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Abstract

We develop tail estimates for the number of edges in a Chung-Lu random graph with
regularly varying weight distribution. Our results show that the most likely way to have an
unusually large number of edges is through the presence of one or more hubs, i.e. edges with
degree O(n).

1 Introduction and main results

We analyze a sequence of random graphs introduced by [5, 12] which is constructed as follows.
Let n be the number of vertices and let Xi, i ≥ 1, be an i.i.d. sequence of non-negative random
variables with mean µ and a right tail which is regularly varying with index −α < −1:

P(X1 > x) = L(x)x−α,

α > 1, with L(yx)/L(x) → 1 as x → ∞. Xi can be interpreted as a weight for vertex i, and we
denote µ = E [Xi]. A vertex with a high weight tends to have more edges: the probability pij that
an edge is present between vertices i and j equals

pij = pnij(Xi, Xj) := min

{

XiXj

µn
, 1

}

. (1)

Given i.i.d. uniform [0, 1] random variables Uij , i ≥ 1, j ≥ 1, we define the total number of
edges En in the graph as

En :=

n
∑

i=1,j=1,i6=j

1(Uij ≤ min{XiXj/n, 1}), (2)

where 1 denotes the indicator function. The mean of En grows as µn. The specific purpose of
this study is to investigate the probability that En has significantly more edges than usual, i.e.

P(En > (µ+ a)n)

for some fixed a > 0. Our broader aim is to contribute to a better understanding of large-
deviations properties of random graphs with power-law degrees. In the past decade there has been
increased activity in establishing large deviations for random graphs. There now exist various
large-deviations results for dense graphs and sparse graphs with light-tailed degrees [6, 8, 9, 13, 17],
which do not cover scale-free graphs. The typical behavior of scale-free graphs is subject to intense
research activity [21, 22], while their large-deviations analysis is so far restricted to the Pagerank
functional [11, 18] or the cluster sizes for critical random graphs [23].

To describe our main results, we introduce additional notation. Denote the mean Mn of En,
conditional on the weights X1, . . . , Xn by

Mn :=
n
∑

i=1,j=1,i6=j

min{XiXj/(µn), 1}, (3)
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and set Sn = µnMn, i.e.

Sn :=

n
∑

i=1,j=1,i6=j

min{XiXj, µn}. (4)

We now give a description of our main results. A key parameter is

k(a) := ⌈a/(2µ)⌉. (5)

Assuming that a/(2µ) is not an integer, we show that the most likely way for Sn to reach a
value exceeding (µ2 + a)n is by k large (of order n) values of Xi, an event which has probability
O(nk

P(X1 > n)k). In particular, if X1, . . . , Xk equal a1n, . . . , akn and the remaining Xi have a

typical value, Sn is approximately equal to n2(µ2 + 2
∑k

i=1 E[min{aiXj , µ}) (ignoring terms that
are of lower order in n). Following the intuition from large deviations for heavy-tailed random
variables (see e.g. [20]) we need to choose k as the smallest number such that there exist constants

a1, . . . , ak to get 2
∑k

i=1 E[min{aiXj, µ}) > a. This leads to the choice k = k(a). To state our
results formally, we define

C(a1, . . . , ak) := 2

k
∑

i=1

E[min{aiXj , µ}] (6)

and we let, for b > 0, Xb
i , i ≥ 1, be an i.i.d. sequence such that P(Xb

i > x) = (x/b)−α, x ≥ b. With
f(n) ∼ g(n) we denote that the ratio of f and g converges to 1 as n → ∞. We first state our main
result on Sn:

Proposition 1.1. Assume that a/2µ is not an integer. Set η(a) as the smallest number η for

which 2((k(a)− 1)µ+ E[min{ηX1, µ}) ≥ a. Then

P(Sn > (µ2 + a)n2) ∼ η(a)−k(a)α
P(C(X

η(a)
1 , . . . , X

η(a)
k(a) ≥ a)(nP(X1 > n))k(a). (7)

Sn only involves randomness from the vertex weights Xi, while En also involves randomness
from the uniform random variables in (2). Our main result, derived from Proposition 1.1, shows
that the tail of En behaves the same as the one of Mn:

Theorem 1.2. Suppose that a/2 is not an integer. Then

P(En > (µ+ a)n) ∼ P(Mn > (µ+ a)n) = P(Sn > (µ2 + aµ)n2). (8)

Thus, P(En > (µ+ a)n) is regularly varying of index −⌈a/2⌉(α− 1) if a/2 is non-integer. The
intuition behind this result is similar to the intuition given for Sn, combined with the insight that
the additional randomness generated by the uniform random variables Uij , i, j ≥ 1 is of lesser
importance: the event that the number of edges exceeds (µ + a)n is caused by k = ⌈a/2⌉ hubs,
i.e. vertices with nodes of degree of order n. More in particular, our proofs give the insight that

the degrees of the k hubs, normalized by n, converge weakly to (X
η(a/µ)
1 , . . . , X

η(a/µ)
k ) conditioned

upon C(X
η(a/µ)
1 , . . . , X

η(a/µ)
k ) ≥ a.

To prove Theorem 1.2, we use well-known concentration bounds for non-identically distributed
Bernoulli random variables to show that En and Mn are close, facilitated by an estimate for the
lower tail of Sn. It is difficult to get rid on the integrality condition in Theorem 1.2, as this is
where a transition occurs between the number of hubs that are needed. We are able to derive a
weaker result, namely a large-deviations principle. Define I(x) = (α − 1)⌈x/2⌉ if x ≥ 0 and ∞
otherwise. Although I is discontinuous on its effective domain, it is lower semi-continuous, so that
I is a rate function. Define Ēn = En/n− µ.

Corollary 1.3. Ēn, n ≥ 1, satisfies a large-deviations principle with speed logn and rate function

I, i.e.

− inf
x∈Å

I(x) ≤ lim inf
n→∞

logP(Ēn ∈ A)

log n
≤ lim sup

n→∞

logP(Ēn ∈ A)

logn
≤ − inf

x∈A
I(x). (9)
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Our results constitute another case where a rare event in the presence of heavy tails is caused
by multiple big jumps. Other heavy-tailed systems exhibiting rare events with multiple big jumps
are exit problems [4], fluid networks [10, 24], multi-server queues [3, 14, 15], and reinsurance
problems [1]. For sample-path large deviations of heavy-tailed random walks, see [20].

In the random geometric graph, large deviations of the number of edges are caused by one
large clique, due to the geometric nature of the model [9]. We here show that power-law random
graphs on the other hand, are more likely to contain a large amount of edges due to the presence
of hubs. It would therefore be interesting to investigate large deviations of edge counts for models
with both geometry and power-law degrees, such as the hyperbolic random graph [16] or geometric
inhomogeneous random graphs [7].

The rest of this article is organized as follows. In Section 2 we gather some preliminary results
from the literature needed for our proofs. The proof of Proposition 1.1 is developed in Section 3.
The proof of Theorem 1.2 is presented in Section 4. The proof of Corollary 9 is given in Section 5.

2 Preliminary results

The following lemma is a key estimate for sums of truncated heavy-tailed random variables, which
is a reformulation of Lemma 3 in [19].

Lemma 2.1. For every δ > 0 and β < ∞ there exists an ǫ > 0 such that

P(

n
∑

i=1

Xi > (µ+ δ)n,Xi ≤ ǫn, i = 1, . . . , n) = o(n−β). (10)

We proceed by stating a version of Chernoff’s bound for sums of independent Bernoulli random
variables. The statement is a variation of Theorem A.1.4 in [2].

Lemma 2.2. Let Bi, i ≥ 1 be a sequence of independent Bernoulli random variables with pi =
P(Bi = 1) = 1− P(Bi = 0). Set µn =

∑n
i=1 pi. For every b > 0 we have

P(

n
∑

i=1

Bi > (1 + b)µn) ≤ e−µnIB(b), P(

n
∑

i=1

Bi < (1− b)µn) ≤ e−µnIB(−b), (11)

with IB(b) = (1 + b) log(1 + b)− b.

We finally state an elementary tail bound for binomially distributed random variables.

