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ABSTRACT 

 

Among available methods for geodetic measurements, 

synthetic aperture radar (SAR) interferometry (InSAR) has 

been considered as a powerful tool for the monitoring of 

earth’s surface, digital elevation model generation and 

possible slow temporal deformation mapping. In this 

context, multi-baseline SAR interferometry with the 

availability of multiple interferograms obtained from multi-

pass satellite observations significantly improves the 

accuracy of the estimated target’s parameters, i.e. the 

residual height and the mean deformation velocity. In this 

paper contextual spatial information has been exploited as a 

regularization term in order to improve the capability of 

multibaseline SAR Interferometry in dealing with possible 

artifacts and outliers induced by temporal decorrelation and 

remained atmospheric phase noise effects which can impair 

the accuracy of estimated target’s parameters. The 

superiority of regularized processing is related to depletion 

of velocity variations over the scene and reducing ambiguity 

in parameter estimation. The proposed method is evaluated 

using a simulated and a real data set acquired by COSMO-

SkyMed sensor over Tehran, Iran; and the results are 

compared with conventional adapted approach in the 

literature. The evaluation indicated that adaptation of 

contextual information can significantly improve the 

interferometric-based parameter estimation over partially 

coherent targets which are affected by outliers and artifacts. 

 

Index Terms— Synthetic aperture radar (SAR), Multi-

baseline SAR interferometry, Regularization term, 

Contextual information. 

 

1. INTRODUCTION 

 

The differential synthetic aperture radar (SAR) 

interferometry is today well assessed and broadly exploited 

in order to accurately measure the Earth’s surface 

displacements [1, 2]. The conventional interferometric 

technique employs two SAR images acquired from slightly 

different angles, in which the information of elevation and 

deformation can be captured through the processing of the 

phase difference or the so-called interferometric phase [3]. 

In this context, a wealth of information in deformation 

mapping and digital elevation model (DEM) generation can 

be obtained through the use of multi-temporal time series 

SAR data [1-4].  

Persistent scatterer interferometry (PS InSAR) [2] and 

coherent stacking interferometry (CS InSAR) [1] are the 

main multi-baseline interferometric techniques that have 

been frequently employed in the literature. PS InSAR has 

been recognized as one of the first and typical techniques for 

the interferometric analysis that operates at the full spatial 

resolution. Instead, CS InSAR generally uses multi-looking 

operation in order to increase the interferometric phase 

quality. Within the framework of multi-look MB 

interferometry, a methodology that brought the analysis of 

data covariance matrix to the interferometric technique was 

reported by the so-called SqueeSAR technique [1]. The 

method is an extension of the PS-InSAR approach and 

estimates the covariance matrix using a spatial multi-

looking operation in order to spread the PS-InSAR 

processing to both deterministic and distributed (or partially 

coherent) targets. The phase triangulation of the covariance 

matrix is proceeded and consequently, the optimized values 

of the interferometric phase are obtained for PS-InSAR 

analysis. Although, SqueeSAR may mitigate the noise 

effects by improving the interferometric phase quality of the 

partially coherent. however, the technique relies only on the 

use of phase information rather than taking the benefits of 

full information of the data covariance matrix. The other 

multi-baseline interferometric technique using the data 

covariance matrix is the Maximum-likelihood (ML) 

estimation procedure. Unlike SqueeSAR, ML employs full 

information of the data covariance matrix. 

Typically, these techniques require the scatterer to possess 

some fundamental specifications: the target’s reflectivity is 

constant over all acquisitions and its interferometric phase is 

related to the nominal distance between sensor and target. In 

reality, however, temporal decorrelation and un-modeled 

phase error (e.g. from non-optimal atmospheric 

compensation) can significantly compromise the 

performance of these techniques. 

In this paper, in order to cope with the above-mentioned 

issues and mitigate their destructive effects the proposed 

approach adds a regularization term (or a constraint) to the 

ML’s model in order to include the information about the 

scene velocity variation. Hence, the resulted non-convex 
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optimization is resolved using the graph-cut concept.  

