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A B S T R A C T   

Exploiting scattering and reflection related data of ultrasonic Lamb wave interactions with damage is a common 
approach to health monitoring of thin-walled structures. Using thin PZT sensors, the method can be implemented 
in real-time. Simulation of Lamb wave propagation and its interaction with damage plays an important role in 
damage diagnosis and prognosis. It is, however, a time-consuming task due to the high-frequency waves that are 
commonly used to detect tiny damage. The current study employs the Scaled Boundary Finite Element Method 
(SBFEM) for effective modeling of Lamb wave health monitoring of homogenous thin plates. The electrome-
chanical effects of piezoelectric sensors are included in the model to improve accuracy and make the results 
comparable to those of laboratory experiments. Simple meshing of complex topologies is possible by converting 
standard finite elements to scaled boundary elements. The 3D SBFEM wave motion equations are solved in the 
time domain to capture the sensor’s PZT response to a high-frequency tone-burst actuation. The results are 
validated by pitch-catch and pulse-echo laboratory tests carried out on thin plates. SBFEM is used to study wave 
propagation in complex configurations, such as a stiffened plate, and the results are compared to their FEM 
counterparts. According to the findings, SBFEM significantly reduces the computational costs associated with 
simulation of Lamb wave health monitoring while also providing significant accuracy in comparison to the 
experimental results.   

1. Introduction 

Structural Health Monitoring (SHM) is a rapidly developing tech-
nology that has a wide range of applications in civil, aeronautical, and 
offshore structures [1]. SHM technology uses discrete sensors mounted 
on or implanted in a host structure to enable continuous and real-time 
structural integrity assessment [2,3]. SHM systems can detect physical 
damage early on, allowing for on-demand repairs and maintenance. 
Therefore, smart structures facilitated with an SHM setup improve sys-
tem reliability while lowering maintenance costs. Integrating prognosis 
into SHM strategies paves the way for condition-based maintenance 
[4,5]. 

Acousto-ultrasonic based SHM employs transient vibration feedback 

from the host structure at high-frequencies to determine the extent and 
location of the damage [6,7]. In structures made of thin plates, the 
elastic energy propagates in the form of Lamb waves, which are multi-
modal and dispersive [8]. Some unique features of Lamb wave SHM 
include high sensitivity to incipient damage, damage localization, and 
the ability to inspect over a large area. Lamb wave SHM can be carried 
out in either pitch-catch or pulse-echo modes [9]. In the pitch-catch 
arrangement, the diagnostic signal emitted from an actuator passes 
through the damaged area while it is received by a sensor on the other 
side of the inspection area. In the pulse-echo scheme, the transducer acts 
as both an actuator and a sensor and captures the signal reflected by the 
damage. The selection of an appropriate layout for sensor-actuator pairs 
depends mainly on the type of the damage being inspected. 
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Modeling of ultrasonic guided wave propagation and its interaction 
with damage is of great importance in the process of system identifica-
tion by Lamb waves [10,11]. Generation of dispersion curves [12], 
determination of wave-damage interaction coefficients [13], and 
optimal arrangement of transducer arrays are some of the Lamb wave 
modeling objectives. So far, a wide range of numerical methods have 
been employed to investigate the propagation of Lamb waves in thin- 
walled structures, including FEM [14-16], time-domain SFEM [17,18], 
frequency-domain SFEM [19], local interaction simulation approach 
[20], and the Boundary Element Method (BEM) [21]. Among them, FEM 
has been one of the most widely adopted methods due to its simple 
formulation and ability to handle complex geometries [20]. Nonethe-
less, using polynomial shape functions along with equidistant nodal 
points in FEM to capture the sinusoidal behavior of the waves dictates 
the mesh size reduction to at least 20 elements per the shortest wave-
length of interest [22,23]. This rule of thumb, which leads to a very large 
number of Degrees of Freedom (DOFs) and overwhelming computa-
tional costs, especially in analyzing large domains, is the main drawback 
of FEM. This FEM deficiency is effectively overcome by implementing 
higher-order polynomial shape functions on non-equidistant nodal 
points in time-domain spectral methods [24]. Despite being more effi-
cient than FEM, spectral methods require fine discretization for high- 
frequency regimes [25]. FEM and spectral methods are also suffering 
from a complex mesh generation process as they are not compatible with 
hanging nodes. This drawback complicates the study of typical SHM 
problems involving multi-material systems [20], stress singularities, and 
moving boundaries [26]. 

