilevel problem is that the lower-level optimal solution is not unique. We use techniques
from parametric optimization to show that the directional derivative of the lower-level link
flow nonetheless exists. This generalized derivative is used in a descent method and can be
efficiently found as a solution of a quadratic optimization problem but requires a suitable
route flow solution as parameter.

Numerical experiments show that a social routing system is a potential powerful mea-
sure to improve efficiency and preserve fairness at the same time. Even if only a small
portion of travelers can be rerouted onto social routes, the resulting traffic state shows a ma-
jor improvement in total travel time compared to the user equilibrium. In fact, only about
12% of the drivers need to take a small detour to obtain 2.4% of the maximum-possible
3.8% total travel time improvement.

Summarizing, in this thesis, we studied urban traffic volume variations on different
scales. Although aggregated volume measurements show systematic variations over time
and space, a substantial portion of the highly variable volume time series can be considered
to occur by chance. Where a large share of the systematic variation is predictable, typi-
cally hours in advance, the noise induces an inherent and inevitable uncertainty to decision
making. The random variation in aggregated volumes is highly related to fluctuations in the
underlying departure and arrival events at signalized intersections, which show much more
regularity than can be expected from the variability in the counts. Robust decisions can an-
ticipate the variability in volumes using probabilistic forecasts and our findings substantiate
the potential of anticipatory decision-making in the context of urban traffic management.






Samenvatting

Variaties in stedelijk verkeer

In veel stedelijke verkeersnetwerken is de capaciteit niet toereikend om aan de verkeers-
vraag te blijven voldoen. Een kleine verandering in de intensiteit kan dan een significante
verstoring in level of service (LOS) veroorzaken, normaliter uitgedrukt in termen van snel-
heden, vertragingen of reistijden. Een opeenstapeling van opeenvolgende maar kleine en
lokale fluctuaties in LOS vormt een risico voor de actoren die zich in het verkeersdomein
begeven. Immers, zij verlangen naar een betrouwbare dienstverlening ongeacht de verkeers-
situatie. Een robuust beslismechanisme anticipeert daarom op de inherente onzekerheid van
het verkeerssysteem. Echter, in vergelijking met snelwegen en ondanks een toename van
het aantal databronnen in dit domein, is er nog relatief weinig bekend over de dynamiek
en de onzekerheid in het stedelijke verkeersnetwerk. Dit proefschrift bestudeert variaties
in stedelijk verkeer en verkent de potenti€le bijdrage van informatie over deze variaties aan
het nemen van beslissingen die anticiperen op de dynamiek en onzekerheid van het stedelijk
verkeer.

Dit werk identificeert drie illustratieve actoren die potentieel gebruik maken van stede-
lijke verkeersinformatie: logistieke dienstverleners, stedelijke verkeersmanagers en indivi-
duele weggebruikers. Logistieke dienstverleners die producten aan huis leveren gebruiken
bijvoorbeeld reistijdvoorspellingen met verschillende tijdshorizonten voor hun offline trans-
port plan die gedurende de uitvoering aangepast kan worden. Stedelijke verkeersmanagers
maken veelal gebruik van intensiteitspatronen voor het ontwikkelen van beleid, en gebrui-
ken real-time data voor het uitvoeren van vooraf gespecificeerde verkeersmanagementsce-
nario’s, bijvoorbeeld in het geval van incidenten. Veel individuele weggebruikers hebben
tegenwoordig toegang tot advanced traveler information systems (ATIS), bijvoorbeeld na-
vigatiesystemen, ter ondersteuning van hun routekeuze - zowel voor vertrek als onderweg.
Alhoewel in al deze beslisprocessen informatie over de variaties in de verkeerssituatie wordt
meegenomen, is er maar zelden aandacht voor de onzekerheid op het moment van beslis-
sen. Echter, de mate van onzekerheid dient te worden meegenomen indien men robuuste
beslissingen wil nemen. Dit werk richt zich daarom op het verklaren en kwantificeren van
de systematiek in de variabiliteit van stedelijk verkeer en de dynamiek in de bijbehorende
onzekerheid.

