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Abstract. We study a convex quadratic nonseparable resource allocation problem that
arises in the area of decentralized energy management (DEM), where unbalance in elec-
tricity networks has to be minimized. In this problem, the given resource is allocated over
a set of activities that is divided into subsets, and a cost is assigned to the overall allocated
amount of resources to activities within the same subset. We derive two efficient algo-
rithms with O(nlogn) worst-case time complexity to solve this problem. For the special
case where all subsets have the same size, one of these algorithms even runs in linear time
given the subset size. Both algorithms are inspired by well-studied breakpoint search
methods for separable convex resource allocation problems. Numerical evaluations on
both real and synthetic data confirm the theoretical efficiency of both algorithms and dem-
onstrate their suitability for integration in DEM systems.

Funding: This work was supported by the Nederlandse Organisatie voor Wetenschappelijk Onderzoek
[Grant 647.002.003] within the SIMPS project and also supported by Eneco.

Keywords: resource allocation • energy management • nonseparable optimization

1. Introduction
1.1. Problem Formulation and Applications
Resource allocation problems belong to the fundamental problems in the operations research literature (Patriks-
son 2008). These problems involve the allocation of a given resource (e.g., money or energy) over a set of activi-
ties (e.g., projects or time slots) while minimizing a given cost function or maximizing a given utility function. In
its simplest form, the problem can be formulated mathematically as follows:

RAP : min
x∈Rn

∑n
i�1

fi(xi),

s:t:
∑n
i�1

xi � R,

li ≤ xi ≤ ui, i ∈ {1, : : : , n}:
Here, each variable xi represents the amount of the total resource R ∈ R that is allocated to activity i and the
values li,ui ∈ R are lower and upper bounds on the amount allocated to activity i. Moreover, each function fi :
R→ R assigns a cost to allocating resource to activity i.

In this article, we study the following more specific convex resource allocation problem, which is an extension
of the convex quadratic resource allocation problem:

QRAP-NonSep-GBC : min
x∈Rn

∑m
j�1

1
2
wj

∑
i∈N j

xi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2 +∑n

i�1

1
2
aix2i + bixi

( )
, (1a)

s:t:
∑n
i�1

xi � R, (1b)

Lj ≤
∑
i∈N j

xi ≤ Uj, j ∈ {1, : : : ,m}, (1c)

li ≤ xi ≤ ui, i ∈ {1, : : : ,n}, (1d)
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where w,b, l,u ∈ R
n, a ∈ R

n
>0, R ∈ R, and L,U ∈ R

m are given inputs. Furthermore, in this problem, a partition of
the index set N :� {1, : : : ,n} into m disjoint subsets N 1, : : : ,Nm of size n1, : : : ,nm indexed by M :� {1, : : : ,m} is
given. The objective function of Problem QRAP-NonSep-GBC assigns for each subset N j a cost to the sum of all
allocated amounts associated with this subset and to the individual amounts. Similarly, Constraints (1c) and (1d)
put bounds on the sum of all variables associated with each given subset and on the individual variables.

Our primary interest in studying this problem stems from its application in decentralized energy manage-
ment (DEM) (Siano 2014, Esther and Kumar 2016). The aim of DEM is to optimize the simultaneous energy
consumption of multiple devices within a neighborhood. Compared with other energy management para-
digms such as centralized energy management, within a DEM system, devices optimize their own consump-
tion locally and the control system coordinates the local optimization of these devices to optimize certain
neighborhood objectives.

In particular, we are interested in the local optimization of a specific device class within DEM, namely the
scheduling of electric vehicles (EVs) that are equipped with a three-phase charger. This means that the EV can
distribute its charging arbitrarily over all the three phases of the low-voltage network. Recent studies show that
three-phase EV charging, as opposed to single-phase EV charging, can reduce losses in the electricity grid, reduce
the stress on grid assets, and thereby prevent outages caused by a high penetration of EVs charging simulta-
neously on a single phase (Weckx and Driesen 2015, Schoot Uiterkamp et al. 2017). We discuss this issue in more
detail in Section 2, and we show that the three-phase EV charging problem can be modeled as an instance of
Problem QRAP-NonSep-GBC.

An important aspect of the DEM paradigm is that device-level problems, such as the aforementioned three-
phase EV charging problem, are solved locally. This means that the corresponding device-level optimization
algorithms are executed on embedded systems located within, for example, households or the charging equip-
ment. It is important that these algorithms are very efficient with regard to both execution time and storage
space, because often they are called multiple times within the DEM system and the embedded systems on which
the algorithms run have limited computational power and memory (Beaudin and Zareipour 2015). Therefore,
efficient and tailored device-level optimization algorithms are crucial ingredients for the real-life implementation
of DEM systems. In particular, to solve the three-phase EV charging problem, an efficient algorithm to solve
Problem QRAP-NonSep-GBC is required.

Another application of Problem QRAP-NonSep-GBC is in portfolio optimization, where the question is how to
invest in a set of stocks to maximize the (expected) return of the investments. Within the popular paradigm of
mean-variance portfolio optimization, introduced by Markowitz (1952), the goal is to find a maximum mean-
variance portfolio, that is, a portfolio that maximizes the expected return minus the variance of the portfolio.
To compute this portfolio, one requires the expected returns and the covariance matrix of the assets. Usually, the
covariance matrix itself is not available and must be estimated based on, for example, a sample covariance ma-
trix. However, such estimates are unstable when the sample size is small and the number of variables is large
(Ledoit and Wolf 2003). One way to simplify the estimation procedure and obtain more stable estimators is to as-
sume a certain low-rank structure underlying the covariance matrix and subsequently estimate the parameters of
this structure. One popular example of such a structure is equicorrelation (Engle and Kelly 2012), which states
that particular groups of assets have the same pairwise correlation, that is, each pair of assets within a given
group has the same covariance. Given the equicorrelation ρj for a given set N j of assets, the covariance matrix Σj

of these assets is given by (1− ρj)I+ ρjee
�, where I is the identity matrix and e is the vector of ones of

appropriate size.
Under the assumption of equicorrelation, the mean-variance portfolio can be obtained as follows. Suppose an

amount of R is to be invested into n stocks whose expected return is given by r ∈ R
n and that are separated in N j

groups so that
• The correlation between two assets within a given groupN j is ρj; and
• The correlation between two assets not belonging to the same group is zero.
Then the mean-variance portfolio is the solution to the following optimization problem:

max
x∈Rn

r�x −∑m
j�1

(xj)�Σjxj,

s:t:
∑n
i�1

xi � R,

xi ≥ 0, i ∈ {1, : : : ,n},
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where xj :� (xi)i∈N j
for j ∈ {1, : : : ,m}. To formulate this problem as an instance of Problem QRAP-NonSep-GBC,

observe that for a given j ∈ {1, : : : ,m}, we have

(xj)�Σjxj � (xj)�(1− ρj)Ixj + (xj)�ρjee
�xj � ∑

i∈N j

(1− ρj)x2i + ρj

∑
i∈N j

xi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2:

Thus, by choosing the objective function parameters of Problem QRAP-NonSep-GBC as wj � 2ρj, ai � 2(1− ρj),
and bi � −ri for j ∈ {1, : : : ,m} and i ∈N j, we can formulate the mean-variance portfolio optimization problem
with equicorrelation as an instance of Problem QRAP-NonSep-GBC.

Finally, the special case of ProblemQRAP-NonSep-GBCwherew � 0 has applications in, for example, power al-
location in communication networks (He et al. 2013). In many telecommunication systems, the amount of noise
that accompanies the transmission of data can be reduced by transmitting the data over several parallel channels
(Shams et al. 2014). In some advanced systems, these channels are divided into subchannels that represent
so-called second users (He et al. 2013). One goal in these systems is to allocate power to channels, each potentially
divided into subchannels, so that the capacity of the subchannels is maximized and the power allocation limits of
both the channels and (sub)channels are satisfied. We refer to Schoot Uiterkamp et al. (2022) for more details on
this application and the formulation of this special case of ProblemQRAP-NonSep-GBC.

1.2. Problem Classification and Related Work
Problem QRAP-NonSep-GBC can be classified as a quadratic nonseparable resource allocation problem with gen-
eralized bound constraints (Constraint (1c)). The nonseparability is because of the terms (∑i∈N j

xi)2, which cannot
be written as the sum of single-variable functions and are thus nonseparable. When the factors wj are zero, these
nonseparable terms disappear and Problem QRAP-NonSep-GBC becomes the convex quadratic separable
resource allocation problem with generalized bound constraints. In the literature, this problem has hardly been
studied: a special case that includes only generalized upper bound constraints is studied by Hochbaum and
Hong (1995) and Bretthauer and Shetty (1997). However, generalized bound constraints are a special case of
submodular constraints (as shown by Fujishige 1984). As a consequence, several algorithms for convex separable
resource allocation problems with general submodular constraints can be specialized to generalized bound con-
straints (Katoh et al. 2013).

When in addition the generalized bound constraints are omitted, Problem QRAP-NonSep-GBC reduces to the
convex quadratic simple separable resource allocation problem. This problem and its extension to convex cost
functions have been well studied (Patriksson 2008, Patriksson and Strömberg 2015 and the references therein).
Because our approach for solving the nonseparable resource allocation problem QRAP-NonSep-GBC relies on
several techniques and properties also observed in approaches for solving convex separable resource allocation
problems, we highlight three significantly different types of solution approaches for the latter problems.

1. Breakpoint Search Methods (Helgason et al. 1980, DeWaegenaere andWielhouwer 2012). These methods con-
sider the Lagrangian dual of the original problem and exploit the structure of the Karush-Kuhn-Tucker (KKT) opti-
mality conditions (Boyd and Vandenberghe 2004) to efficiently search for the optimal (dual) multiplier associated
with Resource Constraint (1b). More precisely, they exploit the fact that the solution to the KKT conditions is a
piece-wise monotone function of this multiplier. Subsequently, they determine the two breakpoints in between
which the optimal multiplier must lie based on this monotonicity property. Finally, a simplified version of the
KKT-conditions based on these two breakpoints is solved to find the optimal multiplier. Breakpoint search meth-
ods have been succesfully applied to both the convex simple resource allocation problem (see Patriksson 2008, Pat-
riksson and Strömberg 2015, and the references therein) and several of its extensions such as the resource allocation
problemwith additional nested constraints (Vidal et al. 2019).

2. Variable-Fixing Methods (Bretthauer and Shetty 2002, Kiwiel 2008). In these methods, first a solution to the
problem without Box Constraints (1d) is computed. Subsequently, the optimal value of several variables that ex-
ceed their bounds in this solution is determined based on whether the variable sum is smaller or larger than the re-
source value R. The variables whose value in the eventual optimal solution have been determined are removed
from the problem and the amount of resource is adjusted accordingly. Thus, a new instance of the problem is ob-
tained with at least one variable less than the original problem. This process continues until none of the variables in
the solution to the relaxed problem exceeds its bounds. The worst-case time complexity of variable-fixing methods
is in general worse than that of breakpoint search methods. However, the former methods sometimes show better
practical performance, both for the convex simple resource allocation problem (Patriksson and Strömberg 2015)
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and for several of its extensions such as the resource allocation problem with additional nested constraints (see,
e.g., Schoot Uiterkamp et al. (2021) that contains a numerical comparison between the variable-fixing based algo-
rithm of van der Klauw et al. (2017) and the monotonicity-based algorithm of Vidal et al. (2019)).

3. Interior-Point Methods (Cominetti et al. 2014, Wright and Rohal 2014). Interior-point methods are an impor-
tant class of iterative methods for convex optimization (Gondzio 2012). In each iteration, the step from the current
to the next iterate is determined as the solution to a perturbed version of the KKT optimality conditions. This boils
down to solving a linear system involving the constraint matrix, which generally requiresO(n3) time. However, for
several resource allocation problems, the number of operations required to solve this system can be significantly re-
duced due to the special sparse structure of the constraint matrix. In particular, for the convex simple resource allo-
cation problem and its extension with nested constraints, this number can be reduced to O(n) (Wright and Rohal
2014, Wright and Lim 2020). It is shown that these methods can significantly outperform alternative approaches
such as breakpoint search and pegging depending on the complexity of the objective function.

Without any additional restrictions on w, Problem QRAP-NonSep-GBC is NP-hard because the special case
where nj � 1, wj � −2, and ai � 1 for all i ∈N and j ∈M is a separable concave quadratic resource allocation prob-
lem that is known to be NP-hard (Sahni 1974). Therefore, we focus on instances where the parameters are chosen
such that the objective function is convex (we come back to this later in this section and in Section 3.1).

Observe that Problem QRAP-NonSep-GBC can be modeled as a minimum convex quadratic cost flow problem
if w ≥ 0 (Figure 1). Therefore, this case can be solved in strongly polynomial time (Végh 2016). In fact, because its
network structure is series-parallel, it can be solved by the algorithms from Tamir (1993) and Moriguchi et al.
(2011) in O(n2) time. However, when some of the factors wj are negative, existing approaches for solving this
type of flow problem do not apply anymore. In particular, this holds for the aforementioned EV scheduling prob-
lem in DEM, where the objective of minimizing load unbalance is modeled as an instance of Problem QRAP-
NonSep-GBC by setting some or all of the factors wj to a negative number (see also Section 2.2).

1.3. Contribution
In this article, we present two O(nlogn) time algorithms for strictly convex instances of Problem QRAP-NonSep-
GBC, thereby adding a new problem to the small class of quadratic programming problems that can be solved
efficiently in strongly polynomial time. For this, we derive a property of problem instances that uniquely

Figure 1. ProblemQRAP-NonSep-GBC Cast as a MinimumQuadratic Cost Flow Problem

Notes. The node values are the required net input flow and the edge values are the flow costs and flow bounds respectively. In this illustrative
example, n � 7, m � 3, N 1 � {1, 2}, N 2 � {3, 4, 5}, N 3 � {6, 7}, and each flow variable yj has the interpretation that yj ≡ ∑

i∈N j
xi for j ∈M :�

{1, 2, 3}.
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characterizes the class of strictly convex instances to the problem. This class includes problems in which some or
all the factors wj are negative and, in particular, includes the three-phase EV charging problem. Our algorithms
are, in their essence, breakpoint search algorithms that, as mentioned before, exploit the structure of the KKT
conditions to efficiently search for the optimal (dual) multiplier associated with Resource Constraint (1b). We
show that for (strictly) convex instances of Problem QRAP-NonSep-GBC, these conditions can be exploited in a
similar way.

