
1.  Introduction
A major challenge in geophysical and observational sciences is the representation and quantification of uncer-
tainty in numerical predictions. Uncertainty stems from various sources, most relevantly from incomplete inclu-
sion of all relevant physical mechanisms in the models and uncertainty in the initial and boundary conditions (T. 
N. Palmer, 2000). Important models for geophysical fluid dynamics, such as the two-dimensional Euler equa-
tions, quasi-geostrophic equations or rotating shallow water equations are derived from the three-dimensional 
Navier-Stokes equations. A sequence of simplifying assumptions is applied in order to reduce the complexity of 
the model to a more manageable level, while retaining main flow physics (Zeitlin, 2018). Stochastic extensions 
to these models have also been derived (Holm & Luesink, 2021). These approximate models are nevertheless 
rich in dynamics and contain a wide range of spatial and temporal scales. Numerically resolving the entire spec-
trum of scales is often not computationally feasible, meaning that either the complexity of the model should be 
reduced even further such that the resulting model is simple enough the be solvable numerically, or the complex 
model is represented on a coarse computational grid and unresolved scales are replaced by a sub-grid model. The 
latter option may be combined with stochastic forcing, which provides an effective way to represent unresolved 
scales in numerical simulations (Buizza et al., 1999; Frederiksen & Davies, 1997; Majda et al., 2001). The use 
of stochasticity as a means to represent the unresolved scales serves to restore some of the missing small-scale 
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dynamics and at the same time probes an ensemble of solutions and hence also investigates uncertainty. In this 
paper, we embrace these ideas and develop and assess stochastic data-driven models for the two-dimensional 
Euler equations on the unit square.

Data-driven stochastic models in dynamical systems have been studied actively in recent years. For weather and 
climate models, stochasticity was used as a tool to represent uncertainty in initial conditions and in the model, 
as shown by T. Palmer (2019). A commonly used example to illustrate the data-driven stochastic approach is the 
two-scale Lorenz ’96 (L96) system, introduced by Lorenz (1996) and originally proposed as a simplified model 
of the atmosphere that incorporates interactions between slow and fast scales. Data of the fast scales, interpreted 
as unresolved sub-grid scales, may serve to construct a data-informed stochastic model. Examples are given 
in Arnold et al. (2013) where sub-grid features are modeled using different types of noise including additive, 
multiplicative and state-dependent noise. This study established that stochastic parametrizations could  accu-
rately account for modeling error, with a considerably improved forecasting skill when temporal correlation was 
included in the noise. The correlated noise was modeled as a one-step autoregressive model with parameters 
fitted from data. Alternative ideas such as stochastic parametrization based on Markov chains inferred from data 
are presented by Crommelin and Vanden-Eijnden (2008), where unresolved processes are represented as stochas-
tic processes dependent on the state of the resolved variables and an assumed probability density. Using this 
approach, good agreement was found for the probability density functions (pdfs) and autocorrelation functions 
of resolved state variables.

Data-driven machine learning has also been adopted to represent small-scale dynamics for a large range of param-
eters (Gagne et al., 2020). It was found that several configurations of machine learning accurately reconstructed 
spatio-temporal correlations of the original system. These methods are not limited to simplified models such as 
the L96 system, but have also been successfully applied to more complete geophysical models. Examples include 
oceanic flows as considered in Bolton and Zanna (2019) and atmospheric processes as investigated in O’Gorman 
and Dwyer (2018). Both studies obtain a parametrization using machine learning based on off-line computed 
high-resolution model output. This machine learning approach could accurately predict the relation between 
resolved and unresolved turbulent processes, although a reliable generalization is principally not guaranteed. 
Here, we follow another data-driven ‘offline/online’ route and express the differences between a fully resolved 
model and a coarsened model in terms of a converging series of empirical orthogonal functions (EOFs) and 
introduce explicit forcing to update the coarsened model to high accuracy. This direct forcing strategy can also be 
extended to structure-preserving stochastic models as will be clarified below.

In a seminal work (Holm, 2015), stochastic partial differential equations are derived for fluid dynamics by means 
of a variational principle. As a result, the solution of the SPDE is compliant with the geometry of the underlying 
equations. This means that conservation laws are maintained under the inclusion of stochastic perturbations. This 
approach goes by the name of stochastic advection by Lie transport (SALT). In a similar approach, stochastic 
fluid models can be derived following the framework of location uncertainty (LU) (Mémin, 2014), in which 
the kinetic energy is conserved. In these approaches, spatial correlations of observational data can be used to 
model the unresolved scales in a numerical simulation. The spatial correlations can be decomposed into EOFs 
(Hannachi et al., 2007; Lumley, 1967). These are coupled to noise generated from stochastic processes in a sepa-
rate modeling step. Together, these terms constitute a stochastic forcing term for the coarse PDE, which models 
unresolved scales. The conservation properties in the framework of SALT require a calculus in which the chain 
rule coincides with those of deterministic calculus. When the stochastic integration is of the Stratonovich type, 
it has been shown that integration with respect to semimartingales preserves the conservation properties (Street 
& Crisan, 2021). For processes with unbounded variance one should resort to pathwise approaches. Recently, 
conservation properties for SALT and LU have been established for geometric rough paths (Crisan et al., 2022).

The SALT approach finds meaningful applications within geophysical fluid dynamics, since these models are 
directly based on a variational point of view. To illustrate the SALT approach, (Cotter et al., 2019) apply it to the 
two-dimensional Euler equations. In this study a fine-grid simulation is performed from which the Lagrangian 
trajectories are extracted and compared to the corresponding trajectories acquired after filtering the velocity field. 
The difference between these trajectories is a measure of the unresolved scales to which the EOF decomposition 
is applied to form an optimal basis for this term. Subsequently, a coarse SPDE is constructed according to SALT 
where the amplitude of the EOF basis is modeled as a decorrelated stochastic Gaussian process. It is shown that 
an ensemble of stochastically forced flows captures the mean values of the true solution over considerable time 
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intervals. In a follow-up study (Cotter et al., 2020c), a particle filter was added to the SALT two-dimensional 
Euler equations and data assimilation was motivated this way. It was demonstrated that significant model reduc-
tion is possible, reducing the number of degrees of freedom by two orders of magnitude without losing reliability 
of the results. Similar studies on the quasi-geostrophic equations have been done (Cotter et al., 2020b), with a 
focus on data assimilation (Cotter et al., 2020a).

Stochastic forcing allows for the use of data-driven models outside of the data set from which the EOFs are 
obtained and the parametrization of the stochastic forcing ultimately remains a modeling choice. Global basis 
methods adopting for example, EOFs, Fourier modes or spherical harmonics can be motivated by the nonlocal-
ity of turbulence. Such approaches for stochastic forcing based on DNS data have been applied to, for example, 
barotropic flow on the sphere (Frederiksen & Kepert, 2006) and to three-dimensional atmospheric flows (Kitsios 
& Frederiksen, 2019). A review of parametrizations for atmospheric flows using stochastic models based on 
DNS data is provided in Frederiksen et al. (2017). In Resseguier et al. (2020) a data-driven parametrization was 
compared to a self-similar parametrization, using SALT in the quasi-geostrophic equations. It was found that both 
parametrizations accurately predict numerical errors and possess good uncertainty skills. The work by Agarwal 
et al. (2021) adopts EOFs and compares several dependent stochastic models and found that models that include 
the dynamics and time-delay effects perform well.

