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Quantifying the number of molecules from fluorescence microscopy measurements
is an important topic in cell biology and medical research. In this work, we present
a consecutive algorithm for super-resolution (STED) scanning microscopy that pro-
vides molecule counts in automatically generated image segments and offers statistical
guarantees in form of asymptotic confidence intervals. To this end, we first apply a
multiscale scanning procedure on STED microscopy measurements of the sample to
obtain a system of significant regions, each of which contains at least one molecule
with prescribed uniform probability. This system of regions will typically be highly
redundant and consists of rectangular building blocks. To choose an informative but
non-redundant subset of more naturally shaped regions, we hybridize our system with
the result of a generic segmentation algorithm. The diameter of the segments can be
of the order of the resolution of the microscope. Using multiple photon coincidence
measurements of the same sample in confocal mode, we are then able to estimate the
brightness and number of the molecules and give uniform confidence intervals on the
molecule counts for each previously constructed segment. In other words, we estab-
lish a so-called molecular map with uniform error control. The performance of the
algorithm is investigated on simulated and real data.
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1. Introduction

1.1. Super-resolution microscopy

In fluorescence microscopy, structures of interest inside a specimen are labeled with fluorescent
markers and then imaged using visible light illumination. Only the fluorescence itself and thus
the labeled structures are detected, making it possible, for example, to investigate details inside
living cells with unrivaled contrast. The tremendous development of super-resolution fluorescence
microscopy in recent decades has extended spatial resolution beyond the diffraction limit of con-
ventional microscopy to the nanometer scale. Nowadays, even temporal dynamics in living cells
can be observed in 3D with high spatial resolution.

All super-resolution light microscopy concepts rely on distinguishing fluorophores locally by
consecutively transferring them between a dark (non-fluorescent) and a bright (fluorescent) state
using light to induce these transitions (Hell, 2007; Sahl et al., 2017). The transitions between
these states can be performed either in a spatially controlled or in a stochastic manner, with the
latter denoted here as single-molecule switching (SMS) microscopy (Betzig et al., 2006). In both
approaches only a small subset of molecules is left in the bright state at each measurement step
and the final image is assembled by repeating the experiment many times. A well established
spatially controlled method uses stimulated emission depletion (STED) (Hell and Wichmann,
1994; Klar et al., 2000). Thereby a red-shifted light spot featuring a central intensity minimum
is co-aligned with the excitation light spot. It induces strongly saturated stimulated emission,
effectively inhibiting the fluorophores from emitting fluorescence in the periphery of a focused
excitation light spot. The very small spot of effectively allowed fluorescence emission can be
scanned over the sample to deliver a final image. For example, the STED principle has been used
in the past to reveal the distribution of synaptic proteins in living mice (Masch et al., 2018) or
the dynamics of membrane lipids in living cells (Eggeling et al., 2009). Recently, a combination of
stochastic switching and excitation light patterns with at least one isolated intensity zero, called
MINFLUX, was used to achieve isotropic resolution on the order of a few nanometers (Balzarotti
et al., 2016).

From a statistical perspective, the recovery of spatial intensity and specimen distribution from
super-resolution fluorescence microscopy images leads to sophisticated convolution models with
Poisson or Binomial data distributions, which in themselves present a number of challenges (see,
e.g., Aspelmeier et al. (2015); Hohage and Werner (2016); Munk et al. (2020b); Kulaitis et al.
(2021) and references therein).

In many biological contexts, however, it is not only the precise localization of structures that
is of interest, but also the determination of the exact number of fluorescent markers at a given
location, especially if this number can be related to the local number of proteins or other biological
targets of interest. Such quantitative knowledge of target structures at the nanoscale has the
potential to greatly improve the understanding of many biological processes. Knowledge of the
absolute number of molecules can provide the basis for structural models of protein complexes
or determine thresholds for the number of molecules required to produce a particular effect. For
example, estimating the number of constituent proteins in kinetochores reported unexpectedly high
numbers of proteins present (Coffman et al., 2011), whereas quantifying the number of proteins
used for flagellar regeneration helped refine models for flagellar assembly (Engel et al., 2009).
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1.2. Towards molecule counting

In general, the mean recorded fluorescence signal in a microscope is proportional to the number of
active fluorescent markers. If we denote by fN a spatial function assigning each location (or pixel)
the corresponding number of markers, and by fp their corresponding brightness (i.e., probability to
emit a photon after an excitation pulse was applied), then the observed quantity is mathematically
given by a spatial convolution of the product fN ·fp with the so-called point spread function (PSF)
h, which is determined by the microscope (see Section 2 below for details). This already shows
that the measurements cannot be readily used to infer the absolute number of markers, since each
fluorophore has its own (unknown) brightness and thus fp is unknown. If the microscope could
guarantee that each fluorophore was perfectly separated, counting fluorophores would be a trivial
task, but in almost all current applications this is not the case. Robust statistical modeling of
the contributions of the fluorophores to the acquired image data, and, in particular, a method for
calibrating the brightness of a single molecule, are therefore required. This calibration is ideally
performed during the measurement itself, since the molecular brightness can change depending on
the microscope configuration used and the sample conditions.

In the super-resolution techniques that leave only isolated markers in the bright state (as it is e.g.
the case in SMS microscopy), counting can be performed by a careful analysis of the localization
events (see e.g. Lee et al., 2012; Rollins et al., 2015; Hummer et al., 2016; Staudt et al., 2020).
From a statistical perspective this is mainly based on the temporal Markovian dynamics of the
transition between bright and dark states of the fluorophores (Patel et al., 2019; Gabitto et al.,
2021).

In case of spatially separating super-resolution microscopy, e.g. for STED as considered in this
work, a similar approach is not possible. Instead, the single molecule brightness has traditionally
been estimated by observing single photo bleaching steps, which is challenging in dense samples.
For the case of repeatedly activatable markers one can also determine an excess variance, which
was used to determine the molecule brightness (Park et al., 2005; Frahm et al., 2019). Despite its
practical relevance, stochastically sound methods for counting molecules from scanning microscopy
images remain elusive until nowadays.

1.3. Our approach

In this work, we will address this issue by means of a different path. To this end, we will per-
form counting based on the photon emission statistics, specifically the number of photons that
are emitted simultaneously. This has recently emerged as a tool for intrinsically calibrating the
molecular brightness and to infer on the number of molecules present. The physical effect that
affects the photon emission statistics is photon antibunching, i.e., an excited fluorophore cannot
emit more than one photon during the lifetime of the excited state. First measurements showed
that the number of markers can be inferred from the photon emission statistics (Ta et al., 2010).
Termed antibunching microscopy, it has been implemented later in STED mode and could for ex-
ample count the number of internalized receptors within small vesicles in HEK293 cells (Ta et al.,
2015). This technique is able to account for locally varying molecular brightness. Mathematically,
this leads to observations proportional to fN ·fp, fN ·f2

p , ..., which in principle allows decoupling
the (local) number of markers fN from their brightness fp. A scheme of an antibunching STED
microscope is shown in Figure 1. It provides simultaneous detections of multiple photons, i.e., the
measurement of photon coincidences. State of the art single photon detectors (avalanche photo
diodes) still feature considerable times where they are insensitive after each photon detection (on
the order of 50 nanoseconds), rendering them incapable of detecting photon coincidences. This
limitation is effectively overcome by parallel detection, i.e., by splitting the emitted light equally
among multiple detectors.

At each scan position (the scan covers the whole sample equally) a fixed number t of excitation
light pulses are applied and the statistics of detected number of photons is recorded. This can
be seen as repetitions of a multinomial experiment with an additional twist that photons arriving
at the same detector are only registered as a single detection event. The accessible observable is
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Figure 1: Microscope scheme and example images for detecting multiple photon co-
incidences. a Schematic of a confocal/STED fluorescence light microscope capable
of detecting multiple photon coincidences. Excitation, depletion and fluorescence light
are combined with dichroic mirrors. A specific phase distribution is imprinted on the
depletion beam in order to create a doughnut shaped intensity distribution of depletion
light at the focal point. Effectively, the spot in the sample that is allowed to fluoresce is
reduced to a sub-diffraction extent. In the detection unit, the fluorescence light is split
by three beam splitters (BS) in four equal intensity paths and directed on four identical
detectors (Di, i = 1, .., 4). Such a microscope has been built and used for antibunching
microscopy in (Ta et al., 2015). b Example object (molecule density) and correspond-
ing simulated photon coincidence measurement images Y Ci , i = 1, .., 4 in confocal mode
(excitation pulses per pixel t = 3000), see Section 2 for details on model and data. The
scaling of the colorbar is indicated by the value H in each image.

indeed only the number of active detectors for each excitation light pulse, which depends on the
number of emitted photons and the number of the available detectors. In Section 2, we develop
an explicit multinomial model that encodes the photon emission and detection probabilities and
is given by convolutions and products of the local brightness, the local number of markers, and
the effective point spread function of the microscope itself. The accuracy of the estimation of the
multinomial probabilities of our model increases with increasing number t of excitation light pulses.
Therefore, our theoretical considerations assume an asymptotic viewpoint as this number tends to
infinity. Utilizing this model, measuring multiple photon coincidences allows for inference on the
(local) number of markers, as the simultaneous arrival of two photons at a certain scan position
implies that the two photons must originate from at least two different fluorophores. We will show
later on, that the empirical distribution of the number of active detectors depends uniquely on
the number and location of molecules present. An estimation of the local molecular number and
brightness by a penalized maximum likelihood based reconstruction algorithm (without statistical
guarantees) was implemented in Ta et al. (2015). Besides lack of statistical guarantees for the
local molecular numbers, the statistical model therein is limited to two simultaneously arriving
photons at most.
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1.4. Our contribution

As the goal of counting the number of fluorescent markers in a sample would greatly benefit from
both being able to calculate error bounds on the numbers and considering higher order photon
coincidences, in this work, we will extend the existing approach in these directions. First of all, we
derive a detailed and sound statistical model for the observations obtained from the antibunching
microscope including contributions of arbitrarily high photon coincidences. One major contribu-
tion is that instead of globally estimating the number of markers inside the specimen, we construct
a so-called molecular map with uniform error control. This is a collection of family-wise error rate
(FWER) controlled, distinct segments in the specimen together with uniform confidence intervals
for the number of markers contained in each segment. The diameter of these segments can be of
the order of the resolution of the microscope. To derive this molecular map with a given total
error level α ∈ (0, 1), the method performs three steps:

S1: Segmentation. We first construct a segmentation of the image space such that each segment
contains at least one molecule with uniform probability at least 1 − α/2 and, at the same
time, has a suitable shape. All image pixels that are not contained in any of the segments
are no longer considered in steps S2 and S3.

