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Abstract. In [1] the use of VCG in matching markets is motivated by
saying that in order to compute market clearing prices in a matching
market, the auctioneer needs to know the true valuations of the bidders.
Hence VCG and corresponding personalized prices are proposed as an
incentive compatible mechanism. The same line of argument pops up in
several lecture sheets and other documents related to courses based on
Easley and Kleinberg’s book, seeming to suggest that computing mar-
ket clearing prices and corresponding assignments were not incentive
compatible. Main purpose of our note is to observe that, in contrast,
assignments based on buyer optimal market clearing prices are indeed
incentive compatible.1
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1 Introduction

The idea of market clearing prices seems to exist since more than 200 years
(cf. [3]): Prices of products are expected to adapt to the demand such that
the demand is satisfied without any leftover products. A rigorous mathematical
treatment in the special (and particularly simple) case of a “two-sided market”
is presented in Shapley and Shubik’s paper [2]. The setup there consists of a set
I of items (or “sellers”), a set J of buyers and given valuations vij ≥ 0 indicating
the value that item i has for buyer j. One may assume w.l.o.g. that |I| = |J |
(otherwise add dummy items of value 0 for all buyers or dummy buyers with
zero valuations for all items if necessary). Relative to given prices pi, i ∈ I, buyer
j will only be interested in items that yield him a maximum profit vij − pi. Let
us call these items “acceptable” (for buyer j w.r.t. given prices pi). The price
vector p = (pi) is market clearing if there is a perfect matching of the buyers
with the items such that each buyer is assigned to (matched with) an acceptable
item.

1 In [1](section 15.9) it is shown that the VCG prices paid by the buyers are market
clearing, but the conclusion that, conversely, buyer optimal market clearing prices
are incenticve compatible, is missing.
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Market clearing prices are easy to compute (cf. [1] or section 2), even if we
impose the additional requirement that

∑
i pi should be minimal. Such buyer

optimal market clearing prices turn out to be unique (cf. [2] or section 2).

The above setup is also interesting in the context of sealed bid auctions, where
buyers are called bidders: Assume that an auctioneer is to assign the items i ∈ I
to the buyers j ∈ J and compute prices pi to be paid by the buyers for the items
they get assigned to. The auctioneer employs a mechanism performing this job
(computing an assignment and corresponding prices based on the reported val-
uations vij , i ∈ I, j ∈ J). Such a mechanism is called incentive compatible if no
bidder has any reason to lie about his valuations, i.e. if telling his true valua-
tions vij , i ∈ I maximizes the profit vij − pi of bidder j (where i is the item he
gets assigned to), irrespective of what the other bidders do. In game theoretic
terms one would say that truthtelling is a dominant strategy for each bidder j.
A famous mechanism with this property is the so-called VCG mechanism, based
on work by to Vickrey [6], Clarke [7] and Groves [8]. The basic idea is that each
bidder should pay for “the harm it does to the others” (cf. section 3 for details).

In [1], the use of the VCG-mechanism for matching markets (in particular
sponsored search) is motivated by saying that computation of market clearing
prices “can only be carried out by a search engine that actually knows the valu-
ations” vij of the bidders. VCG is known to be incentive compatible (even in a
more general setting, cf. [9]), so bidders can indeed be assumed to report their
true valuations, once they know that VCG is applied to compute the assignment
and corresponding prices.

As it turns out, however, these VCG prices are exactly the buyer optimal
prices pi which we could equally well compute by the standard price raising pro-
cedure (cf. [1] or section 2) and subsequent reduction to buyer optimal prices.
The purpose of our note is to stress that - at least in the context of matching
markets - VCG is just an alternative way of defining buyer optimal prices, or, to
put it in another way, a means of showing that buyer optimal prices are incentive
compatible.

We do not claim that our findings (in particular Lemma 2) are completely
new, but on the other hand we also did could not find them anywhere mentioned
explicitly in the literature. Actually, we only found one single document point-
ing out an equivalence between VCG and market clearing prices ([10]) and this
completely ignores the crucial buyer optimality. All others adopted the argument
from Easley and Kleinberg’s book mentioned above.

In the following two sections we discuss market clearing prices, buyer opti-
mality, and the equivalence with VCG in the context of matching markets. We
aimed at a mainly selfcontained presentation (assuming only basic knowledge on
linear programming and bipartite matchings).