In dit proefschrift gebruiken we historische data om een beter beeld te krijgen van de
systematische en willekeurige (random) variaties in stedelijk verkeer. Er is in het bijzonder
aandacht voor de dynamiek nabij geregelde kruispunten aangezien de afwikkeling in het
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stedelijke netwerk grootendeels door verkeersregelinstallaties (VRI’s) wordt bepaald. Al-
hoewel de geidentificeerde actoren met name zijn geinteresseerd in voorspellingen betref-
fende reistijden en vertragingen, kunnen variabiliteit en onzekerheid hierin deels verklaard
worden door de variatie in intensiteiten, en daarom bestuderen we voornamelijk intensi-
teitsgegevens. Intensiteiten worden vaak geaggregeerd tot een resolutie van enkele minuten
waarmee een deel van de informatie potentieel verloren gaat. Waar een resolutie van enkele
minuten voldoende is om de variatie in netwerkgebruik te beschrijven, is een veel gedetail-
leerder niveau benodigd om de dynamiek op lokaal niveau te begrijpen. Het onderzoeksdoel
is daarom op verschillende spatiéle en temporele resoluties variaties in stedelijke verkeers-
intensiteiten te kwantificeren en te begrijpen.

Hoofdstuk 2 beschouwt de variaties in tijdreeksen met verkeersintensiteiten. Deze tijd-
reeksen beschrijven een deel van de dynamiek in het stedelijke netwerk en hebben op het
oog duidelijke patronen. Sterker, een groot deel van de patronen is terugkerend en kan
daardoor worden opgenomen in een voorspelmechanisme. Naast de temporele systematiek
in verkeersintensiteiten kan een substantieel deel van de variatie als ruis gekenmerkt wor-
den, die niet te voorspellen is. Voor verkeersmonitoring is het belangrijk om systematische
en random variaties te onderscheiden zodat veranderende situaties tijdig herkend kunnen
worden.

24-uurs tijdreeksen bestaande uit een reeks van 15min intensiteitsmetingen laten een
duidelijke systematiek zien, zowel binnen een dag als tussen de dagen. In beginsel zijn
dag van de week en tijdstip belangrijke voorspellers voor de verkeersintensiteit, maar een
groot deel van de systematische variabiliteit is geleidelijker van aard. Dit werk bestudeert
daarom de variabiliteit in 24-uurs tijdreeksen over de dagen, daarmee rekening houdend met
de veranderingen die optreden in zowel de vorm van de tijdreeks als in het totale volume.
Door meerdere resoluties simultaan te beschouwen, zijn we in staat trends te herkennen,
bijvoorbeeld in de piekintensiteit over de verschillende dagen. Daarnaast kan ook de in-
vloed van evenementen en incidenten op de intensiteit ten opzichte van het 24-uurs patroon
worden beschreven. Deze afwijkingen ten opzichte van het 24-uurs patroon zijn in het bij-
zonder waardevol voor verkeersmanagers, maar laten desalniettemin veel variabiliteit zien
en zijn daardoor in het algemeen moeilijker te voorspellen.