S2: Estimation. Given M (say) segments from S1, we estimate (locally) the number of molecules,
i.e. segment by segment.

S3: Confidence. Based on a central limit theorem, we construct 1−α/(2M) confidence intervals
for each of the M local (segment-wise) numbers of molecules.

The outcome of this procedure is a collection of distinct segments, estimated marker counts
in these segments and confidence intervals (CIs) such that asymptotically (as the number t of
excitation light pulses tends to infinity) the following statement is true (see Theorem 4.2):

P [Each CI contains the correct number of markers in its segment] ≥ 1− α. (1.1)

We provide MATLAB® code for the approach described above under

https://github.com/jkfindeisen/antibunching_microscopy_analysis_2022

and investigate its performance in numerical simulations as well as real data examples in Sections
5 and 6.

Let us discuss some immediate issues and the rationale behind this three step approach. In
principle, the measured photon coincidences do allow for a pixel-wise estimation of the number of
markers, and hence also for pixel-wise confidence statements. This is also possible with the above
three step approach by considering each pixel as a separate segment. However, to obtain a uniform
coverage as in (1.1), the corresponding confidence intervals (e.g. as constructed in step S3) will
then be unfavorably large due to the large number of pixels (in practical applications of the order
105 − 106) and its corresponding multiplicity correction. To overcome this burden, we exploit the
fact that in many samples the molecules are concentrated on parts of the measurement volume and
our algorithm estimates on relevant regions only. Consequently, it neglects a substantial fraction of
all pixels before performing the estimation. If the segments are still chosen reasonably small (e.g.
in the order of the microscope resolution rather then single pixels), local information is maintained
while at the same time the number of confidence statements to be made is reduced significantly.
Therefore, a reasonable segmentation in step S1 will strongly ease the estimation and confidence
procedure afterwards. Such a segmentation will be achieved by a hybridization of an established
segmentation approach from image processing such as, e.g., the watershed segmentation, with the
Multiscale Inverse SCAnning Test (MISCAT) procedure introduced in Proksch et al. (2018),
which is a method based on multiple statistical hypothesis testing. Note, that even though the
number M of segments in step S2 is random, this does not cause problems in step S3, as it can
be considered deterministic conditional on the data used for step S1. Moreover, in our asymptotic
considerations, the number of pixels, which is an upper bound for M , is fixed.

5

https://github.com/jkfindeisen/antibunching_microscopy_analysis_2022


Y1
S

Data

Y1
C

Y2
C

Segmentation

Molecular map

watershed hybrid segmentation

+

MISCAT
0 H 16 6

y

x truthestimate

Segment
Confidence 

interval
True number of 
mol. in segment

1 7 - 22 13

2 13 - 35 25

3 4 - 11 7

4 1 - 1 1

5 3 - 9 7

6 3 - 7 7

7 3 - 7 5

8 4 - 14 7

9 2 - 3 3

10 4 - 8 7

11 11 - 28 22

12 2 - 5 4

13 3 - 5 4

14 3 - 6 6

15 1 - 25 7

16 4 - 9 8

17 3 - 16 6

18 4 – 6 6

1

2

3
4

5
6

7

8

9
10

11

12

13

14
15

16
17

18

a b

c

d

Figure 2: Three step analysis workflow. a Simulated one photon STED image with high
spatial resolution (top left) and one and two photon detection images in confocal mode
(center left and bottom left) for the example object depicted in Fig. 1b. b The STED
image Y S1 is used for a combined watershed and MISCAT segmentation that results in an
effective hybrid segmentation, where each segment contains at least one molecule with
uniform probability. Color-scale for MISCAT is inverse to box area and smaller boxes
are drawn on top of larger boxes. c Using the one and two photon statistics obtained
in confocal mode Y C1,2 and the hybrid segmentation in b, the number of molecules and
confidence bounds can be obtained for each segment. The segments are enumerated (red)
and the fill color (on a gray scale) indicates the estimated local molecule density within
a segment. The true location of markers is shown on the right. d Segment number,
confidence bounds (α = 0.1) and true number of molecules for each of the 18 obtained
segments.

The three step approach is visualized in Figure 2. In the example shown there, the images have
512× 512 = 262, 144 pixels, but M , the number of identified segments containing markers, is only
18.

We investigate the introduced methodology both in simulations and on experimental data. The
former gives a precise description of the abilities and limitations, and the latter shows the high
practical value of our approach.

The remainder of the paper is organized as follows: In Section 2 we state the statistical model for
raw photon counts in antibunching microscopy and their relation to the local number of markers
inside the sample. The technical derivation of this model is put to an appendix. Sections 3, 4
and 5 are devoted to the three steps of our inference algorithm. In Section 6 we illustrate the
performance in numerical simulations, and in Section 7 we discuss the applicability on real world
data. We end with a short conclusion in Section 7.

2. Modelling, notation and prerequisites

Throughout this work, we denote by [n] the set {1, . . . , n}. Vectors and multi-indices will be
written in bold face, where, with a slight abuse of notation, we denote the vector of component-
wise ratios ik/nk by i/n.

In the following, we denote by N the total (unknown) number of fluorescent markers in our
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specimen of interest. W.l.o.g. we can assume that all markers are contained in the unit square
[0, 1]

2
, which is discretized by the grid

x(i1,i2) = xi =

(
i1
n
,
i2
n

)
, i ∈ [n]× [n] .

The jth marker has a position xψ(j) on this grid (where the true position is just assigned to the
closest grid point), which is encoded in terms of the mapping ψ : [N ] → [n] × [n] that assigns to
the j-th marker, j ∈ [N ], its position on the grid. Furthermore, the j-th marker has an individual
brightness pj . The individual brightness of a marker j is its probability to collect a photon after
an excitation light pulse focused to xψ(j) was applied, see, e.g., Aspelmeier et al. (2015).

The antibunching microscope shown in Figure 1 works as follows. The specimen is scanned
spatially along the grid xi, i ∈ [n] × [n]. For each grid point xi, the following experiment is
repeated a total number of t times: A short excitation pulse with a duration much shorter than
the excited state’s lifetime is applied to the sample (focused on the current grid point xi), and
afterwards the fluorescence is recorded at the detectors. Between two experiments, there is a
certain waiting time, which takes into account the dead-time of the detectors after recording a
photon (typically around 100 nanoseconds) and the typical fluorescence lifetime of the markers
(typically ≤ 10 nanoseconds). In each experiment, the number of detected photons, k, is recorded.

It is important to note that a pulse centered at the point x will also illuminate neighbouring
grid points due to diffraction, however, with a lower intensity. This implies that the probability
pj(x) to detect an emission from the j-th marker in a single excitation pulse when scanning at
position x ∈ [0, 1]2 is given by

pj(x) = pj · h(x− xψ(j)). (2.1)

Here, h is point spread function of the microscope, which reaches its maximal value at 0, and
therefore a detection at the correct position is most likely. However, relation (2.1) shows that
markers collectively contribute to the measured signal at a specific scanning position x, even
though they are located at different grid points. The shape of h depends on various experimental
parameters in the microscope. As a rough guidance, h has a larger extent when using conventional
(i.e. not super-resolved) microscopy (as more surrounding markers are also excited), and a smaller
extend in case of STED measurements corresponding to a smaller or larger resolution. An often
used measure describing the shape of h and also of the microscope’s resolution is its full width at
half maximum (FWHM), cf. Kulaitis et al. (2021) for an explanation in statistical terms. In case
of a Gaussian peak PSF h with variance σ2, one has FWHM = 2

√
2 log 2σ.

As a consequence of (2.1), we obtain by superposition a convolution model

g (x) =

N∑
j=1

pj(x) =

∫
[0,1]2

fN (y)fp (y)h (x− y) dy, (2.2)

where g (x) denotes the probability to detect at least one photon when scanning at x ∈ [0, 1]
2
, fN

denotes the spatial number of markers and fp their brightness at x ∈ [0, 1]
2
.

