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Destruction of surface states of (dzx + idyz)-wave superconductor by
surface roughness: Application to Sr2RuO4
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The fragility of the chiral surface current of the (dzx + idyz)-wave superconductor, a potential candidate for
Sr2RuO4 against surface roughness is demonstrated utilizing the quasiclassical Eilenberger theory. Comparing
the chiral surface currents of (dzx + idyz)-wave and (px + ipy)-wave pairings, we conclude the chiral current
for (dzx + idyz)-wave SC is much more fragile than that for the (px + ipy)-wave one. The difference can be
understood in terms of the orbital symmetry of the odd-frequency Cooper pairs arising at the surface. Our results
show the (dzx + idyz)-wave scenario can explain the null spontaneous magnetization in Sr2RuO4 experiments.
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Introduction. The determination of the pairing symmetry in
Sr2RuO4 (SRO) superconductors (SCs) has been an unsolved
problem for more than a quarter century [1–4]. In the past
few years, nevertheless, researchers in this field undergo a
remarkable paradigms shift. Specifically, recent precise ex-
periments on spin susceptibility [5–8] appear to contradict
a spin-triplet odd-parity superconducting state with broken
time-reversal symmetry (TRS) [9], which had, heretofore,
been the leading candidate in SRO. Alternatively, an exotic
inter-orbital-singlet spin-triplet even-parity state with broken
time-reversal symmetry has come under the spotlight [10,11]
because it can explain recent two remarkable experimental
observations, i.e., a sharp jump in the shear elastic constant
c66 at the superconducting transition temperature measured
by ultrasound experiments [12,13], and a stress-induced split
between the onset temperatures for the superconducting state
and broken TRS state measured by muon spin-relaxation ex-
periments (μSR) [14,15]. Nowadays, careful and intensive
verification for the realization of the interorbital supercon-
ducting state in SRO has been underway.

On the basis of a microscopic model for the interorbital
superconducting state of SRO [10], the superconducting gap
on the three Fermi surfaces of SRO has a (dzx + idyz)-wave
pairing symmetry [i.e., (d + id ′)-wave SC]. It has been shown
that the (d + id ′)-wave SC hosts characteristic surface states
[16–19]. At material surfaces parallel to the z axis (i.e., the
c axis of the SRO), the (d + id ′)-wave SC exhibits dispers-
ing chiral surface states due to the chiral pairing symmetry
with fixed kz. Moreover, the pure odd-parity nature with
respect to kz results in the emergence of dispersionless zero-

*s.suzuki-1@utwente.nl

Published by the American Physical Society under the terms of the
Creative Commons Attribution 4.0 International license. Further
distribution of this work must maintain attribution to the author(s)
and the published article’s title, journal citation, and DOI.

energy surface states at the surfaces perpendicular to the z
axis. Thus, observations of these surface states can be the
conclusive evidence for the interband superconducting state
in SRO. However, scanning superconducting quantum in-
terference devise experiments [20,21] have not detected the
expected spontaneous edge current due to the chiral sur-
face states [22–28], and tunneling spectroscopy measurements
along the z axis did not observe a zero-bias conductance
peak suggesting the dispersionless zero-energy surface states
[29–31]. Therefore, when we take the experimental observa-
tions at face value, the interorbital superconducting state with
a (d + id ′)-wave superconducting gap seems to be excluded.

In this Letter, we study the influence of surface rough-
ness on the surface states of the (d + id ′)-wave SC. The
most straightforward numerical simulation is adding random
potentials to the microscopic three-orbital Hamiltonian [10].
However, such numerical simulation requires significantly
large systems in real space, ensemble averaged of impurity
configurations, and self-consistent treatments for the order
parameter, meaning that it would be impossible to implement
owing to the prohibitive numerical costs. Alternatively, we
employ the quasiclassical Eilenberger theory for a simple sin-
gle band and clarify essential properties of the surface states
of the (d + id ′)-wave SC. As a result, we demonstrate that the
surface current due to the chiral surface states and the sharp
zero-energy peak in the surface density of states due to the
dispersionless zero-energy surface states are easily destroyed
by surface roughness. Importantly, the vulnerability of the
surface states is owing to a roughness-induced destructive
interference effect which is inevitable with the (d + id ′)-wave
pairing symmetry. Namely, the surface states of the (d + id ′)-
wave SC in the presence of surface roughness are fragile
regardless of details of the model.

