
Is RISC-V ready for Space? A Security Perspective
Luca Cassano1, Stefano Di Mascio2, Alessandro Palumbo3, Alessandra Menicucci2,

Gianluca Furano4, Giuseppe Bianchi3, Marco Ottavi3,5
1Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

2Department of Space Engineering, Delft University of Technology, The Netherlands
3Dipartimento di Elettronica, Ingegneria dell’Informazione, Università degli Studi di Roma Tor Vergata, Italy

4European Space Agency, The Netherlands,
5Faculty of Electrical Engineering, Mathematics and Computer Science, University of Twente, The Netherlands

1luca.cassano@polimi.it, 2s.dimascio@tudelft.nl, 2a.menicucci@tudelft.nl,
3name.surname@uniroma2.it, 4gianluca.furano@esa.int, 5m.ottavi@utwente.nl

Abstract—Integrated circuits employed in space applications
generally have very low-volume production and high perfor-
mance requirements. Therefore, the adoption of Commercial-
Off-The-Shelf (COTS) components and Third Party Intellectual
Property cores (3PIPs) is of extreme interest to make system
design, implementation and deployment cost-effective and viable
w.r.t. performance. On the other hand, this design paradigm
exposes the system to a number of security threats both at
design-time and at runtime. In this paper, we discuss the
security issues related to space applications mainly focusing on
threats that come from the adoption of the well-known RISC-
V microprocessor. We highlight how Hardware Trojan horses
(HTHs) and Microarchitectural Side-Channel Attacks (MSCAs)
may compromise the overall system operation by either altering
its nominal behavior or by stealing secret information. We discuss
the security extensions provided by the RISC-V architecture as
well as their limitations. The paper is concluded by an overview
of the issues that are still open regarding the security of such
microprocessor in the space domain.

Index Terms—Microarchitectural Side-Channel Attacks, Mi-
croprocessors, Hardware Security, Hardware Trojan Horses,
RISC-V, Space Applications.

I. INTRODUCTION

The idea of employing Commercial-Off-The-Shelf (COTS)
components, Third Party Intellectual Property cores (3PIPs)
and commercial Computer Aided Design (CAD) tools in space
systems is becoming increasingly popular [1], [2]. Indeed,
this design choice represents an interesting trade-off between
performance and cost for application scenarios where the
integrated circuits production volume is extremely low, as
the case of space applications. The basic idea is to reuse
legacy (i.e., not specifically designed for space) subsystems,
components and 3PIPs in space systems to benefit from both
reduced development cost and high performance [3].

When specifically looking at microprocessors, designers
can either choose to define their own instruction set archi-
tecture (ISA) or use an already available ISA. While the
employment of open-source software can be considered as
a legacy procedure, hardware has not yet fully experienced
the disruptive effects of openness. Nevertheless, over the last
years the RISC-V architecture has risen in popularity, drawing
the attention of several universities and companies previously

focusing on other open and free ISAs, proprietary ISAs or
even on ISAs designed in-house (with the big drawback of
having to design and maintain a software ecosystem) [4].

While reducing costs, this design paradigm exposes the
obtained system to a number of security threats both at design-
time and at runtime. The production of commercial integrated
circuits (ICs) is characterized by a globalized supply chain [5].
The benefit of such a globalized supply chain is a reduction of
design cost and time that, on the other hand, comes at the cost
of a loss of trust in the final ICs [6]. The consequence of is
that it is very hard to ensure/assess the trustworthiness of all
the parties involved in the supply chain. Therefore, the product
is exposed to a number of threats: ICs may be overproduced
by the foundry and sold in the black market [7]; defective
or dismissed ICs may be delivered as good ones [8]; IP core
licenses may be violated and IP cores may be overused [9],
[10]; designs may be maliciously modified to insert stealthy
unwanted functionalities in the final product, also known as
Hardware Trojan Horses (HTHs) [11].