The convolution model in (2.2) is most commonly used for standard fluorescence microscopes to
recover the product fN · fp, see e.g. Aspelmeier et al. (2015). However, our modified microscope
sketched in Figure 1 does not only measure the total number of photons when scanning at xi,
i ∈ [n] × [n], but furthermore measures the number of coincidences, i.e., k detected photons at
the same time for 0 ≤ k ≤ md, where md denotes the number of parallel detector units present
in the microscope (see Figure 1). This allows to finally decouple fN and fp. The data for the
current grid point xi consequently consists of integers Y ki being the number of k-photon events
at xi, 0 ≤ k ≤ md. This immediately implies that our (ideal) data will consist of (pixel-wise)
multinomial observations, i.e.

Yi =
(
Y 0
i , ..., Y

md

i

)
∼M (t,D0 (xi) , ..., Dmd

(xi)) , i ∈ [n]× [n], (2.3)
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where M denotes the multinomial distribution with a total number of t experiments per image
pixel, and the numbers Dk(xi) denote the probabilities to observe k photons at position i. Note,
that in the notation of (2.2), we have that

g(xi) =
∑
k≥1

Dk(xi).

Throughout this work, we assume that the observations for different grid points xi are inde-
pendent, which means that we assume that the observations Yi, i ∈ [n]2 are independent, multi-
nomially distributed random variables. This is a reasonable assumption as long as markers come
not so close to each other that they interact. Note that model (2.3) does not incorporate external
noise sources such as detector read-out errors. However, such statistical thinning as it might be
caused by loss of photons in the detectors can be included by re-defining the brightness pj of the
individual molecules, cf. Munk et al. (2020b). In conclusion, the model (2.3) can be considered
as highly accurate if the number of repetitions per pixel, t, is of the order of several thousands,
which corresponds to typical experimental conditions.

A detailed model for the probabilities Dk, k = 0, . . . ,md, in dependence on the unknown quan-
tities of interest such as the local number of markers fN and their brightness fp is developed in
Appendix Proofs. To describe it briefly, let us introduce the function s : [0, 1]2 → Rmd , defined by

s(xi) =

 N∑
j=1

(pj(xi))
k


k=1,...,md

=

(∫
[0,1]2

fN (x)fp(x)kh(x− xj)
k dx

)
k=1,...,md

. (2.4)

Then, s can be related to the probabilities D – which can themselves be estimated from the
available observations – as stated in the following theorem.

Theorem 2.1 (Statistical model for the antibunching microscope). Let md denote the number of
detectors, N the total number of fluorescent markers in the specimen and κ = κ(x) the number of
emitted photons in one excitation pulse at position x. Assume that N > md. Let

D(xi) := (D0 (xi) , ..., Dmd
(xi))

denote the multinomial probabilities defined in model (2.3). Assume that, for any x ∈ [0, 1]2, there
exists a γ = γ(x) ∈ (0, 1) such that for any k > md it holds that

P(≥ κ photons emitted at position x during one pulse) ≤ γκ. (2.5)

Then there exists an explicitly known differentiable, invertible map T : [0, 1]md → Rmd such that

D(xi) = T(s(xi)) +O
(
γmd+1

)
as γ → 0. (2.6)

For an explicit formula for T, see the proof of Theorem 2.1.
Note that assumption (2.5) will be satisfied as soon as the local number of molecules around a

position x and / or their brightness is not too large compared to the number of detectors md. As
a consequence, for sufficiently large md, we can neglect the remainder term in (2.6) and obtain
(approximately) a non-linear forward model

(Dk)0≤k≤md
= F (fN , fp) , (2.7)

with F given by the concatenation of T and the mapping (fN , fp) 7→ s (recall (2.4)), from which
we aim to determine local information on the spatial number fN (and the spatial brightness fp)
of molecules from empirical measurements Y as in (2.3). This can be seen as a nonlinear inverse
problem, which is also ill-posed due to the PSF h.

8



Note that the model (2.7) completely ignores background contributions, e.g. from out-of-focus
planes. This is for simplicity mostly, as the following considerations can immediately be adjusted
to a spatially varying background intensity λ, which, however, leads to even more technical results.
In principle this would allow to determine not only fN and fp from the available data, but also
λ. In practice, this corresponds to a highly underdetermined problem, which is why typically
the background intensity is pre-estimated and then used to correct the data. To keep the theory
concise, we have therefore decided to neglect all background contributions for the sake of simplicity
here. A more refined model including the estimation of λ is presented in the implementation only
(cf. Section 6).

In practice, we are able to obtain the measurements Y in different imaging modes. As shown
in Figure 1, the microscope has an additional STED laser, which can either be turned on or
off, yielding different effective PSFs h. This allows us to image the specimen once via classical
confocal microscopy (where the STED laser is turned off) and once via super-resolution STED
microscopy. The properties, advantages and disadvantages of both imaging modes will be discussed
in more detail later on. In total, this means that we collect and analyze both STED data YS

i =(
Y S,0
i , ..., Y S,md

i

)
(consisting of the corresponding k-photon counts for 0 ≤ k ≤ md) as well as

confocal data YC
i =

(
Y C,0
i , ..., Y C,md

i

)
.

3. Segmentation

If we tried to construct pixel-wise confidence intervals for the local number of molecules everywhere
in the image (comparable to (1.1)), we would not obtain meaningful results due to the large
number of pixels, as the necessary multiplicity adjustments would inflate the results. Therefore,
it is important to first neglect uninteresting (e.g. empty) parts of the image, and to count not
pixel-wise but in regions of interest (RoIs), which need to be determined based on the data as
well. The proper selection of RoIs can be seen as a segmentation problem: The image has to be
segmented into ’active’ regions (i.e. containing molecules) and ’inactive’ regions (i.e. containing
no or only very few molecules), and afterwards estimation will be performed only in the ’active’
regions. To make this useful, we aim to select a system of RoIs such that

(R1) all interesting clusters of molecules are contained in one of the RoIs,

(R2) with high probability each RoI contains at least one molecule,

(R3) the RoIs do not intersect (i.e. form a segmentation),

(R4) the RoIs are reasonably small and

(R5) the RoIs have suitable shapes.

The above goals do not necessarily align in a certain sense. A usual approach would be to use
a standard data-driven segmentation algorithm on the STED data YS,1 (offering a much better
resolution compared to a confocal image), which – using suitable tuning parameters – hopefully
yields RoIs satisfying (R1) and (R3)–(R5). However, strong statistical guarantees such as (R2)
do typically not hold. On the other hand, systems of sets satisfying (R2) are often overlapping
and thus (possibly highly) redundant, i.e. violate (R3), and furthermore do not satisfy (R5). Our
approach is therefore to profit from the strengths of two different approaches, creating a hybrid
version that inherits the positive aspects of both ingredients. A theoretical guarantee of property
(R1) is very difficult and is not provided by our method. This can still be justified by a liberal
choice of the selection method, e.g. in terms of a smaller probability in (R2). However, even
with 90% confidence in (R2), our simulations show very good coverage properties of our final
segmentation.

9



3.1. Hybridization

Suppose that the set B̃ is a (possibly complex and highly redundant) system of sets satisfying

(R2). To reduce the complexity (and redundancy) of B̃, we first neglect all sets that completely
contain smaller sets. This might cause a loss of information, but on the other hand we are mostly
interested in smaller sets as they contain the highest spatial information. This step yields a system
B of sets obeying (R2).

In the following we describe how the system B can be hybridized with a segmentation W (i.e.,
a system of disjoint connected subsets of [n] × [n]) such that on the one hand, the segmentation
property is obeyed, and on the other hand (R2) is kept valid. There is a lot of freedom in choosing
the segmentation algorithm, which allows the user to apply any method of choice and hence
to generate a system of RoIs consisting of more naturally shaped segments. Possible examples
include the famous Watershed segmentation algorithm (see below for a brief description), k-means
clustering, or more recent AI-based techniques. Xie et al. (2022) provide a comprehensive review
on spatial hotspot detection methodology.

In the hybridization step we try to validate each segment W ∈ W using one (or more) of the
sets B ∈ B. Thus let W ∈ W. If there exists a B ∈ B such that B ⊂ W , then W is already valid
(in the sense of (R2)). If no such B exists, then we merge W with one of the intersecting sets to
generate an enlarged valid segment. This step does, however, cause complications, as the chosen
set B̂ ∈ B might intersect with other segments in W. This issue is resolved as follows:

1. First, we generate a set of potential validation sets BW ⊂ B such that W ∩ B 6= ∅ for all
B ∈ BW .

2. If BW = ∅, then W has to be dropped.

3. If BW 6= ∅, we check for each B ∈ BW if B ∈ BW ′ for another W ′ ∈ W. This yields a list of
candidates for validating W .

4. Out of this list, we choose the one B̂ yielding the smallest new (and valid) segment R :=
B̂ ∪W .

5. If no such B is found, we merge W with another segment W ′ ∈ W, which is again done such
that the new resulting segment is as small as possible.

The process described above is repeated iteratively until all segments have been validated or
dropped, i.e. until (R2) is satisfied. The final, hybridized segmentation is then given as a set of

regions R denoted by R̂OI. We illustrate this procedure in Figure 3.

The next theorem guarantees that the hybrid selection R̂OI provides a valid segmentation in
the sense of (R2) and (R3).

Theorem 3.1. Let R̂OI be the regions of interest arising from the above hybridization algorithm
of two systems of subsets B,W ⊂ 2[n]×[n]. Then the following holds true:

1. Let α ∈ (0, 1). If the system of sets B obeys (3.4), then also R̂OI does.

2. If W is a segmentation, i.e., if the sets in W are pairwise disjoint, then also R̂OI is a
segmentation.

Proof.