For the case where all subsets N j have the same size, that is, where all nj’s are equal to some constant C, we
show that one of the derived algorithms runs in O(mClogC) time, that is, given C this algorithm has a linear
time complexity. In particular, we show that the three-phase EV charging problem can be solved in O(n) time.
Furthermore, we show for the special case where all weights wj are zero, that is, the quadratic separable resource
allocation problem with generalized bound constraints, that both Problem QRAP-NonSep-GBC and its version
with integer variables can be solved in O(n) time. Although the version with integer variables is not the main fo-
cus of this article, it may be of independent interest for research on general resource allocation problems where
often both the continuous and integer version of a given resource allocation problem are studied in parallel
(Hochbaum 1994, Moriguchi et al. 2011).

We evaluate the performance of our algorithms on both realistic instances of the three-phase EV charging
problem and synthetically generated instances of different sizes. These evaluations suggest that our algorithms
are suitable for integration in DEM systems because they are fast and do not require much memory. Further-
more, they show that our algorithms scale well when the number m of subsets or the subset sizes nj increases,
that is, the evolution of their execution time matches the theoretical worst-case complexity of O(nlogn). In fact,
we show that our algorithms are capable of outperforming the commercial solver MOSEK by two orders of mag-
nitude for instances of up to one million variables.

The remainder of this article is organized as follows. In Section 2, we explain in more detail the application of
Problem QRAP-NonSep-GBC in DEM and, specifically, in three-phase EV scheduling. In Section 3, we analyze
the structure of Problem QRAP-NonSep-GBC and derive a crucial property of feasible solutions to the problem.
We use this property to derive our solution approach to solve Problem QRAP-NonSep-GBC in Section 4, and in
Section 5, we present twoO(nlogn) algorithms based on this approach. In Section 6, we evaluate the performance
of our algorithms, and finally, Section 7 contains some concluding remarks.

Summarizing, the contributions of this article are as follows:
1. We derive twoO(nlogn) time algorithms for Problem QRAP-NonSep-GBC. In contrast to existing work of Ta-

mir (1993) and Moriguchi et al. (2011), this algorithm can be applied to all strictly convex instances of Problem
QRAP-NonSep-GBC, even those where some or all the factors wj are negative.

2. For the special case where all subsets N j have the same size C, we show that one of our algorithm runs in
O(mClogC) time, which implies that for a fixed C the execution time of this algorithm scales linearly in the number
m of subsets and thereby also in the total number n of variables.

3. Our algorithm solves an important problem in DEM and can make a significant impact on the integration of
EVs in residential distribution grids.

2. Motivation
In this section, we describe in more detail our motivation for studying Problem QRAP-NonSep-GBC. For this,
Section 2.1 provides a short introduction to load balancing in three-phase electricity networks and discusses the
relevance of minimizing load unbalance. In Section 2.2, we formulate the three-phase EV charging problem and
show that this problem is an instance of Problem QRAP-NonSep-GBC.

2.1. Load Balancing in Three-Phase Electricity Networks
Load balancing has as goal to distribute the power consumption of a neighborhood over a given time horizon
and over the three phases of the low-voltage network such that peak consumption and unbalance between
phases is minimized. Peak consumption occurs when the consumption is not spread out equally over the time
horizon but instead is concentrated within certain time periods. This is generally seen as undesirable because it
induces an increase in energy losses, stress on grid assets such as transformers, and can even lead to outages
(Hoogsteen et al. 2017). As a consequence, many DEM systems in the literature take into account the minimiza-
tion of peak consumption when scheduling, for example, EV charging (Gan et al. 2013, Gerards et al. 2015, Mou
et al. 2015).

However, minimization of load unbalance between phases is hardly considered in optimization approaches
for EV scheduling. To explain the relevance of load unbalance minimization, in the following we first consider
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three-phase electricity networks in general (for a more detailed and comprehensive introduction to this topic, we
refer to Stevenson (1975) and Kuphaldt (2007)).

In residential electricity distribution networks (or, more generally, low-voltage networks), electrical energy is
transported by electrical current that flows through a conductor (e.g., a wire). This current can be seen as a signal
with a given frequency and amplitude, which leads to (alternating current) power, that is, the average energy
transported in each cycle. In principle, only one supply conductor is required to transport electrical energy be-
tween two points. However, it is more efficient to divide this energy over three bundled conductors whose cur-
rents have the same frequency but an equidistance phase shift. This means that there is a phase difference of 120
degrees between each pair of conductors. Networks wherein the conductors are bundled in this way are referred
to as three-phase networks, where the term “phase” generally refers to one of the three bundled conductors.
Figure 2 illustrates the concept of three-phase systems.

To maximize the efficiency of a three-phase network, ideally the power consumption from all three phases is
equal. When this is not the case, negative effects similar to those of peak consumption can occur, that is, energy
losses, wearing of grid assets, and outages. With the increasing penetration of EVs in the low-voltage network,
actively maintaining load balance becomes important. This is mainly because the power consumption of an EV is
in general much larger than the average power consumption of a household (Schoot Uiterkamp 2016), and most
EVs, especially in the Netherlands, are connected to only one of the three phases. As a consequence, when charg-
ing multiple EVs simultaneously, large load unbalance can occur when the (charging of the) EVs are (is) not
divided equally over the phases (Hoogsteen et al. 2017).

Recently, Weckx and Driesen (2015) and Schoot Uiterkamp et al. (2017) explored the potential of three-phase
EV charging, that is, allowing an EV to distribute its charging over the three phases for minimizing load unbal-
ance. Both works suggest that three-phase EV charging can significantly reduce the distribution losses and stress
on the grid compared with single-phase EV charging, even when using the same DEMmethodology.

2.2. Modeling the Three-Phase EV Charging Problem
The problem of three-phase EV charging with the objective to minimize peak consumption and load unbalance
can be modeled as an instance of Problem QRAP-NonSep-GBC. For this, we consider a division of the scheduling
horizon into m equidistant time intervals of length Δt labeled according to M :� {1, : : : ,m}. Furthermore, we de-
fine the set P :� {1, 2, 3} as the set of phases. We introduce for each j ∈M and p ∈ P the variable zj,p that denotes
the power consumption of the EV drawn from phase p during time interval j. Moreover, we denote by qj,p be the
remaining household power consumption drawn from phase p during interval j. This consumption is assumed
to be known or, alternatively, could be substituted by, for example, the expected value of the consumption. Fur-
thermore, we assume that we know on forehand the total required energy that must be charged by the EV and
denote this requirement by R̃. Finally, we denote the minimum and maximum allowed power consumption
from phase p during interval j by l̃j,p and ũj,p, respectively, and the minimum and maximum allowed consump-
tion from all three phases summed together by L̃j and Ũj, respectively.

The objective of minimizing peak consumption can be achieved by “flattening out” the overall consumption as
much as possible over the time intervals. Thus, noting that the term ∑3

p�1(qj,p + zj,p) represents the total power

Figure 2. Three-Phase System

Notes. I1, I2, and I3 represent the current on each of the three phases and φ1, φ2, and φ3 represent the phase angles (with regard to the horizontal
axis). The light gray arrows represent a balanced load distribution, whereas the black arrows represent load unbalance.
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consumption during interval j, we model this objective by minimizing the function

∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

:

For minimizing load unbalance, we aim to equally distribute the consumption during each time interval j over
the three phases. We can model the objective of minimizing load unbalance by minimizing the function

∑m
j�1

3
2

∑3
p�1

(qj,p + zj,p)2 − 1
2

∑3
p�1

(qj,p + zj,p)
( )2⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠ (2)

(see Appendix A for the derivation of this expression). This leads to the following optimization problem that we
denote by EV-3Phase:

EV-3Phase : min
z∈Rm×3

W1
∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

+W2
∑m
j�1

3
2

∑3
p�1

(qj,p + zj,p)2 − 1
2

∑3
p�1

(qj,p + zj,p)
( )2⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,
s:t:

∑m
j�1

∑3
p�1

zj,pΔt � R̃,

L̃j ≤
∑3
p�1

zj,p ≤ Ũj, j ∈ M,

l̃ j,p ≤ zj,p ≤ ũj,p, j ∈ M, p ∈ P:

Here, W1 and W2 are positive weights that express the tradeoff between the two objectives. This tradeoff could,
for example, be chosen based on the resistance of the three-phase cable, say r1, and of the cables of the individual
phases within the household, say r2, so that energy losses are minimized. More precisely, by choosing
W1 � 1

2 r1 + 1
6 r2 andW2 � 1

3 r2, the objective function becomes

1
2
r1 + 1

6
r2

( )∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

+ 1
3
r2
∑m
j�1

3
2

∑3
p�1

(qj,p + zj,p)2 − 1
2

∑3
p�1

(qj,p + zj,p)
( )2⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,
� 1
2
r1
∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

+ 1
2
r2
∑m
j�1

∑3
p�1

(qj,p + zj,p)2:

Because energy losses within a cable are proportional to the square of the power, minimizing this objective func-
tion ensures that the energy losses within the cables are minimized.

When varying the weights W1 and W2, the tradeoff between the two parts of the objective changes and thus
also the resulting optimal solution to the problem changes. More precisely, given an instance of the problem and
values for the weights W1 and W2, we observe the following changes to the optimal solution when one of the
weights is slightly increased. If W1 increases, it becomes more important to divide the total load equally over the
time intervals. As a consequence, in the new optimal solution some EV load shifts from intervals with extreme to-
tal load (e.g., relatively high consumption peaks) to intervals with a close to average load, compared with the opti-
mal solution before adapting the weights. Whether a certain time interval is selected for this load shifting depends
on the extremeness of the total interval load and on the load balance between the phases within the interval.

In contrast, increasingW2 balances the new optimal solution over phases. Again, load shifts between time inter-
vals within the original optimal solution and these shifts depend on the load balance within the interval and the
extremeness of the load of the interval. More precisely, intervals with much unbalance are favored for load shifts
over those that are already quite balanced. Moreover, intervals whose total load is extreme compared with that of
other intervals are more likely to receive (lose) more load when their total load is very low (high) compared with
that of other intervals. We note that a mathematically based derivation of this behavior can be achieved based on
the KKT optimality conditions (3) given in Section 3.3 for the general Problem QRAP-NonSep-GBC.

By choosing the parameters as given in Table 1, this problem becomes an instance of Problem QRAP-NonSep-
GBC (see also Appendix A). Observe that if W2 > 2W1, the weights wj are negative and thus Problem EV-3Phase
cannot be solved as a minimum convex quadratic cost flow problem using, for example, the algorithms by Tamir
(1993) and Moriguchi et al. (2011).
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In this article, we develop algorithms to solve Problem EV-3Phase when all power consumption values qj,p are
known. In a stochastic loads setting, where these values are not known on forehand, existing frameworks for op-
timization under uncertainty can be used to solve a stochastic loads setting, for example, robust optimization,
stochastic programming, and online optimization (see Bakker et al. 2020 for a survey). Alternatively, recently, we
have developed a new framework for solving particular classes of convex optimization problems under uncer-
tainty (Schoot Uiterkamp et al. 2020). Applied to Problem EV-3Phase, this framework solves the problem where
the quantities qj,p become known only at the start of time interval j and the variables zj,p have to be determined
directly afterward. As input, the framework requires a prediction of the optimal Lagrange multiplier of this
problem. Such a prediction could be made by computing the optimal multiplier for instances with representative
historical values of qj,p, which can be done using the algorithms developed in this article.

3. Analysis
In this section, we consider the general version of Problem QRAP-NonSep-GBC and derive some of its properties.
First, in Section 3.1, we derive a necessary and sufficient condition on the vectors w and a for strict convexity of Prob-
lem QRAP-NonSep-GBC. Moreover, we show that the three-phase EV charging problem as presented in Section 2.2
satisfies this condition. Second, in Section 3.2, we show that we may replace Constraint (1c) by equivalent single-
variable constraints without changing the optimal solution to the problem. This greatly simplifies the derivation of
our solution approach in Section 4. Third, in Section 3.3, we derive a property of the structure of optimal solutions to
Problem QRAP-NonSep-GBC that forms the crucial ingredient for our solution approach to solve the problem.

3.1. Convex Instances of Problem QRAP-NonSep-GBC
Because all constraints of Problem QRAP-NonSep-GBC are linear, the problem is strictly convex if and only if
the second-derivative matrix (the Hessian) of its objective function is positive definite. Because this objective
function is separable over the indices j, it suffices to investigate for each j ∈M separately if the function

fj((xi)i∈N j
) :� 1

2
wj

∑
i∈N j

xi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2 + ∑

i∈N j

1
2
aix2i + bixi

( )
is strictly convex. We do this by checking whether the HessianHj of fj is positive definite. This Hessian is given by

Hj :� wjee� +diag(aj),
where e is the vector of ones of appropriate size and aj :� (ai)i∈N j

. Lemma 1 provides a characterization for which
choices of wj and aj the Hessian Hj is positive definite. This characterization can also be obtained as a special case
of theorem 1 of Spedicato (1975).

Lemma 1. Hj is positive definite if and only if 1+wj
∑

i∈N j
1=ai > 0.

Proof. See Appendix B.1. w

Lemma 1 implies that an instance of Problem QRAP-NonSep-GBC is strictly convex if and only if
1+wj

∑
i′∈N j

1=ai′ > 0 for each j ∈M. To stress the importance of this relation and for future reference, we state
this relation as a property.

Table 1. Modeling Problem EV-3Phase as an Instance of Problem QRAP-NonSep-GBC

Parameter/variable in Problem QRAP-NonSep-GBC Parameter/variable in Problem EV-3Phase

N j, j ∈M P :� {1, 2, 3}
(xi)i∈N j

, j ∈M (zj,p)p∈P , j ∈M

wj, j ∈M 2W1 −W2

ai, i ∈N 3W2

bi, j ∈M, i ∈N j W1 − 1
2W2

( )∑3
p�1 qj,p + 3

2W2qj,p
R R̃

Δt
(li)i∈N j

, j ∈M (l̃ j,p)p∈P
(ui)i∈N j

, j ∈M (ũj,p)p∈P
Lj, j ∈M L̃j, j ∈M
Uj, j ∈M Ũj, j ∈M
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Property 1. For each j ∈M, it holds that 1+wj
∑

i′∈N j
1=ai′ > 0.