A novel menace for microprocessor-based systems are
microarchitectural attacks [12] [13]. These attacks are a
sub-class of Side-Channel Attacks (SCA), i.e., attacks that
aim at leaking unauthorized information from the system
by analysing timing information, power consumption [14],
thermal footprint [15] or electromagnetic emanation [16]. On
the other hand, microarchitectural attacks do not require the
attacker to have physical access to the system under attack.
Indeed, such attacks only rely on the observation of the timing
behavior of the system while running sensitive applications.
The basic idea behind this family of attacks is that since
computer architectures are optimized w.r.t. processing speed
there is a strong correlation between processed data, memory
accesses and execution times: such correlation may represent
an exploitable side channel in case the attacked and the
attacker processes share the same cache space [12]. A well-
known example of microarchitectural attack is Meltdown [17],
where the attacker exploits out-of-order execution to break
address space isolation without exploiting any software bug.
Therefore, by exploiting Meltdown an attacker allows his/her
own program to access the memory (and thus also secrets) of
other programs and of the Operating System (OS).978-1-6654-5938-9/22/$31.00 ©2022 IEEE

20
22

 IE
EE

 In
te

rn
at

io
na

l S
ym

po
si

um
 o

n
D

ef
ec

t a
nd

 F
au

lt
To

le
ra

nc
e

in
 V

LS
I a

nd
 N

an
ot

ec
hn

ol
og

y
Sy

st
em

s (
D

FT
) |

 9
78

-1
-6

65
4-

59
38

-9
/2

2/
$3

1.
00

 ©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
D

FT
56

15
2.

20
22

.9
96

23
52

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

In the past, hardware security was not considered an issue
by the space industry because most attacks, e.g., fault attacks,
required the attacker to have physical access to the attacked
system, which indeed is not the case of space applications.
Nevertheless, attacks based on MSCAs and HTHs may be
successfully carried out by without any physical access (at
the time of the attack) to the system. Indeed, once implanted,
a HTH can be activated remotely through the execution of
a trigger program as well as a MSCA can be carried out by
forcing the execution of a piece of malicious software running
in parallel with the attacked program. Therefore, hardware
security issues should nowadays be tackled also when con-
sidering a digital design meant for a space application.

Microprocessors are present in On-Board Data Handling
systems and On-Board Data Processing systems, both has hard
cores in ASICs/SoCs and as soft cores in FPGAs. Micropro-
cessors are key components to run the algorithms required
for the Attitude Determination and Control System (ADCS)
and execute ground-control or algorithm-based Command &
Data Handling (C&DH) [18]. The orientation is critical for the
satellite’s mission objective (e.g. a wrong orientation would
make communication with the ground station not possible).
The execution of C&DH is critical too, given the master/agent
relationship of ground stations to satellites [18].

In this perspective paper, we discuss the security issues
related to the adoption of the RISC-V platform in space
applications. We first present the security features that are
natively offered by the RISC-V architecture and we present
their limitations in preventing and alleviating the effect of
hardware security-related attacks. Indeed, specifically looking
at hardware security, we highlight how Hardware Trojan
horses (HTHs) and Software Threats, with particular emphasis
to Microarchitectural Side-Channel Attacks (MSCAs), may
damage the overall system functioning by either altering its
nominal behavior or stealing secret information. Finally, we
overview the existing solutions coming from research that
aim at further securing the adoption of RISC-V processors
also presenting and discussing issues that have not yet been
addressed. This paper is meant to help technicians in finding
the best architecture configuration to meet both performance
and security requirements. At the same time this work can
represent a starting point for young researchers and students
by providing a discussion of the state-of-the-art solutions to
secure RISC-V as well as an overview of the open problems.

The remainder of this paper is organized as follows: Section
II describes possible threats in space systems and their impact
on different space missions; Section III discusses the main
security-related features provided by the RISC-V architecture
and their limitation; Finally, Section IV draws conclusions,
highlighting open issues.

II. SECURITY IN SPACE DATA SYSTEMS

In the space embedded systems domain we are now witness-
ing a novel trend. While “classical” processing ASICs keep
suffering of the usual, widening, performance gap between
‘terrestrial’ processors and space grade ones (as discussed

in [19]), on the counter recent developments especially in
SRAM-based FPGAs have brought terrestrial ‘edge’ technolo-
gies for space use, providing a possible quantum leap for pro-
cessing in space. Especially for payload data processing tasks,
these devices will likely replace any dedicated application-
specific standard product (ASSP) and call for availability of
sophisticated processor IP cores for specific applications.

In the following we review the main security issues related
to space missions highlighted by the Consultative Committee
for Space Data Systems (CCSDS) in [20].

A. Threats

1) Intentional Data Corruption: Data may be intentionally
altered by an attacker at its source (e.g. sensor jamming)
by an attacking satellite operating nearby the attacked one
[18]. Another possibility is that data is altered during its
transmission from the instrument to the ground system, e.g., by
the execution of malicious software. Along with the corruption
of information coming from the instruments, intentional data
corruption could potentially lead to a catastrophic loss of the
system, e.g. if, at the reception of a command, no action or
a wrong action is taken by the spacecraft. For example, if a
navigational maneuvering command is altered, the spacecraft
may eventually enter an unusable orbit and miss the encounter
with a target, or even be destroyed.