The Scaled Boundary Finite Element Method (SBFEM) is a semi- 
analytical approach to solving the governing partial differential equa-
tions of various systems more efficiently. Inspired by the fundamental 
ideas of FEM and BEM, SBFEM takes advantage of the strengths of both 
methods and overcomes their drawbacks [27]. More precisely, as in 
BEM, only the boundary of the analyzed domain needs to be discretized, 
thus reducing the dimensionality by one. There is no need to discretize 
the inside of the intended domain in SBFEM; this leads to a significant 
reduction in the required DOFs and the computational demands. Using 
an analytical solution in the radial direction enforces the radiation 
condition at infinity strictly [28]. However, unlike BEM, no fundamental 
solution is necessary. This feature classifies SBFEM as a semi-analytical 
method and makes it ideal to represent stress singularities at crack tips 
and notches [29]. SBFEM can be applied to uncoupled and coupled 
electro-mechanical [30] and thermo-mechanical [31] fields. The 
derived equations can be solved in either the time or frequency domain. 
SBFEM, which was originally developed by Song [32] for dynamic 
analysis of unbounded domains, has been successfully applied to a wide 
range of engineering areas such as elastostatics [33,34], inelasticity 
[35], elastodynamics [36-38], fracture mechanics [31,39-42], geo-
technics [43], fluid mechanics [44], acousto-ultrasonics [25,45,46] and 
SHM [47-49]. 

In SBFEM, the process of discretizing the analyzed domain is simple 
and flexible. The possibility to discretize only the boundaries of the 
intended domain with elements of different sizes without any concern 
about hanging nodes facilitates mesh conformity establishment across 
non-homogeneous and discontinuous zones [50]. Recently, the devel-
opment of polygon [51] and polyhedral Scaled boundary elements (S- 
elements) [52] for two and three dimensional SBFEM has enabled 
automatic mesh generation via quadtree [52] and octree [53] proced-
ures. Furthermore, it is also possible to convert finite elements generated 
by any conventional FE mesh generator software package to S-elements 
[54,55]. The method handles automatic domain discretization and al-
lows for the treatment of problems with complex geometries without the 
need for manual intervention. 

Although SBFEM has been effectively implemented in a variety of 
engineering domains, it has not been employed for wafer PZT-based 
SHM approaches. Additionally, its three-dimensional implementation 
for the simulation of Lamb wave propagation and its experimental 

validation have been rare. The purpose of this paper is to investigate the 
SBFEM’s potential to simulate real-time Lamb wave health monitoring 
using PZT transducers. Modeling the PZT electromechanical effects en-
ables direct output voltage comparison with experiments and more 
precise simulation of the sensor’s actuation and sensing effects. To this 
end, an SBFEM formulation based on the equivalent load is proposed for 
simulation of Piezoelectric Wafer Active Sensors (PWAS) [56], often 
employed as sensor/actuator in SHM applications. Laboratory tests 
using the pitch-catch and pulse-echo techniques are used to validate the 
SBFEM results. The SBFEM’s flexible meshing feature is used to model 
Lamb wave health monitoring of a stiffened plate. The computational 
efficiency of SBFEM is compared to FEM in terms of convergence rate, 
number of required DOFs, and computational time. 

The paper is organized as follows. Section 2 summarizes the funda-
mental principles of the 3D SBFEM formulation for wave motion in 
homogeneous waveguides as well as the continued fraction solution 
procedure for bounded media. Section 3 deals with modeling the elec-
tromechanical effects of PWAS sensors in the context of SBFEM. The 
laboratory test setup is described in Section 4. The simulation details are 
presented in Section 5. Section 6 covers the implementation of the 
proposed approach for simulating Lamb wave propagation. Section 7 
provides concluding remarks. 

2. 3D SBFEM summary for elastodynamic problems 

The 3D SBFEM equations for elastodynamic problems are briefly 
reviewed in this section. For a more extensive derivation and explana-
tion of the method’s basic concepts, see [57,58]. The use of continued 
fraction solution to analyze high-frequency wave motion problems is 
also highlighted [59]. 

In SBFEM, the governing equations are investigated in transformed 
scaled boundary coordinates. The scaling center criterion requires that 
the origin of this coordinate system O be positioned at a point from 
which the entire domain is directly visible. Fig. 1 shows the local radial 
(ξ) -circumferential (η, ζ) scaled boundary coordinates. ξ is defined on a 
line pointing to the boundary from the scaling center. In scaled 
boundary coordinates, each point’s location is addressed by scaling a 
corresponding point on the boundary. The position of boundary points is 
obtained by interpolating the coordinates of the element nodes: 

x(ξ, η, ζ) = ξN(η, ζ)x; y(ξ, η, ζ) = ξN(η, ζ)y; z(ξ, η, ζ) = ξN(η, ζ)z (1)  

where N(η, ζ) is the standard 2D FEM shape function constructed on the 
parent element in the circumferential coordinates, and x, y, and z are 
vectors of nodal coordinates. If the scaling requirement is met, the above 
transformation is unique. In scaled boundary coordinates, the frequency 
domain equations of motion in displacement are stated as follows for 3D 
problems [57]: 

E0ξ2u(ξ),ξξ +
(
2E0 + ET

1 − E1
)
ξu(ξ),ξ +

(
ET

1 − E2
)
u(ξ) + P (ξ)

− ω2M0ξ2u(ξ)

= 0 (2)  

where ω is the circular frequency, P (ξ) is the vector of equivalent nodal 
force functions consisting of external load contribution, and the coeffi-
cient matrices E0, E1, E2 and M0 are calculated as follows: 