De patronen in intensiteitsmetingen bestaan in wezen uit een combinatie van onder-
liggende (latente) maar terugkerende temporele patronen (profielen). 24-uurs tijdreeksen
van verschillende dagen zien er anders uit omdat ze zijn opgebouwd uit een klein aantal
profielen die onderhevig zijn aan kleine transformaties. Het extraheren van de onderlig-
gende profielen is een uitdagende opgave, aangezien de profielen vooraf niet bekend zijn
en de intensiteitsmetingen zijn aangetast door ruis. Bovendien, wat als systematisch wordt
gekwantificeerd hangt af van a priori aannames met betrekking tot de ruis en vice versa.
In dit proefschrift ontwikkelen we een neural network om korte- en lange-termijnprofielen
te extraheren van de tijdreeksen en om de statistische eigenschappen van de ruis te schat-
ten. Een lange-termijnprofiel beschrijft de vorm van een 24-uurs patroon, terwijl een korte-
termijnprofiel de systematische verschillen ten opzichte van een onderliggend dagpatroon
beschrijft. De random variatie is te karakteriseren middels een ruisniveau-functie, die de
verdeling van ruis als een functie van een deterministisch en systematische intensiteit uit-
drukt. De generieke relatie tussen de variantie in de ruis en het onderliggende patroon maakt
een volledige dichtheidskarakterisering van de natuurlijke stochastische intensiteitsfluctua-
ties mogelijk.
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Voor Hoofdstuk 2 is gebruik gemaakt van verkeersintensiteitsgegevens verzameld in En-
schede. De resultaten na het toepassen van de ontwikkelde methode laten zien dat een paar
terugkerende - en duidelijk interpreteerbare - profielen een groot deel van alle systematische
variabiliteit in de geaggregeerde intensiteitsmetingen verklaart. Over het algemeen laten 24-
uurs tijdreeksen veel systematiek zien, zelfs in het geval van evenementen met variérende
aanvangstijden. De variantie in de ruis is lineair athankelijk van de onderliggende intensi-
teit, met geringe overdispersie ten opzichte van de ruis resulteren van een Poisson proces.
De verdeling van de ruis wordt breder naarmate de intensiteit toeneemt, een indicatie dat de
onzekerheid in besluitvorming groeit naarmate het netwerkgebruik toeneemt.

In Hoofdstuk 3 bestuderen we aankomstprocessen van voertuigen bij geregelde kruis-
punten. Een groot deel van de fluctuaties in de vertragingen is immers terug te voeren op de
aankomsten. Vanwege het belang van de variabiliteit in vertragingen voor de geidentificeerde
actoren is er een reeks aan (wachtrij)modellen beschikbaar die de interactie en de dynamiek
rond kruispunten beschrijft. In dit proefschrift karakteriseren we de aankomsten geregi-
streerd door inductielussen in Enschede, om vervolgens de empirische consistentie van be-
staande modellen te toetsen.

Fluctuaties in het aankomstproces op een vast punt in het netwerk kan men op verschil-
lende resoluties bekijken. Normaalgesproken treden er relatief langzame veranderingen op
in de vraag of in het verwachte aantal aankomsten per tijdseenheid (aankomstintensiteit),
vaak bestudeerd op een resolutie in de orde van 5-10min. Zeer korte-termijnfluctuaties, met
een resolutie in de orde van tienden van seconden, kunnen worden beschreven middels een
stochastisch proces. De twee temporele resoluties zijn fundamenteel aan elkaar gerelateerd.
Desalniettemin, waar op 10min niveau een aankomstproces sterke overeenkomsten vertoont
met een Poisson proces, weerspiegelen vernieuwingsprocessen niet de ware structuur in de
aankomsten. In beginsel dient een stochastisch aankomstmodel namelijk rekening te hou-
den met de niet-stationaire vraag in ruimte en tijd, de verdeling van tussenaankomsttijden,
en de periodiciteiten in de aankomsten als het gevolg van bovenstroomse verstoringen en
pelotonvorming. Als gevolg vertonen aankomstprocessen duidelijke bursts: periodes met
veel aankomsten worden afgewisseld met periodes waarin geen voertuigen aankomen.

We ontwikkelen een statistisch raamwerk om de structuur van de aankomstprocessen
in het tijdsdomein en in het frequentiedomein te analyseren. Dit raamwerk wordt gebruikt
om aankomstprocessen te beschrijven als een opeenvolging van tussenaankomsttijden en
als een telproces. In vergelijking met een typische volgtijdverdeling voor snelwegen laat
de verdeling van tussenaankomsttijden in een stedelijke context een grotere kans op ge-
middelde en lange tussenaankomsttijden zien, voornamelijk geintroduceerd door de VRI’s
stroomopwaarts. Terwijl opeenvolgende tussenaankomsttijden slechts een zwakke corre-
latiecoefficient hebben, accumuleert dit effect tot op een significant niveau als men een
veelvoud aan tussenaankomsttijden bekijkt. Spectraalanalyse van het puntproces laat zien
dat aankomstprocessen een duidelijke periodiciteit kunnen hebben die direct gerelateerd is
aan de fasecycli van de VRI’s bovenstrooms. Als gevolg hiervan laten intensiteitsmetingen
op lagere aggregatieniveaus duidelijke overdispersie zien in vergelijking met ononderbro-
ken aankomstprocessen. Echter, verschillende aankomstprocessen zijn nauwelijks meer te
onderscheiden wanneer de temporele resolutie toeneemt tot meer dan 4-5 minuten.