In this paper, we extend the work presented by Cotter et al. (2019) of stochastic forcing for the two-dimensional 
Euler equations. The extension presented in this work consists of the inclusion of additional information in the 
data-driven approach. This information is readily available from the EOF procedure and is used to define two 
additional types of stochastic processes. Providing a space-time array of measurements to the algorithm yields 
the EOFs, which are spatial profiles, and the amplitudes of the EOFs in order to reconstruct the input measure-
ments. The amplitudes of each EOF are a time series and provide the data that are used in this paper to calibrate 
stochastic processes for each of the EOFs. In order to mimic the measurements, we generate signals that have 
the same probability distribution function as the measured time series or have similar temporal correlation. By 
retaining these statistical quantities in the modeled time series, the forcing stays true to characteristic features of 
the measurements.

The following numerical experiments and findings are reported in this paper. We perform a direct numerical 
simulation (DNS) of the two-dimensional Euler equations on the unit square, subject to impenetrable boundary 
conditions. We measure the difference between trajectories of particles advected by the fully-resolved velocity 
field and the corresponding filtered velocity field. The EOFs and time series that represent the amplitudes of the 
EOFs are obtained from this data. Stochastic ensembles are generated using three stochastic processes: Gaussian 
noise, noise based on the underlying pdf of the EOF time series, and noise with a temporal correlation similar 
to that of the EOF time series. The process of developing the time series into stochastic processes is explained 
in detail in a subsequent section of the paper. The results presented in this paper show that using the developed 
stochastic processes leads to a reduction of the ensemble mean error and ensemble spread, compared to using 
Gaussian noise. This is further explored by performing statistical tests for ensemble solutions. The latter is done 
for time scales on which data may be assimilated, where the numerical SPDE results may serve as input (Cotter 
et al., 2020c).

The paper is structured as follows. In Section 2.1 we introduce the deterministic and stochastic governing equa-
tions and describe the numerical experiment in detail. This is followed by a description of the data acquisition 
procedure in Section 2.2. The method used for generating random signals as a model for the measured data is 
described in Section 2.3. The results of the numerical experiments are presented in Section 3. In Section 3.1 
a maximal prediction horizon is established and in Section 3.2 an adapted reference solution defined. These 
results aid the uncertainty quantification of ensemble predictions, presented in Section 3.3. Predictions on much 
shorter timescales are further assessed in Section 3.4, comparing additional ensemble statistics. In Section 3.5 
we assess the forecast quality for different lengthscales in the flow by analyzing the results in spectral space. We 
conclude  the paper in Section 4 and specify future challenges.

2.  SPDE Formulation and Stochastic Models
This section presents the formulation of the stochastic Euler equations using the SALT approach (Section 2.1), the 
data acquisition procedure (Section 2.2) and the derivation of the stochastic models (Section 2.3).
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2.1.  Governing Equations and Flow Conditions

The two-dimensional Euler equations are central to this work. These equations are determined fully by the evolu-
tion of the vorticity dynamics (Zeitlin, 2018). The behavior of the vorticity ω in terms of the velocity u and 
streamfunction ψ is given by

𝜕𝜕𝑡𝑡𝜔𝜔 + (𝐮𝐮 ⋅ ∇)𝜔𝜔 = 𝑄𝑄 − 𝑟𝑟𝑟𝑟𝑟� (1)

𝐮𝐮 = ∇⟂𝜓𝜓𝜓� (2)

Δ𝜓𝜓 = 𝜔𝜔𝜔� (3)

which are solved on the unit square, denoted by 𝐴𝐴   . The perpendicular gradient ∇ ⊥ is defined as (−∂y, ∂x). A 
forcing and a damping term are added to the equations in order to drive the flow to a nontrivial statistically steady 
state. In particular, Q(x, y) = 0.1 sin(8πx) and r = 0.01, which enforce eight spatial gyres that are constant in time. 
An impenetrable boundary condition is applied via

𝜓𝜓|𝜕𝜕 = 0� (4)

along the boundary 𝐴𝐴 𝐴𝐴  of 𝐴𝐴   . For this system a characteristic time scale is the large eddy turnover time, here 
estimated to be 2.5 time units (Cotter et al., 2019).

The stochastic equations associated with the Euler equations follow from the principle of SALT for ideal fluid 
dynamics (Holm, 2015). In this approach, SPDEs are derived from a variational principle. In fact, a stochastically 
constrained functional is minimized to obtain an SPDE which retains the geometric properties equivalent to the 
corresponding PDE. The result is that quantities that are advected along an infinitesimal vector field udt in the 
deterministic setting are advected along an infinitesimal vector field �̄d� +

∑

� �� ◦ d��
� in the stochastic setting. In 

this paper, 𝐴𝐴 𝐴⋅  denotes a filtered field representative of scales that can be resolved accurately on a coarse numer-
ical grid. As a rough rule of thumb, the resolved scales would comprise of structures for which Δ ≳ kh where h 
denotes the uniform grid spacing and k is a factor that quantifies the desired accuracy requirements. Typically, 
one may think of k ≳ 4 for second order accurate methods (Geurts & Fröhlich, 2002). The velocity fields ξi are 
defined as the eigenvectors of the velocity-velocity correlation tensor (Holm, 2015), 𝐴𝐴 𝐴𝐴𝑖𝑖

𝑡𝑡
 is a Wiener process. The 

symbol ∘ implies that the stochastic integral should be understood in the Stratonovich sense. This means that the 
integral is approximated by Riemann sum defined on the midpoints of the subintervals. For a good introduction 
to this material (Kloeden & Platen, 1992) and (Higham, 2001) can be consulted.

Since the velocity field u is divergence-free, each velocity field ξi is divergence-free (Cotter et al., 2019) and can 
be expressed by a potential function ζi via ξi = ∇ ⊥ζi. The advection velocity can then be written in terms of the 
potential as

�̄(�)d� +
∑

�

�� ◦ d��
� = ∇⟂�̄(�)d� +

∑

�

∇⟂�� ◦ d��
� .� (5)

Numerically, the velocity fields are projected to divergence-free fields to guarantee non-divergence. In this equa-
tion the filtered variables are used since the aim of the stochastic model is to represent the components of the 
fine-grid solution that are not resolvable on the coarse grid. The resulting SPDE then reads (Cotter et al., 2019)

d�̄ + ∇⟂

(

�̄d� +
∑

�

�� ◦ d��
�

)

⋅ ∇�̄ = (� − ��̄)d�,� (6)

Δ𝜓̄𝜓 = 𝜔̄𝜔𝜔� (7)

2.2.  Data Acquisition

The numerical method for the solution of Equations 6 and 7 and the flow parameters are the same as those used 
in earlier studies (Cotter et al., 2019, 2020c). A full description of the numerical implementation can be found in 
the former references. Here, for completeness, we illustrate the key aspects. A finite element method is employed 
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to solve the system of Equations 6 and 7. The Poisson equation for the streamfunction is discretized using a 
continuous Galerkin scheme. The vorticity Equation  1, including the stochastic terms, is discretized using a 
discontinuous Galerkin scheme. The space of discontinuous test functions guarantees numerical conservation of 
energy in the absence of source terms (Bernsen et al., 2006).