E0 =
∑

e

∫

S
BT

1 (η, ζ)CB1(η, ζ)|Jb| dηdζ

E1 =
∑

e

∫

S
BT

2 (η, ζ)CB1(η, ζ)|Jb|dηdζ

E2 =
∑

e

∫

S
BT

2 (η, ζ)CB2(η, ζ)|Jb|dηdζ

M0 =
∑

e

∫

S
NT(η, ζ)ρN(η, ζ)|Jb|dηdζ

(3) 
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where B1 and B2 are strain-displacements matrices [55], C is the stiff-
ness matrix, ρ is the mass density, |Jb| denotes the determinant of the 
Jacobian matrix of transformation from the Cartesian to the scaled 
boundary coordinates calculated on the boundary (ξ = 1), S denotes 
surface elements forming up an S-element, and 

∑
e stands for the stan-

dard FEM assembly procedure. By defining the dynamic stiffness matrix 
S(ω, ξ) which relates the internal nodal force q(ξ) and nodal displace-
ment u(ξ) as follows: 

q(ξ) = S(ω, ξ)u(ξ) (4)  

and using the following relation for q(ξ) obtained by integrating the 
surface traction over the elements [57]: 

q(ξ) = ξ2
(

E0ξu(ξ),ξ + ET
1 u(ξ)

)
(5) 

Eq. (2) can be expressed in terms of S(ω, ξ) by eliminating u(ξ) and 
q(ξ) [59]: 

(S(ω, ξ) − E1)E− 1
0

(
S(ω, ξ) − ET

1

)
− E2 + S(ω, ξ) + ωS(ω, ξ),ω + ω2M0 = 0

(6)  

which is evaluated on the boundary (ξ = 1) after replacing the partial 
differentiation relative to ξ with ω [59]. Because S(ω, ξ) reflects inherent 
vibration charactereistics of an S-elemnt, P (ξ) is disregarded in deri-
vation of Eq. (6). 

Because there is no closed-form solution for Eq. (6), the solution 
procedure is case-dependent [60]. For high-frequency vibration, which 
is the focus of this study, S(ω, ξ) can be solved using an improved 
continued fraction expansion up to order Mcf [59,61]: 

S(ω, ξ) = K − ω2M − ω4X(1)
(

S(1)
0 − ω2S(1)

1 − ω4X(2)
(

S(2)
0 − ω2S(2)

1 − …

− ω4X(Mcf )
(

S(Mcf )
0 − ω2S(Mcf )

1

)− 1(
X(Mcf )

)T
)− 1

…
(
X(2) )T

)− 1
(
X(1) )T

(7) 

K and M are the static stiffness and mass matrices, S(i)
0 and S(i)

1 
(
i = 1,

2,…,Mcf
)

can be considered the contribution of high-frequency modes 
to the stiffness and mass matrices [37]. These matrices are computed 
recursively by substituting Eq. (7) into Eq. (6), arranging them in an 
ascending order of powers of ω2, and setting the coefficients equal to 
zero [61]. Scaling factor matrices X(i) in Eq. (7) are introduced to pre-
vent large condition numbers for structural matrices in large-scale 
problems [62]. The continued fraction expansion of the dynamic stiff-
ness results in a set of linear equations that can be collected in the matrix 
form below: 

Khz(ω) − ω2Mhz(ω) = F(ω) (8)  

Kh = diag
(

K, S(1)
0 ,S(2)

0 ,…,S(Mcf )
0

)

(9)  

Mh =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

M − X(1) 0 ⋯ 0 0
−
(
X(1))T S(1)

1 − X(2) ⋯ 0 0

0 −
(
X(2))T S(2)

1 ⋯ 0 0
⋮ ⋮ ⋮ ⋱ ⋮ ⋮

0 0 0 ⋯ S(Mcf − 1)
1 − X(Mcf )

0 0 0 ⋯ −
(

X(Mcf )
)T

S(Mcf )
1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(10) 

Fig. 1. Discretization of the solution domain using S-elements, and a partition of an S-element illustrated in local scaled boundary coordinates.  
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z(ω) =
{

u(ω) u1(ω) u2(ω) ⋯ u(Mcf − 1)(ω) u(Mcf )(ω)
}T

(11)  

F(ω) = {R(ω) 0 0 ⋯ 0 0 }
T (12) 

The R(ω) and u(ω) vectors denote nodal loads and displacements at 
the discretized boundary. The ui(ω), (i = 1,…,Mcf ) vectors are auxil-
iary variables that relate to the higher-order stiffness terms and have no 
physical meaning. The global structural matrices are formed using the 
conventional FEM assembly procedure on S-element matrices. After 
adding damping, the equations of motion in the frequency domain are 
read as follows: 

KGzG(ω) + iωCGzG(ω) − ω2MGzG(ω) = FG(ω) (13)  

where the subscript G refers to global matrices. The time-domain 
equation of motion is obtained by applying an inverse Fourier trans-
form to Eq. (13): 

KGzG(t) + CGżG(ω) + MG z̈G(t) = FG(t) (14) 

which is a typical form of the structural dynamic equation that can be 
solved using direct time-integration algorithms. 