In actual experiments, a surface is not as ideal as in the-
oretical models. The electronic structure near a surface must
be modified by the damaged or deformed crystal structure.
Since the surface states of a (d + id ′)-wave SC are shown to
be fragile, it is essential to pay attention to the surface quality
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FIG. 1. (a) Schematics of the system. The surfaces are parallel to
either the x or z axis. The widths of the superconductor and disor-
dered regions are denoted by L and w. The translational symmetry is
assumed in the direction parallel to the surfaces. The pair potentials
of (dzx + idyz)- and (px + ipy)-wave superconductors are shown in
(b) and (c). The color indicates arg[�(k)]. The inner silver sphere
represents the Fermi sphere.

of a sample to observe surface-state signatures. Therefore, we
will conclude that the absence of surface-state signatures does
not straightforwardly deny the realization of (d + id ′)-wave
superconducting states.

Quasiclassical Eilenberger theory. We examine the effects
of surface roughness utilizing the quasiclassical Eilenberger
theory [32]. This approximation allows us to extract the es-
sential spatial profile (i.e., coherence-length order) from the
Green’s function by ignoring the rapid oscillation with the
Fermi-wavelength order. The SC has a pair of parallel sur-
faces which are perpendicular to the x or z axis as shown
in Fig. 1(a). The thin dirty layers with the width w are
introduced. The Green’s functions obey the Eilenberger equa-
tion [33],

ivF · ∇ǧ + [iωnτ̌3 + Ȟ , ǧ]− = 0, (1)

Ȟ = �̌ + �̌ =
⎛
⎝ξ̂ η̂

η̂
˜

ξ̂
˜

⎞
⎠, �̌ = i

2τ0
〈ǧ〉, (2)

ǧ =
(

ĝ f̂
− f̂

˜
−ĝ

˜

)
, �̌ =

(
0 �̂

�̂
˜

0

)
, (3)

where 〈· · · 〉 = ∫ π

0

∫ π

−π
· · · sin θ dϕ dθ/4π, ǧ = ǧ(r, k, iωn) is

the quasiclassical Green’s function in the Matsubara rep-
resentation, �̌ = �̌(r, k) is the pair-potential matrix, �̌ =
�̌(r, iωn) is the self-energies by the impurity scatterings, and
we assume the system is in equilibrium. The mean free path
is denoted � = vF τ0 with τ0 being the mean free time that is
fixed at a certain value in the disordered region but infinitely
large in the other place. In this Letter, the accents ·̌ and ·̂ mean
matrices in particle-hole and spin space. The identity matrices
in particle-hole and spin space are, respectively, denoted by
τ̌0 and σ̂0. The Pauli matrices are denoted by τ̌ j and σ̂ j with
j ∈ 1–3. All of the functions satisfy the symmetry relation
K̂ (r, k, iωn) = [K̂

˜
(r,−k, iωn)]∗, where the unit vector k rep-

resents the direction of the Fermi momentum. Effects of the
vector potential are ignored because it affects on surface states
only quantitatively. We did not introduce a potential between
the clean and disordered regions because this is not a physical
boundary.