2) Software Threats: Coding errors may happen and may
cause security problems [20]. Furthermore, the system opera-
tor may configure the system incorrectly, leading to security
weakness. On the other hand, the programmer may introduce
logic or implementation errors that may lead to system vulner-
abilities. Finally, external agents may try to use vulnerabilities
to inject software or change configurations. The effect can be
data loss, loss of spacecraft control, unauthorized spacecraft
control, or mission failure.

Software Threats (STs) may also come from the exploitation
of hardware- and architecture-level vulnerabilities. For in-
stance, high-performance processors may employ speculation
and out-of-order execution. These features can be maliciously
used to access protected processor memory locations, opening
the way to so-called Microarchitectural Side-Channel Attacks
(MSCAs) [12]. This type of SCAs is particularly critical (also
for space applications) because it does not require physical
access to the system under attack, relying on the monitoring
of the features of interest for the attack itself, e.g., timing
behavior, performance counters, of the attacked processor.
Some examples of MSCA, are the Meltdown [17], Spectre
[21] and Foreshadow [22], where the attacker exploits out-
of-order and speculative execution to break address space
isolation without exploiting any software bug. Thus, these
attacks allow the attacker to access unauthorized memory
regions and steal information. As a result, a system built using
trusted components may be successfully attacked.

3) Malicious hardware: Issues related to hardware trust
arise from involvement of untrusted entities in the life cycle
of the designed system, including untrusted IP providers,
design team components, CAD tools and fabrication, test,

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

and distribution facilities [23]. It is possible that malicious
HW finds its way in the system when COTS components are
employed. These components usually do not have a trusted
supply chain and are deployed to mass markets. As a matter
of fact, the supply chain for COTS components consist of
many (potentially untrusted) entities [23].

An undesired addition or modification to existing circuit
elements, done in order to apply malicious activity is called
Hardware Trojan (HT). HTs can change the functionality of
a circuit, reduce its reliability or leak valuable information
[23]. It has been known that software-exploitable HTs may be
integrated in Microprocessor. Thanks to an HT, attackers may
be able to execute their own malicious software, to modify the
running software or to acquire root privileges [24], [25], [26];
or they may be able to enter in supervisor mode thanks to a
backdoor activated via software [27]. Finally, it has to be men-
tioned that the most recent attack vector is now represented the
employed CAD tools. Indeed, it has been demonstrated that
HTHs may be introduced in the designed circuit by the tools
employed for high-level and logic synthesis, for place-and-rout
and for bitstream generation [28], [29].

B. Impact of threats on different space missions

The impact of security-related threats highly depends on the
mission orbit and on the type of mission the system is meant
for. In the following we discuss these two points.

1) Mission orbits: On the one hand, Geostationary Orbit
(GEO) satellites are more secure than Low-Earth Orbit (LEO)
missions because they require ground stations with a higher
transmission power and larger antennas. This, of course, make
communication with the satellite more expensive, thus limiting
the number of possible attackers. On the other hand, GEO
satellites are more vulnerable than LEO ones because they
are continuously visible in specific geographical areas, while
LEO satellites are visible only for specific time intervals
from the ground station. Moreover, constellations of satellites
increase the vulnerability of the whole space system, because
in this case there are several satellites in orbit, increasing the
visibility window from a specific point on Earth. Finally, deep-
space/interplanetary missions require even larger antennas and
higher power compared to a GEO satellite to attack [20].

2) Type of missions: The type of mission carried out by the
space system, as well as its safety-/mission-criticality, highly
influences the impact and likelihood of security-related threats.
In the following we discuss several types of space missions
and associated security issues.
Earth Observation Satellites can be either scientific or a
critical asset of governments (e.g. meteorological forecasting
applications). In the latter case the most likely threat is unau-
thorized access, which is typically countered with encryption
of commands and mission data and authenticated commands.
Moreover, malicious hardware is a possible threat that can
be mitigated with analysis of the hardware functionalities, or
careful selection of a trusted supplier. Data corruption may
also be an issue, providing wrong information to the final user.