For the remainder of this article, we consider only instances of Problem QRAP-NonSep-GBC that satisfy Prop-
erty 1. We conclude this section by observing that the parameters for Problem EV-3Phase satisfy this property:

1 + wj
∑
i∈N j

1
ai
� 1 + (2W1 −W2)

∑3
p�1

1
3W2

� 1 + 2W1 −W2

W2
� 2W1

W2
> 0:

3.2. Constraint Elimination
In Section 3.1, we studied properties of the objective function of Problem QRAP-NonSep-GBC. In contrast, we
focus in this section on properties of the constraints of Problem QRAP-NonSep-GBC. For this, note that it is the
addition of the lower and upper bound constraints (1c) that make the constraint set of Problem QRAP-NonSep-
GBC complex compared with the constraint set of the original resource allocation problem RAP. Therefore, the
goal of this section is to reduce this complexity. More precisely, in this section, we show that we can replace the
lower and upper bound constraints (1c) by a set of single-variable constraints without changing the optimal solu-
tion to Problem QRAP-NonSep-GBC. As these single-variable constraints can be integrated into the existing
single-variable constraints (1d), we can focus without loss of generality on solving Problem QRAP-NonSep-GBC
without this constraint.

To derive this result, we first define for each j ∈M and S ∈ R the following subproblem QRAPj(S) of Problem
QRAP-NonSep-GBC:

QRAPj(S) : min
x∈Rnj

∑
i∈N j

1
2
aix2i + bixi

( )
,

s:t:
∑
i∈N j

xi � S,

li ≤ xi ≤ ui, i ∈N j:

Lemma 2 states the main result of this section, namely that optimal solutions to QRAPj(Lj) and QRAPj(Uj) for
j ∈M are component-wise valid lower and upper bounds on optimal solutions to Problem QRAP-NonSep-GBC.
The proof of this lemma is inspired by the proof of lemma 6.2.1 in Hochbaum (1994) and can be found in
Appendix B.2.

Lemma 2. For a given j ∈M, let xj :� (xi)i∈N and x̄j :� (x̄i)i∈N be optimal solutions to QRAPj(Lj) and QRAPj(Uj) respec-
tively. Then there exists an optimal solution x∗ :� (x∗i )i∈N to Problem QRAP-NonSep-GBC that satisfies xi ≤ x∗i ≤ x̄i for
each i ∈N j.

Lemma 2 implies that adding the inequalities xi ≤ xi ≤ x̄i, i ∈N to the formulation of Problem QRAP-NonSep-
GBC does not cut off the optimal solution to the problem. Moreover, these inequalities imply the generalized
bound constraints (1c) because we have for each j ∈M that ∑

i∈N j
xi � Lj and

∑
i∈N j

x̄i �Uj by definition of x and x̄.
This means that Problem QRAP-NonSep-GBC has the same optimal solution as the following problem:

min
x∈Rn

∑m
j�1

1
2
wj

∑
i∈N j

xi

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠2 +∑n

i�1

1
2
aix2i + bixi

( )
,

s:t:
∑n
i�1

xi � R,

xi ≤ xi ≤ x̄i, i ∈N :

To compute the new variable bounds xi and x̄i, we solve the 2m subproblems QRAPj(Lj) and QRAPj(Uj). Because
each subproblem is a simple resource allocation problem, this can be done in O(n) time using, for example, the
algorithms in Kiwiel (2007). Thus, in the remainder of this article and without loss of generality, we focus on
solving Problem QRAP-NonSep-GBC without Constraint (1c).

3.3. Monotonicity of Optimal Solutions
In this section, we analyze Problem QRAP-NonSep-GBC (without Constraint (1c)) and the structure of its opti-
mal solutions. More precisely, we study the KKT conditions (Boyd and Vandenberghe 2004) for this problem
and derive a property of solutions satisfying all but one of these conditions. This property is the crucial
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ingredient for our solution approach for Problem QRAP-NonSep-GBC because it allows us to apply breakpoint
search methods for separable convex resource allocation problems.

For convenience, we define yj :� ∑
i∈N j

xi for j ∈M. The KKT conditions for Problem QRAP-NonSep-GBC can
be written as follows:

wjyj + aixi + bi +λ+μi � 0, j ∈M, i ∈N j (stationarity), (3a)∑n
i�1

xi � R (primal feasibility), (3b)

li ≤ xi ≤ ui, i ∈N (primal feasibility), (3c)
μ+
i (xi − ui) � 0, i ∈N (complementary slackness), (3d)
μ−
i (xi − li) � 0, i ∈N (complementary slackness), (3e)

λ,μi, ∈ R, i ∈N (dual feasibility): (3f)

Here, μ+
i and μ−

i are the positive and negative part of μi respectively; that is, μ+
i �max (0,μi) and μ−

i �min (0,μi).
Slater’s condition holds because the objective function of the problem is convex, all constraints are linear, and a
feasible solution to the problem exists. Therefore, the KKT conditions are necessary and sufficient for optimality
(Boyd and Vandenberghe 2004). Moreover, because Problem QRAP-NonSep-GBC is strictly convex, it has a
unique optimal solution x∗.

For a given λ, let (x(λ),µ(λ)) ∈ R
2n be the solution that satisfies all KKT conditions (3) except (3b). Moreover,

define yj(λ) :� ∑
i∈N j

xi(λ) for j ∈M. It follows that x(λ) is the optimal solution to Problem QRAP-NonSep-GBC if
and only if it satisfies KKT Condition (3b), that is, if ∑n

i�1xi(λ) � R. The core of our solution approach is to find a
value λ∗ such that ∑n

i�1xi(λ∗) � R and reconstruct the corresponding solution x(λ∗) that, by definition, is optimal
to Problem QRAP-NonSep-GBC. We call λ∗ an optimal (Lagrange) multiplier.

The main result of this section is Lemma 4, which states that each xi(λ) can be seen as a nonincreasing function
of λ. This result allows us to use approaches for separable convex resource allocation problems to find λ∗. To
prove Lemma 4, we first identify in Lemma 3 a relation between xi(λ) and μi(λ).
Lemma 3. For any λ1,λ2 ∈ R and i ∈N , we have that xi(λ1) < xi(λ2) implies μi(λ1) ≤ μi(λ2).
Proof. Suppose xi(λ1) < xi(λ2) for some i. Then li ≤ xi(λ1) < xi(λ2) ≤ ui, which implies xi(λ1) < ui and xi(λ2) > li.
Together with KKT conditions (3d) and (3e), it follows that μi(λ1) ≤ 0 and μi(λ2) ≥ 0, respectively, which implies
that μi(λ1) ≤ μi(λ2). w

Lemma 4. For any λ1,λ2 ∈ R such that λ1 < λ2, it holds that xi(λ1) ≥ xi(λ2), i ∈N .

Proof. See Appendix B.3. w

Lemma 4 implies that the values xi(λ) are monotonically decreasing in λ. As a consequence, all possible val-
ues for the optimal multiplier λ∗ form a closed interval I ⊂ R, i.e., λ ∈ I if and only if ∑n

i�1xi(λ) � R. It follows
that λ∗ is nonunique if and only if for each index i ∈N one of the two bound constraints (1d) are tight for i, that
is, either x∗i � li or x∗i � ui for all i ∈N . Because this constitutes an extreme case and to simplify the discussion,
we assume in the derivation of our approach without loss of generality that the optimal multiplier λ∗ is
unique.

The monotonicity of the values xi(λ) forms the main ingredient for our solution approach to Problem QRAP-
NonSep-GBC, which we derive in Section 4. We conclude this section with two corollaries of Lemma 4 that we
require for the derivation of this approach. The first corollary states that not only the values xi(λ) are decreasing
in λ, but also each value yj(λ). The second corollary is a stronger version of Lemma 3 for the case where i ∈N j
with wj < 0.

Corollary 1. For any λ1,λ2 ∈ R such that λ1 < λ2, it holds that yj(λ1) ≥ yj(λ2), j ∈M.

Proof. Follows directly from Lemma 4. w

Corollary 2. If wj < 0, then for any λ1,λ2 ∈ R such that λ1 < λ2, it holds that μi(λ1) ≥ μi(λ2) for i ∈N j.

Proof. By Lemma 4, we have xi(λ1) ≥ xi(λ2). If this is a strict inequality, that is, if xi(λ1) > xi(λ2), then it follows
from Lemma 3 that μi(λ1) ≥ μi(λ2). Otherwise, if xi(λ1) � xi(λ2), KKT Condition (3a), together with wj < 0 and
Corollary 1, implies

Schoot Uiterkamp, Gerards, and Hurink: Nonseparable Resource Allocation
224 INFORMS Journal on Optimization, 2022, vol. 4, no. 2, pp. 215–247, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

89
.4

7.
12

9]
 o

n 
25

 J
an

ua
ry

 2
02

3,
 a

t 0
4:

56
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



wjyj(λ1) + aixi(λ1) + bi +μi(λ1) � −λ1 > −λ2,
� wjyj(λ2) + aixi(λ2) + bi +μi(λ2),
≥ wjyj(λ1) + aixi(λ1) + bi +μi(λ2):

It follows that μi(λ1) > μi(λ2), proving the corollary. w

4. Solution Approach
In this section, we present our approach to solve Problem QRAP-NonSep-GBC. First, in Section 4.1, we provide
an outline of the approach using the analysis conducted in Section 3. Second, Section 4.2 focuses in detail on sev-
eral computational aspects of the approach.

4.1. Outline
The monotonicity of xi(λ), proven in Lemma 4, has two important implications. First, for each i ∈N , there exist
unique breakpoints αi < βi such that

λ ≤ αi⇐⇒ xi(λ) � ui, (4a)
αi < λ < βi⇐⇒ li < xi(λ) < ui, (4b)

βi ≤ λ⇐⇒ xi(λ) � li: (4c)
For now, we assume that these breakpoints are known. In Section 4.2.2, we discuss how they can be computed
efficiently. The second implication of the monotonicity is that, given the optimal multiplier λ∗, we have

λ ≤ λ∗ ⇒∑n
i�1

xi(λ) ≥
∑n
i�1

xi(λ∗) � R, (5a)

λ ≥ λ∗ ⇒∑n
i�1

xi(λ) ≤
∑n
i�1

xi(λ∗) � R: (5b)

These two implications are the base to determine the optimal multiplier λ∗. For this, we define the set of all
breakpoints by B :� {αi|i ∈N } ∪ {βi|i ∈N }. Equations (4a)–(4c) imply that min (B) ≤ λ∗ ≤max (B). This means that
there exist two consecutive breakpoints γ,δ ∈ B such that γ ≤ λ∗ < δ. Figure 3 illustrates the relation between
x(λ), y(λ), the total resource R, the breakpoints in B, and the breakpoints γ, λ∗, and δ.

The key of our approach is that once we have found γ and δ, we can easily compute λ∗ and the resulting opti-
mal solution x(λ∗). To see this, note that by Equations (4a)–(4c) and by definition of γ, we have for all i ∈N that

xi(δ) � ui⇐⇒ xi(λ∗) � ui,
li < xi(γ) < ui⇐⇒ li < xi(λ∗) < ui,

xi(γ) � li⇐⇒ xi(λ∗) � li:

As a consequence, we know that xi(λ∗) � ui if αi ≥ δ and xi(λ∗) � li if βi ≤ γ. Thus, we may eliminate these varia-
bles from the problem. As a consequence, for the remaining problem, Box Constraints (1d) become redundant

Figure 3. Relation Between x(λ), y(λ) � ∑3
i�1xi(λ), R, and the Breakpoints αi, βi, γ, λ∗, and δ

Note. In this example, γ � α2, δ � α3, and λ∗ is represented by the black square.
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and Problem QRAP-NonSep-GBC reduces to a quadratic optimization problem with a single equality constraint.
We show in Section 4.2.3 that this specific structure allows us to derive an explicit expression for λ∗ that can be
determined in O(n) time.

To find the breakpoint γ, we may either consider all breakpoints monotonically in the set B of breakpoints or
apply a binary search to B. This is because the variable sum yi(λ) � ∑n

i�1xi(λ) induces an order on the breakpoints
by Corollary 1. Moreover, we know by Equations (5a) and (5b) that γ is the largest breakpoint λ in the set B such
that ∑n

i�1xi(λ) ≥ R. Each of the two approaches to find γ leads to a different algorithm.
The kernel of both approaches is an efficient method to evaluate x(λ) for any given λ ∈ R as this is the base for

computing the breakpoint set B and to compute λ∗ from γ. We focus on each of these three aspects in the next
section.

4.2. Computational Aspects
In the approach outlined in Section 4.1, there are three quantities whose computation is not straight-forward.
These quantities are the solution x(λ) for a given λ ∈ R, the set of breakpoints B, and the optimal multiplier λ∗. In
the following sections, we discuss how these quantities can be computed efficiently.

4.2.1. Computing x(l) and y(l) for a Given λ. To compute x(λ) for a given λ, we need to find a feasible solution
to KKT Conditions (3) without (3b). We call these KKT conditions the primary KKT conditions. Instead of trying
to derive x(λ) directly from the primary KKT-conditions, we first determine which variables in x(λ) are equal to
one of their bounds and which ones are strictly in between their bounds. To this end, for each j ∈M, we first par-
tition the set of variables N j into the following sets:

N lower
j (λ) :� {i ∈N j|xi(λ) � li},

N
upper
j (λ) :� {i ∈N j|xi(λ) � ui},
N free

j (λ) :� {i ∈N j|li < xi(λ) < ui}:
Observe that Equation (4) imply the following equivalent definition of these sets:

N lower
j (λ) � {i ∈ N j|βi ≤ λ}, (6a)

N
upper
j (λ) � {i ∈ N j|αi ≥ λ}, (6b)

N free
j (λ) � {i ∈ N j|αi < λ < βi}: (6c)

Thus, given the set B of breakpoints, we can easily determine these sets in O(n) time by checking whether
βi ≤ λ, αi ≥ λ, or αi < λ < βi.