1. It is clear that with B̃ satisfying (3.4) also any set B ⊂ B̃ satisfies (3.4). The construction of

R̂OI ensures that it only contains supersets of sets in B, such that R̂OI inherits (3.4).

2. This is clear by construction, as intersecting sets are always merged.

Clearly, the question whether (R1) and (R4)–(R5) are also satisfied, depends on the choice of

B̃ and W. If those are generated suitably, then this will be the case as discussed in the following
section.
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A segment W containing a box
B is already valid and kept.

A segment W intersecting with
no box B is dropped.

A segment W not containing a
complete box B is merged with
one.

If there is more than one box
B to validate a segment W , the
one yielding the smallest result-
ing segment is chosen.

If the only possible validating
box B intersects with another
segment W ′, then the resulting
regions is R := W ∪B ∪W ′.
If, in the above situation, an-
other box might validate W , but
another W ′ cannot be validated
without merging W and W ′,
then we optimize this procedure
such that the area is as small as
possible.

Figure 3: Illustration of the hybridization algorithm: boxes B (gray), segments W to be validated
(blue), final segments (green).

3.2. Practical implementation

In the following we will focus on two specific methods to generate the sets B̃ and W. To generate
B̃, we employ the MISCAT procedure introduced in Proksch et al. (2018), which we will briefly
describe in the following for convenience (see also Munk et al. (2020a) for a comprehensive review
of the MISCAT procedure). We start our segmentation by determining rectangular regions of
interest via a multiple testing approach. The rectangular regions will be referred to as boxes,
denoted by Bx,h. The subscript x denotes the position of the upper left corner of the box within
the grid of pixels, while the subscript h = (h1, h2) denotes the side lengths of the box. For a
given h we consider all Bx,h ⊂ {xi | i ∈ [n]× [n], i + h ∈ [n]× [n]} and furthermore we use several
different scales h ranging from small to large, so that all together we consider a highly redundant
system of boxes that guarantees very good detection properties of the MISCAT method. To test
whether a box Bx,h contains markers, we design pairs of functions ϕx,h,Φx,h such that

〈f ∗ h,Φx,h〉 = 〈f, ϕx,h〉 (3.1)

with the fluorescence intensity f = fNfp where ∗ denotes spatial convolution. Given equation (3.1)

and having in mind that (Y S,1
i )i∈[n]×[n] consists of the most highly resolved measurements available,〈

(Y S,1
i )i∈[n]×[n],Φx,h

〉
can serve as a local test statistic for testing whether f|Bx,h

6≡ 0. The function

pairs ϕx,h,Φx,h will in practice be generated by a kernel somewhat similar to Wavelets, such that
they form a multiscale system that adapts to the PSF h. This allows optimizing the detection
power of MISCAT by fine-tuning the kernel, see Proksch et al. (2018). The local test statistics
are then combined by taking the maximum after subtracting a scale-dependent penalization (to
ensure equal contribution of the differently sized boxes). This yields a test statistic for a multiple
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test over all considered boxes with a controlled family wise error rate as a consequence of Theorem
4 in Proksch et al. (2018). In the latter reference, it is shown in Theorem 1, that quantiles of this
maximum (or scan) statistic can be simulated using a suitable Gaussian approximation, which
gives then rise to local (taking a suitable scale-penalization into account) critical values ch,α. The

outcome of this first step is then a set B̃ of candidate RoIs given by

B̃ = {Bx,h |
〈

(Y S,1
i )i∈[n]×[n],ΦBx,h

〉
≥ ch,α〉}.

Note, the the resulting candidate RoIs are boxes of different sizes h. The MISCAT procedure at
level α is constructed in such a way that

P
[
There is a pair (x,h) : Bx,h ∈ B̃ | no markers at all

]
≤ α. (3.2)

Furthermore, as the distribution of the maxima of the statistics
〈
Y ST,1,ΦBx,h

〉
does not depend

on the actual positions of the N markers in the image, we have subset pivotality, cf. Westfall and
Young (1993). This means that

max
x,h

〈
(Y S,1

i )i∈[n]×[n],ΦBx,h

〉
| {no markers present}

D
= max

x,h

〈
(Y S,1

i )i∈[n]×[n],ΦBx,h

〉
|C, (3.3)

for any C ∈ CN , where CN is the set of all possible configurations (distributions) of N markers in
the image of interest. As a consequence, the FWER control (3.2) for MISCAT implies that with
high probability all selected boxes contain a marker :

inf
C∈CN

P
[
f|Bx,h

6≡ 0 for all Bx,h ∈ B̃ | configuration CN

]
≥ 1− α, (3.4)

This is a FWER control over the selected system of boxes in the strong sense, which in general –
more precisely without subset pivotality – does not follow from the weaker FWER control (3.2).

For the generation of the segmentation W, we use here the well-known watershed algorithm,
whose name is in reference to a geological watershed, which separates adjacent drainage basins.
The algorithm can be applied to grey scale images, which are interpreted as a topographic map,
with the brightness of each point representing its height. The algorithm finds the lines that run
along the tops of ridges (see Meyer, 1994, for more details).

As a corollary of Theorem 3.1, we obtain for the particular choice of MISCAT at level α and
the watershed segmentation W with any choice of tuning parameter asymptotically

inf
C∈CN

P
[
Each R̂i ∈ R̂OI contains ≥ 1 marker | config. CN

]
≥ 1− α.

This means that the so obtained hybrid segmentation inherits the strong control of the FWER
from the MISCAT procedure.

We illustrate the performance of this hybrid segmentation procedure in Figure 4. The left
panel shows simulated data for artificial filamentous structures (resembling among other things
the cytoskeleton in cells) generated by the convolution model (2.2) for a STED microscope with
different numbers t of excitation pulses. The second panel depicts all boxes selected as significant
by the MISCAT procedure color-coded by size. The MISCAT test is able to find a set of significant
boxes of various sizes at controlled FWER. However, many of these rectangles are ”too large” in the
sense that they do not provide spatial information of markers with sufficient accuracy. Moreover,
the set B̃ is highly redundant, which is typical for systems satisfying (R2). The third panel of
Figure 4 shows the result of the suggested hybridization, which covers reasonably well the whole
structure with non-overlapping significant segments. The fourth panel depicts a histogram of the
normalized segment diameter. In total we conclude that all goals (R1)–(R5) are met in general.
(R2) and (R3) are ensured by Theorem 3.1 as discussed above independent of the excitation time

12



t > 0. The other requirements clearly depend on the data quality via t. For t = 1000 (which is
an experimentally reasonable parameter), both (R1) and (R4) are visually satisfied. The shape of
the RoIs is mostly determined by the watershed algorithm, and we find that this meets also (R5).
The coverage of the structure as well as the number of found segments increases with increased
brightness of the image, while the average size of the found significant boxes and hybrid segments
decreases.

Y S
1

t = 102

Signi-cant boxes Hybrid segmentation

1 1.2 1.4 1.6 1.8 2
100

101

102

103

Normalized Box diameter

t = 103

1 1.2 1.4 1.6 1.8 2
100

101

102

103

104

105

t = 104

1 1.2 1.4 1.6 1.8 2

102

103

104

105

106

Figure 4: From left to right: 1.) Simulation of filamentous structures: Data sets for different
numbers t of excitation light pulses. 2.) MISCAT segmentation where boxes are shown
in a color-scale inverse to box area and smaller boxes are drawn on top of larger boxes.
3.) Hybrid segmentation. 4.) Histograms of the segment diameter normalized by the
FWHM of the PSF (

√
|R|/FWHM).

4. Statistical molecule counting

In this section we discuss how to estimate the local number of molecules inside a region R from the
data. Furthermore, we provide a central limit theorem (CLT) for our estimator, which immediately
allows us to construct (asymptotic) confidence intervals quantifying the precision of our counting
method. Later on we will apply the methodology presented here to all regions in the previously

discussed hybrid segmentation R̂OI.

For the derivation of our estimator, suppose for a moment that all the N molecules of the
specimen are clustered at a single point, this is ψ(j) = k ∈ [n]× [n] for all 1 ≤ j ≤ N with some
fixed k ∈ [n]× [n]. In this case it follows immediately from the definition that

∑
i∈[n]×[n]

sl (xi) =
∑

i∈[n]×[n]

N∑
j=1

pj(xi) =
∑

i∈[n]×[n]

N∑
j=1

plj · h(xi − xk)l.
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If we now assume that the brightness of all molecules located at the same position is constant
(i.e. that the brightness is a function of the location only and not of the individual molecules), we
obtain ∑

i∈[n]×[n]

sl (xi) = plN
∑

i∈[n]×[n]

h(xi − xk)l.

In all practically relevant examples, the PSF h is rapidly decaying and can hence be considered
as periodic, which justifies the additional assumption that

Hl :=
∑

i∈[n]×[n]

h(xi − xk)l (4.1)

is independent of the location k ∈ [n]× [n]. Consequently, it holds

N =
H2

H2
1

(∑
i∈[n]×[n] s1 (xi)

)2

∑
i∈[n]×[n] s2 (xi)

. (4.2)

In the situation of Lemma 2.1, the quantities s (xi) can be immediately estimated, as then

s(xi) = (T−1(D(xi)) +O
(
γ(xi)

md+1
)
. (4.3)

This leads to a natural plugin estimator for the total number of molecules, where D(xi) is estimated
by the relative frequencies of detecting 0, 1, . . . ,md photons at xi.