Lemma 2.3. Suppose B(n, p) has a binomial distribution with parameters n and p. Then

P(B(n, p) ≥ m) ≤ enp(np)m. (12)

Proof.
n
∑

i=m

(

n

i

)

pi(1− p)n−i ≤
∞
∑

i=m

1

i!
(np)i = (np)m

∞
∑

i=m

1

i!
(np)i−m ≤ (np)menp.

3 Proof of Proposition 1.1

Throughout this section, we fix a such that a/(2µ) is not an integer and write k(a) = k, η(a) = η.
Define for ǫ > 0:

Nn,ǫ := #{i ≤ n : Xi > ǫn}. (13)

The idea of the proof is to subsequently rule out the events Nn,ǫ < k and Nn,ǫ > k. After that,
we condition on Nn,ǫ = k to work out the remaining technical details. This will be the focus of
the next three lemmas which together form the proof of Proposition 1.1.
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Lemma 3.1. For ǫ sufficiently small

P(Sn > (µ2 + a)n2;Nn,ǫ ≤ k − 1) = o((nP(X1 > n))k). (14)

Proof. We prove this lemma by suitably upper bounding Sn in order to invoke Lemma 2.1. Let
m ≤ k. Set for fixed ǫ the event Am := {Xi > ǫn, i < m;Xi ≤ ǫn, i ≥ m}. Write

P(Sn > (µ2 + a)n2;Nn,ǫ = m− 1) =

(

n

m− 1

)

P(Sn > (µ2 + a)n2;Am) (15)

On the event Am, we have

Sn ≤ µn(m− 1) +
∑

i,j≥m,i6=j

min{XiXj , µn}+ 2
∑

i<m,j≥m

min{XiXj , µn}

≤ µn(m− 1) + (
∑

i≥m

Xi)
2 + 2(m− 1)n2µ.

Thus,

P(Sn > (µ2 + a)n2;Am) ≤ P(
∑

i≥m

Xi >
√

µ2n2 + (a− 2(m− 1)µ)n2 − µn(m− 1);Am). (16)

Recalling k = ⌈a/(2µ)⌉, we obtain a/(2µ) > k − 1 ≥ m − 1, and therefore (a − 2(m − 1)µ) > 0.
Consequently, there exists a ζ > 0 such that for sufficiently large n,

√

µ2n2 + (a− 2(m− 1)µ)n2 − µn(m− 1) > (µ+ ζ)n.

We can now bound (16) for n large, by

P(Sn > (µ2 + a)n2;Am) ≤ P(
∑

i≥m

Xi > (µ+ ζ)n) = o(P(X1 > n)k), (17)

for suitably small ǫ, where we applied Lemma 2.1 in the last equality. Invoking (15) and summing
the estimates over m = 1, . . . , k gives the desired result.

Lemma 3.2. For ǫ sufficiently small,

P(Sn > (µ2 + a)n2;Nn,ǫ ≥ k + 1) = o((nP(X1 > n))k). (18)

Proof. We observe that Nn,ǫ has Binomial distribution with parameters n and P(X1 > ǫn) and
invoke Lemma 2.3:

P(Sn > (µ2 + a)n2;Nn,ǫ ≥ k + 1) ≤ P(Nn,ǫ ≥ k + 1) ≤ enP(X1>n)(nP(X1 > n))k+1.

The RHS is o((nP(X1 > n))k).

We are left to consider P(Sn > (µ2 + a)n2;Nn,ǫ = k). Recall that η is the smallest number for
which 2((k − 1)µ+ E[min{ηX1, µ}) ≥ a.

Lemma 3.3.

lim
n→∞

P(Sn > (µ2 + a)n2;Nn,ǫ = k)

(nP(X1 > n))k
= η−kα

P(C(Xη
1 , . . . , X

η
k ≥ a). (19)

Proof. Write

P(Sn > (µ2 + a)n2;Nn,ǫ = k) =

(

n

k

)

