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Abstract: This paper studies scalable global state synchronization of discrete-time double integrator multi-agent
systems in presence of input saturation based on localized information exchange. A scale-free collaborative linear
dynamic protocols design methodology is developed for discrete-time multi-agent systems with both full and partial-
state couplings. And the protocol designmethodology does not need any knowledge of the directed network topology
and the spectrum of the associated Laplacian matrix. Meanwhile, the protocols are parametric based on a parameter
set in which the designed protocols can guarantee the global synchronization result. Furthermore, the proposed
protocol is scalable and achieves synchronization for any arbitrary number of agents.
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1 Introduction

In recent years, the synchronization or consen-

sus problem of multi-agent system (MAS) has at-

tracted much more attention, due to its wide poten-

tial for applications in several areas such as automo-

tive vehicle control, satellites/robots formation, sen-

sor networks, and so on. See for instance the books

[1, 2, 11, 23, 27, 28, 39] and references therein.

At present, most work in synchronization for MAS

focused on state synchronization of continuous-time

and discrete-time homogeneous networks. State syn-

chronization based on diffusive full-state coupling
(it means that all states are communicated over the

network) has been studied where the agent dynam-

ics progress from single- and double-integrator (e.g.

[6, 9, 12, 24, 25, 26, 35]) to more general dynamics

(e.g. [34, 38, 41]). State synchronization based on dif-

fusive partial-state coupling (i.e., only part of the states
are communicated over the network) has also been con-

sidered, including static design ([3, 20, 21]), dynamic

design ([10, 18, 30, 33, 36, 37]), and the design with

additional communication ([4, 14, 29]).

On the other hand, it is worth to note that actuator

saturation is pretty common and indeed is ubiquitous in

engineering applications. Some researchers have tried

to establish (semi) global state and output synchro-

nization results for both continuous- and discrete-time

MAS in the presence of input saturation. From the ex-

isting literature for a linear system subject to actuator

saturation, we have the following conclusion [28]:

1) A linear protocol is used if we consider synchro-

nization in the semi-global framework (i.e. initial

conditions of agents are in a priori given compact

set).

2) Synchronization in the global sense (i.e., when

initial conditions of agents are anywhere) in gen-

eral requires a nonlinear protocol.

3) Synchronization in the presence of actuator satu-

ration requires eigenvalues of agents to be in the

closed left half plane for continuous-time systems

and in the closed unit disc for discrete-time sys-

tems, that is the agents are at most weakly unsta-

ble.

The semi-global synchronization has been studied in

[32] via full-state coupling. For partial state coupling,

we have [31, 42] which are based on the extra com-

munication. Meanwhile, the result without the extra

communication is developed in [43]. Then, the static

controllers via partial state coupling is designed in [17]

by passifying the original agent model.

On the other hand, global synchronization for full-

state coupling has been studied by [22] (continuous-

time) and [40] (discrete-time) for neutrally stable and

double-integrator agents. The global framework has

only been studied for static protocols under the as-

sumption that the agents are neutrally stable and the

network is detailed balanced or undirected. Partial-

state coupling has been studied in [5] using an adaptive
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approach but the observer requires extra communica-

tion. The result dealing with networks that are not

detailed balanced are based on [13] which intrinsically

requires the agents to be single integrators. Recently,

we introduce a scale-free linear collaborative protocols

for global regulated state synchronization of contin-

uous and discrete-time homogeneous MAS, see [19]

and [16]. This scale-free protocol means the design
is independent of the information about the associated

communication graph or the size of the network, i.e.,

the number of agents.

In this paper, we focus on scalable linear protocol

design for global state synchronization of discrete-time

double-integrator MAS in presence of input saturation.

The contributions of this paper are stated as follows:

• Aclass of parametric linear protocol is established

based on a parameter set in which the designed

parametric protocol makes all states of MAS syn-

chronized.

• Meanwhile, the linear protocol design is scale-free

and do not need any information about commu-

nication network. In other words, the proposed

protocols work for any MAS with any commu-

nication graph with arbitrary number of agents

as long as the communication graph has a path

among each agent.