Let us now return to the general situation that we want to estimate

NR = #markers in R

for some region R ⊂ [0, 1]
2
. For this, we pose the following physical assumption:

Assumption 4.1. The brightness within the region R is constant and the functions Hl defined in
(4.1) do not depend on k.

This assumption is (approximately) valid for many experimental settings as long as R is not too
large, as the brightness depends mostly on local conditions such as temperature, pH value and so
on. Under Assumption 4.1 it seems now natural to replace the sum over all locations xi in (4.2)
by the sum over all xi ∈ Rε with a slightly enlarged segment Rε =

{
x ∈ [0, 1]

∣∣ dist(x,R) ≤ ε
}

.
The rationale behind is that the rapid decay of the PSF h ensures that molecules inside R will
only or at least mostly contribute to those xi ∈ R. In practice we choose ε of the order of the
FWHM and enlarge only as long as Rε does not intersect with any other enlarged segment. Let us
introduce IRε :=

{
i ∈ [n]× [n]

∣∣ xi ∈ Rε
}

. Then the above considerations give rise to the plugin
estimator

N̂R =
H2

H2
1

(∑
i∈IRε

ŝ1 (xi)
)2

∑
i∈IRε

ŝ2 (xi)
with ŝ(xi) = T−1YC

i /t.

Note that the inversion of T might introduce uncertainties (and actually does, cf. Figure 5 in our
numerical simulations), and as the noise level of ŝk(xi) increases geometrically with k in view of
the fkp -dependency, we decided to use only ŝ1(xi) and ŝ2(xi) to infer on NR. Nevertheless, it is
in principle possible to improve the estimate for NR based on higher order contributions sk(xi),
k ≥ 2 along the above considerations.

The following central limit theorem for the estimator N̂R is based on asymptotics for t → ∞
subject to md = md(t) → ∞. Given these asymptotic considerations, we will assume that t is
large enough such that the model bias (2.6) is irrelevant. Since the influence of the size of md is
of practical interest, finite sample bounds of Berry-Esseen type with respect to t as well as md are
additionally provided. Denote by Πd

(k1,...,kl)
: Rd → Rl the projection of a vector in Rd onto the

vector of its coordinates k1, . . . , kl.
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Theorem 4.2. Let R ⊂ [0, 1]2 and let md = md(t) → ∞, such that md ≤ 5 log(t), Suppose that
the region R contains at least one fluorescent marker, that Assumption 4.1 is satisfied, and that
any marker in R has individual brightness smaller than 0.5 (see Remark 4.3 (v)). Let

ΣD(xi) =

({
Dj(xi)(1−Dj(xi)) j = k

−Dj(xi)Dk(xi) j 6= k

)md

j,k=1

,

and consider an arbitrary but fixed ordering xi1 , . . . ,xi|R| of the points xi ∈ R. Further, define the
matrix ΣR by

ΣR :=


ΣD(xi1) 0 0 0

0 ΣD(xi2) 0 0

0 0
. . . 0

0 0 0 ΣD(xi|R|)

 ∈ R|R|md×|R|md

and let

Ψ :


Rmd|R| → R

y 7→ H2

H2
1
·
〈
1md|R|,(Π

md
1 T−1(yjmd+1,...,y(j+1)md

)T )
j=1,...,|R|

〉2〈
1md|R|,(Π

md
2 T−1(yjmd+1,...,y(j+1)md

)T )
j=1,...,|R|

〉 .

Assume that the Hessian matrix of Ψ, HessΨ, exists and is bounded in a neighbourhood of D, and
that

σ2
R = ∇Ψ(D)TΣR∇Ψ(D) > 0, (4.4)

where D = (D(xij ))j=1,...,|R|. Let Z be a random variable following a centered normal distribution
with variance σ2

R. If t is sufficiently large, there exists a constant C > 0 such that

sup
s∈R

∣∣∣P(√t(N̂R −NR) ≤ s)− P
(
Z ≤ s

)∣∣∣ ≤ C log(t)
2
3

t
1
6

, as t→∞. (4.5)

Remark 4.3.

(i) In particular, the above theorem ensures that

√
t
(
N̂R −NR

)
D−→ N (0, σ2

R), as t→∞.

(ii) Recall that the asymptotic considerations are with respect to the number t of laser pulses.
As t tends to infinity, the number of pixels remains fixed. Therefore, the collection of re-
gions R considered does not change asymptotically and contains only finitely many elements.
Therefore, naturally, (4.5) holds uniformly in R.

(iii) We let md → ∞ as t → ∞, as for a fixed number md the model bias (2.5) may otherwise

asymptotically dominate the quantity
√
t(N̂R −NR). The upper bound on the speed of con-

vergence of md is needed in the proof, as with md the number of events of the multinomial
distribution tends to infinity. However, this restriction is irrelevant in practice, where the
number of detectors that can be realized is limited.

(iv) In this work, the focus is on the estimation of local numbers of molecules, NR. However,
similar to (4.2), we immediately obtain an expression for pR, the brightness in a region R,
as

pR =
H1

H2

∑
i∈IR s2 (xi)∑
i∈IR s1 (xi)

,

giving rise to a plug-in estimator p̂R. The theoretical properties of p̂R can be analyzed with
the same techniques as applied in the analysis of N̂R.

15



(v) We assumed that any marker in R has individual brightness smaller than 0.5. This assump-
tion is needed for technical reasons but it is not restrictive, as typical brightness values are
of the order of 0.02, as also used in our simulations. A brightness of 0.5 would entail that a
marker emits a photon on average once every two pulses, which is unrealistic.

(vi) Given that md → ∞, the model bias vanishes asymptotically. Our numerical simulations
show that as few as 6 detectors suffice to deal with local numbers of molecules of about 100
(see Figure 8). The experimental setup we used (as shown in Figure 1) exploits md = 4
detectors, and we find from Figure 8 that it is expected to be accurate to treat local molecule
numbers of round 30−−40.

Theorem 4.2 gives rise to asymptotic confidence intervals for NR[
N̂R −

σ̂R√
t
, N̂R +

σ̂R√
t

]
,

where σ̂R is the plug in estimator for the asymptotic standard deviation σR defined in (4.4), that

is, σ̂R = ∇Ψ(D̂)TΣR∇Ψ(D̂), with D̂ = 1/t · (YC
i )i∈R.

5. Numerical study

In this section we will investigate the finite sample properties of our estimation procedure and
the overall algorithm. The complete MATLAB® code including all examples discussed in the
manuscript at hand is available under

https://github.com/jkfindeisen/antibunching_microscopy_analysis_2022.

As a first step, we assumed a certain number of independent and identically behaving molecules
with a fixed brightness p to be located all at the same position and to be imaged with the
antibunching microscope operating only on confocal mode. The recording of the molecule sample
is performed by scanning on a square-lattice like grid relative to the molecules’ position and the grid
spacing is here defined relative to the resolution of the microscope, i.e. with a FWHM of the PSF
given in scanning grid pixel sizes. For a single cluster, segmentation of the data was omitted and
the whole measurement area was assumed to belong to the single segment representing the molecule
cluster. In Figure 5 we depict histograms of the empirical distributions of Sl :=

∑
i∈[n]×[n] sl (xi)

together with the theoretical expectations of Sl. It can be seen that for typical experimental
conditions, the first two orders of Sl are reasonably well distributed around their expectations
and can be used for retrieving the number and brightness of the molecules. For higher orders,
systematic deviations are visible in the distributions of Sl, most probably a side effect of the
ill-conditioned inversion of T under these circumstances.

This first simulation shows that it is possible to estimate the number of molecules in a single,
isolated cluster from S1 and S2. This is further illustrated in Figure 6, where we investigate the
final estimator for the total number of molecules N (and the corresponding one for the common
brightness p as discussed in Remark 4.3(iv)) in a similar setting. Again we use a single cluster
with N = 10 molecules with common brightness p = 0.02 and omit the segmentation step by
assuming that the whole measurement area was assumed to belong to the single segment repre-
senting the molecule cluster. Repetition of the simulation results in distributions for N̂ and p̂,
which are depicted as histograms. It should be noted that the estimated molecule numbers and
brightnesses are correlated and the joint distribution is concentrated along a hyperbola in the
number-brightness plane (see Fig. 6c), i.e. the product of the molecule number and its brightness
is quite well estimated compared to the knowledge about the single factors. For larger numbers
of illumination pulses the distributions of the estimated numbers and brightnesses becomes more
concentrated, more symmetric and less biased, indicating that the employed estimators converge
to the true underlying parameters. The precision is mainly limited by the number of repetitions,
i.e. light pulses, that the sample can be illuminated with at every scan position. A few thousand
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Figure 5: Estimation of Sl :=
∑

i∈[n]×[n] sl (xi) for simulations of single, isolated cluster of N = 20

molecules with brightness p = 0.02 and a Gaussian PSF of FWHM=4px and t = 104

pulses per pixel. Histograms of estimated Si for many repetitions. Vertical lines (black)
present the true mean values. Red curves represent normal distributions with true
variances around the true means.
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Figure 6: Histograms of estimated N and p for simulations of single, isolated cluster of N = 10
molecules with brightness p = 0.02 and a Gaussian PSF of FWHM=4px and t = 103

and t = 104 pulses per pixel, respectively.

excitation pulses per scan position have been reported to be possible without significant observable
photobleaching of the molecules.