Given the partition (N lower
j (λ),N upper

j (λ),N free
j (λ)), we can compute x(λ) as follows. As xi(λ) � li for all i ∈

N lower
j (λ) and xi(λ) � ui for allN

upper
j (λ), it remains to compute xi(λ) for all i ∈N free

j (λ). Let
yfreej (λ) :� ∑

i∈N free
j (λ)

xi(λ),

yfixedj (λ) :� ∑
i∈N j\N free

j (λ)
xi(λ) �

∑
i∈N lower

j (λ)
li +

∑
i∈N upper

j (λ)
ui:

By KKT Conditions (3d) and (3e), we have μi(λ) � 0 for each i ∈N free
j (λ). As a consequence, after substituting

yfixedj (λ) and xi(λ) for i ∈N lower
j (λ) ∪N

upper
j (λ) into primary KKT Conditions (3a) and (3c)–(3e), the only non-

redundant primary KKT conditions are (3a) and (3f) for i ∈N free
j (λ):

wjyfreej (λ) +wjyfixedj (λ) + aixi(λ) + bi +λ � 0, j ∈M, i ∈N free
j (λ), λ ∈ R:

We show that the solution to these equations in terms of xi(λ) can be given in closed form. For convenience, we
define the following quantities:

Aj(λ) :�
∑

ℓ∈N free
j (λ)

1
aℓ
, Bj(λ) :�

∑
ℓ∈N free

j (λ)

bℓ
aℓ
:
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Using, for example, the Sherwood-Morrison formula (Bartlett 1951), one can deduce and verify that the solution
to the nonredundant primary KKT conditions is

xi(λ) � 1
ai

−wjyfixedj (λ) − λ

1 + wjAj(λ) − bi
ai
+ wj

ai

Bj(λ)
1 + wjAj(λ) , i ∈ N free

j (λ): (7)

It follows that

yj(λ) :� yfreej (λ) + yfixedj (λ) � − aixi(λ) + bi + λ

wj

�
yfixedj (λ) + λ

wj

1 + wjAj(λ) −
Bj(λ)

1 + wjAj(λ) −
λ

wj
� yfixedj (λ) − Bj(λ)

1 + wjAj(λ) − Aj(λ)
1 + wjAj(λ)λ: (8)

For each j ∈M, yj(λ) can be computed in O(nj) time given the breakpoint set B. As a consequence, computing
the sum ∑m

j�1yj(λ) � ∑n
i�1xi(λ)

( )
takes O(n) time.

4.2.2. Computing the Breakpoints. To derive our approach for computing the breakpoints, we exploit two im-
portant properties of these breakpoints that we state and prove in Lemmas 5 and 6. The first property is con-
cerned with the value μ introduced in KKT Conditions (3). Recall from KKT Conditions (3d) and (3e) that, for a
given λ ∈ R and i ∈N , we have that μi(λ) ≥ 0 if xi(λ) � ui, μi(λ) � 0 if li < xi(λ) < ui, and μi(λ) ≤ 0 if xi(λ) � li. It fol-
lows from Equation (4) that μi(λ) ≥ 0 if λ ≤ αi, μi(λ) � 0 if αi < λ < βi, and μi(λ) ≤ 0 if βi ≤ λ. Lemma 5 shows that
μi(α) and μi(βi) are equal to the value of μi(λ) for αi < λ < βi, that is, are equal to zero.

Lemma 5. For all i ∈N , we have μi(αi) � μi(βi) � 0.

Proof. See Appendix B.4. w

Next, Lemma 6 states that, for each j ∈M, we can use the values given by Pj :� {aili + bi|i ∈N j} and
Qj :� {aiui + bi|i ∈N j} to determine the order of the corresponding breakpoints.

Lemma 6. For j ∈M and i,k ∈N j, we have:
• that aiui + bi > akuk + bk implies αi ≤ αk, and;
• that aili + bi > aklk + bk implies βi ≤ βk.

Proof. See Appendix B.5. w

Lemmas 5 and 6 give rise to the following strategy to compute the breakpoints. From KKT Condition (3a) for
i ∈N j, j ∈M, we have for the breakpoints αi and βi that

αi � −wjyj(αi) − aixi(αi) − bi −μi(αi) � −wjyj(αi) − aiui − bi −μi(αi), (9a)
βi � −wjyj(βi) − aixi(βi) − bi −μi(βi) � −wjyj(βi) − aili − bi −μi(βi): (9b)

We can obtain the following expression for a given breakpoint αi by applying Lemma 5 and plugging Equation
(8) into Equation (9a):

αi � −wjyj(αi) − aiui − bi �
−wjyfixedj (αi) + wjBj(αi)

1 + wjAj(αi) + wjAj(αi)
1 + wjAj(αi)αi − aiui − bi: (10)

This is equivalent to

αi � wj(Bj(αi) − yfixedj (αi)) − (aiui + bi)(1 + wjAj(αi)): (11)

Analogously, we can deduce the following expression for βi by applying Lemma 5 and plugging Equation (8)
into Equation (9b):

βi � wj(Bj(βi) − yfixedj (βi)) − (aili + bi)(1 + wjAj(βi)):
Using these two expressions, we can compute the breakpoints sequentially, that is, in ascending order. This or-
der can be determined using Lemma 6 without knowledge of the actual values of the breakpoints. For each
breakpoint ηk, we can compute the terms yfixedj (ηk), Aj(ηk), and Bj(ηk) efficiently from the preceding breakpoint ηi

by exploiting the dependencies between the partitions (N lower
j (ηi),N upper

j (ηi),N free
j (ηi)) and (N lower

j (ηk),
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N
upper
j (ηk),N free

j (ηk)) summarized in Table 2 (see also Figure 3 and Equation (6)). Given the smallest breakpoint

η̄, the sequential computation of the terms yfixedj (·), Aj(·), and Bj(·) is initialized by yfixedj (η̄) :� ∑
i∈N j

ui, Aj(η̄) :� 0,
and Bj(η̄) :� 0. To determine whether ηk ≡ αk or ηk ≡ βk, let k1 be the index of the next lower breakpoint and k2 the
index of the next upper breakpoint. Thus, either ηk � αk1 or ηk � βk2 . Observe that the partition corresponding to
the breakpoint ηk does not depend on whether ηk is a lower or upper breakpoint. Thus, it follows from the break-
point expressions in Equations (10) and (11) that ηk � αk1 if ak1uk1 + bk1 > ak2 lk2 + bk2 and ηk � βk2 otherwise.

Algorithm 1 summarizes this approach to compute the breakpoints. Each new smallest breakpoint ηk in Line 4
can be retrieved in O(1) time if we maintain the values in Pj and Qj as sorted lists. As a consequence, the time
complexity of Algorithm 1 for a given j ∈M is O(nj lognj). Thus, the computation of the breakpoints for all varia-
bles can be done in O(nlogn) time. If each nj is equal to a given constant C, that is, all subsets N j have the same

cardinality, this complexity can be refined to O ∑m
j�1C logC

( )
�O(Cm logC) �O(n logC). Thus, for a given C in

this case the breakpoints can be computed in linear time.

Algorithm 1 (Computing the Breakpoints for j ∈M)
Compute the sets Pj :� {aili + bi |i ∈N j} andQj :� {aiui + bi|i ∈N j}
Initialize Ȳ :� ∑

i∈N j
ui; Ā :� 0; B̄ :� 0

repeat
Take smallest value ηk :�min (Pj ∪Qj)

5: if ηk ∈Qj then {ηk ≡ αk; ηk is a lower breakpoint}

yfixedj (αk) � Ȳ;Aj(αk) � Ā; Bj(αk) � B̄
αk :� wj(Bj(αk) − yfixedj (αk)) − (akuk + bk)(1+wjAj(αk))
Ȳ � Ȳ − uk; Ā � Ā + 1

ak
; B̄ � B̄ + bk

ak
Qj �Qj\{ηk}

10: else {ηk ≡ βk; ηk is an upper breakpoint}

yfixedj (βk) � Ȳ; Aj(βk) � Ā; Bj(βk) � B̄
βk :� wj(Bj(βk) − yfixedj (βk)) − (aklk + bk)(1+wjAj(βk))
Ȳ � Ȳ + lk; Ā � Ā − 1

ak
; B̄ � B̄ − bk

ak
Pj � Pj\{ηk}

15: end if
until Pj ∪Qj � ∅

4.2.3. Computing l∗. To finalize our approach, we need to compute λ∗ for a given γ, which is the largest break-
point such that γ ≤ λ∗. In Section 4.1, we showed that the partitioning of the variables under λ∗ can be derived
from the partitioning under γ and δ, that is, for each j ∈M, we have N lower

j (λ∗) �N lower
j (γ), N upper

j (λ∗) �
N

upper
j (δ), and N free

j (λ∗) �N free
j (γ). Moreover, as we have ∑m

j�1yj(λ∗) � R by definition of yj, we can apply the de-
rived expression for general yj(λ) in Equation (8) to obtain the following linear equation in λ∗:

R �∑m
j�1

yj(λ∗) �∑m
j�1

yfixedj (λ∗) −Bj(λ∗)
1+wjAj(λ∗) − Aj(λ∗)

1+wjAj(λ∗)λ
∗

( )
,

�∑m
j�1

yfixedj (γ) −Bj(γ)
1+wjAj(γ) − Aj(γ)

1+wjAj(γ)λ
∗

( )
:

Table 2. Relation Between Consecutive Breakpoints ηi and ηk and Their Index Set Partitions

Type of ηi N lower
j (ηk) N

upper
j (ηk) N free

j (ηk) yfixedj (ηk) Aj(ηk) Bj(ηk)
ηi ≡ αi N lower

j (ηi) N
upper
j (ηi)\{i} N free

j (ηi) ∪ {i} yfixedj (ηi) − ui Aj(ηi) + 1
ai Bj(ηi) + bi

ai

ηi ≡ βi N lower
j (ηi) ∪ {i} N

upper
j (ηi) N free

j (ηi)\{i} yfixedj (ηi) + li Aj(ηi) − 1
ai Bj(ηi) − bi

ai
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It follows that

λ∗ �

∑m
j�1

yfixedj (γ) − Bj(γ)
1 + wjAj(γ)

( )
− R

∑m
j�1

Aj(γ)
1 + wjAj(γ)

: (12)

Given the partitioning sets N lower
j (λ∗), N upper

j (λ∗), and N free
j (λ∗), this expression allows us to compute λ∗ in

O ∑m
j�1nj

( )
�O(n) time.

5. Two Algorithms for Problem QRAP-NonSep-GBC
In this section, we present two algorithms that solve Problem QRAP-NonSep-GBC according to the approach
presented in Section 4. This approach can be summarized by means of the following four steps:

1. Replace the generalized bound Constraints (1c) by the box constraints xi ≤ xi ≤ x̄i, i ∈N (Section 3.2),
2. Compute for each i ∈N the lower and upper breakpoints αi and βi (Section 4.2.2),
3. Find γ (Section 4.1), and
4. Compute the optimal Lagrangemultiplier λ∗ (Section 4.2.3) and the optimal solution x(λ∗) (Section 4.2.1).
Both algorithms follow these four steps. Their difference is in the execution of Step 3 or, more precisely, in

how we search for γ through the breakpoint set B. In the first algorithm, we consider the breakpoints sequential-
ly starting from the smallest breakpoint, whereas in the second algorithm, we apply binary search on B. We pre-
sent and discuss these algorithms and their breakpoint search strategies in more detail in Sections 5.1 and 5.2.

5.1. An O(n logn) Time Algorithm Based on Sequential Breakpoint Search
The sequential breakpoint search strategy is similar to Algorithm 1 to compute the breakpoints, that is, we search
through the breakpoint set B in ascending order. For each considered breakpoint ηk, k ∈N j, we compute the sum∑m

j�1yj(ηk) using Equation (8). If ∑m
j�1yj(ηk) > R, it follows from Equation (5b) that ηk < λ∗ and we continue the

search. Otherwise, if ∑m
j�1yj(ηk) < R, then it follows from Equation (5a) that ηk > λ∗, meaning that γ is the break-

point preceding ηk and that δ � ηk. Subsequently, we can use Equation (12) to compute λ∗. Finally, if∑m
j�1yj(ηk) � R, then λ∗ � ηk by definition of the values yj(·).
To efficiently compute the sum ∑m

j�1yj(ηk), we exploit the dependencies between ηk and its preceding break-
point ηi, i ∈N j, given in Table 2. This means that we can compute the terms yfixedj (ηk), Aj(ηk), and Bj(ηk) in O(1)

time from the terms yfixedj (ηi), Aj(ηi), and Bj(ηi). Moreover, by defining for a given λ ∈ R

F(λ) :�∑m
j�1

yfixedj (λ) −Bj(λ)
1+wjAj(λ) ,

V(λ) :� Aj(λ)
1+wjAj(λ) :

and using these values and the dependencies in Table 2, we can easily compute ∑m
j�1yj(ηk) from ∑m

j�1yj(ηi) in O(1)
time. For this, ∑m

j�1yj(λ) � F(λ) −λV(λ) by Equation (8).
Algorithm 2 summarizes the four steps of our overall solution approach where Step 3 is carried out using the

sequential breakpoint search strategy. In this algorithm, Line 2 corresponds to Step 1, Line 3 to Step 2, Lines 5–36
to Step 3, and Lines 14 and 17 to Step 4. During each iteration τ of the sequential breakpoint search in Lines 5–38,
the set Bτ is the part of the original breakpoint set B that has not yet been searched in this iteration.

We state the time complexity of this algorithm in the following theorem:

Theorem 1. Algorithm 2 has a worst-case time complexity of O(n logn).
Proof. First, the elimination of Constraint (1c) in Line 2 takes O(n) time. Second, the computation of the break-
points by means of Algorithm 1 in Line 3 takes O(n logn) time. Third, each iteration of the sequential breakpoint
procedure can be executed in O(1) time if we maintain the breakpoint sets as sorted lists so that computing the
smallest value ηk in Line 10 can be done in O(1) time. Finally, once λ∗ has been found in either Line 14 or 17,
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we can compute the optimal solution x(λ∗) in O(n) time using Equation (7). Summarizing, the worst-case time
complexity of Algorithm 2 is O(n logn). w

Besides the computation and sorting of the breakpoints, Algorithm 2 runs in linear time.