3. SBFEM-based PWAS modelling 

An effective method for modeling the actuation and sensing effects of 
PWAS frequently used in real-time SHM approaches is proposed in the 
context of SBFEM. The idea is to model the electromechanical coupling 
effect of PWAS as an equivalent body load rather than employing elec-
trical DOFs for its nodes [29,30,36,63,64]. This approach reduces PWAS 
DOFs while maintaining sufficient accuracy for extremely thin PZTs 
used in SHM [16]. Assuming that body loads have negligible effect on 
shape functions, their contribution to SBFEM equations can be dealt 
with in the virtual work balance rather than the analytical part [65]. The 
following is the virtual work of body loads in an S-element of the PZT 
material: 

δUb = δdT Rb (15)  

where Rb is the equivalent nodal body load and d is the extracted dis-
placements from the global physical DOF vector (u(t) in the first block of 
z(t) in Eq. (14)) that match the intended S-element. In order to findRb, 
the virtual electromechanical work of the PZT is examined. Consider the 
following stress-charge form of standard linear piezoelectric constitutive 
equations [29]: 

σ = CEε − eT E (16)  

D = eε + ∊εE (17)  

where σ and ε denote the stress and strain vectors, D the electric 
displacement, E the electric field vector, CE the stiffness matrix, e the 
electromechanical coupling coefficient matrix, and ∊ε the permittivity 
matrix. Superscripts E and ε indicate values at constant electric field and 
constant strain, respectively. In the absence of mechanical point, sur-
face, and body loads, as well as electric point, and body charges, the 
virtual work of the PZT is as follows [66]: 
∫

Ve
δεT CEεdV +

∫

Ve
δuT ρüdV =

∫

Ve
δεT eT EdV (18)  

∫

Ve
δET eεdV +

∫

Ve
δET∊εEdV =

∫

Aφ

δφqsdA (19)  

where φ denotes the potential, qs the applied surface charge density, Ve 

the volume of a sector of the S-element, and Aq that part of the boundary 
where charge is prescribed. For ease of notation, the superscript e 
indicating a boundary element of an S-element is eliminated for integral 

expressions and only remains for their bounds (Ve). Fully coupled 
electromechanical treatment of the PWAS requires simultaneous anal-
ysis of Eq. (18) and Eq. (19). Nonetheless, because of the PWAS’s low 
thickness and unobtrusive nature, some simplifying assumptions can be 
made, allowing for a more efficient one-way coupling analysis scheme. 
For the actuator PZT, the electric field/charge induced by the host 
structure vibration is negligible compared to the strain induced by 
electric actuation and thus can be ignored. Hence, Eq. (19), which re-
flects the sensing property of the actuator PWAS, can be disregarded. 
The left side of Eq. (18) is the same as for the host structure, and it leads 
to stiffness and mass matrices for the PWAS element, which are inserted 
into the left side of Eq. (14) during the assembly process. The right-side 
term refers to the virtual electromechanical energy delivered by the 
PWAS to the host structure δUe

em. To compute δUe
em, the strain at any 

point in the S-element’s sector is recovered from nodal displacements as 
follows [57]: 

ε = Ψ(ε)e
b ξSb − 1.5I

(
Ψ(u)

b

)− 1
d (20)  

where Ψ(u)
b and Sb are derived from the solution of the analytical part of 

the SBFEM [57,58]. The superscript u in Ψ(u)
b indicates a partition of Ψb 

associated with the displacement solution. The superscript e indicates 
the displacement modes corresponding to the intended element’s DoFs 
obtained by extracting the corresponding rows of Ψ(u)

b . In Eq. (20), Ψ(ε)
b 

represents the strain modes, which are made up of displacement modes 
as follows: 

Ψ(ε)e
b =

(
B1(η, ζ)Ψ(u)e

b (Sb − 0.5I) + B2(η, ζ)Ψ(u)e
b

)
(21) 

By inserting Eq. (20) into the δUe
em definition on the right side of Eq. 

(18), we get: 

δUe
em = (δd)T

∫

Ve

(
Ψ(u)

b

)− T
ξST

b − 1.5I
(

Ψ(ε)e
b

)T
eT EdV (22) 

Adding up the contributions of each element δUe
em yields the virtual 

electromechanical energy in the S-element δUem: 

δUem =
∑

e
δUe

em = δdT
∑

e

∫

Ve

(
Ψ(u)

b

)− T
ξST

b − 1.5I
(

Ψ(ε)e
b

)T
eT EdV (23) 

By comparing Eq. (23) with Eq. (15), the nodal load equivalent to the 
electromechanical actuation of the PWAS is derived as follows: 

Rb =
∑

e

∫

Ve

(
Ψ(u)

b

)− T
ξST

b − 1.5I
(

Ψ(ε)e
b

)T
eT EdV (24) 

The above integration can be carried out analytically in the radial 
direction. The volume integral is separated into the integrals in radial 
and circumferential direction and dV is replaced with ξ2|Jb| dξdS: 

