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Abstract

We explore a new method to hide identity information in
a facial image from face recognition (FR) systems, while
only minimally changing the appearance of the image as
perceived by humans. We train a decoder network that re-
verses the mapping of an FR system and use the dissimi-
larity score function of this FR system to teach the decoder
to return images with as little identity information as pos-
sible, while using a visual loss to change the image as lit-
tle as possible visually. We show that these obfuscation at-
tacks are also successful when the FR system is unknown.
We analyse the obfuscated images in latent space and show
that our approach as well as an existing method can be eas-
ily circumvented by applying the same obfuscation method
to the enrolled faces as to the probe images. We suggest an
adaptation that can help prevent this circumvention.

1. Introduction
Facial images uploaded on for example social media may

be “scraped” from the internet by the social media platform
or by other entities such as ClearView AI [7]. If someone
were to upload an image and would like their friends and
family to recognise them, without revealing the identity of
the image to the social media platform owner or other mali-
cious users, they can apply de-identification to their images
before uploading. Such de-identified images are also called
adversarial attacks or identity-obfuscated images. If an ob-
fuscation method is public (e.g. [1]) we show that the obfus-
cation can be easily circumvented by by using a face recog-
nition (FR) system to compare a probe image to a gallery
image and the obfuscated gallery image. Our goal is to hide
identity information from FR systems so that automated,
mass collection of identity information is prevented. At the
same time, we change the visual appearance of the image as
little as possible so that to humans the identity information
seems unchanged.

Our contributions include: a new approach to
appearance-preserving de-identification, analysing the la-

tent space of an FR system to understand the effect of ob-
fuscation, exposing a vulnerability of our and an existing
method, and an approach to make appearance-preserving
de-identification harder to circumvent. We also show that
our obfuscated images are succesful in black-box settings,
i.e. knowing the FR system is not necessary.

2. Related Work
Identity obfuscation of facial images has been achieved

using methods that obfuscate identity of faces in images or
videos by replacing the faces [18], processing the faces [5,
6], blurring or pixelating the face region, etc. [14]. These
methods result in faces that can no longer be recognised by
humans nor by automated FR systems. Some methods to
circumvent pixelation, occlusion etc. have been proposed
as well, showing that the identity obfuscation using these
methods can be reversed [12].

A Generative Adversarial Network (GAN) is used in
Privacy-protecing GAN [20] to hide identity information,
while trying to maintain visual appearance as much as pos-
sible. It focuses on keeping soft biometric information such
as ethnicity, age and gender. AnonymousNet [11] also
changes identity information to achieve de-identification
and introduces metrics that can be used to measure how suc-
cesful de-identification is.

These methods have in common that they can succes-
fully hide identity information, but also visually change the
image so that the identity is no longer visible to humans
either. However, our aim is to only hide identity from auto-
mated FR, not from humans. With such a tool people could
edit their images and still share or upload images to e.g. so-
cial media platforms.

2.1. Optimisation vs. learning

When using deep-learning-based FR systems, we can
use the network gradients to generate images whose em-
beddings in the FR latent space are significantly different
from the original image’s embedding. This can be achieved
using optimisation, in which case an image-specific adver-
sarial perturbation can be computed. Another approach is
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to use learning to train a network that takes an image as in-
put and outputs a de-identified image. The disadvantage of
learning (i.e. training a decoder or other network) over opti-
misation (gradient descent) is that the decoder network has
to learn one model that can de-identify many different im-
ages, while optimisation applies an adversarial perturbation
tailored specifically to one image. On the other hand, the
advantage of learning over optimisation is that there is no
need for retraining or calculating image-specific gradients
every time a new image is de-identified. Furthermore, the
trained network can be shared, so that individuals can apply
it on their own images, without needing to share their orig-
inal images. Both approaches could also be combined [21].