Numerical time integration is performed by applying a third-order strong stability preserving Runge-Kutta 
(SSPRK3) method (Shu & Osher, 1988). Writing the stochastic advection Equation 6 in the general Stratonovich 
SPDE form

d�̄ = �(�̄)d� +
�
∑

�=1

��(�̄) ◦ d��
� ,� (8)

where

𝐿𝐿(𝜔̄𝜔) = −∇⟂𝜓̄𝜓 ⋅ ∇𝜔̄𝜔 + (𝑄𝑄 − 𝑟𝑟 𝑟𝑟𝑟),

𝐺𝐺𝑖𝑖(𝜔̄𝜔) = −∇⟂𝜁𝜁𝑖𝑖 ⋅ ∇𝜔̄𝜔𝜔
� (9)

the SPDE Equation 8 is integrated in time via

𝜔̄𝜔(1) = 𝜔̄𝜔𝑛𝑛 + Δ𝑡𝑡𝑡𝑡(𝜔̄𝜔𝑛𝑛) +
𝑚𝑚∑

𝑖𝑖=1

𝐺𝐺𝑖𝑖(𝜔̄𝜔𝑛𝑛)Δ𝐵𝐵
𝑖𝑖
𝑛𝑛,

𝜔̄𝜔(2) =
3

4
𝜔̄𝜔𝑛𝑛 +

1

4

[

𝜔̄𝜔(1) + Δ𝑡𝑡𝑡𝑡(𝜔̄𝜔(1)) +
𝑚𝑚∑

𝑖𝑖=1

𝐺𝐺𝑖𝑖(𝜔̄𝜔(1))Δ𝐵𝐵
𝑖𝑖
𝑛𝑛

]

,

𝜔̄𝜔𝑛𝑛+1 =
1

3
𝜔̄𝜔𝑛𝑛 +

2

3

[

𝜔̄𝜔(2) + Δ𝑡𝑡𝑡𝑡(𝜔̄𝜔(2)) +
𝑚𝑚∑

𝑖𝑖=1

𝐺𝐺𝑖𝑖(𝜔̄𝜔(2))Δ𝐵𝐵
𝑖𝑖
𝑛𝑛

]

.

� (10)

The subscript n denotes the nth numerical time step. The stages of the Runge-Kutta algorithm are denoted by the 
subscripts (1) and (2). The time step size is given by Δt and is chosen such that the CFL number does not exceed 
1/3. Here 𝐴𝐴 Δ𝐵𝐵𝑖𝑖

𝑛𝑛  denote random samples drawn from an assumed probability distribution with variance Δt. For 
deterministic systems, the functions G i equal zero.

The term ∇⟂
(
∑

� �� ◦ d�
�
�

)

 in Equation 6 is unknown in the coarsened description and needs to be modeled. The 
latter is approximated as follows:

𝐟𝐟 (𝑥𝑥𝑥 𝑥𝑥)
√
Δ𝑡𝑡 = (𝐮𝐮 − 𝐮̄𝐮)Δ𝑡𝑡 ≈

∑

𝑖𝑖

𝝃𝝃𝑖𝑖(𝑥𝑥)Δ𝐵𝐵
𝑖𝑖
𝑛𝑛.� (11)

The forcing f in Equation 11 is computed as the difference of the Lagrangian trajectories originating by the 
velocity fields u and 𝐴𝐴 𝐮̄𝐮  projected onto the coarse grid. As such, the forcing is a large-scale correction to 𝐴𝐴 𝐮̄𝐮  which 
measures the part of the velocity fluctuation resolved by the coarse grid. The right hand side incorporates these 
fluctuations as a stochastic forcing. The measurements are approximated by coarse-grid resolved fields. This 
approximation may become inaccurate in the case of severe coarsening, in which case a large number of terms 
must be introduced in the approximation of f to properly capture the effects of the small scales.

The process of measuring f(x, t) is as follows. A grid with 512 2 computational cells is adopted for the DNS and 
all subsequent stochastic results are obtained on a coarse grid of 64 2 computational cells. The filtered fields are 
derived from the fine-grid DNS results and are obtained by applying a Helmholtz operator to the streamfunction. 
Given a streamfunction ψ, the filtered streamfunction 𝐴𝐴 𝐴𝐴𝐴  is obtained by solving

(
𝐼𝐼 − 𝑐𝑐∇2

)
𝜓̄𝜓 = 𝜓𝜓𝜓� (12)

where c = 1/64 2 to filter out length scales smaller than the coarse grid size. The numerical resolutions and the 
filter width coincide with those adopted in Cotter et al. (2019). The filtered vorticity 𝐴𝐴 𝐴𝐴𝐴  and filtered velocity 𝐴𝐴 𝐮̄𝐮  are 
recovered from applying the relations Equations 2 and 3 to 𝐴𝐴 𝐴𝐴𝐴  . Over the entire simulation interval, this filter was 
found to remove approximately 12% of the kinetic energy.

The initial vorticity is prescribed, as

�0 = sin(8��) sin(8��) + 0.4cos(6��) cos(6��) + 0.3cos(10��) cos(4��) + 0.02sin(2��) + 0.02sin(2��),� (13)
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from which the system will be spun-up during an interval of 100 time units so that a statistical equilibrium is 
reached. The time at which this is reached is denoted by t = 0. The initial fields and corresponding filtered fields 
at the end of the spin-up interval are found in Figure 1.

The method to estimate the eddy velocity is the same as presented by Cotter et al. (2019) and is based on meas-
uring the trajectories of fluid parcels. A decomposition of the true trajectories into a drift and a stochastic pertur-
bation is assumed, which is equivalent to the SALT equations (Cotter et al., 2017). Here, the drift is computed 
as the filtered velocity field. Thus, a space-time sequence of measurements for determining f from Equation 11 
is obtained by computing the difference of Lagrangian trajectories of particles advected by the velocity field u 
and those advected by the filtered velocity field 𝐴𝐴 𝐮̄𝐮  . The difference is measured over a single coarse-grid time 
step. The particles are released on the coarse grid points and thus a difference in traveled distance can be related to 
each grid point. A correction field is subsequently obtained by dividing the difference in trajectories by the square 
root of the coarse-grid time step, in a manner analogous to particle image velocimetry measurement techniques in 
experimental fluid flow analysis (Adrian & Westerweel, 2011). The measurements are done at each coarse-grid 
time step, from t = 0 (the point at which the simulation is spun-up) until t = 365. By doing so, an array f(x, t) of 
fields is constructed. This space-time array of measurements is decomposed into empirical orthogonal functions 
(EOFs or EOF modes) (Hannachi et al., 2007; Lumley, 1967). Here, a total of 4,096 EOFs are available (64 2 
degrees of freedom), of which the first 225 are used. These EOFs account for 90% of the energy of the meas-
urements. The fact that only a small portion of EOFs is needed for an accurate reconstruction of the forcing is 
attributed to the Helmholtz filter being a graded filter. The latter, by construction, filters out not only small-scale 
dynamics but also part of the large-scale field, which can be captured by the first 5.5% of EOF modes. A potential 
concern in this general framework is that errors might become too large in case of further coarsening.