The Eilenberger equation (1) can be simplified by the so-
called Riccati parametrization [34–36]. The Green’s function

can be expressed in terms of the coherence function γ̂ =
γ̂ (r, k, iωn),

ǧ = 2

(
Ĝ F̂

−F̂
˜

−Ĝ
˜

)
− τ̌3, (4)

Ĝ = (1 − γ̂ γ̂
˜

)−1, F̂ = (1 − γ̂ γ̂
˜

)−1γ̂ . (5)

The equation for γ̂ is given by

(ivF · ∇ + 2iωn)γ̂ + ξ̂ γ̂ − γ̂ ξ̂
˜

− η̂ + γ̂ η̂
˜
γ̂ = 0. (6)

Assuming no spin-dependent potential and single-spin �̂, we
can parametrize the spin structure of the functions,

�̂ = i�k,ν (iσ̂ν σ̂2), (7)

�̂
˜

= −i�∗
−k,ν (iσ̂ν σ̂2)∗ = i�∗

k,ν (iσ̂ν σ̂2)†, (8)

ĝ = gσ̂0, f̂ = fν (iσ̂ν σ̂2), f̂
˜

= f
˜

ν (iσ̂ν σ̂2)†, (9)

η̂ = iην (iσ̂ν σ̂2), η̂
˜

= iη
˜
ν (iσ̂ν σ̂2)†, (10)

where ν = 0 (ν ∈ {1–3}) is for the spin-singlet (spin-triplet)
SC. In the following, we make ν explicit only when necessary.
Equation (6) can be reduced to

vF · ∇γ + 2ω̃γ − η + η
˜
γ 2 = 0, (11)

ω̃ = ωn + Re〈g〉
2τ0

, (12)

ην = �k + 〈 f 〉
2τ0

, η
˜
ν = �∗

k − Sν

〈 f 〉∗
2τ0

. (13)

The coherence functions in the homogeneous limit γ̄ is given
by

γ̄ (k, iωn) = so�k

|ωn| + √
ω2

n + |�k|2
, (14)

with so = sgn[ωn] and ·̄ means the bulk value.
The momentum dependence of the pair potential is as-

sumed as

�k =
{

2(�1kx + i�2ky)kz for the (d + id ′) wave,
�1kx + i�2ky for the (p + ip′) wave, (15)

where we put the factor 2 in the (d + id ′)-wave case such that
max[�k] = �̄ in the homogeneous limit. The schematic gap
amplitudes in the bulk are shown in Figs. 1(b) and 1(c) where
the color means the phase of the pair potential arg[�(k)]. The
spatial dependence of the pair potentials are determined by the
self-consistent gap equation which relates f and �,

�μ(r) = 2λN0
π

iβ

ωc∑
ωn

〈Vμ(k′) f (r, k′, iωn)〉, (16)

λ = 1

2N0

[
ln

T

Tc
+

nc∑
n=0

1

n + 1/2

]−1

, (17)

where μ = 1 or 2, β = 1/T , Tc is the critical temperature, N0

is the density of the states (DOS) in the normal state at the
Fermi energy, and nc is the cutoff integer. The corresponding
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FIG. 2. Calculated results for the (a), (c), and (e) (d + id ′)-wave
and (b), (d), and (f) (p + ip′)-wave SCs. (a) and (b) The edge-current
density in the y direction, (c) and (d) self-consistent pair potentials
�, and (e) and (f) subdominant pair amplitudes are shown. The
surface-roughness parameters are fixed as ρ = ξ0/� and w = 3ξ0.
The current density is normalized to j0 = |e|vF N0πTc.

attractive potentials are (V1,V2) = (15/2)(kzkx, kykz ) for the
(d + id ′)-wave and (V1,V2) = 3(kx, ky) for the (p + ip′)-wave
SCs.

The charge current, local DOS, and angle-resolved DOS
are calculated from the Green’s function,

jy(r) = eN0
π

iβ

ωc∑
ωn

〈kyTr[τ̌3ǧ(r, k, iωn)]〉, (18)

N (r, E ) =
∫

NAR(r, ky, E )dk‖, (19)

NAR

N0
=

∑
α=±1

Re[g(r,±k⊥, k‖, iωn)]iωn→E+iδ, (20)

where e < 0 is the charge of an electron, k‖ (k⊥) is the mo-
mentum parallel (perpendicular) to the surface. The amplitude
of the subdominant Cooper pairs can be extracted from the
anomalous Green’s function,

fpz = 〈kz f 〉, fs = 〈 f 〉, (21)

In the numerical simulations, we fix the parameters: L =
80ξ0, w = 3ξ0, ωc = 10πTc, T = 0.2Tc, and δ = 0.01�̄ with
ξ0 = h̄vF /2πTc being the coherence length.