Learning-based de-identification

AdvFaces [3] uses a GAN-based approach to generate sub-
tle perturbations in a face image, both for obfuscation
and impersonation attacks. The resulting images can suc-
cesfully fool several (unseen) state-of-the-art FR systems,
where some systems are fooled more succesfully than oth-
ers. While our approach shares some similarities with Ad-
vFaces used for obfuscation, we focus on preventing re-
versibility of obfuscation and simplify the training by ex-
cluding the GAN element. We compare our approach to
AdvFaces and show that unless obfuscated vs. obfuscated
images are taken into account during training, the obfus-
cation can essentially be bypassed by applying the same
obfuscation technique on both images that are being com-
pared.

Optimisation-based de-identification

An approach based on gradient descent is used in [1] to
hide identities from two (pretrained and frozen) identifica-
tion networks. The Penalized Fast Gradient Value Method
(P-FGVM) is used on a loss function that consists of an
adversarial loss term and a second term that measures the
“realism” of the image. This method was applied on a sub-
set of CelebA that contains 900 images of 30 identities, re-
sulting in images that preserve facial image quality and at
the same time succesfully confuse the identity classifier that
was trained to classify the 30 identities. This as such is not
very useful, since it only enables identity obfuscation for
these 30 identities, and only for the identity classifier trained
specifically for these identities. This approach could poten-
tially be extended so that it can be applied to new identities
as well as other FR systems.

In [17] “cloaks”, which are imperceptible pixel-level
changes, are added to images. If training data is “scraped”
from the internet to train FR models, then such images “poi-
son” the training data. Resulting FR system no longer iden-
tify (uncloaked) images correctly.

Both a universal image perturbation and an image-
specific perturbation are combined in [22] to generate ad-
versarial face images that fool FR systems. Optimisation
is used to maximise the mean distance between the embed-
ding of a probe image and the embedding of an enrolled
image. It is briefly mentioned that adversarial vs. adver-
sarial comparisons are nowhere near as succesful as adver-
sarial vs. original attacks and a solution to this problem is
proposed, which consists of adding a noise vector to the ad-
versarial image embedding before optimising the distance
to the original image embedding.

Figure 1. Visualisation of embeddings in the FR latent space using
T-SNE [8] for dimensionality reduction. Top: using only a simple
latent loss (Eq. 4). Bottom: using an improved loss (Eq. 8). Using
the improved loss leads to less clustering by identity, as well as less
of a separation between normal and identity-obfuscated images.

3. Proposed System

FR systems based on Convolutional Neural Networks
(CNN) take an image as input and return a latent vector that
contains identity information. Embeddings corresponding
to images of the same person are clustered in the FR latent
space (see Fig. 1). Our aim is to adapt the images in such a
way that embeddings are no longer clustered by identity.

Since embeddings in the FR latent space contain infor-
mation essential to a person’s identity, we would like to use
them as input to a Decoder that we train to visually recon-
struct the original facial images. We aim to prevent recogni-
tion of these images by applying appropriate loss functions.
However, since some information such as background or
expression is not relevant to identity, the FR latent embed-
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Figure 2. Original FRGC [13] and obfuscated images under dif-
ferent settings. The autoencoder used for obfuscation consists of
a MobileFaceNet network as the encoder and a decoder that maps
from latent space back to image space. 1: Original images. 2: In-
verting the FR latent space using Lpixel, Lpercept and Llatent. 3: Same
as 2, but adding 4 fully connected layers before applying deconvo-
lutions. 4: Same as 2, but with a supporting Encoder. 5: Same as
4, but including Laux in the loss. 6: Same as 5, but including Lvis

in the loss. All examples are generated using random images from
the validation set.

ding alone is not sufficient to reconstruct a facial image with
sufficient quality. We show in Fig. 2 to what extent faces
can be reconstructed using only the embedding of the FR
system.

To improve the image reconstructions we train a support-
ing encoder network that compresses the image, but whose
latent space also contains information about attributes such
as background, expression, etc. Using both the embedding
of the FR system as well as the embedding of the encoder
as input, we train an improved decoder, see Fig. 3.