This paper is organized as follows. Section II describes 

the methodology, including a brief review of ML estimation 

as well as an explanation of the proposed framework. In 

Section III, experimental results from simulated and real 

data sets are shown by pointing out the improvements 

obtained by the proposed method. Finally, the conclusions 

and discussion are presented in Section IV. 

 

2. METHODOLOGY 

 

Let’s consider a stack of N multi-baseline interferometric 

SAR data is available. Assume that the data are coregistered 

with respect to a given master image, and accurately 

compensated to the atmospheric phase error. Therefore, the 

resulting complex target vector x for a specific pixel p can 

be represented by [1]:  

                     1 2
( ) ( ) ( ) ( )

T

N
p x p x p x p =   

x  (1) 

where T indicate the transpose operator. The measured 

multi-baseline target vector x(p) has circular Gaussian 

random distribution with zero mean and its covariance 

matrix is given by R = E{x(p)x(p)H}, where E and H are the 

expectation and Hermitian operators, respectively.   

The distribution of x is represented as [5]:  

                     ( )1( | ) exp | |H Nf −= −x R x R x R  (2) 

Note that in (2), the dependence of x and R on the pixel 

coordinates p has not explicitly indicated for the sake of 

notation simplicity The data covariance matrix R can be 

transformed into the coherence matrix C through the 

following equation.  

                                     
1/ 2 1/ 2

=R C   (3) 
 

Where Г is a diagonal matrix constructed by the diagonal 

elements of R, in which Г(k,k) represent the reflectivity of 

kth image channel, while C is coherence matrix where its 

elements can be given by the following equation [1].     

           ( ) ( )

( , ) exp( )

4 sin( ) 4kl kl kl

kl kl

z
kl kl

k l i

B T kz v z v

 

      

=

= + = +

C

 (4) 

 

where, γkl and φkl are the real valued coherence and 

interferometric phase between channels k and l, 

respectively. Moreover, the parameters B, T, λ, ρ, and θ 

indicate the spatial orthogonal baseline, temporal baseline, 

system wavelength, sensor to target range distance and look 

angle, respectively. In (4), z and v represent the residual 

height and mean velocity. It has to be understood that the 

data are assumed to be compensated to the flat-earth and 

topographic phase effects, f.i. using low resolution external 

terrain model such as SRTM, and atmospheric effect has 

been removed while  the noise contribution is omitted. 

It can be easily shown that the maximum likelihood 

estimates of the unknown parameters (z, v) for a pixel p are 

the corresponding values that minimize the following cost 

function:  

                     ( )NLˆ( , ) arg min

,
p p

z v trace

z v

= -1
C C  (5) 

where trace(.) is the trace operator and ĈNL is the sample 

coherence matrix obtained from decomposition (3) of 

sample covariance matrix R̂NL. In this paper the sample 

covariance matrix is estimated using the efficient non local 

procedure i.e. NLSAR [6]. From Eq. (4), the true coherence 

matrix C is the function of z, v and γkl, while it has to be 

understood that the optimization in (5) is obtained under the 

assumption that the reflectivity γkl is fixed to its counterpart 

estimation from nonlocal approach i.e. γkl= γk̂l
NL where γ̂kl

NL 

is a real value coherence between channels k and l obtained 

from the non-local coherence matrix ĈNL.  

 

2.1 Contextual-based Interferometry 
 

In this paper, to enhance the estimation accuracy, the use 

of contextual information is investigated. Following the idea 

proposed in [7, 8], we proposed to combine the solution of 

typical MLE optimization in (5) and the velocity variation in 

the neighborhood pixels. The proposed framework is based 

on the fact that the mean velocity is nearly constant from 

pixel to pixel and it smoothly change over the study areas. 