Rb =
∑

e

∫ 1

0

∫

S

(
Ψ(u)

b

)− T
ξST

b − 1.5I
(

Ψ(ε)e
b

)T
eT Eξ2|Jb| dξdS (25) 

Considering the electric field is uniform over the thin PZT, Rb can be 
rewritten as follws: 

Rb =
(

Ψ(u)
b

)− T
∫ 1

0
ξST

b +0.5I

(
∑

e

∫

S

(
Ψ(ε)e

b

)T
|Jb| dS

)

dξeT E (26) 

The integral in the circumferential direction is not a function of ξ and 
is represneted as Rb0 after assembeling over boundary elements: 

Rb0 =
∑

e

∫

S

(
Ψ(ε)e

b

)T
|Jb| dS (27) 

Using Eq. (27), Rb is read as follows: 

Rb =
(

Ψ(u)
b

)− T
(∫ 1

0
ξST

b +0.5Idξ
)

Rb0 eT E (28) 
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Integrating in the radial direction analytically results in Rb as 
follows: 

Rb =
(

Ψ(u)
b

)− T (
ST

b + 1.5I
)− 1Rb0 eT E (29) 

In Lamb wave health monitoring, a voltage Va in the form of a tone- 
burst between the top and bottom surface electrodes actuates the PWAS. 
It generates a uniform electric field in the polarization direction, which 
is supposed to be parallel to the z-axis, as follows [67]: 

E =
1
h
[0 0 1 ]

T Va = hVa (30)  

where h is the PZT thickness. The explicit expression of the PWAS 
electromechanical actuation force given as an equivalent mechanical 
load is obtained by replacing E in Eq. (28) with Eq. (30): 

Rb =
(

Ψ(u)
b

)− T
(Sb + 1.5I)− 1Rb0 eT hVa (31) 

Eq. (31) is integrated into the right side of the global equations, i.e., 
Eq. (14). In Lamb wave experiments, PWAS actuation is the only input to 
the system in the absence of any other external mechanical or electrical 
loads, which means that R in Eq. (12) is only the Rb in Eq (31). 

For the sensory PWAS, on the other hand, Eq. (18), which describes 
the PZT influence on the host structure vibration, can be ignored. 
Solving Eq. (19) with qs set to zero yields the electric field in the sensory 
PWAS, which can then be converted to electric potential using Eq. (30). 
In an equivalent approach, the electric charge may be computed using 
Gauss’s law in terms of electric displacement field as follows: 

Q =

∫

A
DT dA (32)  

where dA is the normal vector to the PWAS surface and Q is the PWAS 
charge, and A is either the top or bottom surface of the PZT. In the above 
equation, the electric displacement D is obtained from Eq. (17) after 
solving for the displacements d and recovering strains ε at Gauss points 
of the surface elements on the top/bottom of the PWAS S-elements. The 
electric field in Eq. (17) is replaced by Eq. (30) where the actuation 
voltage Va is set equal to the actuation voltage applied to the PWAS in 
the pulse-echo and zero in the pitch-catch arrangements. Having PWAS 
charge, the sensor voltage is obtained from the capacitance Cp of the 
PWAS: 

Vs(t) =
Q(t)
Cp

=
Q(t)h
∊ε

zA
(33)  

where ∊ε
z is the thickness-direction permittivity component, A is the 

PWAS top/bottom surface area. 
To summarize, the Lamb wave SHM can be simulated using SBFEM 

employing a uniform distribution for the electric potential over the 
thickness of the PWAS and a one-way electromechanical coupling of the 
PWAS with the host structure, as shown in Fig. 2. 

4. Experimental setup 

The Lamb wave experiments in pitch-catch arrangement were con-
ducted on a 2 mm thick plate. The pulse-echo experiments were per-
formed on a 1 mm thick plate with a notch that was cut using electrical 
discharge machining (Fig. 3). The PWAS (PZT 5H) sensors, each with a 
thickness of 0.267 mm, were mounted on the plates using a two-part 
epoxy. The bottom surface of the PWAS was accessed using conduc-
tive copper tape. The specimen was supported by packing foam during 
the experiment to approximate the free boundary condition. The actu-
ation signal was transmitted to the PWAS through the Agilent 33220A 
function generator. The PWAS voltage was recorded using a PicoScope 
4424 oscilloscope at an 80 MS/s sampling rate. 

The actuation signal is a 5-count Hanning-windowed tone-burst (see 

Fig. 4) applied to the top surface of the PZT while the bottom surface is 
grounded. In the pulse-echo method, the amplitude of the sensed signal 
is small compared to the actuation signal. Thus, the actuated signal is 
often clipped to improve the resolution of the reflected wave packets and 
make them visible and recognizable. 

5. Numerical simulation 

Lamb wave propagation in thin plates, identical to that utilized in the 
experimental tests (Fig. 3), was simulated using SBFEM and FEM. 
Table 1 lists the material properties of the aluminum and PZT 5H used in 
simulations, with the latter data taken from the PZT datasheet. 