In een simulatieomgeving wordt aangetoond dat vertragingsschattingen door wachtrij-
modellen worden beinvloed door de aannames met betrekking tot het aankomstproces. In
een situatie met een voertuigafthankelijke verkeersregeling overschat een wachtrijmodel met
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Poisson aankomsten zowel het gemiddelde als de variabiliteit in de vertragingen — in het bij-
zonder met lagere intensiteiten. In beginsel kan de periodiciteit in de aankomsten worden
gebruikt om VRI’s te optimaliseren aangezien aankomsten voorspellende informatie bevat-
ten over toekomstige gebeurtenissen. In elk geval, door rekening te houden met de kenmer-
ken van aankomstprocessen kan men de variabiliteit in intensiteitsmetingen en vertragingen
nauwkeuriger inschatten.

Stedelijke intensiteitsvoorspellingen ondersteunen de besluitvormingsprocessen van de
geidentificeerde actoren. In tegenstelling tot wat veel van de beschikbare voorspelmecha-
nismen aannemen, hebben de actoren te maken met door onzekerheid gekenmerkte beslis-
singsproblemen in de complexe context van het stedelijk verkeer die een langere tijdspe-
riode behelzen. In Hoofdstuk 4 ontwikkelen we daarom een intensiteit-voorspelmethode
voor kansdichteidsvoorspellingen voor meerdere tijdshorizonten en verschillende stedelijke
verkeerssituaties.

Tijdreeksen met intensiteitsmetingen hebben een hoge mate van regulariteit, en de sys-
tematiek in de 24-uurs reeksen kan goed worden uitgedrukt met behulp van latente profielen
met verschillende tijdschalen. We gebruiken deze flexibele profielen voor het voorspelme-
chanisme aangezien vrijwel alle systematische variabiliteit op een dag en tussen de dagen
hiermee kan worden verklaard. De voorspelmethode voorziet in een 24-uurs voorspelling
aan het begin van de dag, een resterende-dag voorspelling gedurende de dag, en een korte-
termijn voorspelling voor het komende anderhalf uur. Omdat niet alle systematische vari-
abiliteit in de intensiteiten kan worden verklaard middels elementaire exogene variabelen,
construeren we eerst een initi€le baseline voorspelling die vervolgens verfijnd wordt op
basis van de systematische fout in de eerdere voorspellingen. De invloed van de ruis op
de voorspellingen wordt beperkt door smoothing en state-space filtering. Het ruisniveau
gecombineerd met de systematische fout wordt gebruikt voor de dichtheidsvoorspellingen,
daarmee rekening houdend met de inherente variabiliteit in intensiteitsmetingen.

De kwaliteit van de voorspellingen wordt uitgedrukt met inachtneming van de onvoor-
spelbaarheid van het verkeerssysteem. Het ruisniveau geeft een ondergrens voor de kwaliteit
van een puntvoorspelling, en het verschil met deze grens is de systematische voorspelfout.
Het verschil tussen de dichtheidsvoorspelling en de kansdichtheid van de ruis wordt daar-
naast gebruikt als foutstatistiek. Het voorspelmechanisme heeft een punt-voorspelfout van
10-15% op 15min niveau, daarmee suggererend dat een substantieel deel van de systema-
tische variaties voorspelbaar is. Het grootste deel van de systematische variabiliteit in de
intensiteitsmetingen kan zefs aan het begin van de dag voorspeld worden. Hoewel de voor-
spellingen in de loop van de dag worden verbeterd, zijn veel variaties systematisch over
grotere tijdschalen dan in de orde van enkele uren. De dichtheidsvoorspellingen anticipe-
rend op de natuurlijke fluctuaties zijn nauwkeurig met een absoluut dekkingsverschil van 2
tot 3%.