Chiral surface current and pair functions. We first discuss
the result for the open surface in the x-axis direction. The
spatial profiles of jy and � are shown in Figs. 2(a)–2(d) where
the results for the (d + id ′)-wave and (p + ip′)-wave SCs are
shown in the left and right panels, respectively. Figures 2(a)
and 2(b) show the chiral surface current (CSC) for the (d +
id ′)-wave SC is much more sensitive to the surface rough-
ness than the (p + ip′)-wave case. Even with a weak surface

FIG. 3. Angle-resolved density of states at kz/kF = 1/
√

2 for the
(a) and (c) (d + id ′)-wave and (b) and (d) (p + ip′)-wave SCs. The
results are obtained at x = 0 for the clean case [(a) and (b)] and at
x = w for the rough case with ξ0/� = 0.5 [(c) and (d)]. The ARDOS
are normalized to its value in the normal state.

roughness (i.e., ξ0/� = 0.5), the CSC for the (d + id ′)-wave
SC is almost zero [37], whereas that for the (p + ip′)-wave
SC is sufficiently large to be observed [26–28] where the
peak in the current density moves from the surface to the
internal surface between the disordered and ballistic regions.
The pair potentials for the both SCs show qualitatively the
same behavior to the surface roughness. At the clean surface,
the component that changes its sign during the reflection (i.e.,
�zx and �x) becomes zero as shown in Figs. 2(c) and 2(d).
Correspondingly, the other component is enhanced. When the
surface is rough, both of the components are strongly sup-
pressed due to the random scatterings.

The difference in the robustness of the CSC comes from
the symmetry of the subdominant Cooper pairs induced by
the local inversion-symmetry breaking at a surface. The
inversion-symmetry breaking results in the parity mixing of
the pair amplitudes [38]. Namely, odd-parity [even-parity]
pairings are induced at a surface of the (d + id ′)-wave [(p +
ip′)-wave] SC. The pz- and s-wave pair amplitudes (i.e., sub-
dominant pairs with the lowest azimuthal quantum number)
in each SC are shown in Figs. 2(e) and 2(f) where we fix
ωn = ω0. The s-wave subdominant pairs plays an important
role under a disordered potential, whereas the pz wave does
not. The s-wave pairs 〈 f 〉 act as an effective pair potential in
a disordered region [See Eq. (13)]. Namely, the disordered re-
gion of the (p + ip′)-wave SC becomes an effective s-wave SC
rather than a normal metal. Consequently, the chiral current
of the (p + ip′)-wave SC flows along the internal interface
at x = w. In the Appendix, we show that ǧ at the internal
interface is qualitatively the same as that at a surface of a
p-wave SC. The chiral current does not flow at the inter-
nal interface in (d + id ′)-wave cases because the anisotropic
pz-wave pairs cannot act as an effective pair potential [i.e.,
〈 f 〉 = 0 in Eq. (13)].

The angle-resolved DOS (ARDOS) for the (d + id ′)- and
(p + ip′)-wave SCs are compared in Fig. 3 where we fix
kz = kF /

√
2. The ARDOS with ρ = 0 (ρ = 0.5) are obtained

at the surface (internal interface). In the clean limit, the chiral
surface states are prominent in each SC. When the surface
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FIG. 4. Local density of states of the (a) and (c) (d + id ′)-wave
and (b) and (d) (p + ip′)-wave SCs. The surface roughness is set
to ξ0/� = 0.5 and w = 3ξ0 in (c) and (d). The LDOS at x = 0
is enhanced because of the chiral surface states. In (d + id ′)-wave
case, the disordered region can be regarded as a normal metal [i.e.,
N (E ) = N0]. The LDOS is normalized to its value in the normal state
N0.