To provide the initial discretization, the SBFEM discretization mod-
ule can be connected to any conventional FE generator. The module 
converts a standard finite element into an S-element, which is merely 
discretized at the boundaries. The transformation of a 20-node hexa-
hedron into a 20-node S-element with quadratic surface elements (Q8) 
at the boundaries is illustrated in Fig. 5. Each S-element is stored as an 
array of boundary faces (s1 to s6 in Fig. 5). The faces are stored via their 
constituent nodes in an order that results in an outward normal to the 
face. It should be noticed that the quality of the original imported dis-
cretization affects the quality of the S-elements. However, the S-ele-
ments are more resistant to distortion and high aspect ratios because 
they are only discretized at the boundary. For instance, a warped 3D FE 
with high aspect ratios can be converted into an S-element with high- 
quality surface elements at the boundary. 

To be able to compare the computing costs of SBFEM with FEM, the 
ABAQUS (version R2019x) structural matrices import tool was 
employed. The structural matrices generated through the analytical 
solution in the radial direction in SBFEM by MATLAB (version R2019b) 
are imported into ABAQUS. Time integration was carried out using the 
Hilber-Hughes-Taylor method with alpha, beta, and gamma values of 
− 0.05, 0.27, and 0.55, respectively. The minimum time-increment was 
deemed to be 0.1 microseconds for a smooth output signal. Electric 
signals are applied to the top face of the PZT as inputs, such as a 10 V 
peak-to-peak, five-cycle tone-burst with a pre-set centre frequency. In 
SBFEM, Eq. (31) transforms electric actuation signals into mechanical 
equivalent loads. In FEM, however, the electrical DOF is taken into ac-
count for the PWAS elements, and the electrical boundary conditions 
were applied directly to the PWAS nodes. As in the experimental test, 

Fig. 2. SBFEM for simulation of PWAS-based Lamb wave health monitoring.  
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free mechanical boundary condition was considered for the models. The 
longest radial distance of the S-elements determines the order of the 
continued fraction expansion Mcf [37]. The mesh size of SBFEM and 

FEM is adjusted based on a convergence study that is discussed in more 
detail below. 

5.1. Convergence study 

Convergence analysis was performed in both h-refinement and p- 
refinement strategies to estimate the mesh size for the SBFEM and FEM 
models. To achieve h-refinement in the SBFEM context, the number of S- 
elements or the number of individual boundary elements connected to S- 
elements might be increased. Here, the former scheme was adopted for 
h-refinement. The eigen-frequency of the system is calculated by solving 
the eigenvalue problem associated with Eq. (13), ignoring the damping 
term. The average of the absolute relative differences between the first N 
eigen-frequencies of the current model and a potentially converged 
model is used as an error estimator [48]: 

ε =
1
N

∑N

i=1

⃒
⃒
⃒
⃒
fi − Fi

Fi

⃒
⃒
⃒
⃒ (34)  

where fi and Fi are the ith eigen-frequencies of the current discretization 
and a model with a very fine mesh size, respectively. N is adjusted to 
include the relevant frequency range. In the stiffened plate case, for 
instance, N is set at 310 to cover the frequency range up to more than 
200 kHz, which is the actuation’s central frequency. Fig. 6 shows the 
mean absolute relative error ε versus total DOFs in logarithmic scale for 
successive mesh size reduction steps. The electrical DOFs are also taken 
into account for FEM. Fig. 6 is used to calculate the required number of 
DOF or the associated mesh dimension for a given percentage of error. 
According to the figure, SBFEM with linear boundary elements requires 
approximately 4 times less DOFs than FEM for a given error. The DOF 
reduction ratio for SBFEM with quadratic boundary elements relative to 
FEM is more than 8 times. This amount of DOF reduction leads to sig-
nificant computing time reduction in time domain analysis which is 
given in Table 2 for the examined examples. 

To examine the convergence rate, a linear relation in the logarithmic 
scale is fitted to the convergence data; see Fig. 6. The slopes of the fit, i. 
e., the exponent of the fit in the linear scale, show that SBFEM has a 
substantially faster convergence rate than FEM. This is due to SBFEM’s 
use of an analytical solution in one direction, which reduces the dis-
cretization dimension by one. The presence of an analytical solution 
along the radial direction in SBFEM avoids the requirement for mesh 
refinement around the notch, hence the rate of convergence is unaf-
fected. Furthermore, reducing the DOF results in fewer machine 

Fig. 3. Lamb wave health monitoring experimental setup.  

Fig. 4. Actuation signal used in the Lamb wave test of the notched plate: zero 
padded 5-cycle tone-burst with 450 kHz central frequency. 

Table 1 
Mechanical and electrical properties of Al and PZT 5H.  

Property Symbol Al PZT-5H Units 

Young modulus E 71 62 GPa 
Poisson ratio ν 0.33 0.31 – 
Density ρ 2750 7870 kg

m3 

Rayleigh damping coefficients α 10− 3 10− 3 s− 1 

β 8× 10− 8 8× 10− 8 s 
Relative permittivity ∊ε

11 = ∊ε
22 – 3130 – 

∊ε
33  3400  

Piezoelectric constants eT
13 = eT

23 – − 6.5 C
m2 

eT
33 – 23.3 C

m2 

eT
15 = eT

24 – 17.44 C
m2  

M. Ehsani et al.                                                                                                                                                                                                                                 



Ultrasonics 129 (2023) 106892

7

computations and, thus, fewer round-off errors in SBFEM. Fig. 6 further 
indicates that quadratic boundary elements associated with 20-node S- 
elements have a faster rate of convergence than linear boundary ele-
ments associated with 8-node S-elements. 