Application of the EOF algorithm to a flow that has a definite statistically steady state yields

𝐟𝐟 (𝑥𝑥𝑥 𝑥𝑥) = 𝝃𝝃
0
(𝑥𝑥) +

𝑁𝑁∑

𝑖𝑖=1

𝑎𝑎𝑖𝑖(𝑡𝑡)𝝃𝝃𝑖𝑖(𝑥𝑥),� (14)

Figure 1.  Fine-grid fields of the vorticity (left), streamfunction (middle) and velocity magnitude (right) after the spin-up interval. The top row shows the unfiltered 
fields, the bottom row shows the corresponding fields after applying the filter Equation 12.
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where ξ0(x) is the time-mean of the measurements, ξi(x) are normalized spatial EOF modes, also referred to 
as “topos”, and ai(t) are the corresponding coefficients with reference to the measurements, also referred to as 
“chronos.” These are recorded as time series and may be written instead as 𝐴𝐴

√
𝜆𝜆𝑖𝑖𝑎̄𝑎𝑖𝑖(𝑡𝑡) . Here, 𝐴𝐴

√
𝜆𝜆𝑖𝑖  is the standard 

deviation of ai(t) and carries the same dimension as the measurements. The time series 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑡𝑡) has unit variance and 
is dimensionless. The EOF modes are orthonormal with respect to the inner product, thus 𝐴𝐴

(
𝝃𝝃𝑖𝑖, 𝝃𝝃𝑗𝑗

)
= 𝛿𝛿𝑖𝑖𝑖𝑖  , where

(𝒇𝒇 , 𝒈𝒈) =
∫
Ω

𝒇𝒇 (𝑥𝑥)𝒈𝒈(𝑥𝑥) d𝑥𝑥� (15)

with Ω the flow domain. Due to the orthonormality, the coefficients ai(t) are readily obtained by projecting the 
measured velocity fields onto the basis of EOFs by

𝑎𝑎𝑖𝑖(𝑡𝑡) =
(
𝐟𝐟 (𝑥𝑥𝑥 𝑥𝑥) − 𝝃𝝃0(𝑥𝑥), 𝝃𝝃𝑖𝑖(𝑥𝑥)

)
.� (16)

In order to have a self-contained model which allows to obtain predictions, for example, beyond the time span of 
the data set, or as surrogate statistical sample of the flow, we choose to model the time traces ai(t) as independent 
stochastic processes. This will be described in the next section, where also the possible connection to the available 
data will be elaborated.

2.3.  Generating Random Signals

We will now introduce the models for the time traces Equation 16 and subsequently describe how random signals 
are generated using these models. By comparing Equation 14 with Equation 11 it is clear that modeling 𝐴𝐴 𝐴𝐴𝑖𝑖

𝑡𝑡
(𝑡𝑡) 

amounts to modeling ai(t). The following models are employed:

1.	 �The stochastic process 𝐴𝐴 𝐴𝐴𝑖𝑖
𝑡𝑡
 in Equation 11 is modeled by Gaussian noise. For its discrete increments ΔB i in 

Equation 10 we use 𝐴𝐴 Δ𝐵𝐵𝑖𝑖 =
√
𝜆𝜆𝑖𝑖

√
Δ𝑡𝑡𝑡𝑡𝑖𝑖  , where 𝐴𝐴 𝐴𝐴𝑖𝑖 ∼  (0, 1) (Higham, 2001).

2.	 �The pdf of 𝐴𝐴 𝐴𝐴𝐴𝑖𝑖(𝑡𝑡) in is estimated from the measured signals Equation 16 and is subsequently used to draw 

uncorrelated samples. Thus, the increments ΔB i in Equation 10 are computed as 𝐴𝐴 Δ𝐵𝐵𝑖𝑖 =
√
𝜆𝜆𝑖𝑖

√
Δ𝑡𝑡𝑡𝑡𝑖𝑖  , where ri 

is randomly drawn from the estimated pdf.
3.	 �The time series ai(t) in Equation  14 is approximated by an Ornstein-Uhlenbeck (OU) process, using the 

correlation time obtained from the measurements Equation 16. The constructed OU process is then used to 
compute ΔB i in Equation 10.

The probability distributions of model 2 are estimated by fitting a histogram to the values of the corresponding 
time series, yielding a separate distribution for each EOF. The histograms are fully determined by the smallest 
and largest measurements and the number of measurements. The number of bins is chosen as the smallest inte-
ger larger than 𝐴𝐴

3
√
2𝑁𝑁𝑀𝑀  , where NM denotes the number of measurements, that is, the length of the time series. 

This choice minimizes the asymptotic mean squared error of the histogram as an estimator of the underlying 
pdf (Wilks, 2011). Moreover, the measurements are finite due to the spatial continuity of the numerical solution 
and the finite time step size, resulting in histograms with compact support. This guarantees bounded quadratic 
variation and finite moments, at the discrete level. Uncorrelated samples from these distributions are drawn using 
inverse transform sampling. In the latter a random number x is drawn from a uniform distribution between 0 and 
1, which can intuitively be thought of as a probability of an event happening, and subsequently the largest value 
X is found such that P(X ≤ x) holds for the estimated distribution (Devroye, 2006). It is expected that the results 
obtained from model 2 will converge to those obtained from model 1 when the time step size is decreased, due 
to the central limit theorem.

In model 3, the noise generated using the OU process mimics the temporal correlation of the measured time 
series. Denoting by 𝐴𝐴 𝐴𝐴𝑖𝑖

𝑡𝑡
 the approximation of the time series ai(t), the OU process is defined as (Pope, 2001)

d𝐵𝐵𝑖𝑖
𝑡𝑡 = −𝐵𝐵𝑖𝑖

𝑡𝑡

d𝑡𝑡

𝑇𝑇𝑖𝑖

+

(
2d𝑡𝑡

𝑇𝑇𝑖𝑖

)1∕2√
𝜆𝜆𝑖𝑖

√
d𝑡𝑡𝑡𝑡𝑖𝑖,� (17)

where 𝐴𝐴 𝐴𝐴𝑖𝑖 ∼  (0, 1) . We set Ti to be the correlation time of the measured time series. These variables are deter-
mined for each EOF separately. Here, the correlation time is defined as the smallest time at which the autocorre-
lation function of the time series is smaller than the computed 95% confidence bound.
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A consistent choice for a fourth model is one that incorporates the measured temporal correlation, whilst retain-
ing the estimated probability distribution of measurements. However, for this approach no tractable algorithm to 
generate the stochastic processes was found.

The conservation properties of SALT hold for the proposed stochastic processes, since these are semimartingales. 
Conservation of advected quantities then follows from the results of Street and Crisan (2021). Convergence of 
model 2 for decreasing time step sizes is guaranteed because the histograms have finite moments. Convergence 
of model 3 is established in Kloeden and Platen (1992) since the processes are semimartingales.

In the next section, we assess the proposed stochastic models by comparing simulations on the SPDE models to 
findings from deterministic reference solutions.

3.  Assessment of Forecast Ensembles
In this section, we provide results of forecast ensembles using the aforementioned methods to generate stochastic 
signals that serve to force the coarsened dynamics. We first identify a maximal prediction horizon for assessing 
the forecast ensembles. An adapted reference solution is defined based on the measurements, incorporating on 
the coarse numerical grid the measured effects of small-scale motions. Subsequently, we show results of fore-
cast ensembles. Statistics are computed and compared to the filtered DNS and the adapted reference solution to 
quantitatively compare the different stochastic forcing methods. Finally, the results are compared in terms of EOF 
coefficients, to distinguish between the forecast quality for different lengthscales present in the flow.

3.1.  Establishing a Maximal Prediction Horizon

In order to define the maximal prediction horizon until which stochastically forced coarse numerical solutions 
can reasonably be compared to the DNS results, we set up the following numerical experiment. Starting from an 
initial condition on the fine grid, we generate a set of perturbed initial conditions of which we then follow the 
evolution over time. The perturbations are applied in Fourier space by shifting the phase of the Fourier coeffi-
cients, while keeping the amplitudes the same. The phase shift is applied only to modes of wave lengths smaller 
than the smallest scale resolved by the corresponding coarse grid, leaving the resolved modes unaltered. Specifi-
cally, a value l is chosen and all Fourier modes with wave numbers 𝐴𝐴 |𝑘𝑘| =

(
𝑘𝑘2
𝑥𝑥 + 𝑘𝑘2

𝑦𝑦

)1∕2
∈ [𝑙𝑙𝑙 𝑙𝑙 + 1) are affected by 

the additional phase shift. Here kx and ky denote the wave numbers in the x- and y- direction, respectively, and l is 
chosen as 64, 128, and 256. The phase shift is set to π to satisfy the boundary conditions.