To study the influence of boundary effects, i.e. molecules residing close to the boundary of an
image segment, we simulated two clusters of molecules with a defined distance that is on the order
of the FWHM of the PSF. In that way the images of the two clusters are partly overlapping.
Two segments were created such that they fully covered the whole simulated image space and the
border between the two segments was localized in the middle between the clusters. The analysis
in each segment will be compromised by photons that are located in the respective other segment.
The results depicted in Figure 7 show that for a reasonable cluster distance (of approximately the
FWHM of the PSF) the systematic boundary effects tend to become relatively small. It should
be noted that our hybrid segmentation naturally tends to avoid large amounts of signal close to
segment borders.

Another source of systematic bias are very dense accumulations of molecules. Therefore, we
performed simulations in which we increased the number of detectors. We found that the range
of molecules that can be estimated without visible bias strongly increases already for a number
of detectors that is increased only moderately. Four parallel detectors, which are currently used
experimentally, allow to count up to 50 molecules per diffraction limited sample volume without
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Figure 7: Estimated N for simulations of two clusters of molecules with a defined distance dc (given
in multiples of the FWHM) with brightness p = 0.02, t = 3000 and a Gaussian PSF of
FWHM=4px. (left) Example images of two clusters with five molecules each. Dotted
white line represents the segment border. (right) Mean estimated number of molecules
for each cluster and mean lower and upper bounds of the confidence intervals (thin lines)
in dependence of the distance dc between the clusters. Black dotted line represents the
true number of molecules in each cluster. Top: two clusters with N1 = N2 = 5 and
bottom: N1 = 5, N2 = 20.
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Figure 8: Median of estimated number of molecules for a simulation of a single cluster (p = 0.02,
t = 2·104) in dependence of the number of detectors used md. The visible bias is strongly
reduced for larger md. All internal orders equal md. Graphs are slightly smoothed.

large bias with our method. With eight parallel detectors this limit could be lifted to approximately
200, cf. the left panel in Figure 8.

The overall performance of our algorithm is tested in a simulated arrangement of markers
consisting of several clusters of molecules with varying brightness, cf. Figure 2. It shows that
the estimation of the local number of molecules is accurate in all segments, and that the FWER
control (3.4) is in fact kept. It must be said that some of the constructed confidence intervals
seem to be rather large (indicating a small estimated value p̂ in that region), which is, however,
unavoidable when asking for strong error controls such as (3.4). In addition, in Figure 2 the true
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values of NR are located on the boundary of the confidence intervals in multiple cases, indicating
that any method with smaller confidence intervals, which are centered at N̂R, would be susceptible
to violations of (1.1).

6. Counting fluorophores in a DNA origami measurement

To establish the validity of the suggested confidence intervals on real data we used DNA origami
sheets, which is an artificial structure that allows to attach a relatively well defined number of
molecules at defined positions within a diffraction-limited volume (Schmied et al., 2012). The
designed DNA origami sheet contained up to 24 fluorophores arranged in two lines of up to 12 flu-
orophore binding sites and the distance between the two lines was ∼70 nm, which is not resolvable
in confocal mode. Due to imperfections in the folding efficiency of DNA, the expected number
of fluorophores per DNA origami was only ∼19 (Ta et al., 2015). Confocal microscopy cannot
spatially resolve the single lines of fluorophores, but it allows to obtain a sufficient statistic on
one and two photon detection events. A subsequent STED recording with improved lateral reso-
lution (fivefold over confocal microscopy) resolved the molecular distribution within a single DNA
origami sheet. Further experimental details are laid out in Ta et al. (2015). Here, we re-analyzed
the recorded data to yield estimates and confidence intervals on the number of fluorophores in
either resolved DNA origami sheets or even single lines in these sheets (see Fig. 9). The division of
the data into suitable segments using our hybrid MISCAT and watershed segmentation approach
was performed on the high resolution STED data, while the molecular number and brightness
was estimated from the less well resolved but much brighter one- and two-photon confocal images.
Before counting, the background intensity is estimated by a smoothing procedure from the data
and then included in our refined model. The result is a segmentation map of the image area
shown in Fig. 9b where an estimated number of molecules as well as a confidence interval on the
number of molecules is assigned to each segment. As expected the estimated number of molecules
is always within the calculated confidence bounds. The width of the confidence bounds (K) is
approximately as large as the estimated number of molecules.

7. Discussion and outlook

7.1. Summary

In this work, a comprehensive physical and statistical modeling of the coincidence photon statistics
encountered in antibunching microscopy has been conducted. The coincidence signals recorded
from parallel detectors in a high-resolution fluorescence microscope intricately depend on the
number of fluorescent molecules at a specific location as well as their brightness. Under the
mild assumption that molecules locally exhibit the same brightness, and under neglecting all
background contributions, a rigorous statistical model of the problem of estimating the number
of molecules within small regions of the sample has been developed. Based on this an estimation
procedure of the number of molecules was presented and was shown to converge to the true
molecule counts for sufficiently long measurement times. Furthermore, confidence intervals for the
local number of molecules have been constructed. The estimation procedure requires to choose
regions of the sample in which molecule numbers are to be estimated. A hybrid-segmentation
has been introduced, which combines a natural segmentation approach with guarantees that all
segments contain molecules with high probability. In a numerical study, the convergence of the
estimator has been affirmed. With increasing number t of excitation pulses the obtained segment
sizes as well as the size of the confidence intervals have been shown to shrink.

7.2. Future work

In previous works the number of molecules (as well as their brightness) was estimated as a contin-
uous density from a global fit of the data with a coincidence statistics model up to second order
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Figure 9: Application to recordings of DNA origami sheet structures labelled with ATTO 647N
molecules (for experimental details see (Ta et al., 2015)). The structures were immobi-
lized at a low concentration on a glass surface and measured with confocal and STED
microscopy. Each DNA origami can accommodate up to 24 fluorophores (12 in a line).
a STED (top) and confocal (number of pulses per pixel t=2170, pixel size 10 nm) one-
photon (center) and two-photon (bottom) detection images. b Segmentation, estimated
number of fluorophores in each segment and confidence intervals for the data in the dot-
ted rectangle. c Histogram of estimated number of fluorophores in each segment of the
recorded data (top) and histogram of the width of the confidence interval (K) divided
by the estimated number of fluorophores (bottom). Scale bars, 500 nm.

(Ta et al., 2015). The model presented here includes arbitrarily high photon coincidence orders.
In this work only the lowest two orders of ŝk(xi) have been used in the estimation of the local
number of molecules. The optimal choice of the used number of orders depends on the accuracy
of the estimation of each ŝk and may be subject to further studies. An important issue here is
the quality of the available data (i.e. the possible number of excitation pulses t), as otherwise the
higher order photon coincidences will not be able to provide additional information.

Segmentation-based estimation of local molecular counts was essential for the generation of
confidence information. The importance of choosing an appropriate sample segmentation which
provides statistically sound guarantees (see Theorem 3.1) for generating useful confidence infor-
mation is a key finding of this work. A very large number of localized segments would result
in overly large confidence intervals (due to multiplicity), while a small number of extended seg-
ments would not result in meaningful local information. A balanced approach as suggested in this
work results in useful molecule counting information. A multitude of different segmentations are
imaginable but the hybrid segmentation used in this work appears to be working reasonably well.
Further work might deliver more insights into how segmentations of the sample can maximize the
usefulness of the counting information in these cases.

The enlarged segments used for estimation are in principle required to contain all the collected
fluorescence from all molecules within the segment and none from molecules outside the segment
(segments should contain a molecule-free border with a width of at least the FWHM of the
PSF). Clearly, this is not always the case in practice, and is often difficult to achieve in densely
labelled samples unless one restricts oneself to rather large segments, which would not result in
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useful local information. This will in general result in an uncontrollable bias in the molecule
number estimation. In the case of multiple closely spaced segments, lost photon contributions
from molecules within a segment can be partially compensated by contributions from molecules
in adjacent segments. In our examples the estimated confidence intervals were not compromised.
A further careful analysis of segment border effects might result in additional contributions to the
confidence interval sizes.

The analysis performed in this study also assumed that molecules remain intact during the
whole measurement. Indeed, in every microscopy experiment, fluorophores will eventually lose
their ability to fluoresce (photobleach). To minimize estimation biases, we restricted the duration
of the experiment to the characteristic time that will leave a strong majority of fluorophores
intact. Should, nevertheless, some molecules photobleach during an experiment, we expect the
number estimation to effectively approximate the mean number of unbleached molecules during
the measurement. Photobleaching could be included in a more refined statistical model.

As discussed in the simulations, a too large number of molecules (or more precisely a too
large product of local number of molecules and their brightness) in comparison to the number
md of detectors used yields a systematic under-estimation of the number of molecules. This is
due to the fact the bias introduced by the model from Theorem 2.1 is no longer negligible. Our
current experimental setup shown in Figure 1 using four detectors is able to count approximately
50 molecules at a single diffraction limited spot accurately. Increasing the number of detectors
modestly would increase this limit significantly as shown in Figure 8. Further advances in detector
technology currently being invented (being able to count single photons without significant dead
times and therefore not limiting the observable coincidence photon order) are expected to diminish
if not solve the problem completely while at the same time simplifying the microscope setup further.

All given examples in this work have been executed in two dimensions only, which corresponds
to an often used imaging mode in scanning microscopy. However, the extension to 3D is straight-
forward and does not require any particular effort.