Hence, a priori that can control the velocity variation 

between neighborhood pixels is given by Σq |(v(p)-v(q)|, 

where v(p) and v(q) are the mean velocities of pixels p and 

q. This term as a contextual information represents the total 

variation of velocity within the neighbourhood of pixel p. In 

this papers, this term is added to the ML based optimization 

algorithm. Hence, Eq. (5) can be refined as: 
 

       ( ) ( )1

,
,,

ˆˆ ˆ, argmin | ( ) ( ) |NL

p q
p q

Trace v q v p− = + −
  


z v

z v C C  (6) 

Equation (6) indicates the maximum likelihood 

estimation regularized with the defined contextual 

information. In particular, the residual height and mean 

velocity should be estimated in such a way that the function 

trace(C-1ĈNL) which called data term, is minimized under 

the constraint that the difference of the velocity of pixel p 

with respect to its neighborhoods is a minimal value. In the 

above equation, α is a balancing parameter controls the 

relative importance of the two terms. Unlike to Eq. (5), the 

optimization of (6) turn to be difficult. To this aim a graph 

cut minimization based strategy [9] is adapted. From the 

selected pixel and its neighborhood, a graph at L elevation-

velocity layers is built, where the nodes of the graph are 

related to the data terms, i.e. trace(C-1ĈNL). Then the 

solution of (6) can be obtained by seeking for a graph-cut 

whose sum of data term and velocity variation in all pixels 

along the graph-cut is the minimum between all other 

possible cuts. As a final remark, it should be noted that the 

  
(a) (b) 

 
Fig. 1. Evaluation of the employed approaches with respect to different temporal decorrelation β and atmospheric σ effects. 
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parameter α is tuned by trial and error in our 

implementation. 

 

3. EXPERIMENTAL RESULTS 

3.1. Simulated data 
The Monte Carlo simulations were proceeded in order to 

simulated a stack of 19 images (with a size of 512×512), 

where the spatial and temporal baselines as well as the 

system parameters, are set to the typical values of the 

COSMO-SkyMed data set. The data were simulated in a 

favorable scenario over particular terrain height model and 

the true imposed velocity map. In order to evaluate the 

efficiency of the proposed method, simulated data are 

corrupted with some artifacts i.e. temporal decorrelation and 

atmospheric noise effects in 50% of pixels of the simulated 

image. To impair the data by temporal decorrelation, the 

coherences are affected by the well-known decorrelation 

model as γkl=γkl exp(|tl-tk|/τ), where τ is the decorrelation 

rate, while the atmospheric phase noise is simulated with 

zero mean and standard deviation of σπ from baseline to 

baseline. The decorrelation rate is set to the particular β% of 

the total temporal baseline (T), i.e. τ=βT. To the aim of 

extensive analyses, the corruptions were proceeded by 

variation of both parameters in the range of β∈[0.9 0.8 0.7 

0.6] and σ∈[0.1 0.15 0.175 0.2]. For each pair of (β, σ), both 

conventional and regularized MLs were implemented. For 

each pair of (β, σ), the root mean square error (RMSE) 

between the estimated and true values of the elevation and 

velocity maps are computed and plotted in Fig. 1. The 

RMSE for both elevation and velocity affirms the 

performance of the proposed method compared with the 

conventional ML approach.  

 

4. CONCLUSION 

 

In this paper, a new framework for the estimation of target 

parameters (residual height and deformation mean velocity) 

using MB interferometric data sets was introduced. The 

proposed method adapts a regularization of the velocity 

variation over neighborhood pixels into the ML model. The 

quantitative and qualitative analyses were carried out to 

validate the effectiveness of the proposed method. It is 

shown that the proposed procedure is robust to the outliers 

and artifacts. Particularly, the method employs the 

information of neighborhood pixels to provide a reliable 

solution for the pixel of interest (central pixel), which is 

impaired by disturbing factors. Note that the improvement 

by the regularization is paid at the cost of computational 

efforts.  
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