Instead of adding a supporting encoder we also tried in-
creasing the complexity of the Decoder network by adding
several fully connected layers before applying deconvolu-
tions to the latent embeddings. If the information in the
latent space is simply too entangled to faithfully reconstruct
images, this would allow the network to first disentangle
this information. While this more complex network did re-
sults in visually improved reconstructions, simply adding a
supporting Encoder network as described above resulted in
reconstructions of far better quality. It is likely possible to
achieve better results using only the FR latent embedding
as input, perhaps by including skip-connections as in U-
Net [15] or reusing information from the latent space at each

x

f

fEnc

(z, zEnc)
g xrecon

x′ x′
recon

✓

Figure 3. Overview of our obfuscation approach. x and x′ are
original images of the same person. On the right the two corre-
sponding reconstructed (i.e. obfuscated) images are shown. x′

recon

was obfuscated in the same way as xrecon. The FR system correctly
matches the two original images, but not the obfuscated images.
Dashed lines represent FR comparisons.

deconvolution as is done in StyleGAN [10]. We choose to
keep our approach more simple, focusing on studying the
effects of obfuscation in latent space to help us understand
how obfuscation can be improved. The losses we suggest
and conclusions drawn in this paper can be applied to ex-
isting methods, or to more complex networks in future re-
search to further improve results.

3.1. Training

Let f denote the FR mapping from image to latent space,
i.e. f(x) = z. Let fEnc be the mapping of the supporting
encoder, i.e. fEnc(x) = zEnc. Furthermore, let g denote the
decoder mapping back to image space. Let d be the dis-
similarity score function used by the FR system to compare
latent embeddings. We train the decoder using the follow-
ing losses

Lpixel = Ex

[
||x− xrecon||22

]
, (1)

Lpercept = Ex

[
||f1(x)− f1(xrecon)||22

]
, (2)

Llatent = Ex [−max(T, d(z, zrecon))] , (3)

where xrecon = g(z, zEnc), zrecon = f(xrecon) and T is an
upper bound on d. The perceptual loss [9] uses the first
hidden layer of the FR system, denoted f1. It has the same
purpose as the pixel loss, which is to faithfully reconstruct
the faces on a visual level.

Since d(z, zrecon) is potentially unbounded we set an up-
per bound T when calculating Llatent. The higher T is set,
the more artifacts appear in the reconstructed images, so we
empirically choose a value for T that is at the lower end
of dissimilarity scores for impostor pairs, since this is suffi-
cient for an obfuscated image to be rejected. The total loss
L is

L = γ1Lpixel + γ2Lpercept + γ3Llatent. (4)

In Fig. 4 and Table 1 we show that while models trained
with this loss function produce obfuscated images that are
very succesful when they are compared to normal images,
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they are much less succesful when obfuscated images are
compared with each other. In the next section we suggest
additions to the loss function to alleviate this.

3.2. Improving Identity Obfuscation

We extend the loss function with the following term

Laux = Ex

[
−max

(
T, d((f(xrecon), f(x

′
recon))

)]
. (5)

Here, xrecon and x′
recon are two obfuscated images of the

same identity. This loss ensures that two images of the same
identity cannot be successfully matched if they are both re-
constructed. The total loss is now the sum of four loss terms

L = γ1Lpixel + γ2Lpercept + γ3Llatent + γ4Laux. (6)

In the case that the FR system uses a similarity score
function, the same approach can be applied by changing the
sign of the latent losses, and changing max to min in Eq. 1
and 5.

While this improved loss function indeed ensures that
obfuscated images are not only successful when they are
compared to normal images, but also when they are com-
pared to other identity-obfuscated images. However, the
extra loss also leads to visible artifacts in the reconstructed
images (see 5th column in Fig. 2). Therefore, we add an-
other term to the loss function that penalises these artifacts.