2 Market clearing prices

Let G = (I ∪J,E) be the complete bipartite graph with node sets I (items) and
J (buyers), and assume w.l.o.g. that |I| = |J | = n, say. (Otherwise, add dummy
items of value 0 to all players or dummy buyers with valuation 0 for all items.)
Let vij ≥ 0, i ∈ I, j ∈ J denote the valuation of buyer j ∈ J for item i ∈ I. A
matching in G is a subset M ⊆ E of paiwise non-incident edges. M is perfect
if it matches all nodes, i.e., |M | = n. The value of a matching M is defined as
v(M) =

∑
ij∈M vij . We let

v∗ = v∗(G) = max{v(M) | M is perfect matching in G}.

It is well-known that v∗ and a corresponding optimal matching M∗ ⊆ E
can be found by solving the following linear program (P ) with variables xij
indicating whether ij ∈M(xij = 1) or not (xij = 0 and its dual (D):

(P ) v∗ = max
∑

ij∈E vijxij = min
∑
i

pi +
∑
j

qj (D)∑
j xij = 1, i ∈ I pi + qj ≥ vij∑
i xij = 1, j ∈ J

The dual variable pi may be interpreted as price of item i (see also below).
To each price vector p ∈ RI there is a corresponding best choice for q, obtained
by setting qj := maxi vij − pi. For this reason we also refer to a given price
vector p as a “dual solution” (without mentioning the corresponding q). Clearly,
we may - and will - always assume p ≥ 0 w.l.o.g. (by adding a suitable amount
to all components of p and subtracting the same amount from q).

The price raising procedure (cf., e.g., [1]), in discrete optimization also known
as Hungarian Method ([4], cf. also [5]) is a rather efficient combinatorial algo-
rithm for solving (P ) and (D). It is a special case of a primal-dual algorithm that
subsequently modifies a feasible dual solution p until a complementary (hence
optimal) primal solution is found:

Given a feasible dual solution (p, q), define the corresponding set of equality
edges

E= := {e = ij ∈ E | pi + qj = vij}.

By complementary slackness, (p, q) is optimal if there is a corresponding perfect
matching M ⊆ E=, i.e., a 0 − 1 solution of (P ) with xij = 1 ⇒ pi + qj = vij .
Interpreting pi as price of item i, such a matching M assigns each buyer j to
an item i with profit qj = vij − pi for buyer j. Dual feasibility ensures that
any other item ĩ would result in a lower or equal profit vĩj − pĩ. (This is why
G= = (I ∪ J,E=) is called “best sellers graph” sometimes (cf., e.g., [1]).

Starting, say, from p = 0, we successively seek to modify the current dual
solution (p, q) such that G=(I ∪ J,E=) contains larger and larger matchings



M ⊆ E= in each iteration, until eventually a perfect matching is reached (and
hence an optimal solution is found).

Thus assume (p, q) is a current dual feasible solution and M ⊆ E= is a max-
imum (non-perfect) matching, i.e., there exists an unmatched j ∈ J . Let R ⊆ I
denote the set of nodes that can be reached from j along an M -alternating path
in G= (as indicated in the figure below).

R

j

Each i ∈ R is matched by M (otherwise the M -alternating path from j to i
were M -augmenting, contradicting our assumption that M is maximum). More-
over, the matching partners MR ⊆ J of R are not joined to any node i ∈ I\R
in G= (any such i would belong to R by definition). Hence we may increase
p on R and decrease q on MR ∪ {j}, maintaining dual feasibility, until some
e ∈ E joining I\R to MR becomes an equality edge and we update (enlarge
R correspondingly. After at most n = |I| steps, a new dual feasible (p̃, q̃) will
be found, allowing a larger “primal” matching M̃ of size |M̃ | = |M | + 1 in the
corresponding G̃=.

After at most n = |I| such iterations, we eventually end up with a dual fea-
sible (p, q) and a primal perfect matching M ⊆ E= in the corresponding G=.
As explained earlier, given prices pi, buyer j is ready to buy any item i with
ij ∈ E= as this will maximize his profit. This explains the notion of market
clearing prices for the optimal dual solutions on D (as these are exactly the ones
that allow a complementary perfect matching M ⊆ E=).