P(Sn > (µ2 + a)n2;Ak+1). (20)
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To analyze P(Sn > (µ2+a)n2;Ak+1), define the random variable Sn(x1, . . . , xk) as Sn conditioned

on Xi = xin, i = 1, .., k. Recall that C(a1, . . . , ak) = 2
∑k

i=1 E[min{aiXj , µ}]. From the weak law
of large numbers, it follows that

P(Sn(x1, . . . , xk) > (µ2 + a)n2;Ak+1) → I(C(x1, . . . , xk) ≥ a) (21)

for all points (x1, . . . , xk) at which the RHS is continuous.
Next, recall that Xǫ

i , i ≥ 1 are i.i.d. random variables with support on [ǫ,∞) such that P(Xǫ
i >

y) = (y/ǫ)−α. Write P(Sn > (µ2 + a)n2;Ak+1) as

P(X1 > ǫn)k
∫

(ǫ,∞)k
P(Sn(x1, . . . , xk) > (µ2 + a)n2;Xi < ǫn, i > k)d

k
∏

i=1

P(Xi/n ≤ xi | Xi > ǫn).

Since P(Xi/n ≤ xi | Xi > ǫn) converges to the continuous distribution P(Xǫ
i ≤ xi), and using

(21), we see that the integral in the last display converges to P(C(Xǫ
1, . . . , X

ǫ
k) ≥ a).

Because a/2k is non-integer, it follows that C(ǫ,∞, . . . ,∞) = 0 for all ǫ < η. Since C is
symmetric, a similar property holds for the other coordinates. Therefore, if ǫ < η,

P(C(Xǫ
1, . . . , X

ǫ
k) ≥ a) = (η/ǫ)−kα

P(C(Xη
1 , . . . , X

η
k ) ≥ a). (22)

Furthermore, by regular variation,

P(X1 > ǫn)k ∼ (η/ǫ)kαP(X1 > ηn)k. (23)

Putting everything together, we conclude that

P(Sn > (µ2 + a)n2;Ak+1) ∼ P(C(Xη
1 , . . . , X

η
k ) ≥ a)P(Xi > ηn)k. (24)

The lemma now follows from (20) and the fact that
(

n
k

)

∼ nk.

4 Proof of Theorem 1.2

The proof of Theorem 1.2 is based on suitably bounding the difference between En and its condi-
tional mean Mn = Sn/µn, using the concentration bounds in Lemma 2.2. For this procedure to
work, we need an asymptotic estimate for the lower tail of Sn. Since Xi, i ≥ 1, are non-negative
random variables, this estimate is considerably easier to obtain than the upper tail.

Lemma 4.1. For each a > 0, there exists a δ > 0 such that

P(Sn ≤ (µ2 − a)n2) = O(e−δn). (25)

Proof. Define XM
i = min{Xi,M}. Let M < ∞ be large enough such that (E[min{Xi,M}])2 ≥

µ2 − a/2. Observe that, for sufficiently large n,

Sn =
∑

i,j,i6=j

min{XiXj , µn} ≥
∑

i,j,i6=j

XM
i XM

j ≥ (

n
∑

i=1

XM
i )2 − nM2. (26)

The estimate (25) now follows by an application of Chernoff’s bound to
∑n

i=1 −XM
i .

Proof of Theorem 1.2. Conditional on X1, . . . , Xn, the variables Bij , i 6= j, indicating whether
there is an edge between node i and j, are independent. Therefore, observing Mn = Sn/(nµ) =
E[En | X1, . . . , Xn], we can apply Lemma 2.2 to obtain

P(|En −Mn| > bMn | X1, . . . , Xn) ≤ 2e−MnJ(b) (27)
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almost surely, with J(b) = min{IB(b), IB(−b)}. Now, write for fixed ǫ > 0,

P(En > (µ+ a)n) = P(En > (µ+ a)n; |En −Mn| ≤ ǫMn) + P(En > (µ+ a)n; |En −Mn| > ǫMn).
(28)

Invoking Lemma 4.1, the second term on the RHS of (28) is smaller than

P(|En −Mn| > ǫMn;Mn > ηn) + P(Mn ≤ ηn) ≤ 2e−ηnJ(b) +O(e−δn) (29)

for some δ > 0 depending on η > 0, the latter chosen suitably small. We conclude that (making δ
smaller than ηJ(b) if needed)

P(En > (µ+ a)n) = P(En > (µ+ a)n; |En −Mn| ≤ ǫMn) +O(e−δn). (30)

We use this identity to prove asymptotic lower and upper bounds which together complete the
proof of Theorem 1.2. Invoking (30) and Proposition 1.1, we see that

lim sup
n→∞

P(En > (µ+ a)n)