3.3. Reducing Artifacts

Including Laux leads to visible artifacts in the recon-
structed images (3rd column in Fig. 2). While larger values
for γ3 and γ4 in Eq. 6 lead to better obfuscation, this also
makes the artifacts more visible. Therefore, we add another
term to the loss function by taking the difference between
the mean of the reconstructed images and the mean of the
original images. If there are systematic artifacts in the re-
constructions what is left are artifacts, which is what we
want to minimise.

Lvis = (Ex [x]− Ex [xrecon])
2, (7)

The total loss is now the sum of five loss terms
L = γ1Lpixel + γ2Lpercept + γ3Llatent

+γ4Lref + γ5Lvis.
(8)

We use MobileFaceNet [2] with a dissimilarity score
function that calculates the angle between latent embed-
ding vectors to implement the loss functions. We evalu-
ate our obfuscated images with three FR systems that were
not used during training: FaceNet [16], ArcFace [4] and
a Commercial-Off-The-Shelf (COTS) FR system. We use
FRGC [13] for training and testing. Our training set com-
prises 18143 images of 482 identities, the validation set
contains 3629 images of 86 identities. There is no over-
lap in identities between training and validation set. Images
are cropped and aligned as shown in Fig. 2. Distributions
and visualisations were estimated using the validation set.

θD, θEnc ← initialize network parameters
repeat

x(1), . . . ,x(N) ▷ Draw N samples from the dataset
x′(1), . . . ,x′(N) ▷ Draw another N samples (same IDs)
z(i) = f(x(i)), i = 1, .., N
z′(i) = f(x′(i)), i = 1, .., N ▷ Get FR embeddings

z
(i)
Enc = fEnc(x

(i)), i = 1, .., N

z
′(i)
Enc = fEnc(x

′(i)), i = 1, .., N ▷ Get Encoder emb.

x
(i)
recon = D(z(i), z

(i)
Enc), i = 1, .., N ▷ Reconstr. images

z
(i)
recon = f(x

(i)
recon), i = 1, .., N

z
′(i)
recon = f(x

′(i)
recon), i = 1, .., N ▷ Get new FR emb.

Lpixel =
1
N

∑N
i=0 MSE(x(i),x

(i)
recon) ▷ Compute losses

Lpercept =
1
N

∑N
i=0 ||f1(x(i))− f1(x

(i)
recon)||,

Llatent = − 1
N

∑N
i=0 max(T, d(z(i), z

(i)
recon))

Laux = − 1
N

∑N
i=0 max(T, d(z

(i)
recon, z

′(i)
recon))

Lvis = MSE( 1
N

∑N
i=0 x

(i), 1
N

∑N
i=0 x

(i)
recon)

L = γ1Lpixel + γ2Lpercept − γ3 max(T,Llatent)
−γ4 max(T,Laux) + γ5Lvis

θD ← θD −∇θDL ▷ Gradient update on decoder
θEnc ← θEnc −∇θEncL ▷ Gradient update on encoder

until convergence

4. Evaluation Metrics
To measure and compare the performance of our models,

we compute the Attack Success Rate (Eq. 9) using dissim-
ilarity scores of the face recognition system used for train-
ing, as well as three other FR systems.

Attack Success Rate =
#(Comparison scores < τ)

Total #Comparisons
(9)

Here, τ is the decision threshold at which the False Non-
Match Rate of the corresponding FR system is minimal un-
der the constraint that the False Match Rate <0.1%.

To measure how well images are reconstructed, we use
the Structural Similarity Index Measure (SSIM) [19]. We
only report SSIM values for our own models, since other
models such as AdvFaces were trained using different data.

5. Experiments
We train all models for 200 epochs using a batch size

of 64. Results after training a decoder using only latent em-
beddings of the FRS as input are shown in the 2nd and 3rd
column in Fig. 2. Results after training a decoder using a
supporting encoder network are shown in the same figure,
in columns 4-6, where the last column depicts results after
improving visual quality using the loss in Eq. 7.