Communication Satellites are meant to provide a service with
a usually very high availability. For example, in the case of
a GEO telecommunication satellite the whole space system
is expected to provide the service 99.9% of the time [30].
Therefore, these type of satellites are particularly vulnerable:
indeed, even a slight reduction of the availability may have a
huge impact on the service. An example of attack to a commu-
nication satellite is reported in [18]: in 2003, the 12 satellites
of Telestar have been attacked using an uplink station that sent
contradictory frequency to the satellites, which overrode the
signal, effectively blocking television programming.

Navigation Satellites are often dual-use satellites, and often
they belong to critical government infrastructures. An example
is the GPS, that is employed by individuals, companies and the
military. Like communications satellites, the loss of navigation
satellite systems would result in potential loss of life, safety
of individuals, and critical infrastructure.

Science missions are usually not part of a critical infrastruc-
ture. Even if they are exposed to the same threats as other
missions, the impact is much less critical, with a damage to
the financial investment and to the reputation of the entities
involved in the mission itself [20]. However, investments might
be very high: for instance, the cost of the recently launched
James Webb Space Telescope reached 10 billion USD [31].

Manned missions are of course the most critical ones under
the safety point of view. Indeed, in this cases the effect of an
attack causing the loss of a spacecraft may be catastrophic,
with the possibility of issues for the lives of the crew.

III. SECURITY CONSIDERATIONS ON RISC-V

We here present the RISC-V architecture and discuss the
available security-related features; finally, we survey the ex-
isting limitations and some proposed security extension.

A. The RISC-V Instruction Set Architecture

RISC-V was originally developed by UC Berkeley to sup-
port computer architecture research and education oriented at
hardware implementations [32]. The spread of an open and
free ISA already enabled a vast field of research activities for
terrestrial application (e.g. security, AI, etc.). Indeed, having
access to proprietary architectures is expensive and it limits
what can be done with a certain product or within a certain
research activity. The availability of a software ecosystem sup-
ported by a large open community ignited an unprecedented
amount of developments, with several announcements and/or
releases of open-source implementations. The adoption of a
popular free and open ISA can thus lead to shorter time to
market and lower costs thanks to reuse.

The main feature of the RISC-V ISA specifications is its
modularity, which allows to cover a large spectrum of applica-
tions and to increase software reuse (adding new instructions
as optional extensions instead of releasing new versions of
the whole ISA). RISC-V allows for both standard and non-
standard extensions (defined outside the specifications). The
user-level RISC-V ISA is defined as a base integer (I) ISA,

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

which must be present in any implementation, plus optional
extensions to the base ISA. A subset of the integer base
(E) can optionally be implemented when an implementation
targets small 32-bit microcontrollers, with 16 general purpose
registers instead of 32. The standard defines a ”general” subset
(G) and the set of extension required for general purpose
computing systems.

B. Memory isolation

The main feature available at software level to preserve the
security of a system is memory isolation (i.e. each process
has its own address space, which isolates memory between
programs) [33]. Isolation implies that even if the security of a
partition is compromised, the attacker cannot breach the secu-
rity of other partitions. The Linux kernel provides separation
between kernel services and user-space applications. However,
in this way the kernel represents a single-point of failure in
terms of security. Therefore, it may be responsible of a high
number of vulnerabilities, given its huge attack surface [34].

Memory isolation can be further improved by employing
hypervisors to provide isolation between different instances
of OSs running on multicore processors. Memory isolation is
currently being investigated in space applications to improve
safety behavior, i.e. to avoid that the failure of an application
running on an OS may impact the execution of another
application running in a different OS on the same processor
[35]. Given the increasing complexity of software systems
also in space applications, designers increasingly rely on 3rd-
party software components, typically provided as software
libraries. When the code of these libraries is open source, a
security analysis and validation is possible. On the other hand,
proprietary software instead generally comes as linkable (and
non inspectable) object modules. Therefore, it is often required
to enforce the separation of the various software components
within the system [34].

C. RISC-V software stacks and privilege levels

The modular nature of RISC-V allows for different software
stack implementations with different levels of security [3]. For
instance, Figure 1 shows the stacks described in the RISC-V
Privileged Specification [36]. On the left side of the figure,
a simple stack implementation is shown. The application
interacts via an Application Binary Interface (ABI) with the
Application Execution Environment (AEE). In this simple
case the ABI is composed of the implemented user-level ISA
subset. At the center of the figure, multiple applications run
and communicate via the ABI with the OS (the latter in this
case providing the AEE). In turn, the OS communicates with
a supervisor execution environment (SEE) via a Supervisor
Binary Interface (SBI). An SBI comprises the user-level and
supervisor-level ISA together with a set of SBI function calls.
The SEE can be a simple bootloader and BIOS-style IO system
on a low-end hardware platform, up to a virtual machine in a
high-end server, or a thin translation layer over a host operating
system in an architecture simulation environment. On the right
side of the figure, RISC-V runs a virtual machine monitor

configuration where multiple OSs run on top of a hypervisor.
Each OS communicates via an SBI with the hypervisor,
which in turn provides the SEE. The hypervisor communicates
with the hypervisor execution environment (HEE) using a
hypervisor binary interface (HBI) to isolate the hypervisor
from the hardware platform.