As time evolves, the initial perturbation increasingly affects the resolved scales, up to the point where the instan-
taneous resolved fields will be entirely different from each other. We define this point of no longer truthfully 
following the unperturbed solution as the maximal prediction horizon Tmax, after which no model can be expected 
to consistently give accurate point-wise predictions owing to the sensitivity of the evolving solution to the initial 
conditions. The value of Tmax is expected to depend on the choice of perturbed modes and choice of simulation 
parameters. However, in this numerical experiment it serves to provide an estimate of the maximal predication 
horizon.

The observed behavior following the small-scale phase-shift perturbations is illustrated in Figure 2, together with 
the results obtained from the unperturbed solution. The evolution of the vorticity for the various initial conditions 
has been measured on four illustrative points in the domain, at (0.25, 0.25), (0.25, 0.75), (0.75, 0.25) and (0.75, 
0.75), of which two points are shown in the figure. It can be seen that the evolution of the vorticity values at the 
measured points in the domain is initially indistinguishable. At t = 10 slight differences are visible and at t = 20 
the measured values are markedly different. The latter result is especially clear at the point (0.25, 0.25), in the 
left figure. Thus, we conclude that subsequent stochastic realizations can not be reasonably assessed after t = 20, 
which we set as the value for the maximal prediction time Tmax.

3.2.  Defining the Reference Solution

In order to compare the different stochastic models one has to define a reference solution. The choice of the latter 
is not unique. In this work we define two reference solutions that are employed to measure performance of a given 
forcing model. The first one is the filtered fine-grid solution, employing the filter Equation 12, and is indicative 
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of flow scales that can be resolved on the coarse grid. Next to the filtered fine-grid solution, we define a reference 
solution as the numerical solution of Equations 6 and 7 where the reconstructed signal Equation 14, Equation 16 
is used in Equation 11 instead of the stochastic forcing. This provides a prescribed deterministic forcing for the 
coarse numerical simulation. We call this the adapted reference solution. We note that the structure of the closure 
term Equation 11 does not account for discretization error and is itself not an exact closure since the noise is 
introduced only in the advection velocity. The inclusion of discretization error is what sets the filtered DNS 
and the adapted reference solution apart. Therefore, by comparing the stochastic ensembles against the adapted 
reference solution, one is able to distinguish between modeling error from the proposed stochastic models and 
the discretization error.

The adapted reference solution at t = 0, 10, 20, 30 is shown in the top row of Figure 3. At the same points in time, 
a single realization of each of the stochastically forced solutions is shown. The second row shows a realization 
using Gaussian noise, the third row using estimated pdfs and the bottom row using OU processes. The various 
realizations show no qualitative difference, suggesting that a more detailed, quantitative comparison of the meth-
ods is required. This is provided in the following subsections.

3.3.  Uncertainty Quantification of Ensemble Predictions

The evolution of the vorticity and streamfunction is used for uncertainty quantification. First, the ensemble 
predictions are compared globally to the reference solution. In this subsection, the ensembles are compared 
quantitatively only to the adapted reference solution so that accumulation of discretization error in the coarse 
numerical solutions is not included in the comparison. Subsequently, similar to (Cotter et al., 2019) four points in 
the domain are picked for pointwise uncertainty quantification. For each point one ensemble standard deviation 
around the ensemble mean solution is shown and compared to the reference solution at the same point. In these 
tests, the ensemble is initialized from a single initial condition in order to isolate the effects of the stochastic 
processes on the uncertainty of the numerical solution. The initial condition is obtained by injecting the DNS 
vorticity field onto the coarse grid. Each SPDE is simulated up to Tmax = 20, and every ensemble is composed of 
200 realizations of the SPDE. Our interest here lies in comparing the errors and spreads for the different types of 
stochastic processes used in the forcing Equation 11. Different error measures will be monitored as outlined next.

For global comparison to the reference solution, we define the pattern correlation

(𝜔𝜔𝜔𝜔𝜔ref)
√
(𝜔𝜔𝜔𝜔𝜔)(𝜔𝜔ref, 𝜔𝜔ref)

=
∫ 𝜔𝜔𝜔𝜔ref d𝑥𝑥

√

∫ 𝜔𝜔𝜔𝜔 d𝑥𝑥 × ∫ 𝜔𝜔ref𝜔𝜔ref d𝑥𝑥

,� (18)

Figure 2.  Development of the vorticity in two points of the domain, obtained by direct numerical simulation of perturbed fine-grid initial conditions. On the 
left, the vorticity is shown at (0.25, 0.25) and on the right at (0.75, 0.75). The results for the unperturbed and three perturbed initial conditions are shown. The 
perturbations are defined by phase-shifting small-scale modes of the streamfunction field. In the results shown here, the Fourier modes with wave numbers 

𝐴𝐴 |𝑘𝑘| =
(
𝑘𝑘2
𝑥𝑥 + 𝑘𝑘2

𝑦𝑦

)1∕2
∈ [𝑙𝑙𝑙 𝑙𝑙 + 1)  , l = 64, 128, 256 are phase-shifted by π.
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which can be considered a global measure of likeness between the vorticity ω obtained from the stochasti-
cally forced numerical solution and the vorticity ωref obtained from the reference solution. The same quantity 
is computed for the streamfunction. The pointwise comparisons are acquired by measuring the instantaneous 
vorticity and streamfunction at several grid points.

The stochastic ensembles are assessed using the ensemble mean, ensemble standard deviation and ensemble 
mean error. Here, we denote an ensemble of N stochastic realizations by {Xi,j}, where i = 1, …, N denotes the 
realization and j = 0, …, T denotes the time index. Then, the ensemble mean at time instance j is defined as

⟨𝑋𝑋𝑗𝑗⟩ =
1

𝑁𝑁

𝑁𝑁∑

𝑖𝑖=1

𝑋𝑋𝑖𝑖𝑖𝑖𝑖 ,� (19)

Figure 3.  Coarse-grid fields of the vorticity at various points in time. The top row shows, from left to right, the adapted reference solution at t = 0, t = 10, t = 20 and 
t = 30. The other rows show realizations of stochastically forced numerical solutions at the aforementioned times. The second row uses Gaussian noise, the third row 
uses random samples from estimated distributions and the bottom row uses Ornstein-Uhlenbeck processes.
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and the standard deviation, here referred to as spread, is defined as

Spread(𝑋𝑋𝑖𝑖𝑖𝑖𝑖) =

√
√
√
√ 1

𝑁𝑁

𝑁𝑁∑

𝑖𝑖=1

(𝑋𝑋𝑖𝑖𝑖𝑖𝑖 − ⟨𝑋𝑋𝑗𝑗⟩)
2
.� (20)

A small spread indicates a sharp ensemble forecast and a large spread suggests an increased uncertainty in the 
forecast. The reference solution Yj, j = 0, …, T is computed at the same time instances as {Xi,j}. The ensemble 
mean error of {Xi,j} is then defined as

ME(𝑋𝑋𝑖𝑖𝑖𝑖𝑖 , 𝑌𝑌𝑗𝑗) = |⟨𝑋𝑋𝑗𝑗⟩ − 𝑌𝑌𝑗𝑗|.� (21)

A small ensemble mean error indicates that the ensemble closely follows the reference solution, whereas a large 
value implies that the ensemble and the reference solution have deviated considerably from each other.