P(Mn > (µ+ a)n)
≤ lim sup

n→∞

P(Mn > (µ+ a− ǫ)n)

P(Mn > (µ+ a)n)
=

(

µ+ a

µ+ a− ǫ

)k(α−1)

, (31)

which converges to 1 if ǫ ↓ 0, providing the upper bound. The lower bound uses that

P(En > (µ+ a)n; |En −Mn| < ǫMn) ≥ P(Mn > (µ+ a+ ǫ)n)− P(|En −Mn| > ǫMn). (32)

The second term on the RHS is exponentially small in n, as shown in (29). Consequently, invoking
Proposition 1.1,

lim inf
n→∞

P(En > (µ+ a)n)

P(Mn > (µ+ a)n)
≥ lim sup

n→∞

P(Mn > (µ+ a+ ǫ)n)

P(Mn > (µ+ a)n)
=

(

µ+ a

µ+ a+ ǫ

)k(α−1)

, (33)

which converges to 1 if ǫ ↓ 0, providing the lower bound.

5 Proof of Corollary 1.3

As a first step we show that the left tail of En is lighter than polynomial.

Lemma 5.1. For each a > 0, there exists a δ > 0 such that

P(En ≤ (µ− a)n) = O(e−δn). (34)

Proof. Write

P(En ≤ (µ− a)n) ≤ P(Mn − En ≥ na/2;Mn ≥ (µ− a/2)n) + P(Mn ≤ (µ− a/2)n) (35)

The second term is exponentially small in n due to Lemma 4.1. To analyze the first term, apply
Lemma 2.2 to obtain

P(En −Mn ≤ −na/2/Mn;Mn ≥ (µ− a/2)n) ≤ E[e−MnI(−na2/Mn)I(Mn ≥ (µ− a/2)n)] (36)

Observe that

yI(−na2/y) ≥ n[(µ = a) log(1− (a/2)/(µ− a/2)) + a/2] =: na0

if y ≥ (µ− a/2)n, and we can take a sufficiently small if needed to have a0 > 0.

Proof of Corollary 1.3. Consider first A closed. If 0 ∈ A, the upper bound is trivial. If 0 6∈ A we
can write A = A− ∪ A+, with a− = supA− < 0 and a+ = inf A+ > 0. Since A is closed and
0 6∈ A, both a− and a+ are elements of A, and a− < 0 < a+. Next, note that

P(Ēn ∈ A) ≤ P(Ēn ≤ a−) + P(Ēn ≥ a+).
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Invoking Lemma 5.1, the first term is exponentially small in n. By Theorem 1.2, the second term
is regularly varying with exponent (α−1)⌈a+/2⌉ if a+/2 is not an integer. If a+/2 is an integer, we
can make a+ a bit smaller, while keeping ⌈a+/2⌉ fixed, preserving the upper bound for P(Ēn ∈ A).
This yields, using logL(n)/ logn → 0, and abbreviating the constant in Theorem 1.2 with a = a+
by K,

lim sup
n→∞

logP(Ēn ∈ A)

logn
≤ lim sup

n→∞

log[P(Ēn ≤ a−) + P(Ēn ≥ a+)]

logn

≤ lim sup
n→∞

log[O(e−δn) +K(nP (X1 > a+n))
k]

logn

= −(α− 1)⌈a+/2⌉ = − inf
x∈A

I(x).

Assume now that A is open. If supA ≤ 0 the result is straightforward, so assume that supA > 0.
For every ǫ > 0, we can pick the following subset of A: take a such that a ∈ A; and infx∈A I(x) ≥
I(a) − ǫ. Since A is open, we may modify the constant a slightly such that a/2 is non-integer.
Next, take a sufficiently small constant b such that the ball around a with radius b is in A, such
that a− b/2 and a+ b/2 are both non-integer, and have the same integer part. Now, observe that

P(Ēn ∈ A) ≥ P(Ēn ∈ (a−b/2, a+b/2)) = P(En > n(µ+a−b/2))−P(En ≥ n(µ+a+b/2)). (37)

Due to Theorem 1.2, the RHS is regularly varying with index I(a). Taking logarithms, the lim inf
and letting ǫ ↓ 0 completes the proof.
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