Market clearing prices are by no means unique. For example, raising all prices
by 1 (and decreasing q correspondingly) does not affect optimality. However,
there is a unique optimal dual solution p that is buyer optimal in that it min-
imizes

∑
i pi (recall that we assume all prices to be non-negative). This is an

immediate consequence of Shapley and Shubik’s [2] “lattice structure” Theo-
rem:

Theorem 1. If p′, p′′ ∈ Rn
+ are market clearing, so is pi := min{p′i, p′′i }, i ∈ I.

Proof. It is straightforward to verify that p, together with qj := max{q′j , q′′j }
yields a feasible dual solution. (Here q′, q′′ are the dual variables corresponding to
p′, p′′.) Furthermore, if M is any maximum valuation perfect matching, then M
must be complementary with both (p′, q′) and p′′, q′′). Thus p′i+q

′
j = p′′i +q′′j = vij



for all ij ∈ M . Hence pi + qj = min{p′i, p′′i }+ max{q′j , q′′j } = vij for all ij ∈ M ,
proving that p is market clearing as well. ut

Once we have computed market clearing prices p by price raising as described
above, we may further reduce them to unique buyer optimal prices in a similar
way. The following observation is useful in this context (one direction is proved
in [1]):

Lemma 1. Let p ∈ Rn
+ be market clearing and M ⊆ E= be a corresponding

perfect matching in the corresponding equality graph G=. Then the following are
equivalent:
(i) p is buyer optimal
(ii) Each j ∈ J is joined by an M -alternating path P ⊆ E=, starting and ending
with a matching edge, to an item i ∈ I with pi = 0.

Proof. “⇒”: Assume p is buyer optimal and j ∈ J . Clearly, pmin = min pi = 0 –
otherwise p cannot be buyer optimal (decrease all pi by pmin). Let R ⊆ I denote
the set of items i ∈ I that can be reached from j along M -alternating paths
P ⊆ E= from j, starting (and ending) with a matching edge. By definition of R,
there is no edge in E= joining R to any j ∈ J\MR, where again MR ⊆ J denotes
the set of matching partners of R. Hence, in case p > 0 on R, we may decrease
p on R and increase q on MR while staying dually feasible and complementary
with M . This would contradict the assumed minimality of p.
“⇐”: Assume that (ii) holds, but p is not buyer optimal, i.e., there exists a
market clearing p̃ with p̃i0 < pi0 . Let j0 be the matching partner of i0 and let P =
j0, i0, j1, i1, ..., jk, ik be the M -alternating path whose existence is guaranteed by
(ii). As p̃ with corresponding q̃ is an optimal dual solution, complementarity with
(the optimal primal) M implies

p̃i0 + q̃j0 = vi0,j0 , ..., p̃ik + q̃jk = vik,jk .

Hence dual feasibility of (p̃, q̃) yields

p̃i0 ≤ pi − ε⇒ q̃j1 ≥ qi + ε⇒ p̃i1 ≤ pi1 − ε⇒ ...⇒ p̃ik ≤ pik − ε = −ε < 0,

a contradiction. ut

Lemma 1 suggests the following algorithm to reduce a given market clearing
p (with corresponding q and any fixed maximum valuation matching M) towards
buyer optimality: First decrease all prices uniformly until pi = 0 for some item
i. Check whether condition (ii) in Lemma 1 is satisfied. If yes, we are done.
Otherwise pick any j ∈ J that violates condition (ii) and let R ⊆ I denote the
set of items that can be reached from j along M -alternating paths starting (and
ending) with a matching edge. By assumption, p > 0 on R. Furthermore, there
are no edges in E= joining R to J\MR. Hence decreasing p on R and increasing
q on MR maintains feasibility and hence optimality of the given dual solution
(note that

∑
pi +

∑
qj remains constant). We therefore decrease p on R until

eventually a new edge e joining R to J\MR enters E=, in which case we update



(enlarge) the current set R ⊆ I and continue. After at most n = |I| steps, j will
get connected to an item i with pi = 0 as required in condition (ii) and the iter-
ation is complete. We finish our description of the algorithm by opbserving that,
while proceeding this way (trying to connect a current j as above to the zero
price items), we never destroy any M -alternating paths connecting other buyers
j′ to zero price items. Indeed if any such path P would pass through i ∈ R as
above, then also j were connected to zero price items (follow the M -alternating
path from j to i and then switch to P ). Thus, indeed, after at most n = |I|
iterations we will eventually reach an optimal dual solution (p, q) satisfying con-
dition (ii) in Lemma 1, i.e., buyer optimal prices p.