Privilege levels are used to provide protection between
different components of the described software stacks. The
possible levels a thread may have are:

• The machine mode (M-mode) has the highest privileges
and it is the only mandatory one. Code running in
machine-mode has to be totally trusted, as it has access
to the machine implementation.

• The supervisor mode has been added to provide isolation
between the Operating System and the SEE.

• The user-mode is dedicated to the user applications.
The privilege levels are designed and checked such that each

attempt to perform operations not permitted by the current
mode will cause an exception to be raised.

Any specific RISC-V implementation can choose which
modes to implement (except for the mandatory M-mode).
This allows hardware architects to identify a suitable trade off
between offered security level and implementation cost [36].
Typical solutions are:

• M: simple embedded systems where security is not a
concern. This solution will provide no protection against
incorrect or malicious application code.

• M, U: secured embedded systems
• M, S, U: for systems running a Unix-like OS. The

supervisor mode is added to provide isolation between
the OS and the SEE.

A user thread normally runs the application code in U-mode
until a trap, e.g., a supervisor call or a timer interrupt, forces a
switch to a trap handler, that usually runs in a more privileged
mode. The trap handler will be executed and eventually the
user thread will resume its execution at or after the original
trapped instruction, again in U-mode.

D. RISC-V extensions for security

Beside different privilege modes, the RISC-V ISA provides
additional extensions to increase security.

1) Physical Memory Protection: The M-mode supports an
optional standard extension for Physical Memory Protection
(PMP). The PMP extension defines control registers to specify
access privileges (read, write, execute) for each physical
memory region. Attempting to fetch an instruction from a PMP
region that does not have execute permissions or to load from
a physical memory location within a PMP region without read
permissions raises an exception.

The use of the PMP provides several security features.
For example, threads are prevented from modifying or even
reading the data of shared libraries. Therefore, the memory
region in which the shared library data reside can be set as
execute only using PMP. Even if the PMP is mainly used
to prevent threads running in lower privilege levels (e.g. U

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

Application

ABI

AEE

Application

ABI

OS

SBI

SEE

Application

ABI

SBI

Hypervisor

Application

ABI

OS

Application

ABI

Application

ABI

OS

Application

ABI

SBI

HBI

HEE

Figure 1: Examples of software stack implementations with different levels of security [36].

and S modes) from accessing privileged memory contents,
the ”lock” feature provides protection even when only the M-
mode implemented. As a matter of fact, if a PMP entry is
locked, write operations to the configuration register and the
associated address registers of the entry are ignored. Indeed,
PMP restrictions are valid also for the M-mode: locked PMP
entries may only be unlocked with a system reset.

2) Cryptographic extension: The basic requirement for
security in spacecrafts is the use the AES encryption standard
to encrypt telemetry and telecommand signals [37].The imple-
mentation of a cryptographic extension increases performance
and hides implementation details from software, reducing the
attack surface [38]. However it is often preferable to imple-
ment encryption and decryption of telemetry and commands
in a separated hardware component or board, as it is required
that the keys are not accessible from software.

3) User-level interrupt extension (N): This extension allows
isolation between interrupt handler having different privilege
levels. Indeed, interrupt handlers can be executed at user-level,
thus being unable to compromise the isolation model [34].

E. Limits of isolation and need for hardware solutions

Most attacks to isolation exploit physical access to the
processor to perform Fault Injection (FI) [39]. In space this
may be more complex than in applications like mobile and
Internet of Things (IoT), although in principle still possi-
ble. For instance, in [39] it is shown how knowledge of
power consumption for each instruction can be employed to
skip an instruction during context switch, allowing access
to PMP protected portions of memory. On the other hand,
the previously presented attacks, i.e., MSCAs and HTHs,
can be successfully carried out by the attacker without any
physical access (at the time of the attack) to the system under
attack. Indeed, HTHs can be implanted at design time by
one of the many untrusted parties involved in the design.
Once implanted, a HTH can ”easily” be activated through the
execution of a trigger program. Similarly, a MSCA is a piece
of malicious software running in parallel with the attacked
software. Therefore, MSCAs and HTHs have to be considered
serious threats also in the space scenario, where it is extremely
difficult for the attacker to have physical access to the system.
While the security features natively integrated in the RISC-
V architecture do not protect the system from MSCAs and
HTHs, we argue that innovative security solutions (coming
from research) should be integrated in the RISC-V architecture
to make space missions adopting this microprocessor secure
and trustable.