Algorithm 2 (Solving Problem QRAP-NonSep-GBC Using Sequential Breakpoint Search)
for j ∈M do

Solve QRAPj(Lj) and QRAPj(Uj) and set li :�max (li,xi(λj(Lj))) and ui :�min (ui,xi(λj(Uj))) {Solve QRAP sub-
problems to eliminate generalized bound constraints}
Compute αi and βi for each i ∈N j using Algorithm 1 {Compute breakpoint values}

end for
5: B :� {αi|i ∈N } ∪ {βi|i ∈N }; τ :� 0; B0 :� B; F :� ∑n

i�1ui; V :� 0 {Initialize breakpoint sets and bookkeeping
parameters}
For j ∈M: Initialize Ȳj :� ∑

i∈N j
ui; Āj :� 0; B̄j :� 0

while λ∗ has not been found yet do {Breakpoint search procedure}
Take smallest value ηk :�min (Bτ) and jwith k ∈N j
for j′ ∈M do {Update bookkeeping parameters}

10: yfixedj′ (ηk) � Ȳj′ ; Aj′ (ηk) � Āj′ ; Bj′ (ηk) � B̄j′

end for
Compute ∑m

j′�1yj′ (ηk) � F−Vαk {Variable sum under current candidate multiplier ηk}
If

∑m
j′�1yj′ (ηk) � R then

λ∗ � ηk; compute x(λ∗) as x(ηk) using Equation (7)
15: return

else if
∑m

j′�1yj′ (ηk) < R then

λ∗ � F−R
V ; compute x(λ∗) using Equation (7)

return
else {Breakpoint has not been found yet; update bookkeeping parameters and prepare for next candidate
breakpoint}

20: F � F− Ȳj−B̄j

1+wjĀj

V � V − Āj

1+wjĀj

If ηk ≡ αk then
Ȳj � Ȳj − ui
Āj � Āj + 1

ai

25: B̄j � B̄j + bi
ai

else
Ȳj � Ȳj + li
Āj � Āj − 1

ai

B̄j � B̄j − bi
ai

30: end if

F � F+ Ȳj−B̄j

1+wjĀj

V � V + Āj

1+wjĀj

Bτ+1 :� Bτ\{ηk}
τ � τ+ 1

35: end if
end while

5.2. An O(n logn) Time Algorithm Based on Binary Breakpoint Search
In this section, we present an alternative approach, where we apply binary search on the set of breakpoints. Dur-
ing each iteration τ of the binary search, we compute the median γ̂τ of the current breakpoint set Bτ, that is, of
the subset of the original breakpoint set that is guaranteed to contain the breakpoint γ. For this median
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breakpoint, we compute the sum ∑m
j�1yj(γ̂τ) and compare this value to the given amount R of the resource. If∑m

j�1yj(γ̂τ) � R, then λ∗ � γ̂τ. Otherwise, if ∑m
j�1yj(γ̂τ) < R, then γ̂τ > λ∗ ≥ γ and during the next iteration τ+ 1 we

take as breakpoint set Bτ+1 :� {λ ∈ Bτ|λ < γ̂τ}. Finally, if ∑m
j�1yj(γ̂τ) > R, we have that γ̂τ < λ∗ < δ and during the

next iteration τ+ 1 we take as breakpoint set Bτ+1 :� {λ ∈ Bτ|λ ≥ γ̂τ}.
To efficiently compute each sum ∑m

j�1yj(γ̂τ), we use the following observation that is inspired by the break-
point search approach in Kiwiel (2007) for separable quadratic resource allocation problems. For a given iteration
τ of the binary search, let λτ

↓ and λτ
↑ denote the minimum and maximum breakpoint in the current breakpoint set

Bτ. Then for any multiplier λ that lies within the interval [λτ
↓,λ

τ
↑] and each j ∈M and i ∈N j, the following is true

because of Equation (6):

βi ≤ λτ
↓ ⇒ i ∈N lower

j (λ), (13a)

αi ≤ λτ
↓ ≤ λτ

↑ ≤ βi ⇒ i ∈N free
j (λ), (13b)

λτ
↑ ≤ αi ⇒ i ∈N

upper
j (λ): (13c)

We introduce the following sets, which partition the setN j according to which of the previous cases applies dur-
ing iteration τ:

Lτ
j :� {i ∈N j|βi ≤ λτ

↓}, (14a)

F τ
j :� {i ∈N j|αi ≤ λτ

↓ ≤ λτ
↑ ≤ βi}, (14b)

Uτ
j :� {i ∈N j|λτ

↑ ≤ αi}, (14c)

Iτ
j :�N j\(Lτ

j ∪ F τ
j ∪ Uτ

j ) � {i ∈N j|λτ
↓ < αi < λτ

↑ or λ
τ
↓ < βi < λτ

↑} (14d)

(see also Figure 4). For any λ such that λτ
↓ ≤ λ ≤ λτ

↑, we have

i ∈ Lτ
j ⇒ i ∈N lower

j (λ),
i ∈ F τ

j ⇒ i ∈N free
j (λ),

i ∈ Uτ
j ⇒ i ∈N

upper
j (λ):

Because of the construction of the sets Bτ, the sequence (λτ
↓)τ∈N is nondecreasing and the sequence (λτ

↑)τ∈N is non-
increasing. This implies that as soon as one of the three cases (13a), (13b), or (13c) occurs during an iteration τ for
an index i ∈N j, we already know for any future candidate breakpoint γ̂τ̄ that i ∈N lower

j (γ̂τ̄), i ∈N free
j (γ̂τ̄), or i ∈

N
upper
j (γ̂τ̄) respectively. In particular, we know that i ∈N lower

j (λ∗), i ∈N free
j (λ∗), or i ∈N

upper
j (λ∗), respectively.

Thus, when determining the partition (N lower
j (γ̂τ̄),N free

j (γ̂τ),N upper
j (γ̂τ̄)), we only need to determine the mem-

bership of xk(γ̂τ̄) for all k ∈ Iτ
j instead of for all k ∈N j when the sets Lτ

j , F
τ
j , and Uτ

j are known.
The main computational gain is obtained by introducing for each iteration τ the following bookkeeping pa-

rameters:

Yτ
j :�

∑
i∈Lτ

j

li +
∑
i∈Uτ

j

ui, Ā
τ

j :�
∑
i∈Fτ

j

1
ai
, B̄τ

j :�
∑
i∈Fτ

j

bi
ai
:

Observe that if the set Iτ
j and the bookkeeping parameters Yτ

j , Ā
τ

j , and B̄τ

j are known, then computing yj(λ) for
any λτ

↓ ≤ λ ≤ λτ
↑ via Equation (8) can be done in O(|Iτ

j |) time instead of O(nj) time.
We summarize the resulting four steps of our overall solution, using in Step 3 the discussed binary breakpoint

search strategy, in Algorithm 3. In this algorithm, Line 2 corresponds to Step 1, Line 3 to Step 2, Lines 8–46 to

Step 3, and Lines 24 and 47–48 to Step 4. In each iteration τ, the new set Iτ+1
j and bookkeeping values Yτ+1

j , Ā
τ+1
j ,

and B̄
τ+1
j are constructed after the new breakpoint set Bτ+1 and lower and upper bounds λτ+1

↓ and λτ+1
↑ have

been determined. This update can be done in line with the definition of the sets Lτ+1
j , F τ+1

j , Uτ+1
j , and Iτ+1

j in
Equation (14).
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Algorithm 3 (Solving Problem QRAP-NonSep-GBC Using Binary Breakpoint Search)
for j ∈M do

Solve QRAPj(Lj) and QRAPj(Uj) and set li :�max (li,xi(λj(Lj))) and ui :�min (ui,xi(λj(Uj))) {Solve QRAP
subproblems to eliminate generalized bound constraints}
Compute αi and βi for each i ∈N j using Algorithm 1 {Compute breakpoint values}

end for
5: B :� {αi|i ∈N } ∪ {βi|i ∈N }; B0 :� B; τ :� 0 {Initialize breakpoint sets} For j ∈M: I0

j :�N j, Y0
j � Ā

0
j � B̄

0
j � 0

λ0
↓ � −∞; λ0

↑ � ∞ {Initialize bookkeeping parameters and lower and upper bounds on optimal multiplier}
while |Bτ| > 1 {Breakpoint search procedure}

γ̂τ :�median(Bτ)
10: for j ∈M do {Update bookkeeping parameters and determine which variables are fixed under current can-

didate multiplier ηk}
yfixedj (γ̂τ) :� Yτ

j ; Aj(γ̂) :� Ā
τ

j ; Bj(γ̂) :� B̄τ

j

for k ∈ Iτ
j do

if k ∈N lower
j (γ̂τ) then

yfixedj (γ̂τ) � yfixedj (γ̂τ) + lk
15: else if k ∈N

upper
j (γ̂τ) then

yfixedj (γ̂τ) � yfixedj (γ̂τ) + uk
else

Aj(γ̂τ) � Aj(γ̂τ) + 1=ak; Bj(γ̂τ) � Bj(γ̂τ) + bk=ak
end if

20: end for
end for
Compute ∑m

j�1yj(γ̂τ) using Equation (5)
if

∑m
j�1yj(γ̂τ) � R then

λ∗ � γ̂τ; compute x(λ) as x(γ̂τ) using Equation (7)
25: return

else if
∑n

i�1xi(γ̂τ) < R then
Bτ+1 :� {λ ∈ Bτ|λ < γ̂τ}
Determine new bounds: λτ+1

↓ :� λτ
↓; λ

τ+1
↑ :� γ̂τ

else
30: Bτ+1 :� {λ ∈ Bτ|λ ≥ γ̂τ}

Determine new bounds: λτ+1
↓ :� γ̂τ; λτ+1

↑ :� λτ
↑

end if
for j ∈M do {Update sets of variables whose state has not been determined yet}

Figure 4. Partitioning of the Variables Based on Their Breakpoints and the Interval [λτ
↓,λ

τ
↑]

Schoot Uiterkamp, Gerards, and Hurink: Nonseparable Resource Allocation
232 INFORMS Journal on Optimization, 2022, vol. 4, no. 2, pp. 215–247, © 2022 INFORMS

D
ow

nl
oa

de
d 

fr
om

 in
fo

rm
s.

or
g 

by
 [

13
0.

89
.4

7.
12

9]
 o

n 
25

 J
an

ua
ry

 2
02

3,
 a

t 0
4:

56
 . 

Fo
r 

pe
rs

on
al

 u
se

 o
nl

y,
 a

ll 
ri

gh
ts

 r
es

er
ve

d.
 



Iτ+1
j :� Iτ

j ; Y
τ+1
j :� Yτ

j ; Ā
τ+1
j :� Ā

τ

j ;B̄
τ+1
j :� B̄τ

j
35: for k ∈ Iτ

j do

if βk ≤ λτ+1
↓ then

Remove k from Iτ+1
j ; Yτ+1

j � Yτ+1
j + lk

else if αi ≤ λτ+1
↓ ≤ λτ+1

↑ ≤ βi then
Remove k from Iτ+1

j ; Ā
τ+1
j � Ā

τ+1
j + 1=ak; B̄

τ+1
j � B̄τ+1

j + bk=ak
40: else if λτ+1

↑ ≤ αk then
Remove k from Iτ+1

j ; Yτ+1
j � Yτ+1

j + uk
end if

end for
end for

45: τ � τ+ 1
end while
Determine γ as the single element of B̃
Compute λ∗ using Equation (12) and x(λ∗)
using Equation (7)
return

We establish the worst-case time complexity of Algorithm 3 by means of Lemma 7 and Theorem 2. First, Lemma 7
states that the binary search procedure can be carried out inO(n) time.

Lemma 7. The binary breakpoint search procedure in Lines 8–46 of Algorithm 3 has a time complexity of O(n).

Proof. We show that each iteration τ of the binary breakpoint search has a time complexity of O(|Bτ|). Because
|Bτ+1| ≤ 1

2 |Bτ| for each iteration τ, it follows that the time complexity of the binary search procedure is

O
∑log (n)
τ�0

|Bτ|
( )

�O
∑log (n)
τ�0

n
2τ

( )
�O(n):

We establish the time complexity of an iteration τ using the following two observations:
1. First, we consider the computation of the candidate multiplier γ̂τ in Line 9. The median of an un-

sorted set of breakpoints Bτ can be computed in O(|Bτ|) time using, for example, the median-of-medians
algorithm of Blum et al. (1973). This means that instead of sorting the initial breakpoint set B in
O(n logn) time and retrieving median elements in O(1) time, we can compute each candidate multiplier
γ̂τ in O(|Bτ|) time.

2. Second, by introducing the partition sets Lτ+1
j , F τ+1

j , Uτ+1
j , and Iτ+1

j and the bookkeeping values Yτ
j , Ā

τ

j , and

B̄
τ

j , we reduce the worst-case time complexity of computing ∑m
j�1yj(γ̂τ) from O(n) to O

∑m
j�1|Iτ

j |
( )

. In contrast, con-

structing the new set Iτ+1
j and the bookkeeping values Yτ+1

j , Ā
τ+1
j , and B̄τ+1

j in Lines 33–44 takesO ∑m
j�1|Iτ

j |
( )

time.