In section 3 we will see how buyer optimal prices arise in a natural (and at
the first glance different) way in the context of sealed bid auctions.

3 VCG

The general idea behind VCG mechanisms is that items should be assigned to
buyers so as to maximize the total valuation (“social welfare”) and that prices
are determined so that each buyer j pays for the “harm he does to the others”
by taking the item (or, in more general situations, the goods) assigned to him.
More precisely, let M be any maximum valuation matching of value v∗ = v(M).
For any ij ∈M compute v−j := v∗(G\j), the maximum valuation of a matching
when bidder j is removed or (to maintain our assumption |I| = |J |) replaced by
a dummy bidder with valuation 0 for all items.

We then compare this to v−i−j := v∗(G\{i, j}), the maximum valuation if

buyer j has left and taken item i. The difference between these two, i.e., v−j−v−i−j
is the harm that buyer j does to the others if he takes away item i and, in VCG-
terminology, this is the personalized price pij of item i for buyer j. The VCG
mechanism then assigns items to buyers according to the optimal matching M
and asks each buyer j to pay his price pV CG

i := pij for the item i he is assigned
to.

We claim that the VCG prices pV CG
i defined this way are exactly the buyer

optimal market clearing prices (cf. also section 15.9 in [1]).

Lemma 2. Let p be buyer optimal market clearing prices and M be any maxi-
mum valuation matching. Then pi = v−j − v−i−j holds for all ij ∈M .

Proof. As M is a maximum valuation matching, so is M\{i, j} for the subgraph
G\{i, j} for any ij ∈M . In other words, v−i−j = v∗ − vij for ij ∈M .

Secondly, observe what happens if we replace j by a dummy bidder: Let
q ∈ Rn correspond to p, so that v∗ =

∑
pi +

∑
qj . By Lemma 1, there exists an

M -alternating path P from j to some zero priced item i.
Construct a new matching M̄ by switching M along P (thereby unmatching

i and j) and matching i and j with each other. Correspondingly, obtain q̄ from



q by decreasing qj to 0. Then M̄ is (still) complementary with (p, q̄) and hence
optimal. Thus v−j = v∗− qj . Consequently, the VCG price that j has to pay for
the item i that is assigned to him equals

pV CG
i = v∗ − qj − (v∗ − vij) = vij − qj = pi

as claimed. ut
.

VCG prices have the desirable property of being incentive compatible: Buyers
cannot profit by lying about their true valuations vij . Hence this is true for the
mechanism thatcomputes (and posts) buyer optimal market clearing prices (and
assigns items to buyers according to a maximum value perfect matching M). We
include a proof for convenience of the reader.

Theorem 2. Assigning items to buyers at (posted) buyer optimal market clear-
ing prices is incentive compatible.

Proof. Assume that buyer j, when reporting his valuations vij truthfully gets
assigned to item i at a price of pi = v−j − v−i−j (according to Lemma 2). We
compare his profit qj = vij − pi to the outcome in case he reports valuations
ṽij , i ∈ I, and, as a consequence, gets assigned to item ĩ ∈ I (possibly different
from i). The resulting price is then (again according to Lemma 2) p̃i = ṽ−j−ṽ−i−j ,
where the tilde indicates that the corresponding values are computed based on
valuations ṽij , i ∈ I of player j.

Let M and M̃ denote the corresponding assignments computed w.r.t. given
valuations v and ṽ, resp. Thus ij ∈ M and ĩj ∈ M̃ . As M is a maximum value
matching w.r.t. v, we have v(M) ≥ v(M̃), i.e.,

vij + v−i−j ≥ vĩj + v−ĩ−j = vĩj + ṽ−ĩ−j .

(The last equation is due to the fact that v−ĩ−j does not depend on the valuations

of j.) Hence the price that j were to pay for item ĩ (when he misreports his
valuations as ṽij) is, according to Lemma 2,

pĩ = ṽ−j − ṽ−ĩ−j = vj − ṽ−ĩ−j ≥ v−j − (vij + v−i−j − vĩj) = pi − vij + vĩj ,

showing that vĩj − p̃i ≤ vij − pi. So misreporting his valuations cannot increase
his profit. ut
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