6. Results and discussion 

The numerical results of the SBFEM simulation of Lamb wave health 
monitoring are presented in this section. To evaluate the SBFEM per-
formance, the results are compared to their experimental and FEM 
counterparts. The case studies include the Lamb wave propagation in a 
pristine plate, a cracked plate, a notched plate, and a stiffened plate. 

6.1. Lamb wave propagation in the pitch-catch scheme 

In the pitch-catch setup for the sensors, the Lamb wave propagation 
for a 1 mm thick aluminum plate was investigated. The schematic of the 
plate and the PWASs, along with their dimensions, are shown in Fig. 7 
(a). By adjusting the spacing between the PWASs 2a to 10 mm, a free 
space is preserved between the direct wave and the boundary reflected 
packets in the sensory signal for the damage packet. 

In order to prevent the detected signal from being corrupted by the 
plate boundary reflected waves, the actuation signal was also tuned with 
the PWAS to minimize the A0 mode actuation [68]. The tuning curve for 
the plate and the 7 mm PWAS is shown in Fig. 8. The figure shows that 
when the actuator PWAS is excited with central frequency fc of 270 kHz, 
the S0 mode becomes overwhelming. As a result, there would be less 
confluence between the direct transmitted A0 and the damage reflected 
S0, the latter of which is about 2.7 times faster according to the 
dispersion curve. 

The crack is modeled as a seam having duplicated nodes which lead 
to crack opening in the wave traversing term. The S-elements and their 
scaling centers that were used to discretize the cracked plate are 
depicted in Fig. 9. The actuator PWAS is subjected to a 5-cycle tone burst 
with a frequency of 270 kHz as the actuation signal, and Eq. (31) is used 
to convert it into the body load. 

Fig. 10 shows the sensor signal of the experiment and SBFEM 
simulation. The great conformity between the results indicate the val-
idity of the provided formulation. Owing to the actuation tuning, the A0 
is almost absent in the direct sensed signal and there is more than 45 μs 
free space to collect the damage reflected signal. 

The experimental and SBFEM-simulated sensor signals for the 
cracked plate are shown in Fig. 11. The damage reflected S0 mode 
reaches the sensor 34 μs after the direct wave packet in the free space 
between wave packets. The damage reflected wave’s time of flight is 34 
μs, which is consistent with the location of the crack, i.e., xc of 90 mm 
and yc of 7 mm. Strong agreement between the data shows that SBFEM 
can precisely mimic the lamb wave health monitoring. 

Fig. 5. The conversion of a 20-node quadratic hexahedron FE (left) into a 20-node S-element with Q8 boundary elements (right).  

Fig. 6. Convergence analysis results for SBFEM and FEM simulation of the 
stiffened plate. 

Table 2 
Comparison of the SBFEM and FEM simulations; simulation time increment is 0.1 μs.   

Notched plate example Stiffened plate example 
Simulation time 32 μs 200 μs  

FEM 
(8 node) 

SBFEM 
(8 node) 

SBFEM 
(20 node) 

FEM 
(8 node) 

SBFEM 
(8 node) 

SBFEM 
(20 node) 

Number of DoFs 311,032 66,020 25,510 1,747,786 436,947 218,473 
CPU time (min) 29.8 6.3 2.6 366.5 89.7 44.9  
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6.2. Lamb wave propagation in the pulse-echo scheme 

Fig. 12 depicts the SBFEM and FEM discretization of the notched 
plate. To evaluate the benefits of p-refinement, the boundaries of the S- 
elements are discretized in SBFEM using 4-node linear (Q4) and 8-node 
quadratic (Q8) surface elements. The FE model was discretized using 8- 
node linear solid elements. The model’s discontinuous regions are the 

interfaces between the defect and the PWAS with the host structure. The 
mesh size is reduced around the discontinuities in FEM, and it gradually 
becomes coarser a bit more. In SBFEM, mesh refining is eliminated when 
the scaling centre for S-elements associated with discontinuities is 
properly selected. The location of the scaling centres on the interface- 
aligned surface elements is shown in Fig. 12. 

The time-domain equation (Eq. (14)) was integrated to investigate 
the pulse-echo propagation of the Lamb wave in the notched plate. 

Fig. 7. Schematic of the plates instrumented with PWAS: (a) 2 mm thick cracked plate used in pitch-catch tests, (b) 1 mm thick notched plate used in pulse-echo tests.  

Fig. 8. Lamb wave response of a 2 mm thick plate tuned by 7 mm 
PWAS excitation. 

Fig. 9. (a) SBFEM discretization of the cracked plate instrumented with two PWASs for pitch-catch experiments (b) magnified view around the sensors.  