A. Proofs

Proof of Theorem 2.1

Lemma A.1. In the setting of Theorem 2.1, there exists a linear map A and a non-linear trans-
formation g such that T = A ◦ g.

Proof of Lemma A.1. Due to superposition and independence of the markers, for each position x
the random variable that returns the number of photons emitted after one excitation pulse follows
a discrete probability distribution of a sum of independent Bernoulli trials that are not necessarily
identically distributed. This distribution is called Poisson binomial distribution (Tang and Tang,
2019). The probability that exactly k photons are emitted at scan position x in one experiment
is denoted by Q′k(x), which is given by

Q′0 (x) =

N∏
j=1

(1− pj (x)) ,

Q′k (x) =
∑

1≤i1<...<ik≤N

k∏
j=1

pij (x)
∏

j 6=i1,...,ik

(1− pj (x)) ,

for k ∈ {1, . . . , N}. Note, that for k > 1 Q′k (x) requires the different photons to originate from
different markers. In practice, we do not have direct empirical access to the probabilities Q′k. To
see this, suppose for instance that md = 4 as in Figure 1, and that 2 photons were emitted. If the
beam splitters in our experimental setup distribute the incoming photons equally likely in each
direction, then after the first beam splitter with probability 50%, the photons have been separated
and will arrive at different detectors. On the other hand, in 50% of the cases, both photons have
been sent in the same direction and will arrive together at the next beam splitting. Continuing this
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argument, it follows that in 75% of all cases, the two photons are sent towards different detectors,
whereas in 25% of all cases, the two photons are sent towards a single detector, which cannot
differentiate the number of incident photons. Therefore, with

Di(x) := P (i active detectors at x in one experiment) ,

the probability Q′2 (x) distributes with weight 1/4 to the probability D1 (x) to observe a single
active detector, and with weight 3/4 to the probability D2 (x) to observe exactly two active
detectors. The probabilities Di can be computed in terms of the Q′is as

Di(x) =

N∑
j=i

P (i active detectors | j photons)× P (j photons)

=

N∑
j=i

P (i active detectors | j photons)Q′j(x).

Given that j photons are emitted, there are in total mj
d ways to distribute those onto md detectors.

The total number of outcomes in which 0 ≤ i ≤ md detectors are activated is given by the product
of the number of possibilities to distribute j photons onto one specific selection of i detectors and
the number of different choices of i out of md detectors. The first factor is given by S(j, i) × i!,
where S(j, i) denote the Stirling numbers of the second kind1. The second factor is given by the
binomial coefficient

(
md

i

)
. Since the emitted photons are distributed with equal probability onto

md detectors, we obtain

P (i active det. | j photons) =
S(j, i) · i! ·

(
md

i

)
mj

d

=
S(j, i)(md − 1)!

(md − i)!mj−1
d

=: wi,j .

This yields

Di(x) =

N∑
j=i

Q′j(x)wi,j ,

which yields that D0(x) = Q′0(x), meaning that whenever at least one photon is emitted, at least
one detector will be active. Moreover, the contribution of summands for large values of j, j > md

say, are negligible. Hence, we write

Di(x) =

md∑
j=i

Q′j(x)wi,j +

N∑
j=md+1

Q′j(x)wi,j .

Let Q(x) = (Q′1(x), . . . , Q′md
(x))T denote the vector of the first md probabilities Q′k and let

D(x) = (D1(x), . . . , Dmd
(x))T . Then, for i > 0, we obtain the following connection between D

and Q

D(x) = AQ(x) +

N∑
j=md+1

Q′j(x)wj , (A.1)

with

A = (wp,qI{p ≤ q})md

p,q=1

and wj = (w1,j , . . . , wN,j). The triangular matrix A satisfies det(A) =
∏md

l=1 wl,l > 0 and therefore,
the matrix A is invertible.

1The Stirling number S(j, i) is the number of ways to partition a set of j objects into i non-empty subsets.
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Next, we derive representations of the probabilities Q′k in terms of

sk (x) :=

N∑
i=1

pi (x)
k
, k ∈ N,

Sk (x) :=
∑

i1,...,ik∈{1,...,N}
i1 6=... 6=ik

pi1 (x) · ... · pik (x) , k ∈ N0,

which give rise to

Q′k(x) =
1

k!

N−k∑
j=0

(−1)
j

j!
Sj+k(x), 0 ≤ k ≤ md. (A.2)

Here, the factors 1/k! and 1/j! arise from the number of possible orderings when replacing
{1 ≤ i1 < ... < ik ≤ N} with {i1, ..., ik | i1 6= ... 6= il}, respectively. Note that the iterated sums
Sk (x) can be computed recursively, requiring knowledge of the sk(x) only, by the formula

S0 = 1,

Sk =

k∑
j=1

(−1)
j+1 (k − 1)!

(k − j)!
sjSk−j , (A.3)

Define the nonlinear transformation g : Rmd → Rmd by

g (s1(x), ..., smd
(x)) =

 1

k!

md−k∑
j=0

(−1)
j

j!
Sj+k(x)


1≤k≤md

=:
(
Q̃k(x)

)
1≤k≤md

,

with Sj(x) as in (A.3). Furthermore, we find

A (g(s(x))) = AQ(x)−A

 1

k!

N−k∑
j=md−k+1

(−1)
j

j!
Sj+k(x)


1≤k≤md

= D(x)−A

 1

k!

N−k∑
j=md−k+1

(−1)
j

j!
Sj+k(x)


1≤k≤md

−
N∑

j=md+1

Q′j(x)wj .

Since ∥∥∥∥∥∥
N∑

j=md+1

Q′j(x)wj

∥∥∥∥∥∥
2

≤
N∑

j=md+1

γj‖wj‖2 ≤
√
md

N∑
j=md+1

γj ,

=
√
md

1− γN−md

1− γ
· γmd+1,

‖A‖2 ≤ 1 and, for any k,

1

k!

N−k∑
j=md−k+1

(−1)
j

j!
Sj+k(x) ≤ e− 1

k!
γmd+1

the claim of Lemma A.1 now follows.

To conclude the proof of Theorem 2.1, it remains to show that the map g is invertible. Given
Q̃k, k = 1, . . . ,md, the quantities S1, . . . , Smd

can be recovered as follows. Starting with k = md,
we obtain

Q̃md
(x) ·md! = Smd

(x).
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Next, for k = md − 1, we obtain

Q̃md−1(x) =
1

(md − 1)!
· (Smd

(x) + Smd−1(x)),

yielding
(md − 1)! · Q̃md−1(x)− Smd

(x) = Smd−1(x)).

Successively, Smd−2, . . . , S1 can be recovered in the same fashion. Given S1, . . . , Smd
, we can

compute s1, . . . , smd
successively as well. Starting with k = 1, we find S1 = s1 · S0 = s1. Next,

for k = 2, we find S2 = s1S1 − s2S0, which gives s2 = s2
1 − S2. One by one, s3, . . . , smd

can be
recovered. �

Proof of Theorem 4.2

We will give the proof for the case of |R| = 1. While it immediately extends to the case |R| > 1, it
provides a substantial ease of notation. In the proof of Lemma 2.1, the matrix A and the function
g have been defined for the case N > md as this is the relevant case in practice. However, for our
asymptotic considerations, we need to extend these quantities to the case of N ≤ md. Since these
definitions are somewhat artificial and are only relevant within this proof, we will denote them as
At and gt, respectively. First, we define the matrix At. To this end, let ap,q = 0, if q < p or if
p < q and q > N and let ap,q = wp,q else. Then At = (ap,q)p,q=1,...,md

. With this definition, the
matrix At is an upper triangular matrix with positive diagonal elements and block structure

At =

(
A1 A2

A3 A4

)
, (A.4)

where A1 ∈ RN×N and A4 ∈ R(md−N)×(md−N) are upper triangular matrices with positive diag-
onal elements, A2 = 0 ∈ RN×(md−N) and A4 = 0 ∈ R(md−N)×N . Therefore, A−1

t exists and has
the same block structure. Now, in order to define the function gt, let

bi,j =

{
1
i!

(−1)j−i

(j−i)! i = j or j > i and j ≤ N
0 else

.

Then, the matrix B := (bi,j)i,j=1,...,md
has the same structure as the matrix At in (A.4). In

particular, B is invertible with B−1 = (βi,j)i,j=1,...,md
. Define

gt(s1(x), . . . , smd
(x)) = B · (S1(x), . . . , Smd

(x))T ,

where the relation between the sk’s and the Sk’s is given in (A.3). Notice that At = A and gt = g
if N > md. If md > N

gt(s(x)) =



Q′1(x)
...

Q′N (x)
0
...
0


=: Q∗(x)

gt is invertible, which can be shown analogously to the case N > md. If |R| = 1, the map Ψ
becomes

Ψ(y) :

{
Rmd → R
y 7→ H2

H2
1

(Π
md
1 g−1

t A−1
t y)2

Π
md
2 g−1

t A−1
t y

24



with

H2
1

H2
∇Ψ(y) =2

Πmd
1 g−1

t A−1
t y

Πmd
2 g−1

t A−1
t y
∇
(
Πmd

1 g−1
t A−1

t

)
(y)

− (Πmd
1 g−1

t A−1
t y)2

(Πmd
2 g−1

t A−1
t )2y

∇
(
Πmd

2 g−1
t A−1

t

)
(y),

where

∇
(
Πmd

1 g−1
t A−1

t

)
(y) =

((
Jg−1

t
(A−1

t y)
)

1
A−1
t

)T
and

∇
(
Πmd

2 g−1
t A−1

t

)
(y) =

((
Jg−1

t
(A−1

t y)
)

2
A−1
t

)T
.