Notations and definitions
Given a matrix A ∈ Rm×n, AT denotes its conjugate

transpose and ‖A‖ is the induced 2-norm. A square

matrix A is said to be Schur stable if all its eigenvalues
are in the closed unit disk. A⊗B depicts the Kronecker
product between A and B. In denotes the n-dimensional
identity matrix and 0n denotes n×n zero matrix; some-
times we drop the subscript if the dimension is clear

from the context. A matrix D = [di j]N×N is called a

row stochastic matrix if (a) di j > 0 for any i, j and (b)∑N
j di j = 1 for i = 1, · · · ,N . A row stochastic matrix

D has at least one eigenvalue at 1 with right eigenvector

1.
A weighted graph G is defined by a triple (V,E,A)

where V = {1, . . . ,N} is a node set, E is a set of

pairs of nodes indicating connections among nodes,

and A = [ai j] ∈ RN×N is the weighting matrix. Each

pair in E is called an edge, where ai j > 0 denotes an

edge ( j, i) ∈ E from node j to node i with weight ai j .
Moreover, ai j = 0 if there is no edge from node j to
node i. We assume there are no self-loops, i.e. we have
aii = 0. A path fromnode i1 to ik is a sequence of nodes
{i1, . . . , ik} such that (ij, ij+1) ∈ E for j = 1, . . . , k − 1.
A directed tree with root r is a subgraph of the graph
G in which there exists a unique path from node r to
each node in this subgraph. A directed spanning tree
is a directed tree containing all the nodes of the graph.

A directed graph may contain many directed spanning

trees, and thus there may be several choices for the root

agent. The set of all possible root agents for a graph G

is denoted by πg.
The weighted in-degree of node i is given by din(i) =∑N
j=1 ai j . For a weighted graph G, the matrix L = [�i j]

with

�i j =

{ ∑N
k=1 aik, i = j,
−ai j, i � j,

is called theLaplacianmatrix associatedwith the graph
G. The Laplacian matrix L has all its eigenvalues in

the closed right half plane and at least one eigenvalue

at zero associated with right eigenvector 1 [7].
2 Problem formulation
Consider a MAS consisting of N identical discrete-

time double integrator with input saturation:{
xi(k + 1) = Axi(k) + Bσ(ui(k)),
yi(k) = Cxi(k)

(1)

where xi(k) ∈ R
2n, yi(k) ∈ R

n and ui(k) ∈ R
n are

the state, output, and the input of agent i = 1, . . . ,N ,
respectively. And

A =
(
I I
0 I

)
,B =

(
0

I

)
,C =

(
I 0

)
Meanwhile,

σ(v) =

	



�
sat(v1)

sat(v2)
...

sat(vm)

��
where v =

	



�
v1
v2
...
vm

��
∈ Rm

with sat(w) is the standard saturation function,

sat(w) = sgn(w)min(1, |w |).

The network provides agent i with the following in-
formation,

ζi(k) =
N∑
j=1

ai j(yi(k) − yj(k)), (2)

where ai j � 0 and aii = 0. This communication

topology of the network can be described by aweighted

graph G associated with (2), with the ai j being the
coefficients of the weighting matrix A. In terms of

the coefficients of the associated Laplacian matrix L,
ζi can be rewritten as

ζi(k) =
N∑
j=1

�i j yj(k). (3)

We refer to this as partial-state coupling since only

part of the states are communicated over the network.

WhenC = I, it means all states are communicated over
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the network, we call it full-state coupling. Then, the
original agents are expressed as

xi(k + 1) = Axi(k) + Bσ(ui(k)) (4)

and ζi is rewritten as

ζi(k) =
N∑
j=1

�i j xj(k). (5)

We need the following definition to explicitly state

our problem formulation.

Definition 1 We define the following set. GN denotes
the set of directed graphs of N agents which contains
a directed spanning tree. Moreover, for any G ∈ GN ,
we denote the root set of the G by πg.

Remark 1 When the undirected or strongly connected
graph is considered, it is obvious that the set πg will
include all nodes of networks.

We consider the state synchronization problem un-

der the graph set GN satisfying Definition 1. Here, its

objective is that the agents achieve state synchroniza-

tion, that is

lim
k→∞

(xi(k) − xj(k)) = 0. (6)

for all i, j ∈ 1, ...,N .
Meanwhile, we introduce an additional information

exchange among each agent and its neighbors. In par-

ticular, each agent i = 1, . . . ,N has access to additional

information, denoted by ζ̂i , of the form

ζ̂i(k) =
N∑
j=1

ai j(ξi(k) − ξj(k)) (7)

where ξj ∈ R
n is a variable produced internally by

agent j and to be defined in next sections.
Then, we formulate the problem for global state syn-

chronization of a MAS via linear protocols based on

additional information exchange (7).

Problem 1 Consider a MAS described by (1) and (2).
Let the set GN denote all graphs satisfy Definition 1.