is rough, the chiral states for the (d + id ′)-wave SC van-
ishes [Fig. 3(c)], whereas that for the (p + ip′)-wave SC is
robust [Fig. 3(d)]. The local density of states (LDOS) can
be calculated by integrating ARDOS. The results are shown
in Fig. 4. We see the chiral surface states appear at the sur-
face; the LDOS increases at the surface (light blue region) as
shown in Figs. 4(a) and 4(b). Under the surface roughness,
N (x, E ) = N0 in the disordered region of the (d + id ′)-wave
case, meaning that the disordered region becomes a normal
metal. In the (p + ip′)-wave SC, on the contrary, the LDOS
has a peak structure in the disordered region, reflecting the
emergence of the effective s-wave superconductivity in the
disordered region. To detect the chiral surface states of the
(d + id ′)-wave SC, one has to pay close attention to the sur-
face quality because they are very sensitive to the roughness.

Andreev bound states at the c-axis surface. At the sur-
face in the c-axis direction of the (d + id ′)-wave SC, the
dispersion-less zero-energy states (ZESs) appear [16–18]. The
effects of the surface roughness are shown in Fig. 5 where
we also show the results for a pz-wave SC (i.e., polar state
with �k ∼ pz) as a reference [39]. The ZESs for both SCs are
prominent in the clean limit [Figs. 5(a) and 5(d)]. However,
in the (d + id ′)-wave case, the ZESs become broader even
by weak surface roughness (e.g., ξ0/� = 0.2). Contrary to
the pz-wave SC [40–42], the ZESs of the (d + id ′)-wave SC
disappear even for the weak disorder (i.e., ξ0 < �).

The fragility of the ZESs can be explained by the absence
of the s-wave subdominant pairs 〈 f 〉. The pz-wave SC has
robust ZESs supported by the s-wave pairs [41] (i.e., effective
pair potential). On the other hand, the subdominant pairs for
the (d + id ′)-wave SC are (px + ipy)-wave-like pairs because
of the phase winding at a fixed kz. Anisotropic (px + ipy)-
wave pairs do not act as an effective pair potential [i.e., 〈 f 〉 =
0 in Eq. (13)]. Therefore, the ZES at a surface in the c-axis
direction of a (d + id ′)-wave SC are fragile against roughness.

Discussion. The important factor determining the robust-
ness of surface states is only the presence of subdominant

FIG. 5. Effects of the surface roughness on the dispersionless
surface states of (a)–(c) the (d + id ′)-wave and (d)–(f) pz-wave SCs.
The surface is perpendicular to the z axis. The strength of the rough-
ness is set to (a) and (d) ξ0/� = 0.0, (b) and (e) 0.2, and (c) and (f)
0.5. The results are obtained from the self-consistent � (not shown).
The surface state in the z direction of the (d + id ′)-wave case is much
more fragile that those of pz-wave case.

s-wave pairing induced at a surface. Therefore, we can gen-
eralize our knowledge to higher-order chiral superconductors.
We have confirmed that the chiral surface states of ( fx(5z2−1) +
i f ′

y(5z2−1))-wave SC are fragile against roughness because the
s-wave pairs have a small amplitude. Similarly, we can antici-
pate fragile dispersionless ZESs in the ( f(x2−y2 )z + i fxyz)-wave
SC since no s-wave pairing is expected.

In this Letter, we employ the simple single-band model
and ignore the multiorbital nature of SRO. The fragility of
the surface states is owing to the absence of s-wave Cooper
pairs at the surface. In a (d + id)-wave SC, such s-wave
subdominant pairs can be induced only in extreme cases: The
scatterings by roughness cause a constructive interference for
s-wave pairs. Therefore, the fragility of the surface states of
the (d + id ′)-wave SC would be irrelevant to the details of the
model. Studying the roughness effects in detail with more re-
alistic three-orbital models [10] would be an important future
task where the surface states would be suffered additionally
from more complicated interband scatterings.