The correlation measure Equation 18 is shown in Figure 4 for the vorticity and the streamfunction. Using esti-
mated pdfs or OU processes show favorable results when compared to using Gaussian noise, for both quantities. 
A clear difference between the methods can be observed for the vorticity on the time scale of Tmax. At this point, 
using estimated pdfs or OU processes yields a smaller spread than using Gaussian noise, and the results of the 
latter show a smaller correlation with the adapted reference solution. A significant increase in the correlation can 
also be observed for the streamfunction. The results using estimated pdfs or OU processes, as opposed to using 
Gaussian noise, exhibit both a larger likeness with the reference solution as well as a smaller spread. Compared to 
the ensemble obtained using Gaussian noise, at t = 20 the ensemble standard deviation of the pattern correlation 
of the vorticity was found to be reduced by 24% and 42% when using estimated pdfs and OU processes, respec-
tively. For the streamfunction, these values were correspondingly observed to be 67% and 84%. Moreover, the 
results for the estimated pdfs and the OU processes are nearly indistinguishable before t = 5.

The evolution of the vorticity in four points of the domain is shown in Figure 5. The locations considered are 
(0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75). In each of these plots, the colored bands present are the 
ensemble standard deviations around the corresponding ensemble mean. In all measured points, forcing based 
on Gaussian noise produces the largest spread. It is clearly visible that using the OU process yields the smallest 
ensemble spread and using the estimated pdfs only slightly increases the spread compared to using the OU 
process.

Figure 4.  Pattern correlation Equation 18 between the forecast ensembles and the adapted reference solution for the vorticity (left) and the streamfunction (right). Each 
band is defined as one ensemble standard deviation around the ensemble mean. The green band is generated using Gaussian noise, the blue band uses the estimated pdfs 
and the purple band uses Ornstein-Uhlenbeck processes. The results for each method are generated for an ensemble of 200 realizations.
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The ensemble mean error and the ensemble standard deviation are shown in Figure 6, where the ensemble mean 
error Equation 21 is taken with respect to the adapted reference solution. It becomes evident that the mean error 
develops similarly for each ensemble. The mean errors for ensembles using the estimated pdfs and the OU process 
are nearly indistinguishable until t = 10, after which some smaller differences can be observed. In contrast, using 
Gaussian noise results in a much larger spread.

Figure 7 shows the development of the streamfunction in the aforementioned points of the domain. The stream-
function is a smoother function than the vorticity, which is reflected in the smooth evolution of the former. In 
this figure it can also be observed that all ensembles accurately capture the adapted reference solution, with the 
OU model performing slightly better. The plots in Figure 8 show the ensemble mean error and the ensemble 
standard deviation for the same points in the domain. Analogously to the vorticity, we find that the ensembles 
using the OU process and the estimated pdfs result in a smaller spread than the ensemble using Gaussian noise. 
Furthermore, it is observed that the ensemble mean error does not exceed the ensemble standard deviation before 
t = 10 and only does so occasionally after this point in time, indicating the reference solution is captured well by 
the ensembles.

In this subsection we have shown that the three considered stochastic processes accurately follow the adapted 
reference solution for multiple characteristic time units. Compared to Gaussian noise, using estimated pdfs or 
OU processes to define the stochastic forcing yielded a smaller spread of the ensemble forecast. Using a global 
measure, it is found that the latter two types of forcing yield ensembles that better resemble the adapted reference 
solution. In the next subsection, we perform additional statistical tests to assess short-time predictions.

Figure 6.  Ensemble mean error with respect to the adapted reference solution and ensemble standard deviation for the vorticity on four points in the domain. From left 
to right, (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The ensemble mean error is depicted by the solid lines, the ensemble standard deviation by the dotted lines.

Figure 5.  Vorticity measured on four points in the domain. From left to right, (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The solid and dotted black lines show 
the development of adapted reference solution and filtered direct numerical simulation, respectively. The green band is generated using Gaussian noise, the blue band 
uses the estimated pdfs and the purple band uses Ornstein-Uhlenbeck processes. The results for each method are generated from an ensemble of 200 realizations.
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3.4.  Statistical Tests for Ensemble Forecasts

Additional ensemble statistics are collected in order to further assess the numerical results of the SPDEs. In 
particular, forecast ensembles are generated for short lead times.

Two sets of initial conditions are generated to assess the stochastic models by sampling from two reference 
solutions: the filtered DNS and the adapted reference solution as presented in Section 3.1. The filtered DNS 
does not contain discretization and modeling error, whereas the adapted reference solution does. Therefore 
the use of both reference methods provides insight into the effects of these errors on the statistical quantities. 
Two distinct sets of initial conditions are acquired by sampling the reference solutions at t = 0, 5, 10, …, 350, 
measured after the spin-up time. An ensemble forecast consisting of one hundred stochastic realizations is 
computed for each initial condition. Every stochastic realization is run for two time units and stored every 0.04 
time units in order to study the results for short lead times. This time interval is similar to time intervals at 
which data may be assimilated (Cotter et al., 2020c). Subsequently, the statistics are computed by comparing 
the ensembles to the corresponding reference solution. The statistics are provided below for both sets of initial 
conditions separately.

As a first quantity we compute the root mean square error (RMSE). Recall that {Xi,j}, i = 1, …, N, j = 0, …, T 
denotes an ensemble of N realizations measured at T + 1 times. The RMSE between the ensemble mean of the 
SPDE and the reference solution is computed from

Figure 7.  Streamfunction measured on four points in the domain. From left to right, (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The solid and dotted black 
lines show the development of the adapted reference solution and filtered direct numerical simulation, respectively. The green band is generated using Gaussian noise, 
the blue band uses the estimated pdfs and the purple band uses Ornstein-Uhlenbeck processes. The results for each method are generated from an ensemble of 200 
realizations.

Figure 8.  Ensemble mean error with respect to the adapted reference solution and ensemble standard deviation for the streamfunction on four points in the domain. 
From left to right, (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), (0.75, 0.75). The ensemble mean error is depicted by the solid lines, the ensemble standard deviation by the 
dotted lines.
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RMSE(𝑋𝑋𝑖𝑖𝑖𝑖𝑖 , 𝑌𝑌𝑗𝑗) =

√
√
√
√ 1

𝑁𝑁

𝑁𝑁∑

𝑗𝑗=1

(⟨𝑋𝑋𝑗𝑗⟩ − 𝑌𝑌𝑗𝑗)
2
.� (22)

This provides a measure for the average error of the ensemble (Leutbecher, 2009). The plots in Figure 9 show 
the development of the RMSE and the spread Equation 20 for increasing lead time for the different stochastic 
processes. In the left figure the stochastic ensembles are compared to the filtered DNS, in the right figure the 
ensembles are compared to the adapted reference solution. The RMSE values in the left graph of Figure 9 show 
rapid growth, indicating that the ensemble mean deviates quickly from the filtered DNS. In contrast, the RMSE 
values obtained using the adapted reference solution show a significant error reduction. This suggests that the 
rapid error growth in the left figure is due to the fact that the gap between the coarse-grid SPDE and the filtered 
DNS contains not only the modeling error but also the discretization error. In addition, the right plot in Figure 9 
shows that using the estimated pdfs and the OU process yield similar values of the RMSE and the spreads develop 
comparably as well.