Verkeersmanagement, bijvoorbeeld het her-routeren van verkeer, dient in geval van hoge
penetratiegraden rekening te houden met terugkoppeleffecten aangezien een beslissing de
toekomstige verkeerssituatie beinvloedt. Voorspellingen moeten dan anticiperen op de re-
actie van de weggebruikers op de maatregel om ervoor te zorgen dat het beoogde effect
behaald wordt. In Hoofdstuk 5 onderzoeken we de potentie en de complexiteit van antici-
perend verkeersmanagement.

Er bestaan verschillende verkeersmanagementmaatregelen die het systeem optimum als
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doel hebben: een efficiénte verdeling van verkeer over het netwerk met minimale totale
reistijd. Om deze netwerkstaat te bereiken dienen sommige reizigers een omweg te nemen.
Echter, dit route advies wordt waarschijnlijk genegeerd als het reistijdoffer te groot is. So-
ciaal routeadvies-systemen dienen in beginsel dus te anticiperen op het opvolggedrag van
de reizigers.

In dit proefschrift ontwikkelen we een strategie voor sociaal routeadvies waarbij er ex-
pliciet rekening wordt gehouden met het opvolggedrag van reizigers. Naar verwachting zijn
reizigers eerder geneigd om route advies op te volgen als de geadviseerde route slechts iets
langer duurt dan de snelste route. De gerealiseerde reistijd is echter niet alleen afhanke-
lijk van het opvolggedrag, maar ook van andere reizigers die geen advies krijgen maar hun
route aanpassen in reactie op de verandering in reistijd door het opvolggedrag van ande-
ren. De ontwikkelde strategie houdt rekening met deze terugkoppeleffecten en kan daarmee
een maximaal reistijdoffer garanderen. Het optimale advies kan worden bepaald door een
wiskundig bi-level optimalisatieprobleem op te lossen. Een complicerende factor bij het
oplossen van dit probleem is dat de optimale oplossing van het lower-level probleem niet
uniek is. Echter, de richtingsafgeleide van de lower-level link flows bestaat en kan worden
gevonden als een oplossing van een kwadratisch optimalisatieprobleem. Deze richtingsaf-
geleide wordt vervolgens gebruikt in een oplossingsmethode die als doel heeft een lokaal
optimum te vinden.

Numerieke experimenten laten zien dat sociaal routeadvies de potentie heeft de ef-
ficiéntie in het verkeersnetwerk te verbeteren. Zelfs als slechts een fractie van de reizigers
wordt omgeleid naar sociale maar acceptabele routes, zijn de waargenomen netwerkeffecten
significant in termen van totale reistijdverbetering ten opzichte van het gebruikersevenwicht.
Om 2,4% van de maximaal haalbare 3,8% vermindering in totate reistijd te behalen moet
ongeveer 12% van de reizigers een kleine omweg nemen.

Samenvattend, dit proefschrift bestudeert de variaties in stedelijke verkeer op meerdere
temporele en spatiele resoluties. De variatie in intensiteitsmetingen kan worden geclassifi-
ceerd als systematisch of random. Waar een groot deel van de systematiek in de variabiliteit
in de intensiteiten ver vooruit kan worden voorspeld, zorgt de ruis ervoor dat beslismethoden
met betrekking tot stedelijk verkeer een inherente onzekerheid bevatten. Desalniettemin kan
de random variatie in geaggregeerde metingen voor een groot deel worden verklaard door
de aankomst- en vertrekprocessen bij geregelde kruispunten. Anticiperende beslismetho-
den houden expliciet rekening met deze stochastische fluctuaties bijvoorbeeld door gebruik
te maken van probabilistische voorspellingen over verschillende tijdschalen. De resultaten
van dit proefschrift laten zien dat anticiperende beslismethoden in het stedelijk verkeersdo-
mein profijt hebben van voorspellingen van de variaties in the LOS van het verkeerssyteem
inclusief de bijbehorende onzekerheid.
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Summary

Traffic volume time series show patterns on various scales. However, a
substantial portion of the fluctuations in the urban traffic volumes is random
and is related to the arrival processes at signalized intersections. This thesis
investigates the variations in urban traffic and explores the potential of using
forecasts to improve the decision-making processes of logistics service

providers, traffic managers and individual car users.
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