Fig. 10. The sensor PWAS voltage in the pitch-catch test of the pristine plate.  
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Fig. 13 depicts the voltage of the PWAS for 32 μs. As explained previ-
ously, in the pulse-echo technique, the initial packet of the signal that 
rides on the actuation signal is clipped to increase the resolution of the 
bounced-back waves. This segment of the signal contains no information 
about damage or system characteristics. In the numerical model, the 
actuator and sensor PZTs were separated from each other using the trick 
of halving the PWAS patch. The graphs depicted in Fig. 13 concern the 
voltage of the sensor half of the PWAS. In this way, the actuation signal 
does not ride on the sensed signal, and that is why the first portion of the 
numerical results is within the range of the reflected-back packets. The 
remainder of the signal in Fig. 13 represents the symmetric S0 and 
antisymmetric A0 modes of the edge reflected wave. The agreement 
between the SBFEM and experimental results validates the proposed 
formulation. The slight discrepancy in the results is partially due to the 
edge effect and its consequences on the reflected wave, such as wave 
dissipation or mode conversion. In practice, the structure’s edges are not 
as flawlessly smooth as the computational simulations suggest. Hence, 
the numerical model does not account for the impact of edge roughness 
on the reflected wave. Uncertainty in the host structure and PWAS 
material properties is another factor contributing to the differences be-
tween the model and test results. 

The FEM results are also computed to the same accuracy as SBFEM 
and are rendered for comparison in Fig. 13. The number of DOFs and the 
CPU times of the SBFEM are compared with those of FEM in Table 2. The 

simulations are performed on a desktop PC (AMD Ryzen 7 1700 8-core 
CPU, 3 GHz, 16 GB RAM). In terms of the required computational time, 
SBFEM requires more preprocessing CPU time than FEM. The solution 
time, however, is several orders of magnitudes shorter than FEM, and 
the difference is more noticeable when used to simulate a longer prop-
agation duration as shown in the next example. 

6.3. Lamb wave health monitoring of a stiffened plate 

Fig. 14 shows the discretization of the plate with stiffener and two 
mounted PWASs in SBFEM and FEM. The thicknesses of the stiffener and 
plate are 0.8 and 1 mm, respectively. The PZTs are 10 × 10 × 0.267 mm3 

in size. The actuation signal is a 5-count smoothed tone-burst with a 
central frequency of 200 kHz (Fig. 4) that was applied to the left PWAS 
in Fig. 14. 

The voltage of the sensor PWAS is depicted in Fig. 15. The waveform 
is more complex than the previous models due to the stiffener influence 
on the wave. However, the symmetric and antisymmetric packets of the 
sensed wave can still be distinguished. Moreover, the received signal 
contains some mixed modes due to mode conversion and dispersion. 

The remarkable agreement between the SBFEM and convergent FEM 
data reveals that the former’s formulation and implementation are valid. 

Fig. 11. The sensor PWAS voltage in the pitch-catch test of the cracked plate.  

Fig. 12. Discretization of the notched plate instrumented with PWAS for (a) FEM, and (b) SBFEM simulations; the red dots show the scaling center positions. (For 
interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 13. Experimental and numerical (FEM and SBFEM) results of the PWAS 
voltage installed on the notched plate in the pulse-echo tests. 
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Because the FEM model takes into account the electric potential DOF of 
the PWAS, the data consistency supports the accuracy of the suggested 
model for PWAS. The SBFEM model has an 8-fold lower DOF than the FE 
model. The low computational cost of the SBFEM reflects its potential 
for application in PWAS-based damage identification processes. 

7. Conclusions 

The application of 3D SBFEM to PWAS-based Lamb wave SHM was 
investigated in this study. In the context of SBFEM, an effective method 
for simulating the electromechanical effects of PWAS, which is exten-
sively used in SHM applications, was proposed. The model is based on 
one-way PWAS-structure interaction and can be simply integrated into 
SBFEM’s elastodynamic equations as an equivalent body load. The semi- 
discretized equation of SBFEM was solved using the continued fraction 
approach. The adaptability of mesh generation in SBFEM was leveraged 
for straightforward discretization of the complex topologies by con-
verting standard finite elements into S-elements. The proposed formu-
lation was used to simulate the Lamb wave health monitoring of a 
cracked plate, notched plate, and a stiffened plate. The SBFEM’s per-
formance was verified using its experimental and FEM counterpart re-
sults. In comparison to FEM, the SBFEM demonstrated a fast 
convergence rate with an improvement as the surface element order was 

increased. A significant conformity between experimental and SBFEM 
results proved the SBFEM’s capacity to be used in real-application SHM. 
The great agreement between the results of SBFEM and fully electro-
mechanical coupled FEM, confirms the validity of the proposed model 
for PWAS. The computing effort of the SBFEM is orders of magnitude 
less than that of the FEM, implying that it has a lot of potential for usage 
in PWAS-based damage identification procedures. Future work on using 
SBFEM for stochastic analysis of damage diagnostics is ongoing [69]. 
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