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1. Introduction

With the increasing amount of data collected in both
equine clinical and field settings, datasets are growing
larger with high dimensionality and complexity.
Machine learning algorithms are becoming a go-to solu-
tion to classify data but remain black-box solutions that
offer little transparency to the end-users, such as veteri-
narians and trainers. To reduce the dimensionality and
complexity of the datasets, many feature selection algo-
rithms (FSAs) are available, but currently, there is no
‘textbook’ about which FSA to use for which applica-
tion. In this work, we propose an FSA benchmarking
method to optimally select features of a high-dimen-
sional dataset for binary classification models.
Moreover, our method includes a post-analysis of the
features selected by each algorithm to understand better
the dataset and the influence of the data provenance on
the classification outcome. We illustrate this method
with a surface classification (‘Hard’ or ‘Soft’) of equine
locomotion data.

2. Methods

2.1. Data collection

A total of 96 horses were equipped with six inertial
measurement units (IMUs) attached to the withers,
sacrum, and the lateral aspects of the distal limbs
(EquiMovesVR ), sampling at 200Hz. Each IMU node
contains 3D high-g and low-g accelerometers (±16g
and ±200g resp.), and a 3D gyroscope (±2000dps).
The nodes were aligned with the body segments of
the horse to accurately represent accelerations and
rotation rates encountered in the dorsoventral/proxi-
modistal, mediolateral and anteroposterior directions,
as shown in Figure 1.

Data were collected in-hand at different gaits (walk,
trot), in different directions (straight line, left circle,
right circle) and on different surfaces (hard, soft).

2.2. Data processing and features extraction

The high- and low-g accelerometers signals were
merged for optimal precision and range (Bosch et al.
2018). Signals expressed in the local IMU frame were
automatically segmented into different gaits (Walk
and Trot) (Serra Bragança et al. 2020) and direction
of the movement (straight: 0; left circle: �1; right cir-
cle: 1), and then manually labelled (measurement
notes) as Hard (bricks, concrete, undeformable) or
Soft (sand mixtures or forest ground, deformable).
The right limbs signals were rotated to orientate them
the same way as the left limbs’, to later average their
extracted features into Fore and Hind limb features.
The data were segmented using a sliding window of
200 samples with a 50% overlap. For each signal from
each window, time-domain features (min, max, mean,
standard deviation, skewness, kurtosis, first and third
quartiles), positive and negative peaks- and zero-
cross-counts, and frequency-domain (spectral entropy
and energy, magnitude, and phase angle of the first
six Fourier transform coefficients) were extracted.

2.3. Feature selection algorithms

The FSAs used were chosen from the Feature Selection
Library v7.0.1_2020_2 (Roffo 2018). To constitute the
benchmark, a panel of ten FSAs were selected among
the nineteen available, based on supervised and
unsupervised methods: INFFS-supervised, INFFS-non
supervised, ILFS, UDFS, ECFS, LLCFS, LASSO, CFS,
UFSOL and Fisher. The algorithms’ abbreviations and
descriptions can be found in Roffo (2018).

Figure 1. Horse equipped with the 6 IMUs. Green arrow: x-
axis; blue arrow y-axis; red arrow: z-axis.
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2.4. Dataset construction, machine learning train-
ing and evaluation

The segmented windows of 76 horses were used for
training, and those of 20 horses for testing. Training
and testing features were scaled, based on the training
dataset. Each gait dataset was passed into each FSA to
obtain a features ranking vector. The first 10 features
were used to train a linear Support Vector Machine
(SVM) model to classify Hard and Soft data. The model

results metrics were then calculated. The same process
was repeated 20 times after incrementing the number of
features used to train the SVM by 5, reaching 100 train-
ing features. Next, for each FSA and gait dataset, the
first 100 features ranked were categorised per node loca-
tion (Body: withers, sacrum; Limbs: front, hind), sensor
(accelerometer, gyroscope), biomechanical orientation
and feature type (time-domain, peak/zero-cross count-
ing, frequency-domain, gait direction). This process was

Figure 2. Visualisation of the F1-scores obtained for each FSA (column) for the trot datasets (top row), and which features nodes,
axes and types were used (bottom row). Blue circles show the best results.

Table 1. Percentages of features ranked among the first 100 features by each method, counted per biomechanical origin
(mean(SD) of 10 iterations).

WALK – Body features

Accelerations Rotations

DV CC ML Yaw Roll Pitch

ILFS 2.8(1.1) 0.7(1.1) 0.1(0.3) 0.1(0.3) 0.3(0.5) 0.1(0.3)
LLCFS 8(0.0) 8(0.0) 8(0.0) 8(0.0) 8(0.0) 8(0.0)

WALK – Limb features

Accelerations Rotations

PD S ML PR AA IE

ILFS 23.8(0.6) 14.1(1.1) 15.8(1.1) 3.4(1.0) 5(1.2) 8.2(0.9)
LLCFS 3.9(0.9) 6.6(1.0) 3(0.8) 6(0.8) 2.4(0.8) 4(0.5)

TROT – Body features

Accelerations Rotations

DV CC ML Yaw Roll Pitch

ILFS 8.3(1.1) 0.5(1.1) 0(0.3) 0.1(0.3) 2.8(0.5) 0.7(0.3)
LLCFS 7.9(0.0) 7.9(0.0) 8(0.0) 8(0.3) 8(0.5) 7.9(0.3)

TROT – Limb features

Accelerations Rotations

PD S ML PR AA IE

ILFS 12.1(1.2) 12(0.6) 16.5(1.1) 1.1(1.0) 5.2(1.2) 4.3(0.9)
LLCFS 2.5(0.9) 3.7(1.0) 8(0.8) 7.5(0.8) 3.7(0.8) 3.4(0.5)

DV: dorsoventral; CC: craniocaudal; ML: mediolateral; PD: proximodistal; S: sagittal; PR: protraction-retraction; AA: abduction-adduction; IE:
internal-external.
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repeated 10 times with different horses distribution in
training and testing datasets. The features’ distributions
were then averaged (Table 1).

3. Results and discussion

For brevity, only the trot results of the best (ILFS) and
worst (LLCFS) FSAs are presented, as well as of the
UFSOL for its interesting rapid increase in F1-score
around 50 features (Figure 2). FSA’s ranking including
Limbs features (ILFS, UFSOL after the 50st features)
provided good classifications at both gaits (F1-scores
>80%), whereas FSA’s ranking including mainly Body
features (LLCFS) provided worse classifications (F1-
score <65%). With the ILFS ranking, at walk, the prox-
imo-distal accelerations features were the most used for
good classification, while at trot, medio-lateral acceler-
ation features were prevalent (Table 1). The gyroscope
features were sparsely used. At trot, horses limbs act
like a spring-mass model, damping the impacts during
locomotion (Wilson et al. 2001). It was thus expected
that the differences in signals between Hard and Soft
surfaces would be found in the limb features. However,
human literature has shown that it is possible to classify
outdoor terrains encountered by runners with only a
lower-back 3D accelerometer (F1-scores >88%) (Dixon
et al. 2019). Our findings show that using only one
body node would give insufficient results in horses,
especially at walk.

4. Conclusions

Comparing the features ranking of different FSA and
visualising the provenance of the selected features
against the trained models’ evaluation metrics is of high
value to better understand the relation between the
input and the outputs in a classification task. Moreover,
our method can be applied to different biomechanical
datasets. Our methods show that new biomechanical

insights can be gained by investigating features chosen
by classification models and, therefore, learning from
previously considered black-box methods.
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