Thus, the time complexity of the τth iteration of the binary search loop is O(|Bτ| +∑m
j�1|Iτ

j |). Observe that by
definition of Iτ

j , for each j ∈M and each index k ∈ Iτ
j there is at least one breakpoint (αk or βk or both) in the set

of current breakpoints Bτ. This implies that ∑m
j�1|Iτ

j | ≤ |Bτ|. It follows that the time complexity of the τth iteration
of the binary search loop reduces to O(|Bτ|). w

Using this lemma, we establish the time complexity of Algorithm 3:

Theorem 2. Algorithm 3 has a time complexity of O(n logn).
Proof. Analogously to Theorem 1, all operations other than the binary search procedure in Lines 8–46 take
O(n logn) time. Because the binary search procedure takes O(n) time by Lemma 7, the overall time complexity of
Algorithm 3 is O(n logn). w

Although the binary search strategy of Algorithm 3 has a better time complexity than the sequential search
strategy of Algorithm 2, the linear-time algorithm in Blum et al. (1973) is known to be relatively slow in practice
(Alexandrescu 2017). Thus, an alternative method for computing medians with a time complexity worse than
O(n) might be preferable in practice. We come back to this point in Section 6.2.
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Finally, we comment on the role of the breakpoint search strategies within Algorithms 2 and 3. As stated in the
proof of Theorem 2, Algorithms 2 and 3 differ only in the way the optimal multiplier λ∗ is found after the break-
points have been computed by means of Algorithm 1. Thus, the former procedure could technically be replaced
by any other breakpoint search algorithm, as long as it can use, for example, the breakpoints to eventually out-
put the optimal Lagrange multiplier. We are not aware of any breakpoint search strategy that is not a variant
of either the sequential or binary search strategy. However, if such a potential alternative breakpoint search al-
gorithm depends only on evaluation of the primal variables for given candidate multipliers, then such an algo-
rithm could be embedded by using Equations (7) and (8) to do these evaluations. The question is then whether
the algorithm can be adapted so that the overall time complexity is at most O(n logn). Recall that the time com-
plexity of a single evaluation without using bookkeeping parameters is O(n) and that at most 2n evaluations
are required (one for each breakpoint). Thus, the overall time complexity can be reduced to O(n logn) only if
either at most O( logn) evaluations are required (as in the binary strategy) or the amortized complexity of
performing an evaluation can be reduced to O( logn) using, for example, bookkeeping parameters (as in the
sequential strategy).

5.3. Complexity Results for Special Cases and Related Problems
In this section, we use Algorithms 2 and 3 and the complexity results in Theorems 1 and 2 to state complexity re-
sults for several special cases of Problem QRAP-NonSep-GBC and related problems. Some of these cases are of
interest for the problem of scheduling three-phase electric vehicle charging, whereas other cases may be of inde-
pendent interest.

The first special case is when all subsetsN j have the same cardinality, that is, |N j| � C for some natural number
C. For this case, we can show that, given C, the time complexity of Algorithm 3 is linear. This special case in-
cludes the problem of scheduling three-phase electric vehicle charging that we introduced in Section 2.2 (see also
Table 1) as we have C � 3 in this case.

Theorem 3. If nj � C for all j ∈M and C ∈ N, the time complexity of Algorithm 3 is O(n logC).
Proof. The only part of the algorithm that does not have a linear time complexity is the computation of the break-
points, which needs O(n logn) operations for the general Problem QRAP-NonSep-GBC. However, when nj � C,
the complexity analysis can be refined to O(∑m

j�1nj lognj)�O(∑m
j�1C logC)�O(mC logC) �O(n logC). It follows

that the time complexity of Algorithm 3 for this special case is O(n logC). w

Next, we focus on the special case where wj � 0 for all j ∈M, that is, the quadratic separable resource allocation
problem with generalized bound constraints. With regard to three-phase EV charging, this case represents the
situation where the only objective is to minimize peak consumption and we do not consider minimization of
load unbalance. This case can be solved in O(n) time.

Theorem 4. If wj � 0 for all j ∈M, Problem QRAP-NonSep-GBC can be solved in O(n) time.

Proof. After elimination of the generalized bound constraints (1c) according to the constraint simplification pro-
cedure described in Section 3.2, the remaining problem is a quadratic separable resource allocation problem be-
cause wj � 0 for each j ∈M. Thus, we can solve this problem in O(n) time, which implies that we can solve the
whole Problem QRAP-NonSep-GBC in O(n) time. w

Alternatively, this result can be obtained as a special case of the separable quadratic programming problem
studied by Megiddo and Tamir (1993).

Subsequently, we consider the integer version of Problem QRAP-NonSep-GBC, that is, the problem with the
additional constraint that xi ∈ Z for all i ∈N . If wj � 0 for all j ∈M, we can solve the integer version in O(n) time.

Theorem 5. If wj � 0 for all j ∈M, the integer version of Problem QRAP-NonSep-GBC can be solved in O(n) time.

Proof. Without loss of generality, we assume that l,u ∈ Z
n, L,U ∈ Z

m, and R ∈ Z. All steps and statements in the
proof of Lemma 2 are valid for the integer version of Problem QRAP-NonSep-GBC because ε̄ > 1, and we can
choose ε � 1 to obtain feasible solutions x′ and (x′)j. Thus, to solve this version, we are required to solve the 2m
subproblems QRAPj(Lj) and QRAPj(Uj) and one instance of the quadratic simple resource allocation problem
with n variables (see also the proof of Theorem 4) as integer resource allocation problems. Because quadratic
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simple resource allocation problems with integer variables can be solved in linear time. (sections 4.6 and 4.7 in
Ibaraki and Katoh 1988), we can solve these 2m− 1 problems in O(n) time. w

If wj ≥ 0 for all j ∈M, the integer version can be solved in O(n2) time (Moriguchi et al. 2011). Finally, we conjec-
ture that the integer version of the general Problem QRAP-NonSep-GBC, that is, instances that satisfy Property
1, is solvable in strongly polynomial time but leave this as an open question for future research.

Finally, we consider instances of Problem QRAP-NonSep-GBC where we replace the objective function by a
strictly convex function F(x) : Rn → R that is permutation-invariant. This means that given a vector x ∈ R

n and a
permutation π of the index set N , we have F(x) � F(y) where y :� (xπ[1], : : : ,xπ[n]). Thus, informally, the value of
F(x) does not depend on the order of the elements of x. Minimizing these functions over generalized bound con-
straints is equivalent to solving a particular instance of the original Problem QRAP-NonSep-GBC with wj � 0 for
all j ∈M and ai � 2 and bi � 0 for all i ∈N , that is, whose objective function is ∑

i∈N x2i . This follows from the ob-
servations that generalized bound constraints are a special case of submodular constraints (Fujishige 1984) and
that the unique minimizer of a strictly convex permutation-invariant function over submodular constraints is the
minimum-norm point of the feasible region given by these constraints, that is, the vector with minimal two-
norm (Nagano and Aihara 2012). Together, this implies that the unique minimizer of any strictly convex
permutation-invariant function over given generalized bound constraints also minimizes the two-norm over this
region and thereby is the unique minimizer of the mentioned instance of Problem QRAP-NonSep-GBC.

6. Evaluation
In this section, we evaluate the two algorithms presented in Sections 5.1 and 5.2. We carry out two types of evalu-
ation. First, we evaluate the performance of our algorithms on realistic instances of the EV charging problem
EV-3Phase that we introduced in Section 2.2. Second, to assess the practical scalability of our algorithms, we eval-
uate them on problem instances with varying numbers m of generalized bound constraints and numbers C of
variables associated with a given constraint. Because for Problem QRAP-NonSep-GBC no other tailored algo-
rithms are available, we compare the performance of our algorithms to that of the commercial solver MOSEK
(MOSEK-ApS 2019).

In Section 6.1, we describe in more detail the problem instances that we use in the evaluations. Subsequently,
in Section 6.2, we discuss several implementation details. Finally, in Section 6.3, we present and discuss the eval-
uation results.

6.1. Problem Instances
We carry out two types of evaluations. First, we evaluate the performance of our algorithms on instances of Prob-
lem EV-3Phase. For this, we consider a setting wherein an EV is empty and available for residential charging
from 1800 hours and must be fully charged by 0800 hours the next day. This charging horizon of 14 hours is di-
vided into 15-minute time intervals, meaning that m � 56. For the power consumption constraints of the EV, we
follow the balancing framework of Weckx and Driesen (2015) and use the Tesla model 3 as a reference EV
(Electric Vehicle Database 2020). This means that we choose R � 4 × 40,000 � 160,000 Wh, Lj � 0 W, and Uj �
11, 500 W for each j ∈M, and li � − 11,500

3 W and ui � 11,500
3 W for each i ∈N . We simulate 100 charging sessions,

where each session corresponds to charging on a different day. As input for this, we use real power consumption
measurement data of 40 households for 100 consecutive days that were obtained in the field test described in
Hoogsteen et al. (2017). More precisely, we assign each power consumption profiles to one of the three phases
with equal probability and, for a given day, choose each parameter qj,p as the sum of the power consumption
during interval j of all households that have been assigned to phase p. Thus, for each of the 100 days one overall
power profile (qj,p)j∈M,p∈{1,2,3} is created. To study the influence of different trade-offs between the two objectives
(minimizing peak consumption and minimizing load unbalance) on the time required to solve the problem, we
simulate each of the 100 charging sessions using three different combinations of the weights W1 and W2, namely
(W1,W2) ∈ {(1, 1), (1, 100), (100,1)}. The choice (1,1) represents no preference for one of the objectives, and the
choices (1,100) and (100,1) represent a preference for minimizing load unbalance and peak shaving, respectively.

Second, we assess the scalability of our algorithms. For this, we focus on the case where the subset sizes nj are
equal to some positive integer C. We generate random instances for a number of fixed values of C and m. Table 3
shows these fixed values of C and m and for each problem parameter the uniform distribution from which
the parameter values are drawn. For each combination of C and m, we generate 10 instances according to the
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given distributions. The distribution of each weight wj is chosen such that the resulting problem instances satisfy
Property 1, which ensures by Lemma 1 that their objective functions are strictly convex. The distributions of
the values Lj and Uj are chosen such that none of the generalized bound Constraints (1c) is redundant. As a
consequence, all of these constraints need to be replaced according to the constraint simplification procedure in
Section 3.2. Thereby, we maximize the time that Algorithms 2 and 3 require for this step and thus improve the
fairness of the comparison with MOSEK.

6.2. Implementation Details
We implemented our algorithms in Python (version 3.5) to integrate them into DEMKIT, an existing simulation
tool for DEM research (Hoogsteen et al. 2019). For solving the subproblems QRAPj(Lj) and QRAPj(Uj) in Line 2
of both Algorithms 2 and 3, we implement a sophisticated version of the sequential breakpoint search algorithm
of Helgason et al. (1980) that allows us to solve both subproblems simultaneously and thereby is approximately
twice as fast as the original sequential breakpoint search algorithm. Preliminary testing has shown that this algo-
rithm is in general faster than the linear-time algorithms in Kiwiel (2007), despite its worse time complexity of
O(nj lognj). Furthermore, in Algorithm 3, we compute the median of a breakpoint set in the same way as in
Algorithm 2, namely by sorting the original breakpoint set and retrieving the desired breakpoints in O(1) time
(see also Section 5.1). The reason for this is that linear-time algorithms for median finding such as that of Blum
et al. (1973) are in general slower than alternative sampling-or sorting-based approaches (Alexandrescu 2017).

In both algorithms, we could reduce the time complexity of sorting all breakpoints from O(n logn) to
O(n logm) using a multiway merging algorithm (Knuth 1998) to merge the 2m sorted lists of breakpoints. How-
ever, preliminary testing has shown that in both algorithms the time needed for sorting the breakpoints using a
standard sorting algorithm is at least one order of magnitude smaller than the time needed for computing the
breakpoints and carrying out the breakpoint search. Thus, we have chosen not to use a multiway merging algo-
rithm to simplify the implementation of the algorithms without significantly increasing the overall execution
time.

6.3. Results
In this section, we present and discuss the results of the evaluation as described in Section 6.1. All simulations
and computations are executed on a 2.60-GHz Dell Inspiron 15 with an Intel Core i7-6700HQ CPU and 16 GB
of RAM.

First, we focus on the performance of our algorithms on the instances of Problem EV-3Phase. Table 4 shows
the average execution times of our algorithms and MOSEK over all considered 100 days for each combination of

Table 4. Average Execution Times (s) of Algorithms 2 and 3 and MOSEK for Each Combination of Weights

Weight combination Algorithm 2 Algorithm 3 MOSEK

(1, 1) 4:64 × 10−3 4:89 × 10−3 2:33 × 10−2

(1, 100) 4:69 × 10−3 4:94 × 10−3 2:11 × 10−2

(100, 1) 4:71 × 10−3 4:86 × 10−3 2:07 × 10−2

Table 3. Parameter Choices for the Scalability Evaluation

Parameter Values

C {1;2;5;10;20;50;100;200;500;1, 000}
m {1;2;5;10;20;50;100;200;500;1, 000}
aj ~U(0, 10)
bi ~U(−10, 10)
wj

~U − 1∑
i∈N j

1
aj

, − 1∑
i∈N j

1
aj

+ 10

( )
li ~U(−10,0)
ui ~U(0, 10)
Lj ~U ∑

i∈N j
li, 0:8

∑
i∈N j

li
( )

Uj ~U 0:8∑i∈N j
ui,

∑
i∈N j

ui
( )

R ~U ∑m
j�1Lj,

∑m
j�1Uj

( )
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weights. Moreover, Figure 5 shows for each combination of weights the boxplots of the ratios between the execu-
tion times of each combination of algorithms. The results in Figure 5 indicate that our algorithms solve realistic
instances of Problem EV-3Phase four to five times as fast as MOSEK for each weight combination. Moreover,
Algorithm 3 appears to be slightly faster than Algorithm 2, although the difference in their execution times is less
than 4% of the execution time of Algorithm 3 for most problem instances. The results in both Table 4 and Figure 5
suggest that the choice of weights has little to no effect on the execution times of both our algorithms and
MOSEK. The results in Table 4 indicate that our algorithms can solve realistic instances of Problem EV-3Phase in
the order of milliseconds. This is significantly lower than common speed and delay requirements for communi-
cation networks in DEM systems (Deshpande et al. 2011). Thus, our algorithms will most likely not be the (com-
putational) bottleneck in DEM systems and are therefore suitable for integration in such systems.

Second, we discuss the results of the scalability evaluation. For this, we first compare the performance of the
two different breakpoint search approaches, since this is the only aspect in which Algorithms 2 and 3 are differ-
ent. To this end, we show in Figure 6 for each combination of C and m the boxplot of ratios between the execution
times of the sequential breakpoint search in Algorithm 2 and of the binary breakpoint search in Algorithm 3, that
is, the execution time of the breakpoint search procedure of Algorithm 2 divided by that of Algorithm 3. More-
over, Figure 7 shows for each combination of C and m the boxplot of ratios between the overall execution times
of Algorithms 2 and 3. The results in Figure 6 indicate that for C ≤ 10 the ratios regarding the breakpoint search
procedures decrease significantly as m increases. For these values of C, most of these ratios are greater than one
when m ≤ 5 and smaller than one when m ≥ 10. This suggests that the binary breakpoint search procedure is fast-
er than the sequential breakpoint search procedure when m ≥ 10. For C > 10, the relation between the ratios and
m is less clear. However, for each of these values of C, most of the ratios are greater than one for almost every
value of m, which suggests that the binary breakpoint procedure in general outperforms the sequential break-
point procedure.