The second statistical quantity that we compute are rank histograms, which are a tool for measuring the reliability 
of an ensemble of forecasts (Hamill, 2001). A rank histogram is obtained by plotting the number of occurrences 
of particular outcomes of the rank function. Here, the rank function R keeps track of where the reference solution 
appears in the list of sorted ensemble members. That is, given a reference value Yj and a list of N sorted ensem-
ble members {Xi,j}, R is equal to the integer r that identifies the position of Yj in the sorted list. It is defined as 
follows:

�(��, {��,�}) =

{

� if �� ≥ ��,� ,
0 otherwise.

� (23)

If the forecast is reliable, then the reference value and the stochastic realizations are indistinguishable. This 
means that the underlying distributions of the reference value and the stochastic realizations are the same, which 
implies that the reference value is equally likely to be larger than any number of ensemble members. Thus, the 
rank func tion is equally likely to take on any value between 1 and N for reliable forecast ensembles and should 
therefore produce a rank histogram which approximates a uniform distribution.

Figure 9.  Root mean square error and spread as a function of time when comparing the stochastic ensembles to two different reference solutions. On the left, the 
filtered direct numerical simulation is regarded as the reference solution and on the right the coarse simulation including the measured ξi is used. The data for each 
figure consists of 71 ensembles of 100 stochastic realizations each.
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Figures 10 and 11 show the rank histograms when using the filtered DNS and the adapted reference solution, 
respectively, as reference. The measurements at the points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75) 
at a lead time of 0.2 time units are used to generate the histograms. For each ensemble forecast the point values 
are compared to the reference solutions, leading to 284 ensemble outcomes that are compared to reference values. 
Only the rank histograms at this particular lead time are shown here, rank histograms at different lead times 
displayed similar results.

The rank histograms using the filtered DNS (Figure 10) show clear peaks at the edges, caused by all ensem-
ble members either overestimating or underestimating the truth. This effect is least pronounced when applying 
Gaussian noise, due to the larger spread in the ensemble. The rank histograms obtained when comparing the 
ensembles to the adapted reference solution (Figure 11) show peaks around the center. This is indicates that the 
reference solution ranks within the middle range of the ensembles. This is a direct result of the small mean error. 
The peaks at the edges are significantly reduced when using the adapted reference solution. This is especially 
clear when using estimated pdfs, which indicates that these ensembles, while showing a small spread, more 
accurately capture the reference solution. Overall, the differences between the rank histograms of the different 
methods are small. This indicates that reliability of the ensembles does not seem to depend on the choice of 
stochastic forcing.

The third statistical quantity that is presented here is the evolution of the vorticity over different time spans, 
conditioned on the vorticity value at a reference time. That is, the conditional probability distribution

𝑃𝑃 [𝜔𝜔(𝑡𝑡 + 𝜏𝜏) − 𝜔𝜔(𝑡𝑡)|𝜔𝜔(𝑡𝑡) = 𝜔𝜔ref]� (24)

is estimated for different values of τ. This quantity describes the statistical evolution of the vorticity over a time 
interval of length τ, given a fixed initial configuration.

Figure 10.  Rank histograms using measurements at the points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75) at a lead time of t = 0.2. A total of 71 ensembles 
are computed and measured at the specified points, each consisting of 100 stochastic realizations and compared to the filtered direct numerical simulation at the 
corresponding time.

Figure 11.  Rank histograms using measurements at the points (0.25, 0.25), (0.25, 0.75), (0.75, 0.25), and (0.75, 0.75) at a lead time of t = 0.2. A total of 71 ensembles are 
computed and measured at the specified points, each consisting of 100 stochastic realizations and compared to the adapted reference solution at the corresponding time.
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The conditional distributions are shown in Figure 12, at lead time τ = 0.04, and in Figure 13, at lead time τ = 1 
to illustrate both short-time and long-time evolution. In both figures, the conditional distributions obtained from 
the reference solutions are shown in the left panel. For comparison, contour lines of these distributions have 
been overlaid in the conditional distributions obtained from the stochastic models. The filtered DNS provides the 
reference for the top row of distributions, the adapted reference solution is used in the bottom row. In particular, 
the distributions of the stochastic models have been computed from a set of initial conditions sampled along the 
filtered DNS and the adapted reference solution, respectively. In these figures, a large spread in the vertical direc-
tion indicates large uncertainty. This becomes especially clear for the shortest lead times considered. On such 
short timescales, the stochastic forcing adds considerable variance to the numerical solution. Applying Gaussian 
noise yields the largest spread, whereas using the estimated pdfs and the OU produce a smaller spread, in accord-
ance with previously presented results. At lead time τ = 1 (Figure 13), the stochastic conditional distributions 

Figure 12.  Conditional probability Equation 24 for lead time τ = 0.04. The top row shows the distributions using the filtered direct numerical simulation as a reference, 
the bottom row uses the adapted reference solution. The contour lines of the reference conditional distributions are overlaid on the distributions obtained from the 
stochastic ensembles for easier qualitative comparison.

Figure 13.  Conditional probability Equation 24 for lead time τ = 1. The top row shows the distributions using the filtered direct numerical simulation as a reference, 
the bottom row uses the adapted reference solution. The contour lines of the reference conditional distributions are overlaid on the distributions obtained from the 
stochastic ensembles for easier qualitative comparison.
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do not show significant differences. To better judge the agreement between the stochastic conditional distribu-
tions and the reference distributions, we compute the Hellinger distance. This measure allows for a quantitative 
comparison between the different distributions. Given two discrete probability distributions p = (p1, …, pK) and 
q = (q1, …, qK), we compute the Hellinger distance (Hellinger, 1909)

𝐻𝐻2(𝑝𝑝𝑝 𝑝𝑝) =
1

2

𝐾𝐾∑

𝑖𝑖=1

(√
𝑝𝑝𝑖𝑖 −

√
𝑞𝑞𝑖𝑖
)2
.� (25)

The distance H 2(p, q) of Equation 24 is shown in Figure 14 for the filtered DNS (left figure) and for the adapted 
solution (right figure). The initial conditions of the stochastic ensemble and the reference solutions are the same, 
therefore the Hellinger distance at τ = 0 is zero. As τ increases, ω(t) deviates from its reference value and accu-
mulation of error leads to larger values of H 2(p, q). Using the filtered DNS as reference solution yields a compa-
rable Hellinger distance for each method. In contrast, the comparison of the stochastic ensembles to the adapted 
reference solution clearly favors the models obtained using the estimated pdfs and OU processes over those where 
Gaussian noise is employed. Despite the quantitative difference in the Hellinger distance, the qualitative behavior 
is the same for each of the stochastic models.

An overall smaller rate of increase is observed when comparing to the adapted reference solution with respect 
to the filtered DNS. The latter findings underpin once more the benefits of using the adapted reference solution 
when assessing the quality of different stochastic models.

3.5.  Quantitative Assessment of Results in Spectral Space

To distinguish the quality of the proposed models across different lengthscales we assess the outcomes of the 
models in spectral space. The EOF modes with a large energy content and a small energy content are represent-
ative of large lengthscales and small lengthscales, respectively. Therefore, one might discriminate between the 
lengthscales that are present in the solution by projecting the latter onto the basis of EOF modes. This translates 
into applying the projection established in Equation 16 for the reference solutions and the stochastic realizations 
and subsequently examining the obtained temporal coefficients.