We also mention that there are several remaining con-
tradictions in the experimental findings. A recent Josephson
current measurement suggests time-reversal invariant super-
conductivity in SRO [43] [and, thus, contradicts with the
TSR-breaking (d + id ′)-wave states], whereas broken TRS
has been observed in the μSR [14,15] and Kerr-rotation exper-
iments [44]. In addition, a recent specific heat measurement
under the strain [45] seems to contradict the two-component
superconducting states [46] [and, therefore, the (d + id ′)-
wave states], whereas the two-component superconducting
states are supported by the recent ultrasound [12,13] and μSR
experiments under the strain. Resolving these puzzles, which
may be achieved by future microscopic studies providing al-
ternative interpretations for the experimental data, would be
important future tasks. However, they are beyond the scope of
this Letter.

The surface-related phenomena in SRO has been clarified
gradually. A recent experiment reported the magnetization
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in the normal state due to the deformed crystal structure at
the (001) surface [47], meaning that the electronic structure
is locally modified near the surface. Reflecting the surface
modification, the superconducting state may be reconstructed
locally; the pairing symmetry at a surface can be different
from that in the bulk. This is another possibility that the
surface-state signature has not been observed. The relation
among the surface magnetization, pairing symmetry at a sur-
face, and the TRS-breaking superconductivity would be an
interesting topic.

Conclusion. We have investigated the effects of sur-
face roughness on the surface states of the (dzx + idyz)-
wave SC. Utilizing the quasiclassical Eilenberger theory,
we have demonstrated that the surface states of the (dzx +
idyz)-wave SC are easily destroyed by surface roughness.
Since the surface roughness is inevitable in real-life experi-
ments, the absence of the experimental signatures from the
surface states [20,21,29–31] would not be clearly inconsistent
with the interorbital (dzx + idyz)-wave superconducting state
in SRO [10].
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APPENDIX: EFFECTS OF SELF-ENERGY IN A DIRTY
NORMAL METAL ATTACHED TO A p-WAVE SC

In this section, we consider a simplified theoretical model:
The interface between a dirty normal metal (DN) and a
p-wave SC. For simplicity, we ignore the spatial depen-
dence of the Green’s functions near the interface. The Riccati

equations in the DN and SC are

vF · ∇γn + 2ω̃γn − η + η
˜
γ 2

n = 0, (A1)

vF · ∇γs + 2ωγs − �k + �∗
kγ

2
s = 0, (A2)

with

ω̃ = ωn + Re〈g〉
2τ0

, η = 〈 f 〉
2τ0

, η
˜

= −〈 f 〉∗
2τ0

. (A3)

At the interface, γ can be obtained

γn = −1

η
˜

[ω̃ −
√

ω̃2 + ηη
˜
], γs = �k

ωn + �n
,

γ
˜

n = 1

η
[ω̃ −

√
ω̃2 + ηη

˜
] γ

˜
s = − �∗

k

ωn + �n
, (A4)

where �n = √
ω2

n + |�k|2. The normal Green’s function, for
example, can be obtained from them,

g(+k, x = 0, iωn) =
1 + γnγ

˜
s(k)

1 − γnγ
˜

s(k)
, (A5)

g(−k, x = 0, iωn) =
1 + γs(−k)γ

˜
n

1 − γs(−k)γ
˜

n
, (A6)

The Green’s functions at the surface of a semi-infinite p-wave
SC are calculated from the coherence functions,

gPW(±k, x = 0, iωn) =
1 + γs(−k)γ

˜
s(k)

1 − γs(−k)γ
˜

s(k)
. (A7)

Comparing Eqs. (A6) and (A7), we see the similarity. Note
that this similarity never appears in the d-, f -, and g-wave
SCs because 〈 f 〉 � 1 in those SCs.
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