The scalable global state synchronization problem
with additional information exchange via linear dy-
namic protocol is to find a linear dynamic protocol,
using only the knowledge of agent model (A,B,C), of
the form⎧⎪⎪⎨⎪⎪⎩

xc,i(k + 1) = Ac,i xc,i(k) + Bc,iσ(ui(k))
+Cc,iζi(k) + Dc,i ζ̂i(k),

ui(k) = Kc,i xc,i(k)
(8)

where ζ̂i is defined in (7) with ξi = Hc,i xc,i , and xc,i ∈
R
nc , such that state synchronization (6) is achieved

for any N and any graph G ∈ GN , and for all initial
conditions of the agents xi(0) ∈ R

n, and all initial
conditions of the protocols xc,i(0) ∈ Rnc .

3 Protocol design
3.1 Full-state coupling
Let G be any graph belongs to G

N , and we

choose agent θ where θ is any node in the root

set πg. Then, we propose the following protocol.

Linear Protocol 1: Full-state coupling⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
χi(k + 1) = Aχi(k) + Bσ(ui(k))

+ 1
1+Din(i)

[
Aζi(k) − Aζ̂i(k)

]
ui(k) = K χi(k), i = {1, . . . ,N} \ θ
uθ (k) ≡ 0,

(9)

where Din(i) is the upper bound of din(i) =∑N
j=1 ai j . Then, we still choose matrix K =

−
(
k1I k2I

)
, where k1 ∈ (0,1) and k2 > 0 sat-

isfy the following condition

(1 + k1 − k2)2 < 1 − k1. (10)

ζ̂i(k) and ζi(k) are defined by (7) and (2), respec-
tively. And the agents communicate ξi(k) which is
chosen as ξi(k) = χi(k).

The condition (10) can be shown as Fig. 1, where

the zone encircled by parabola and line (0,0) to (0,2).

Figure 1: Solvable zone of k1, k2 for synchronization

Theorem 1 Consider a MAS described by (4) and (5).
Let the set GN denote all graphs satisfy Definition 1.

Then, the scalable global state synchronization prob-
lem with additional information exchange as stated in
Problem 1 is solvable. In particular, for any given
k1 ∈ (0,1) and k2 > 0 satisfying (10), the linear dy-
namic protocol (9) solves the global state synchroniza-
tion problem for any N and any graph G ∈ GN .

To obtain this theoremwe need the following lemma.

Lemma 1 For all u, v ∈ Rn, we have

(σ(v) − σ(u))T(u − σ(u)) � 0. (11)

Proof: Note that we have:

(σ(v) − σ(u))T(u − σ(u))

=

n∑
i=1

(σ(vi) − σ(ui))(ui − σ(ui)) (12)
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when u =
(
u1 · · · un

)T
and v =

(
v1 · · · vn

)T
.

Next note that if ui � 1 we have σ(vi) − σ(ui) =
σ(vi) − 1 � 0 and ui − σ(ui) = ui − 1 � 0 and hence:

(σ(vi) − σ(ui))(ui − σ(ui)) � 0 (13)

On the other hand if ui � −1 we have σ(vi) − σ(ui) =
σ(vi) + 1 � 0 and ui − σ(ui) = ui + 1 � 0 and (13) is

still satisfied. Finally, if |ui | � 1 then ui − σ(ui) = 0

and (13) is also satisfied.

Since (13) is satisfied for all i and using (12) we find
(11) holds for all u and v.

The proof of Theorem 1: Since we have uθ (k) ≡ 0, we

obtain σ(uθ (k)) = 0. The model of agent θ is rewritten
as xθ (k + 1) = Axθ (k).
Then, let x̄(k) = xi(k) − xθ (k), we have⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
x̄i(k + 1) = Ax̄i(k) + Bσ(ui(k))
χi(k + 1) = Aχi(k) + Bσ(ui(k))

+ 1
1+Din(i)

∑N−1
j=1 �i jA [x̄i(k) − χi(k)]

ui(k) = −
(
k1I k2I

)
χi(k)

(14)

for i = {1, . . . ,N} \ θ. Then by defining 2(N − 1)n-
dimensional vectors

x̄(k) =
	

�
x̄1(k)
...

x̄N−1(k)

�� , χ(k) =
	

�
χ1(k)
...