F. Security Architectures for RISC-V

Several system-level methodologies meant to protect sys-
tems based on Intel and ARM processors against both MSCAs
and HTHs have been recently proposed. In particular, the
new trend aims at providing a secure and trustable program
execution over a system built with untrusted components.
The main idea behind most of these approaches consists in
the introduction Hardware Security Checkers (HSCs) able to
monitor the fetching activity and, the processed data and
the status of the Microprocessor for detecting potentially
suspicious activities, e.g., HTHs and/or MSCAs.

The same effort has not yet been devoted to secure systems
based on RISC-V processors. In [40] the authors proposed
a HSC based on Bloom filters to protect the system against
HTHs infesting the memories. At runtime, the HSC monitors
the memory locations accessed by the microprocessor and the
corresponding fetched instructions and based on this informa-
tion it decides whether a HTH has been activated or not. The
same authors proposed in [41] a similar solution where the
target are HTHs infesting the microprocessor instead of the
memory. Finally, probabilistic data structures are employed in
[42] to detect the activation of MSCAs.

IV. DISCUSSION AND OPEN ISSUES

The growing interest in deploying commercial microproces-
sors in space applications as well as the rise of new hardware-
oriented menaces, e.g., MSCAs and HTHs, make security (and
hardware security, in particular) an open and severe issue.
As we have discussed in the paper, RISC-V microprocessor
already implements several security features. Indeed, Physical
Memory Protection, Cryptograpy extension and User-level
interrupts already protect a RISC-V based system against
several attacks, e.g., data corruption and unauthorized access.
On the other hand, the protection of RISC-V processors against
MSCAs and HTHs is still an issue.

Apart from the protection against MSCAs and HTHs, we
still see two main open issues related to the trusted adoption
of RISC-V processors in space missions. The first issue is
the lack of a trusted and robust tool chain: indeed, as it has
already been discussed in the previous sections, it has been
demonstrated that malicious modifications can be introduced
in the designed system by the employed CAD tools. Therefore,
the availability of trusted tools and of methodology to ensure
the trustworthiness of the employed tools it is vital. The
second main issue is related to the integration of third party
intellectual property cores (3PIPs) within a RISC-V based

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

system. A trusted interaction between dedicated hardware
accelerators and the main processor is fundamental to ensure
security to the entire system. Therefore, methodologies to
verify trusted behaviors and hardware-level mechanisms, like
hardware-based firewalls, to isolate untrsuted components and
limit their dangerousness should be investigated.

REFERENCES

[1] S. Esposito, C. Albanese, M. Alderighi, F. Casini, L. Giganti, M. L.
Esposti, C. Monteleone, and M. Violante, “Cots-based high-performance
computing for space applications,” IEEE Transactions on Nuclear Sci-
ence, vol. 62, no. 6, pp. 2687–2694, 2015.

[2] M. Pignol, “Cots-based applications in space avionics,” in 2010 Design,
Automation & Test in Europe Conference & Exhibition (DATE 2010).
IEEE, 2010, pp. 1213–1219.

[3] S. Di Mascio, A. Menicucci, E. Gill, G. Furano, and C. Monteleone,
“Leveraging the openness and modularity of risc-v in space,” Journal
of Aerospace Information Systems, vol. 16, no. 11, pp. 454–472, 2019.
[Online]. Available: https://doi.org/10.2514/1.I010735

[4] S. Di Mascio, A. Menicucci, G. Furano, C. Monteleone, and M. Ottavi,
“The case for risc-v in space,” in International Conference on Appli-
cations in Electronics Pervading Industry, Environment and Society.
Springer, 2018, pp. 319–325.

[5] DIGITIMES, “Trends in the global IC design service market,”
http://www.digitimes.com/news/a20120313RS400.html?chid=2.

[6] Mohammad Tehranipoor and Cliff Wang, Introduction to Hardware
Security and Trust. Springer-Verlag New York, 2012.