The dissimilarity scores of reconstructed (i.e. obfus-
cated) images compared to the original images are shown
in Fig. 4.
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Figure 4. Top row: MobileFaceNet (used during training) dissimi-
larity scores for the reconstructed images (reconstruction vs. nor-
mal image). Second row: MobileFaceNet genuine and impostor
comparison scores where all images are reconstructed images (re-
construction vs. reconstruction). The fact that the two distributions
have been separated shows that the identity obfuscation is essen-
tially reversed. Bottom row: scores on original images.

These results indicate that this method is very useful to
obfuscate identity while at the same time maintaining vi-
sual appearance. However, when both probe and enrolled
images are obfuscated, the dissimilarity scores show that
the identities can be extracted, circumventing the obfusca-
tion. This is shown in Fig. 4 for our suggested approach.
The same effect is shown for the existing approach Adv-
Faces [3] in the second row in Fig. 5.

5.1. Results of Improved Identity Obfuscation

We add the loss proposed in Eq. 5 and retrain the de-
coder network. The reconstructions produced by the de-
coder trained with the loss in Eq. 6 can be seend in the
5th column in Fig. 2. While these reconstructions are quite
good, we see certain patterns/artifacts that we would like
te remove, since our aim is to visually change the images
a little as possible. This could be achieved by for example
adding a GAN type loss, that learns to distinguish between
real and reconstructed images. This would involve training
an additional Discriminator-type network. In order to keep
our approach more simple, we instead add an extra visual
loss that compares the mean of all original images with the

Figure 5. These distributions were estimated using an unseen FR
system (Inception). Top row: results of our basic obfuscation ap-
proach. Second row: our improved obfuscation approach (includ-
ing artifact improvement). Third row: AdvFaces [3]. The last
histogram shows the genuine and impostor scores for the original
images. The genuine score distributions for our basic approach
and AdvFaces are much more similar to the original genuine dis-
tribution, leading to less successful identity obfuscation.

mean of all reconstructed images. This seems to success-
fully reduce the artifacts caused by adding the extra loss
from Eq. 7. The improved reconstructions are shown in the
last column in Fig. 2.

We empirically determine a good balance of the dif-
ferent losses: γ1 = 1, γ2 = 0.05, γ3 = 0.05, γ4 = 5,
γ5 = 0.2. Generally speaking, the performance (obfusca-
tion) improves for larger γ2 and γ3, but leads to decreased
visual quality. We set the upper limit T = 80, since this is
a sufficient score for any comparisons to be rejected.
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Table 1. Attack Success Rates (%).
Obf. vs. Obf. vs. SSIM

MobileFaceNet normal obf.
Simple loss (Eq. 4) 100.0 0.7 0.93
Auxiliary loss (Eq. 6) 100.0 85.3 0.91
Improved loss (Eq. 8) 99.8 83.5 0.91
Inception (black box)
Simple loss (Eq. 4) 88.5 17.8
Auxiliary loss (Eq. 6) 89.5 78.1
Improved loss (Eq. 8) 94.7 85.5
AdvFaces 97.9 23.6
ArcFace (black box)
Simple loss (Eq. 4) 99.2 3.3
Auxiliary loss (Eq. 6) 99.6 76.4
Improved loss (Eq. 8) 99.4 79.6
AdvFaces 94.6 3.6
COTS (black box)
Simple loss (Eq. 4) 43.7 0.1
Auxiliary loss (Eq. 6) 71.1 7.2
Improved loss (Eq. 8) 84.0 14.0
AdvFaces 1.1 0.0

Figure 6. A boxplot comparing the latent shifts in each dimension
of the FR latent space. The shifts when using only the simple la-
tent loss (Eq. 4) are shown in black, the shifts when using the
improved loss (Eq. 8) are shown in grey. The grey shifts are more
centered around zero, while the black shifts show a more consis-
tent pattern. This supports our hypothesis that when only original
and obfuscated images are compared with each other during train-
ing, then obfuscation essentially leads to a translation of embed-
dings in latent space, but is less successful at undoing clustering
of embeddings.