χN (k)

�� ,
u(k) =

	

�
u1(k)
...

uN (k)

�� , σ(u(k)) =
	

�
σ(u1(k))

...
σ(uN (k))

��
where χθ (k), uθ (k), andσ(uθ (k)) are not included. We
have the following closed-loop system⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

x̄(k + 1) = (IN−1 ⊗ A)x̄(k) + (IN−1 ⊗ B)σ(u(k))
χ(k + 1) = (IN−1 ⊗ A)χ(k) + (IN−1 ⊗ B)σ(u(k))

+((IN−1 − D̄) ⊗ A)(x̄(k) − χ(k))
u(k) = −(IN−1 ⊗

(
k1I k2I

)
)χ(k)

where D̄ = IN−1 − (IN−1 + Dd,in)−1 L̂, Dd,in =

diag{Din(1),Din(2), · · · ,Din(N)} without Din(θ), and
L̂ is the matrix obtained from L by deleting the θth
row and the θth column. Meanwhile, according to [8,
Lemma 1], we have the real part of all eigenvalues of L̂
are greater than zero. Thus, it implies all eigenvalues’

absolute value of D̄ ∈ R(N−1)×(N−1) are less than 1.

Let e(k) = x̄(k) − χ(k), we have⎧⎪⎪⎨⎪⎪⎩
x̄(k + 1) = (IN−1 ⊗ A)x̄(k) + (IN−1 ⊗ B)σ(u(k))
e(k + 1) = (D̄ ⊗ A)e(k)
u(k) = −(IN−1 ⊗

(
k1I k2I

)
)(x̄(k) − e(k))

(15)

Then, let x̄(k) =
(
x̄T
1
(k) x̄T

2
(k)

)T
, we have⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

x̄1(k + 1) = x̄1(k) + x̄2(k)
x̄2(k + 1) = x̄2(k) + σ(u(k))
e(k + 1) = (D̄ ⊗ A)e(k)
u(k) = −k1 x̄1(k) − k2 x̄2(k)

+
(
IN−1 ⊗

(
k1I k2I

) )
e(k)

(16)

The eigenvalues of D̄ ⊗ A are of the form λiμj , with
λi and μj eigenvalues of D̄ and A, respectively. Since
|λi | < 1 and μj ≡ 1, we find D̄ ⊗ A is asymptotically
stable. Therefore we find that:

lim
k→∞

ei(k) → 0. (17)

Thus, we just need to prove the stability of (16).

Namely, we have x̄(k) → 0 as k → ∞ with ei → 0,

which will obtain the synchronization result.

To prove the synchronization result, we consider the

following weighting Lyapunov function

V(k) = (1 − h)V1(k) + hV2(k) (18)

where h ∈ (0,1), V2(k) = eT(k)PDe(k), PD > 0 satis-

fies

(D̄ ⊗ A)TPD(D̄ ⊗ A) − PD � −2I2(N−1)n, (19)

V1(k) =
(
σ(u(k))
x̄2(k)

)T [(
1 k1
k1 k1

)
⊗ I(N−1)n

] (
σ(u(k))
x̄2(k)

)
+ 2σ(u(k))T(u(k) − σ(u(k)))

Here, we obtain V1(k) and V2(k) are positive, i.e.
V1(k) > 0 except for (u(k), x̄2(k)) = 0 when V1(k) = 0

and V2(k) > 0 except for e(k) = 0 when V2(k) = 0.

Then, we have

ΔV1(k) =V1(k + 1) − V1(k)

�2(1 + k1 − k2)σ(u(k + 1))Tσ(u(k))

− σ(u(k + 1))Tσ(u(k + 1))

− (1 − k1)σ(u(k))Tσ(u(k))

+ 2σ(u(k + 1))T(IN−1 ⊗ (k1I k2I)Ψ)e(k)

since (σ(u(k + 1)) − σ(u(k)))T(u(k) − σ(u(k))) � 0

based on Lemma 1, where Ψ = D̄ ⊗ A − I2(N−1)n.

Meanwhile, for V2(k) we have

ΔV2(k) = V2(k + 1) − V2(k) � −2eT(k)e(k)

based on condition (19). Thus, one can obtain

ΔV(k) � (1 − h)ΔV1(k) + hΔV2(k)

�(1 − h)
(
σ(u(k + 1))
σ(u(k))

)T
(Φ ⊗ I(N−1)n)

(
σ(u(k + 1))
σ(u(k))

)
− h‖e(k)‖2

where Φ =

(
−1 +

‖Ψ ‖2(1−h)(k2
1
+k2

2
)

h 1 + k1 − k2
1 + k1 − k2 −(1 − k1)

)
.