[7] U. Guin, Ziqi Zhou, and A. Singh, “A novel design-for-security (dfs)
architecture to prevent unauthorized ic overproduction,” in 2017 IEEE
35th VLSI Test Symposium (VTS), 2017, pp. 1–6.

[8] U. Guin, K. Huang, D. DiMase, J. M. Carulli, M. Tehranipoor, and
Y. Makris, “Counterfeit integrated circuits: A rising threat in the global
semiconductor supply chain,” Proc. IEEE, vol. 102, no. 8, pp. 1207–
1228, 2014.

[9] A. P. Donlin, P. Sundararajan, and B. J. New, “Method and system for
secure exchange of ip cores,” Aug. 2010, uS Patent 7,788,502.

[10] A. Carelli, C. A. Cristofanini, A. Vallero, C. Basile, P. Prinetto, and
S. Di Carlo, “Securing bitstream integrity, confidentiality and authen-
ticity in reconfigurable mobile heterogeneous systems,” in 2018 IEEE
International Conference on Automation, Quality and Testing, Robotics
(AQTR), 2018, pp. 1–6.

[11] M. Tehranipoor and F. Koushanfar, “A survey of hardware trojan
taxonomy and detection,” IEEE Design & Test of Computers, vol. 27,
no. 1, 2010.

[12] A. P. Fournaris, L. Pocero Fraile, and O. Koufopavlou, “Exploiting
hardware vulnerabilities to attack embedded system devices: a survey
of potent microarchitectural attacks,” Electronics, vol. 6, no. 3, p. 52,
2017.

[13] R. Spreitzer, V. Moonsamy, T. Korak, and S. Mangard, “Systematic
classification of side-channel attacks: A case study for mobile devices,”
IEEE Communications Surveys Tutorials, vol. 20, no. 1, pp. 465–488,
2018.

[14] C. Luo, Y. Fei, P. Luo, S. Mukherjee, and D. Kaeli, “Side-channel power
analysis of a gpu aes implementation,” in 2015 33rd IEEE International
Conference on Computer Design (ICCD). IEEE, 2015, pp. 281–288.

[15] R. J. Masti, D. Rai, A. Ranganathan, C. Müller, L. Thiele, and
S. Capkun, “Thermal covert channels on multi-core platforms,” in 24th
{USENIX} Security Symposium ({USENIX} Security 15), 2015, pp.
865–880.

[16] J. Longo, E. De Mulder, D. Page, and M. Tunstall, “Soc it to em:
electromagnetic side-channel attacks on a complex system-on-chip,”
in International Workshop on Cryptographic Hardware and Embedded
Systems. Springer, 2015, pp. 620–640.

[17] M. Lipp, M. Schwarz, D. Gruss, T. Prescher, W. Haas, A. Fogh,
J. Horn, S. Mangard, P. Kocher, D. Genkin, Y. Yarom, and M. Hamburg,
“Meltdown: Reading kernel memory from user space,” in 27th USENIX
Security Symposium (USENIX Security 18), 2018.

[18] G. Falco, “When satellites attack: Satellite-to-satellite cyber attack,
defense and resilience,” in ASCEND 2020, 2020, p. 4014.

[19] G. Furano and A. Menicucci, Roadmap for on-board processing and
data handling systems in space. Springer International Publishing, 8
2017, pp. 253–281.

[20] CCSDS, “Security threats against space missions,” Informational Report
(CCSDS 350.1-G-2), 2015.

[21] P. Kocher, J. Horn, A. Fogh, D. Genkin, D. Gruss, W. Haas, M. Ham-
burg, M. Lipp, S. Mangard, T. Prescher, M. Schwarz, and Y. Yarom,
“Spectre attacks: Exploiting speculative execution,” in 2019 IEEE Sym-
posium on Security and Privacy (SP), 2019, pp. 1–19.

[22] O. Weisse, J. Van Bulck, M. Minkin, D. Genkin, B. Kasikci, F. Piessens,
M. Silberstein, R. Strackx, T. F. Wenisch, and Y. Yarom, “Foreshadow-
NG: Breaking the virtual memory abstraction with transient out-of-order
execution,” Technical report, 2018.

[23] S. Bhunia and M. Tehranipoor, Hardware security: a hands-on learning
approach. Morgan Kaufmann, 2018.

[24] Y. Jin, M. Maniatakos, and Y. Makris, “Exposing vulnerabilities of
untrusted computing platforms,” in Proc. Int. Conf. Computer Design,
2012, pp. 131–134.