It should be noted that the differences in execution time of the breakpoint searches of Algorithms 2 and 3 are
less than an order of magnitude. Because the breakpoint search is the only aspect in which the algorithms differ,
we expect that the differences in execution time of the entire algorithms are even less. This is confirmed by the
results in Figure 7, that is, in almost all cases, the difference in execution time between the two algorithms is
significantly less than a factor 2. However, the behavior of these ratios is similar to that of those in Figure 6. For
example, for C ≤ 10, most ratios are larger than 1 when m ≤ 5 and smaller than 1 when m ≥ 10, whereas for
C > 10 most ratios are greater than 1. This suggests that Algorithm 3 is in general faster than Algorithm 2 unless
C ≤ 10 and m ≤ 5.

Finally, we compare the performance of our algorithms to MOSEK. To this end, Figure 8 shows for each com-
bination of C and m the execution time of Algorithm 3 and MOSEK on each problem instance. We do not plot the
execution times of Algorithm 2 in this figure, because the differences in execution time between Algorithms 2
and 3 are so small that plotting them together in the same figure would unnecessarily obscure the results.
Furthermore, Table 5 shows the fitted power laws for Algorithms 2 and 3, that is, for each C, we fit the function
f (m) � c1 ·mc2 to the execution times corresponding to C. For C � 1,000, MOSEK was not able to solve any of the
instances for m � 500 and m � 1,000 because of out-of-memory errors. Finally, to provide additional insight into

Figure 5. Ratios of Execution Times BetweenMOSEK and Algorithm 2 MOS:
2

( )
, MOSEK and Algorithm 3 MOS:

3

( )
, and Algorithms

3 and 2 3
2

( )
for Each Combination of Weights

(a) (b) (c)

Notes. (a) (W1,W2) � (1, 1). (b) (W1,W2) � (1, 100). (c) (W1,W2) � (100, 1).
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the reported execution times, Tables C.1–C.3 show for each combination of C and m the average execution time
of Algorithms 2 and 3 and MOSEK, respectively.

The power laws in Figure 8 and Table 5 suggest that the execution time of Algorithms 2 and 3 grows linearly
as m increases, that is, the exponents c2 in Table 5 are close to one. This observation is consistent with the theoret-
ical worst-case complexity of Algorithm 3, which is O(n logC) �O(mC logC) and demonstrates its practical scal-
ability. On the other hand, the execution time of MOSEK does not seem to behave polynomially. Given the exe-
cution times of MOSEK for C ≤ 50 in Figure 8, (a)–(f), this is most likely because of the initialization time of
MOSEK, which for smaller problem instances is relatively large compared with the actual time required by the

Figure 6. Ratios Between Execution Time of the Breakpoint Search Procedures of Algorithms 2 and 3 (Execution Time of the
Breakpoint Search Procedure of Algorithm 2 Divided by That of Algorithm 3)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Notes. (a) C � 1. (b) C � 2. (c) C � 5. (d) C � 10. (e) C � 20. (f) C � 50. (g) C � 100. (h) C � 200. (i) C � 500. (j) C � 1,000.
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internal solver to solve the corresponding instance. As a consequence, Algorithms 2 and 3 are at least one order
of magnitude faster for instances with C ≤ 50 and m ≤ 10.

For C ≥ 100, the results in Figure 8 and Tables C.1–C.3 indicate that Algorithms 2 and 3 are at least one order
of magnitude faster than MOSEK regardless of m. In fact, for C � 1,000, both our algorithms are even two orders
of magnitude faster. In this case, our algorithms solve all instances with m � 500 andm � 1,000 in less than 16 sec-
onds (Algorithm 2) and 12 seconds (Algorithm 3), whereas MOSEK was not able to compute a solution because
of out-of-memory errors.

Figure 7. Ratios Between Execution Times of Algorithms 2 and 3 (Execution Time of Algorithm 2Divided by That of Algorithm 3)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j)

Notes. (a) C � 1. (b) C � 2. (c) C � 5. (d) C � 10. (e) C � 20. (f) C � 50. (g) C � 100. (h) C � 200. (i) C � 500. (j) C � 1,000.
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7. Concluding Remarks
In this article, we studied a quadratic nonseparable resource allocation problem with generalized bound con-
straints. This problem was motivated by its application in decentralized energy management and in particular
for scheduling EVs to minimize load unbalance in electricity networks. We derived two algorithms with
O(n logn) time complexity for this problem, of which one runs in linear time for a subclass containing the EV
scheduling problem. Numerical evaluations demonstrate the practical efficiency of our algorithms both for realis-
tic instances of the EV scheduling problem and for instances with synthetic data. In fact, our algorithms solve
problem instances with up to one million variables in less than 16 seconds on a personal computer and are up to

Figure 8. Execution Times of Algorithm 3 (Circles, Black) andMOSEK (Triangles, Gray)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

(j) (k)

Notes. (a) C � 1. (b) C � 2. (c) C � 5. (d) C � 10. (e) C � 20. (f) C � 50. (g) C � 100. (h) C � 200. (i) C � 500. (j) C � 1,000. (k) All instances.
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100 times faster than a standard commercial solver. This practical efficiency of our algorithms makes them suit-
able for the aforementioned electric vehicle scheduling problems because these problems have to be solved on
embedded systems with low computational power and low memory.

This work adds a new problem to the class of quadratic nonseparable resource allocation problems that can be
solved in strongly polynomial time by efficient algorithms. The question remains how this class can be extended
further. Existing work on optimization under submodular constraints (Hochbaum and Hong 1995, Moriguchi
et al. 2011) suggests that the class of nonseparable resource allocation problems where both the constraints and
nonseparability are induced by a so-called laminar family constitutes a promising direction for this extension. We
expect that new efficient and practical algorithms can be obtained for these problems by combining insights from
existing methodologies to solve similar problems, including minimum quadratic cost flow problems (Tamir
1993, Hochbaum and Hong 1995), scaling algorithms (Moriguchi et al. 2011), and monotonicity-based optimiza-
tion (Vidal et al. 2019 and this article).

Regarding the application of decentralized energy management, these algorithms can be used to solve local
optimization problems of devices that are equipped with three-phase chargers other than EVs. In particular, the
derivation of an algorithm for the convex (quadratic) nonseparable resource allocation with nested constraints is
an interesting direction for future research because this models the problem of scheduling large-scale batteries
with three-phase chargers. Such batteries are widely recognized as vital components of current and future resi-
dential distribution grids with a high infeed from renewable energy sources and integrated devices such as EVs.
Therefore, this is a relevant and important direction of future research that can contribute greatly to a sustainable
future energy supply.
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Appendix A. Formulation of Problem EV-3Phase
In this appendix, we derive the expression in Equation (2) for the objective of minimizing load unbalance and show that
Problem EV-3Phase is an instance of Problem QRAP-NonSep-GBC.

First, as a measure for load unbalance during a given interval j ∈M, we use the squared two-norm of the resulting
vector of the three phase loads qj,1 + zj,1, qj,2 + zj,2, and qj,3 + zj,3 according to the phase arrangement depicted in Figure 2.
This resulting vector equals

Pres
j :� ∑3

p�1
(qj,p + zj,p)cosφp,

∑3
p�1

(qj,p + zj,p) sinφp

[ ]
,

where φ1, φ2, and φ3 are the angles of the three phases. Thus, we can model the objective of minimizing unbalance by
minimizing the function ∑m

j�1‖Pres
j ‖2, where || · || denotes the two-norm on R

2. We can assume without loss of generality

that the phases are arranged as depicted in Figure 2. This means that we may assume that φ1 � 1 5
6π, φ2 � 1 1

6π, and
φ3 � 1

2π. Thus, for each j �∈M, it follows that

Table 5. Power Law Regression Functions for Algorithms 2 and 3 for Each C (Fitted Functions c1 ×mc2 )

C Algorithm 2 Algorithm 3

1 7:27 × 10−5 ×m0:827 5:52 × 10−5 ×m0:912

2 1:08 × 10−4 ×m0:899 9:31 × 10−5 ×m0:944

5 1:40 × 10−4 ×m0:932 1:27 × 10−4 ×m0:956

10 1:91 × 10−4 ×m0:961 1:78 × 10−4 ×m0:970

20 3:06 × 10−4 ×m0:977 2:87 × 10−4 ×m0:977

50 6:69 × 10−4 ×m0:987 6:34 × 10−4 ×m0:985

100 1:22 × 10−3 ×m0:993 1:11 × 10−3 ×m0:993

200 2:50 × 10−3 ×m0:983 2:15 × 10−3 ×m0:995

500 5:77 × 10−3 ×m0:991 5:24 × 10−3 ×m0:998

1,000 1:14 × 10−2 ×m1:009 1:03 × 10−2 ×m1:003
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||Pres
j ‖2 � ∑3

p�1
(qj,p + zj,p)cosφp

( )2
+ ∑3

p�1
(qj,p + zj,p)sinφp

( )2
,

�∑3
p�1

(qj,p + zj,p)2(cos2φn + sin 2φn),

+2∑3
p�1

∑3
p′�p+1

(qj,p + zj,p)(qj,p′ + zj,p′ )(cosφpcosφp′ + sinφpsinφp′ ),

�∑3
p�1

(qj,p + zj,p)2 + 2(qj,1 + zj,1)(qj,2 + zj,2) −3
4
+ 1
4

( )
,

+2(qj,1 + zj,1)(qj,3 + zj,3) 0− 1
2

( )
+ 2(qj,2 + zj,2)(qj,3 + zj,3) 0− 1

2

( )
,

�∑3
p�1

(qj,p + zj,p)2 − (qj,1 + zj,1)(qj,2 + zj,2) − (qj,1 + zj,1)(qj,3 + zj,3) − (qj,2 + zj,2)(qj,3 + zj,3),

� 3
2

∑3
p�1

(qj,p + zj,p)2 − 1
2

∑3
p�1

(qj,p + zj,p)
( )2

:

Second, to show that Problem EV-3Phase is an instance of Problem QRAP-NonSep-GBC, observe that the objective
function of Problem EV-3Phase can be rewritten to

W1
∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

+W2
∑m
j�1

3
2

∑3
p�1

(qj,p + zj,p)2 − 1
2

∑3
p�1

(qj,p + zj,p)
( )2⎛⎜⎜⎜⎜⎜⎜⎜⎝

⎞⎟⎟⎟⎟⎟⎟⎟⎠,
� W1 − 1

2
W2

( )∑m
j�1

∑3
p�1

(qj,p + zj,p)
( )2

+ 3
2
W2

∑m
j�1

∑3
p�1

(qj,p + zj,p)2,

� W1 − 1
2
W2

( )∑m
j�1

∑3
p�1

zj,p

( )2
+ 3
2
W2

∑m
j�1

∑3
p�1

z2j,p + W1 − 1
2
W2

( )∑m
j�1

∑3
p�1

qj,p

( )∑3
p�1

zj,p,

+ 3
2
W2

∑m
j�1

∑3
p�1

qj,pzj,p + W1 − 1
2
W2

( )∑m
j�1

∑3
p�1

qj,p

( )2
+ 3
2
W2

∑m
j�1

∑3
p�1

q2j,p:

The latter expression corresponds directly with the values in Table 1.

Appendix B. Proofs of Lemmas 1, 2, and 4–6

B.1. Proof of Lemma 1
Suppose that Hj is positive definite. Then its determinant is strictly positive. Because of the special structure of Hj, we
can rewrite its determinant to the following form by applying the matrix determinant lemma (Harville 1997):

det(Hj) � det(wjee� + diag(aj)) � 1 + wj
∑
i∈N j

1
ai

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠det(diag(aj)):

Because ai > 0 for all i ∈N j, we have that det(diag(aj)) > 0 and thus we also have that 1+wj
∑

i∈N j
1=ai > 0.

Now suppose that 1+wj
∑

i∈N j
1=ai > 0. We show that all leading principal minors of Hj are positive, that is, that the de-

terminant of each upper-left submatrix of Hj is positive. For this, we label the indices of N j as 1, : : : ,nj such that, for any
1 ≤ ℓ ≤ nj, the ℓ × ℓ upper-left submatrix of Hj is formed by the first ℓ rows and columns of Hj. Let us denote this subma-

trix by Hj
1:ℓ;1:ℓ.