We perform uncertainty quantification at different lengthscales by comparing the EOF coefficients of the stochas-
tic realizations to those of the reference solutions, computed for specified modes. The evolution of the coefficients 
of four modes, i = 1, 10, 50, 150, representative of large, intermediate and small scales, is shown in Figure 15. It 
is found that the stochastic models accurately follow the adapted reference solution, but deviate somewhat from 
the filtered DNS result, independently of their lengthscale. Similar to the results in previous subsections, using 
the OU processes yields the smallest spread, followed by the estimated pdfs and the Gaussian noise.

Figure 14.  Hellinger distances as a function of time between the reference solution and the stochastic ensembles of distribution Equation 24. On the left, the filtered 
direct numerical simulation is used as a reference solution, on the right, the adapted reference solution provides the reference.
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To quantify the forecast quality as a function of time, for each EOF mode separately, we define the root integrated 
mean-squared error (RIMSE):

RIMSE(t) =
1

𝑡𝑡

(

∫
𝑡𝑡

0

1

𝑁𝑁

∑𝑁𝑁

𝑖𝑖=1
(𝑎𝑎𝑖𝑖 − 𝑎𝑎ref)

2
d𝜏𝜏

)1∕2

(

∫
𝑡𝑡

0
𝑎𝑎2

ref
d𝜏𝜏

)1∕2
.� (26)

This quantity is a measure of the difference between the EOF coefficient ai of each stochastic realization in the 
ensemble and the coefficient aref of the reference solution, integrated over the specified time interval. The values 
of the RIMSE are shown in Figure 16 for the four modes considered and compared to the adapted reference 
solution. The results suggest that using OU processes and estimated pdfs is in general favored over using Gauss-
ian noise, largely independent of the lengthscale. For the higher modes, an initial rapid increase in the RIMSE is 
observed regardless of the employed method. The results obtained using Gaussian noise and OU processes show 
little difference for short lead times. For increased lead times the latter shows favorable results.

An additional verification of the accuracy of the stochastic realizations is provided by comparing the means and 
variances of the EOF time series to those of the reference solutions. These values are shown in Figure 17 for all 
EOF modes. Only the results using Gaussian noise are shown to keep the figures comprehensible. No significant 
differences were found for the other proposed models. The mean values of the stochastic realizations and the 
adapted reference solution are found to be nearly indistinguishable, whereas slight deviations from the mean 

Figure 16.  From left to right, root integrated mean-squared error Equation 26 for modes 1, 10, 50, 150, compared to the adapted reference solution. The results for each 
method are generated from an ensemble of 200 realizations.

Figure 15.  From left to right, empirical orthogonal function coefficients for modes 1, 10, 50, 150. The solid and dotted black lines show the development of the 
adapted reference solution and filtered direct numerical simulation, respectively. The green band is generated using Gaussian noise, the blue band uses the estimated 
pdfs and the purple band uses Ornstein-Uhlenbeck processes. The results for each method are generated from an ensemble of 200 realizations.
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values of the filtered DNS may be observed. The variances of the time series are also found to be in good agree-
ment with those of the adapted reference solution, but differ marginally from the variances of the time series of 
the filtered DNS.

4.  Conclusions
In this paper, we have assessed three stochastic models for the simulation of the coarse-grained two-dimensional 
Euler equations. The closure is based on the so-called SALT approach. The resulting SPDE contains a stochas-
tic forcing term that requires to be modeled to close the equations. In particular, the forcing is decomposed 
into a deterministic basis (EOF, or EOFs) multiplied by stochastic temporal traces. This decomposition is, by 
construction, fully determined from a fine-grid (DNS) data set. However, to simulate outside the available data 
set one is required to model the time traces. In the framework of SALT (Cotter et al., 2019) the latter are regarded 
as Gaussian processes. Here we extend the stochastic forcing to more general processes, sampling from the 
data-estimated probability distribution functions (pdfs) and introducing correlation through OU processes. The 
latter two methods use additional data already available from the EOF time series. Between the methods no qual-
itative differences in the flow realizations were observed. However, the latter methods generally show favorable 
results compared to the former Gaussian method, in terms of ensemble mean and ensemble spread.

To meaningfully compare the different stochastic models we defined a maximal prediction horizon and an 
adapted reference solution. The prediction horizon sets the point in time beyond which a bundle of fine-grid 
solutions, starting from the same initial condition on the coarse grid, deviates on order 1 due to high sensitivity 
to the initial conditions. This defines the time frame on which to assess the statistical quality of the coarse-grid 
predictions. The adapted reference solution was defined as the coarse-grid solution using the exact measured time 

Figure 17.  Mean values (top) and variances (bottom) of the empirical orthogonal function time series over the simulated time interval. The solid and dotted show 
the development of the adapted reference solution and the filtered direct numerical simulation, respectively. The green bands are generated from an ensemble of 200 
realizations using Gaussian noise and show the ensemble mean of the quantity of interest ± one ensemble standard deviation.
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series of the EOFs for the forcing. The latter allowed us to isolate the modeling error from other sources of error 
not taken into account in the considered model formulation, such as discretization error. The stochastic ensembles 
were compared to this reference solution using a global measure and pointwise values. For both the global and 
local measures, using either estimated pdfs or OU processes to define the forcing term yielded a smaller ensemble 
mean error and a smaller spread compared to using Gaussian noise.

Stochastic prediction ensembles on timescales relevant for data assimilation were further investigated by perform-
ing statistical tests, comparing ensembles of stochastic realizations to the adapted reference solution and the 
filtered DNS. A significantly smaller ensemble spread was found when using estimated pdfs or OU processes, 
compared to using Gaussian noise. Additionally, the observed mean ensemble error was lower for the former two 
methods. All three methods showed rapid growth in ensemble error when compared to the filtered DNS, suggest-
ing that the filtered DNS contains not only the modeling error but also the discretization error and the closure 
error. These results were further substantiated by rank histograms, showing that the ensembles were biased with 
respect to the filtered DNS, but were overdispersive compared to the adapted reference solution. In particular, 
using the estimated pdfs to define the stochastic forcing rarely resulted in the adapted reference solution not being 
contained in the ensemble. Finally, conditional distributions of the vorticity were computed and compared using 
the Hellinger distance. Here, using estimated pdfs or OU processes resulted in a smaller distance to the reference 
solution than using Gaussian noise, indicating a better statistical characterization of the vorticity dynamics.

The ensemble forecasts were assessed in spectral space to discriminate between the different lengthscales present 
in the solution. The stochastic ensembles were found to accurately capture the adapted reference solution on 
the considered scales. The overall prediction quality using OU processes was found to be favorable over using 
Gaussian noise, independent of the lengthscale. Additionally, the stochastic ensembles were found to accurately 
reproduce the mean values and variances of the EOF time series over the entire simulation period.

The methods presented in this paper may be used in other flows where EOF-based stochastic modeling is rele-
vant. These approaches are particularly appealing since all information used in these methods is readily avail-
able from the EOF decomposition and no additional data is required to construct the models. The presented 
techniques are purely data-driven, they require no further assumption about the governing equations and can 
therefore be applied to other geophysical fluids. The short-time results indicate that a mean error reduction and 
smaller ensemble spread can be obtained using these methods, which can complement methods employed in data 
assimilation. Furthermore, the definition of the adapted reference solution motivates further research of the SALT 
method using different closure models and incorporating the discretization error.

Data Availability Statement
The computational code, data and post-processing scripts used in this study can be accessed via https://doi.
org/10.5281/zenodo.6719311. Computations were performed in the open-source Python Finite Element Pack-
age Firedrake (McRae et al., 2016). All post-processing was done in Matlab (MATLAB version 9.7.0.1190202 
(R2019b), 2019).
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