[25] N. G. Tsoutsos and M. Maniatakos, “Fabrication attacks: Zero-overhead
malicious modifications enabling modern microprocessor privilege es-
calation,” IEEE Trans. Emerging Topics in Computing, vol. 2, no. 1, pp.
81–93, 2014.

[26] X. Wang, T. Mal-Sarkar, A. Krishna, S. Narasimhan, and S. Bhunia,
“Software exploitable hardware trojans in embedded processor,” in 2012
IEEE International Symposium on Defect and Fault Tolerance in VLSI
and Nanotechnology Systems (DFT). IEEE, 2012, pp. 55–58.

[27] https://github.com/xoreaxeaxeax/rosenbridge.
[28] J. A. Roy, F. Koushanfar, and I. L. Markov, “Extended abstract: Circuit

cad tools as a security threat,” in 2008 IEEE International Workshop on
Hardware-Oriented Security and Trust, 2008.

[29] M. Potkonjak, “Synthesis of trustable ics using untrusted cad tools,”
in Proceedings of the 47th Design Automation Conference, 2010, pp.
633–634.

[30] B. Kosinski and K. Dodson, “Key attributes to achieving >99.99 satellite
availability,” in 2018 IEEE International Reliability Physics Symposium
(IRPS), March 2018, pp. 6A.3–1–6A.3–10.

[31] J. B. Pessoa, “Space age: Past, present and possible futures,” Journal of
Aerospace Technology and Management, vol. 13, 2021.

[32] A. Waterman, Y. Lee, D. Patterson, K. Asanovic, and V. I. U. level Isa,
“The risc-v instruction set manual,” Volume I: User-Level ISA’, version,
vol. 2, 2014.

[33] R. Shu, P. Wang, S. A. Gorski III, B. Andow, A. Nadkarni,
L. Deshotels, J. Gionta, W. Enck, and X. Gu, “A study of security
isolation techniques,” ACM Comput. Surv., vol. 49, no. 3, Oct. 2016.
[Online]. Available: https://doi.org/10.1145/2988545

[34] C. Garlati and S. Pinto, “A clean slate approach to linux security
risc-v enclaves,” in Proceedings of the Embedded World Conference,
Nuremberg, Germany, 2020.

[35] F. Gómez, M. Masmano, V. Nicolau, J. Andersson, J. Le Rhun, D. Trilla,
F. Gallego, G. Cabo, and J. Abella Ferrer, “De-risc–dependable real-time
infrastructure for safety-critical computer systems,” Ada User Journal,
vol. 41, no. 2, pp. 107–112, 2020.

[36] A. Waterman and K. Asanovic, “The risc-v instruction set manual
volume ii: Privileged architecture document version 20190608-priv-msu-
ratified,” RISC-V Foundation, Tech. Rep., 2019.

[37] D. Lopez and E. Fraga, “Tm/tc encryption system,” in 14th International
Conference on Space Operations, 2016, p. 2330.

[38] T. Lu, “A survey on risc-v security: Hardware and architecture,” ArXiv,
vol. abs/2107.04175, 2021.

[39] S. Nashimoto, D. Suzuki, R. Ueno, and N. Homma, “Bypassing isolated
execution on risc-v with fault injection,” Cryptology ePrint Archive,
Report 2020/1193, 2020, https://ia.cr/2020/1193.

[40] A. Bolat, L. Cassano, P. Reviriego, O. Ergin, and M. Ottavi, “A micro-
processor protection architecture against hardware trojans in memories,”
in 2020 15th Design & Technology of Integrated Systems in Nanoscale
Era (DTIS). IEEE, 2020, pp. 1–6.

[41] A. Palumbo, L. Cassano, P. Reviriego, G. Bianchi, and M. Ottavi, “A
lightweight security checking module to protect microprocessors against
hardware trojan horses,” in 2021 IEEE International Symposium on
Defect and Fault Tolerance in VLSI and Nanotechnology Systems (DFT).
IEEE, 2021, pp. 1–6.

[42] K. Arikan, A. Palumbo, L. Cassano, P. Reviriego, S. Pontarelli,
G. Bianchi, O. Ergin, and M. Ottavi, “Processor security: Detecting
microarchitectural attacks via count-min sketches,” IEEE Transactions
on Very Large Scale Integration (VLSI) Systems, pp. 1–14, 2022.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on January 03,2023 at 14:38:55 UTC from IEEE Xplore. Restrictions apply.