To show that det(Hj
1:ℓ;1:ℓ) > 0, we compute this determinant by applying the matrix determinant lemma to Hj

1:ℓ;1:ℓ. This
yields

det(Hj
1:ℓ;1:ℓ) � 1+wj

∑ℓ
i�1

1
ai

( )∏ℓ
i�1

ai:
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Note that 1+wj
∑ℓ

i�11=ai > 0 because 1+wj
∑

i∈N j
1=ai > 0 and all values ai are positive. It follows that det(Hj

1:ℓ;1:ℓ) > 0.
Because ℓ was chosen arbitrarily, this implies that all leading principal minors of Hj are positive and thus that Hj is posi-
tive definite. w

B.2. Proof of Lemma 2
We prove the validity of the lower bounds xi ≤ x∗i ; the proof for the upper bounds x∗i ≤ x̄i is analogous. If for a given j ∈
M there is no optimal solution x∗ to Problem QRAP-NonSep-GBC that satisfies the bounds xi ≤ x∗i ≤ x̄i for each i ∈N j,
then choose out of all these solutions the one solution x∗ for which the value d :� ∑

ℓ∈N j
max (xℓ − x∗ℓ, 0) is minimum. Let

i ∈N be an index with x∗i < xi and let j be such that i ∈N j. Then there must exist k ∈N j\{i} such that x∗k > xk, because oth-
erwise, ∑

ℓ∈N j
x∗ℓ <

∑
ℓ∈N j

xℓ � Lj.
Let ε̄ :�min (xi − x∗i ,x∗k − xk) and let ε ∈ (0, ε̄]. Then the solution x′ given by

x′ℓ �
x∗ℓ + ε if ℓ � i,
x∗ℓ − ε if ℓ � k,
x∗ℓ otherwise;

⎧⎪⎪⎪⎨⎪⎪⎪⎩
is feasible for Problem QRAP-NonSep-GBC because x′i � x∗i + ε ≤ x∗i + ε̄ ≤ x∗i + xi − x∗i � xi, x′k � x∗k − ε ≥ x∗k − ε̄ ≥ x∗k − x∗k + xk �
xk, and xj and x∗ are feasible for Problem QRAPj(Lj) and Problem QRAP-NonSep-GBC, respectively. Moreover, because x∗
is an optimal solution to Problem QRAP-NonSep-GBC, we have that

∑m
j′�1

1
2
wj′

∑
ℓ∈N j′

x∗i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠2 +∑n

ℓ�1

1
2
aℓ(x∗ℓ)2 + bℓx∗ℓ

( )
≤∑m

j′�1

1
2
wj′

∑
ℓ∈N j′

x′i

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠2 +∑n

ℓ�1

1
2
aℓ(x′ℓ)2 + bℓx′ℓ

( )
:

It follows by definition of x′ that

0 ≤ 1
2
ai(x′i )2 + bix′i +

1
2
ak(x′k)2 + bkx′k −

1
2
ai(x∗i )2 − bix∗i −

1
2
ak(x∗k)2 − bkx∗k

� 1
2
ai(x∗i + ε)2 + bi(x∗i + ε) + 1

2
ak(x∗k − ε)2 + bk(x∗k − ε) − 1

2
ai(x∗i )2 − bix∗i −

1
2
ak(x∗k)2 − bkx∗k

� aix∗iε+
1
2
aiε2 + biε− akx∗kε+

1
2
akε2 + bkε: (B.1)

Analogously, the solution (x′)j given by

x′ℓ �
xℓ − ε if ℓ � i,
xℓ + ε if ℓ � k,
xℓ otherwise;

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
is feasible for QRAPj(Lj) because x′i � xi − ε ≥ xi − ε̄ ≥ xi − xi + x∗i � x∗i , x′k � xk + ε ≤ xk + ε̄ ≤ xk + x∗k − xk � x∗k, and x∗ and xj are
feasible for Problem QRAP-NonSep-GBC and Problem QRAPj(Lj, respectively. Moreover, because xj is optimal for Prob-
lem QRAPj(Lj), we have that ∑

ℓ∈N j

1
2
aℓ(x ℓ)2 + bℓxℓ

( )
≤ ∑

ℓ∈N j

1
2
aℓ(x ′

ℓ)2 + bℓx′ℓ

( )
:

It follows by definition of (x′)j that

0 ≤ 1
2
ai x ′

i
( )2 + bix

′
i +

1
2
ak x ′

k
( )2 + bkx′k −

1
2
ai x i( )2 − bixi − 1

2
ak xk( )2 − bkxk

� 1
2
ai x i − ε( )2 + bi xi − ε( ) + 1

2
ak xk + ε( )2 + bk xk + ε( ) − 1

2
ai x i( )2 − bixi − 1

2
ak xk( )2 − bkxk

� −aixi ε+ 1
2
aiε2 − biε+ akxkε+ 1

2
akε2 + bkε: (B.2)

Adding Equations (B.1) and (B.2) yields

0 ≤ aiε(x∗i − xi + ε) + akε(xk − x∗k + ε) ≤ aiε(−ε̄ + ε) + akε(−ε̄ + ε) ≤ 0:

This implies that both Equations (B.1) and (B.2) are equalities and thus that x′ and (x′)j are optimal for Problem QRAP-
NonSep-GBC and QRAPj(Lj) respectively. However, because x′i ≤ xi and x′k ≥ xk, it holds that∑

ℓ∈N j

max (xℓ − x′ℓ, 0) � d−max (xi − x∗i , 0) −max (xk − x∗k, 0) +max (xi − x′i , 0) +max (xk − x′k, 0),
� d− xi + x∗i − 0+ xi − x′i + 0,
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� d+ x∗i − x′i ,
� d− ε:

This is a contradiction with the definition of x∗ as the optimal solution that minimizes the expression ∑
ℓ∈N j

max (xℓ − x∗ℓ, 0).
Hence, there exists an optimal solution satisfying the lower bounds x. w

B.3. Proof of Lemma 4
Suppose that there exist λ1,λ2 with λ1 < λ2 such that for some j ∈M and i ∈N j, we have xi(λ1) < xi(λ2). First, we show
that there must exist an index k ∈N j\{i} such that xk(λ1) ≥ xk(λ2). Subsequently, we show that the existence of such an in-
dex k leads to a contradiction.

For each ℓ ∈N j, we divide KKT Condition (3a) by aℓ:

wjyj
aℓ

+ xℓ + bℓ +λ+μℓ

aℓ
� 0, ℓ ∈N j: (B.3)

By summing Equation (B.3) over N j, we obtain

0 � wjyj
∑
ℓ∈N j

1
aℓ
+ ∑

ℓ∈N j

xℓ + bℓ +λ+μℓ

aℓ

( )
� 1+wj

∑
ℓ∈N j

1
aℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠yj + ∑

ℓ∈N j

bℓ +λ+μℓ

aℓ
: (B.4)

Suppose that there is no index k ∈N j\{i} such that xk(λ1) ≥ xk(λ2). Then for all ℓ ∈N j, we have xℓ(λ1) < xℓ(λ2), which in
turn implies yj(λ1) < yj(λ2). It follows from Equation (B.4), Property 1, and Lemma 3 that

0 � 1+wj
∑
ℓ∈N j

1
aℓ

⎛⎜⎜⎜⎜⎜⎜⎜⎝
⎞⎟⎟⎟⎟⎟⎟⎟⎠(yj(λ2) − yj(λ1)) +

∑
ℓ∈N j

bℓ − bℓ +λ2 −λ1 +μℓ(λ2) −μℓ(λ1)
aℓ

,

>
∑
ℓ∈N j

bℓ − bℓ +λ2 −λ1 +μℓ(λ2) −μℓ(λ1)
aℓ

,

>
∑
ℓ∈N j

μℓ(λ2) −μℓ(λ1)
aℓ

≥ 0:

This is a contradiction; hence, there must exist an index k ∈N j\{i} with xk(λ1) > xk(λ2).
We now show that the existence of the index k leads to a contradiction. By Lemma 3, we have μk(λ1) ≥ μk(λ2). It follows that

akxk(λ2) + bk +μk(λ2) ≤ akxk(λ1) + bk +μk(λ1): (B.5)

However, KKT Condition (3a) implies that

wjyj(λ1) + aixi(λ1) + bi + μi(λ1) � −λ1 � wjyj(λ1) + akxk(λ1) + bk + μk(λ1),
which yields

aixi(λ1) + bi + μi(λ1) � akxk(λ1) + bk + μk(λ1): (B.6)

Analogously, we have

aixi(λ2) + bi + μi(λ2) � akxk(λ2) + bk + μk(λ2): (B.7)

It follows from Equations (B.5)–(B.7) and Lemma 3 that

akxk(λ2) + bk + μk(λ2) ≤ akxk(λ1) + bk + μk(λ1),
� aixi(λ1) + bi + μi(λ1),
< aixi(λ2) + bi + μi(λ2),
� akxk(λ2) + bk + μk(λ2):

This is a contradiction; hence, it must be that xi(λ1) ≥ xi(λ2). As this implies that xi(λ1) ≥ xi(λ2) for all λ1 < λ2 and i ∈N ,
the lemma is proven. w

B.4. Proof of Lemma 5
Let i ∈N j for some j ∈M. We prove the lemma for μi(αi); the proof for μi(βi) is analogous. Consider the solutions x(αi)
and x(αi + ε) for an arbitrary ε > 0 with αi + ε < βi. Note that μi(αi + ε) � 0 by Equation (4b) and KKT Conditions (3d) and
(3e). It follows from KKT Condition (3a) that

wjyj(αi) + aℓxℓ(αi) + bℓ + αi +μℓ(αi) � 0, ℓ ∈N j, (B.8a)

wjyj(αi + ε) + aℓxℓ(αi + ε) + bℓ +αi + ε+μℓ(αi + ε) � 0, ℓ ∈N j: (B.8b)
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To show that μi(αi) � 0, we show that μi(αi) ≤ ε if wj ≥ 0 and μi(αi) ≤ ε
∑

ℓ∈N j

1
aℓ

if wj < 0. Because ε was chosen arbitrarily,∑
ℓ∈N j

1
aℓ

> 0, and μi(αi) ≥ 0 by definition of αi, this implies in both cases that μi(αi) � 0.

First, if wj ≥ 0, then wjyj(·) is nonincreasing by Corollary 1. Together with Lemma 4 and the fact that μi(αi + ε) � 0, sub-
tracting Equation (B.8b) from Equation (B.8a) for ℓ � i yields

0 � wjyj(αi) −wjyj(αi + ε) + aixi(αi) − aixi(αi + ε) − ε+μi(αi) −μi(αi + ε),
≥ −ε+μi(αi):

It follows that μi(αi) ≤ ε.
Second, if wj < 0, then we can apply the same proof mechanism as was used in the proof of Lemma 4 (see also

Equations (B.3) and (B.4)). By dividing Equations (B.8a) and (B.8b) by aℓ and summing them over the index set N j, we
get the following together with Property 1 and Corollary 2:

0 � ∑
ℓ∈N j

wjyj(αi)
aℓ

−wjyj(αi + ε)
aℓ

+ xℓ(αi) − xℓ(αi + ε) − ε

aℓ
+μℓ(αi)

aℓ
−μℓ(αi + ε)

aℓ

( )
,

� 1+wj
∑
ℓ∈N

1
aℓ

( )
(yj(αi) − yj(αi + ε)) − ε

∑
ℓ∈N j

1
aℓ
+ ∑

ℓ∈N j

μℓ(αi) −μℓ(αi + ε)
aℓ

,

≥ −ε∑
ℓ∈N j

1
aℓ
+ ∑

ℓ∈N j

μℓ(αi) −μℓ(αi + ε)
aℓ

,

≥ −ε∑
ℓ∈N j

1
aℓ
+μi(αi):

Here, the first inequality follows from Property 1 and Lemma 4 and the second equality follows from Corollary 2 and

the fact that μi(αi + ε) � 0. It follows that μi(αi) ≤ ε
∑

ℓ∈N j

1
aℓ
. w

B.5. Proof of Lemma 6
We prove the lemma for the case aiui + bi > akuk + bk; the proof for the case aili + bi > aklk + bk is analogous. We show that
xi(αk) < ui, which implies by definition of αi that xi(αk) < ui � xi(αi). Using Lemma 4, this yields αi ≤ αk.

It follows from KKT Condition (3a) that

wjyj(αk) + akxk(αk) + bk + μk(αk) � −αk � wjyj(αk) + aixi(αk) + bi + μi(αk):
Because μk(αk) � 0 by Lemma 5 and xk(αk) � uk by definition of αk, this is equivalent to

akuk + bk � aixi(αk) + bi +μi(αk): (B.9)

Suppose that xi(αk) � ui. Then μi(αk) ≥ 0 by KKT Condition (3d). It follows from Equation (B.9) that

aixi(αk) + bi � akuk + bk −μi(αk) < aiuibi � aixk(αk),
which is a contradiction. Thus, it must hold that xi(αk) < ui. w

Appendix C. Average Execution Times of Algorithms 2 and 3 and MOSEK

Table C1. Average Execution Times (s) of Algorithm 2 for Each Combination of C and m

C \ m 1 2 5 10 20 50 100 200 500 1,000

1 1:07 × 10−4 1:49 × 10−4 2:38 × 10−4 3:68 × 10−4 8:87 × 10−4 1:51 × 10−3 2:94 × 10−3 5:75 × 10−3 1:47 × 10−2 2:75 × 10−2

2 1:58 × 10−4 2:06 × 10−4 3:93 × 10−4 7:23 × 10−4 1:34 × 10−3 3:29 × 10−3 6:49 × 10−3 1:34 × 10−2 3:13 × 10−2 6:29 × 10−2

5 1:75 × 10−4 2:77 × 10−4 5:97 × 10−4 1:08 × 10−3 1:92 × 10−3 4:96 × 10−3 9:91 × 10−3 2:09 × 10−2 4:78 × 10−2 9:89 × 10−2

10 2:40 × 10−4 3:72 × 10−4 8:04 × 10−4 1:61 × 10−3 2:89 × 10−3 8:73 × 10−3 1:60 × 10−2 3:22 × 10−2 7:95 × 10−2 1:53 × 10−1

20 3:63 × 10−4 5:61 × 10−4 1:41 × 10−3 2:88 × 10−3 5:29 × 10−3 1:37 × 10−2 2:94 × 10−2 5:40 × 10−2 1:33 × 10−1 2:72 × 10−1

50 6:63 × 10−4 1:54 × 10−3 3:09 × 10−3 6:56 × 10−3 1:36 × 10−2 3:09 × 10−2 6:35 × 10−2 1:29 × 10−1 3:10 × 10−1 6:10 × 10−1

100 1:16 × 10−3 2:84 × 10−3 6:28 × 10−3 1:22 × 10−2 2:33 × 10−2 6:12 × 10−2 1:14 × 10−1 2:20 × 10−1 6:29 × 10−1 1:18 × 10+0

200 3:45 × 10−3 4:64 × 10−3 1:38 × 10−2 2:37 × 10−2 4:66 × 10−2 1:10 × 10−1 2:15 × 10−1 4:56 × 10−1 1:11 × 10+0 2:45 × 10+0

500 6:08 × 10−3 1:13 × 10−2 2:87 × 10−2 5:78 × 10−2 1:11 × 10−1 2:83 × 10−1 5:29 × 10−1 1:04 × 10+0 3:01 × 10+0 5:43 × 10+0

1,000 1:36 × 10−2 2:17 × 10−2 5:84 × 10−2 1:09 × 10−1 2:34 × 10−1 5:43 × 10−1 1:12 × 10+0 2:28 × 10+0 6:89 × 10+0 1:27 × 10+1
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