Obviously we just need to prove Φ < 0. Without

loss of generality, there exists an ε > 0 such that

(1 + k1 − k2)2 = (1 − ε)(1 − k1). (20)

By using Schur Compliment, we have Φ < 0 is equiv-

alent to −1 +
‖Ψ ‖2(1−h)(k2

1
+k2

2
)

h +
(1+k1−k2)

2

1−k1
< 0. From
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condition (20), we can obtain −1 +
‖Ψ ‖2(1−h)(k2

1
+k2

2
)

h +

(1+k1−k2)
2

1−k1
<

‖Ψ ‖2(1−h)(k2
1
+k2

2
)

h − ε. For h sufficiently

close to 1, one can obtain
‖Ψ ‖2(1−h)(k2

1
+k2

2
)

h < ε. It

means that we obtain Φ < 0.

Thus, we have ΔV(k) < 0 for

(
σ(u(k + 1))
σ(u(k))

)
� 0,

x̄(k) → 0 as k → ∞.

Furthermore, when ΔV(k) = 0, we obtain u(k +1) =
u(k) = 0 and e(k) = 0. It is easy to obtain x̄1(k) =
x̄2(k) = 0 at ΔV(k) = 0.
Thus, the invariance set {(x̄(k), e(k)) :

ΔV(x̄(k), e(k)) = 0} contains no trajectory of the

system except the trivial trajectory (x̄(k), e(k)) = (0,0).
(15) is globally asymptotically stable based on

LaSalle’s invariance principle. Finally, we obtain the

global state synchronization result.

3.2 Partial-state coupling
Let G be any graph belongs to GN , and also we

choose agent θ where θ is any node in the root set
πg. Then, we propose the following linear protocol.

Linear protocol 2: Partial-state coupling⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎩

x̂i(k + 1) = (A − FC)x̂i(k)
+ 1
1+Din(i)

[
Bζ̂i2(k) + Fζi(k)

]
χi(k + 1) = Aχi(k) + Bui(k)

+Ax̂i(k) − 1
1+Din(i)

Aζ̂i1(k)
ui(k) = K χi(k), i = {1, . . . ,N} \ θ
uθ (k) ≡ 0,

(21)

where Din(i) is the upper bound of din(i) =∑N
j=1 ai j . Then, we choose matrix K =

−
(
k1I k2I

)
, where k1 ∈ (0,1), k2 > 0 sat-

isfy condition (10). In this protocol, the

agents communicate ξi(k) =
(
ξT
i1
(k) ξT

i2
(k)

)T
=(

χT

i (k) σ(ui(k))T
)T
, i.e. each agent has access to

additional information ζ̂i(k) =
(
ζ̂ T
i1
(k) ζ̂ T

i2
(k)

)
,

where

{
ζ̂i1(k) =

∑N
j=1 ai j(χi(k) − χj(k))

ζ̂i2(k) =
∑N
j=1 ai j(σ(ui(k)) − σ(u j(k)))

,

while ζ̄i(k) is defined via (2).

Theorem 2 Consider a MAS described by (1) and (2).
Let the set GN denote all graphs satisfy Definition 1.

Then, the scalable global state synchronization prob-
lem with additional information exchange as stated in
Problem 1 is solvable. In particular, for any given
k1 ∈ (0,1) and k2 > 0 satisfying (10), the linear dy-
namic protocol (21) solves the global state synchro-
nization problem for any N and any graph G ∈ GN .

The proof of Theorem 2: Similar to Theorem 1, by

defining x̄i(k) = xi(k)− xθ (k), e(k) = x̄(k)− χ(k), and
ē(k) = [(IN−1 − D̄) ⊗ I]x̄(k)− x̂(k), we have the matrix

expression of closed-loop system⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩
x̄1(k + 1) = x̄1(k) + x̄2(k)
x̄2(k + 1) = x̄2(k) + σ(u(k))
e(k + 1) = (D̄ ⊗ A)e(k) + ē(k)
ē(k + 1) = [IN−1 ⊗ (A − FC)]ē(k)
u(k) = −

(
IN−1 ⊗

(
k1I k2I

) )
χ(k)

Since the eigenvalues of A − FC and D̄ ⊗ A are in
open unit disk, we just need to prove the stability of

x̄1(k) and x̄2(k). Similar to the proof of Theorem 1,

the state synchronization result can be obtained.

Since the space limitation, we put the part of numer-

ical example to the completed version, see [15].
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