5.2. Analysing obfuscation in latent space

We hypothesise that the reason identity obfuscation does
not work well when obfuscated images are compared to
each other instead of to unaltered images, is that the latent
FR embeddings of obfuscated images are shifted in latent
space, but that the embeddings of identities are still clus-
tered together. What we actually want to achieve, is to
prevent clustering of embeddings according to their iden-
tity. Including the auxiliary loss from Eq. 5 during training
should prevent this. We analyse the shifts in latent space by
subtracting latent embeddings z from latent embeddings of
the corresponding reconstructed images zrecon. We examine
these shifts for each latent dimension (128 in our case) in
Fig. 6. We also apply T-SNE to visualise the latent space,
see Fig. 1.

The boxplot in Fig. 6 shows that the shifts without us-
ing the auxiliary loss indeed show a specific pattern. When

the auxiliary loss is included, this pattern becomes less ob-
vious, and the shifts are more centered around 0 in all di-
mensions. When obfuscated images are also compared to
each other during training, this leads to a better scattering
of the embeddings of obfuscated images and therefore im-
proves robustness of identity obfuscation. Comparing these
results with the values in Table 1, we see that at the same
time, including the auxiliary loss actually increases the at-
tack success rate.

6. Conclusion & Future Work
We successfully generated de-identified images and

showed that also in black-box scenarios face recognition
systems can no longer reliably extract identity informa-
tion from them, while visually they remain very similar.
The proportion of resulting de-identified images that is no
longer correctly identified by deep learning-based FR is
significant. Malicious FR systems that were trained with
“scraped” data tend to fall into this class, e.g. [7]. This de-
identification comes at a very low cost, since our method
can be shared and automated easily, especially compared to
optimisation-based approaches.

We showed that a very simple way to bypass identity ob-
fuscation is to apply the same obfuscation method to the
enrolled face image. Training with a loss that penalises the
similarity according to the FR between two obfuscated im-
ages (of the same identity) reduces the visual quality a little,
but makes de-identitification much harder to circumvent.

Our exploration of the effects of de-identification on the
embeddings in the latent space of an FR system has led to
useful insights and can be used to improve other methods
for de-identication. For example, the auxiliary loss we pro-
pose in Eq. 5 could also be used to improve an optimisation-
based method for de-identification. The visual loss we pro-
pose in Eq. 7 is a simpler and computationally less expen-
sive way to reduce artifacts caused by de-identification than
using a GAN.
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Architecture

Operation Kernel Stride Size
fEnc(x) 112× 112× 3 (Input)

Convolution 2× 2 2× 2 56× 56× 32
Convolution 2× 2 2× 2 28× 28× 32
Convolution 2× 2 2× 2 14× 14× 64
Convolution 2× 2 2× 2 7× 7× 64

g(z) 1× 1× 128 (Input)

Fully connected - - 7× 7× 128
Concat. with fEnc(x) 7× 7× 192

Upsample & Conv. 3× 3 1× 1 14× 14× 128
Upsample & Conv. 3× 3 1× 1 28× 28× 64
Upsample & Conv. 3× 3 1× 1 56× 56× 64
Upsample & Conv. 3× 3 1× 1 112× 112× 32
Upsample & Conv. 3× 3 1× 1 112× 112× 3

Optimizer RMSProp(lr = 10−4, α = 0.9)
Batch size 64

Bias False, except in the last layer of the decoder,
where it is untied.

BatchNorm After each convolution.
Weight init. Isotropic gaussian (µ = 0, σ = 0.01)

Bias init. Sigmoid−1( 1
n

∑n
i=1 xi), returns the average of

images {x1, . . . ,xn} when passed through the
sigmoid activation.

Nonlinearity Leaky ReLU of slope 0.02, except for the last
convolution in g, which is followed by a sigmoid
activation function.
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