By
(
Jg−1

t
(A−1

t y)
)
k

we denote the k’th row of the matrix Jg−1
t

(A−1
t y). Since there is at least one

marker in the region R by assumption, we have for one x ∈ R

S1(x) = s1(x) =

md∑
j=1

β1,jQj(x) =
(
g−1
t

)
1

(Q∗(x)) > 0,

such that s2(x) is well defined:

s2(x) =
S1(x)− S2(x)

S1(x)

=

∑md

j=1 β1,jQj(x)−
∑md

j=1 β2,jQj(x)∑md

j=1 β1,jQj(x)
=
(
g−1
t

)
2

(Q∗(x)).

This yields (
Jg−1

t
(Q∗(x)

)
1

= (β1,1, . . . , β1,N , 0, . . . , 0)

and (
Jg−1

t
(Q∗(x)

)
2

=
(
β̃1, . . . , β̃N , 0, . . . , 0

)
,

where

β̃k =
β1,k − β2,k∑md

j=1 β1,jQj
− β1,k

∑md

j=1 β1,jQj −
∑md

j=1 β2,jQj(∑md

j=1 β1,jQj

)2 .

In particular, only the first N entries are non-zero. Therefore, multiplication with the matrix

A−1
t =

(
Ã1 Ã2

Ã3 Ã4

)

with Ã2 = 0 ∈ R(md−N)×N yields again an element with zero-entries after the N -th component.
Since the model bias vanishes if N ≤ md, we find

Ft(s) :=P
(√

t
(
N̂R −NR

)
≤ s
)

= P
(√

t(Ψ(D̂)−Ψ(D)) ≤ s
)

(A.5)

= P
(√

t∇Ψ(D)T (D̂ − D) +

√
t

2
(D̂ − D)THessΨ(D̃)(D̂ − D) ≤ s

)
,
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for an intermediate point D̃. Since ‖D̂ − D‖2 ≤ ‖D̂ − D‖1, where ‖ · ‖1 and ‖ · ‖2 denote the l1−
and l2−norm on R|R|md , respectively, we find that

P
(
‖D̂ − D‖22 > ε

)
≤ P

(
‖D̂ − D‖1 >

√
ε
)
≤ 3 exp(−tε/25),

where the last inequality follows from Lemma 3 in Devroye (1983), using md ≤ 5 log(t). Setting
ε = log(t)/t · 25 gives

P
(
‖D̂ − D‖22 >

25 log(t)

t

)
≤ 3

t
.

By assumption of the theorem, there exists a positive constant C > 0 such that

|(D̂ − D)THessΨ(D̃)(D̂ − D)| ≤ C‖D̂ − D‖22.

Hence, with Ft defined in (A.5), we find

F−t (s) ≤ Ft(s) ≤ F+
t (s),

where

F+
t (s) := P

(√
t∇Ψ(D)T (D̂ − D) ≤ s+

C
√
t

2
‖D̂ − D‖22

)
≤ P

(√
t∇Ψ(D)T (D̂ − D) ≤ s+ 25C

log(t)

2
√
t

)
+

3

t
,

as well as

F−t (s) := P
(√

t∇Ψ(D)T (D̂ − D) ≤ s− C
√
t

2
‖D̂ − D‖22

)
≥ P

(√
t∇Ψ(D)T (D̂ − D) ≤ s− 25C

log(t)

2
√
t

)
− 3

t
,

For given v ∈ Rmd and z ∈ R, the set

Av,z = {w ∈ R|R|md | vTw ≤ z}

defines a closed half space in R|R|md and as such, it is a 1-generated, closed convex set and we
have

P
(√

t∇Ψ(D)T (D̂ − D) ≤ s− τt
)

= P
(√

t(D̂ − D) ∈ AΨ(D),s−τt

)
,

where τt = 25C log(t)

2
√
t

. Note that we can write

(D̂ − D) =
1

t

t∑
k=1


 I{Mk(xi1) = 0}

...
I{Mk(xi1) = md}

−
 D0(xi1)

...
Dmd

(xi1)


 =

1

t

t∑
k=1

Mk,

where Mk is defined in an obvious manner. It follows from Proposition 3 in Chernozhukov et al.
(2017) that if the conditions M.1’, M.2’ and E.2’ hold, where

(M.1′)
1

t

t∑
j=1

E
(
∇Ψ(D)T

‖∇Ψ(D)‖
·Mj

)2

≥ b for some positive constant b,

(M.2′)
1

t

t∑
j=1

E
∣∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖
·Mj

∣∣∣∣2+k

≤ Bkt , k = 1, 2,

(E.2′) E
[
exp

(∣∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖
·Mj

∣∣∣∣ /Bt)] ≤ 2 ∀j = 1, . . . , t,
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we obtain

sup
s±τt∈R

∣∣∣P(√t(D̂ − D) ∈ AΨ(D),s±τt

)
− P

(
Z̃ ∈ AΨ(D),s±τt

)∣∣∣
= sup

s∈R

∣∣∣P(√t(D̂ − D) ∈ AΨ(D),s±τt

)
− P

(
Z̃ ∈ AΨ(D),s±τt

)∣∣∣
≤ C

(
B2
t log(md|R|t)

t

) 1
6

,

where Z̃ ∼ N (0,ΣR). We now show that conditions (M.1′), (M.2′) and (E.2′) are satisfied with

Bt = m
3
2

d .

Verifying condition (M.1’):
Since the Mk are i.i.d., we find

1

t

t∑
j=1

E
(
∇Ψ(D)T

‖∇Ψ(D)‖
·Mj

)2

= E
(
∇Ψ(D)T

‖∇Ψ(D)‖
·M1

)2

.

Both ∇Ψ and M1 only have at most N non-zero entries (and N does not depend on t). Let
vt ∈ Rmd|R|, ‖vt‖ = 1, be a deterministic vector. Then, if and only if the realizations of M1 are
collinear on an event Ω0,t with P(Ω0,t)→ 1 as t→∞

lim
t→∞

E
[(
vTt M1

)2]
= 0.

By assumption, there is at least one marker in the region R with individual brightness smaller
than 0.5. Therefore, there exists a positive constant b̃ > 0 such that (D0(x), D1(x)) 6= (0.5, 0.5)
and D0(x) ∧D1(x) > b̃. The first two components of the random vector M1 can either be

u1 :=

(
1−D0(x)

−D1(x)

)
or u2 :=

(
D0(x)

1−D1(x)

)
.

The probabilities for both events are bounded away from 0 as t→∞. Vectors M1 with first two
components equal to u1 cannot be collinear to vectorsM1 with first two components equal to u2.
To see this, let β ∈ R. Then (

1−D0(x)

−D1(x)

)
= β

(
D0(x)

1−D1(x)

)
iff

β =
1−D0(x)

D0(x)
and β =

D1(x)

1−D1(x)
.

The latter condition can only be satisfied if (D0(xij ), D1(xij )) = (0.5, 0.5). Therefore, at least one
of the vectors containing either u1 or u2 is not perpendicular to vt, such that condition (E.2’) is
satisfied. Verifying condition (M.2’):
We have that

1

t

t∑
j=1

E
∣∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖
·Mj

∣∣∣∣2+k

= E
∣∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖
·M1

∣∣∣∣2+k

≤ ‖∇Ψ(D)‖2+k
1

‖∇Ψ(D)‖2+k
2

≤ (md|R|)
2+k
2 .
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with Bt = (md|R|)
3
2 .

Verifying condition (E.1’):
We need to show that

E
[
exp

(∣∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖
·M1

∣∣∣∣ /Bt)] ≤ 2.

Since
∣∣∣ ∇Ψ(D)T

‖∇Ψ(D)‖ · M1

∣∣∣ ≤ B1/3
t , condition (E.2’) trivially holds for sufficiently large t. Therefore, all

three conditions are met and we obtain the following statement

sup
s∈R

∣∣∣P(√t(D̂ − D) ∈ AΨ(D),s+τt

)
− P

(
Z̃ ∈ AΨ(D),s+τt

)∣∣∣
≤ C

(
(md|R|)3 log(md|R|t)

t

) 1
6

.

Finally, we show that P
(
Z̃ ∈ AΨ(D),s+τt

)
and P

(
Z̃ ∈ AΨ(D),s

)
are close, uniformly in s. Since

Z̃ ∼ N (0,∇Ψ(D)TΣR∇Ψ(D)), it follows that

sup
s∈R

∣∣∣P(Z̃ ∈ AΨ(D),s+τt

)
− P

(
Z̃ ∈ AΨ(D),s

)∣∣∣
≤ sup

s∈R

∣∣∣∣Φ( s

σR

)
− Φ

(
s+ τt
σR

)∣∣∣∣ ≤ 1√
2π

τt
σR

.

Combining all previous steps yields

sup
s∈R

∣∣∣P(√t(N̂R −NR) ≤ s)− P
(
Z̃ ∈ AΨ(D),s

)∣∣∣
≤ C̃

(
1

t
+

log(t)√
t

+

(
(md|R|)3 log(md|R|t)

t

) 1
6

)
.

With md ≤ 5 log(t) the claim of the theorem now follows.
�
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