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A B S T R A C T   

Increase in urban flood hazards has become a major threat to cities, causing considerable losses of life and in the 
economy. To improve pre-disaster strategies and to mitigate potential losses, it is important to make urban flood 
susceptibility assessments and to carry out spatiotemporal analyses. In this study, we used standard deviation 
ellipse (SDE) to analyze the spatial pattern of urban floods and find the area of interest (AOI) based upon related 
social media data that were collected in Chengdu city, China. We used the social media data as the response 
variable and selected 10 urban flood-influencing factors as independent variables. We estimated the suscepti-
bility model using the Naïve Bayes (NB) method. The results show that the urban flood events are concentrated in 
the northeast-central part of Chengdu city, especially around the city center. Results of the susceptibility model 
were checked by the Receiver Operating Characteristic (ROC) curve, showing that the area under the curve 
(AUC) was equal to 0.8299. This validation result confirmed that the susceptibility model can predict urban flood 
with a satisfactory accuracy. The urban flood susceptibility map in the city center area provides a realistic 
reference for flood monitoring and early warning.   

1. Introduction 

More than 30% of the economic losses and victims from annual 
natural disasters are flood related (Rodriguez et al., 2021). Flooding is 
therefore among the most devastating hazards on Earth, posing great 
threats to a large amount of population in the world (Chang et al., 2021; 
Zhang et al., 2021, 2022). With its rapid urbanization and development, 
urban flood has become more and more pervasive and severe in China 
(Zheng et al., 2016). More than 100 cities have suffered from urban 
flooding since 2006, and urban flooding has thus become one of the most 
severe urban problems in China (Liu et al., 2020). Considering the 
negative influences of urban flooding, it would be highly desirable to 
better understand the mechanisms of urban flooding and susceptibility 
mapping for better management. 

Consequences of urban flooding include social and economic losses, 
property damage, loss of life, and include other indirect impacts like 
health risk. These all highlight the urgent need for a monitoring program 
(Rosenzweig et al., 2021; Yang et al., 2022). Traditional flood moni-
toring includes meteorological station/infrastructure observation, 
manual field survey, and remote sensing observation. Among these, 

infrastructure observation and manual field surveys have a limited ca-
pacity to cover fine-scale areas, because most cities lack the formal 
infrastructure for effective urban flood monitoring (Helmrich et al., 
2021). Moreover, limited cost, manpower, and physical access affect 
manual field surveys (Li et al., 2019). Nowadays, remote sensing plays 
an important role in flood monitoring (Bai et al., 2021). Previous re-
searches have used remote sensing images for monitoring flood events, 
like optical satellite images or specifically synthetic aperture radar 
(SAR) images (Sun et al., 2016). However, given the satellite revisit 
limitations, remote sensing images may be unavailable because of cloud 
cover of optical remote sensing images and the distortion effects of SAR 
data (Balz et al., 2015). 

In recent years, social media such as Weibo and Twitter have 
emerged as new data sources in natural disaster area. These can offer a 
big data volume at a high spatiotemporal resolution and with a wide 
coverage area (Wang et al., 2019). For instance, Zou et al. (2018) used 
Twitter as a data source to explore the emergency management during 
the hurricane Sandy event and found that social media data could help 
improve post disaster damage estimation. Yao et al. (2021) took the 
Changning earthquake as a case study and proposed a method to assess 
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the seismic intensity information based upon Weibo data. Li et al. (2021) 
demonstrated the efficacy of social media data when investigating aid 
evacuations during the wildfire season in the western United States. 
Although social media have been used in different kinds of natural 
disaster management, there are limited applications of urban flood 
susceptibility modelling by social media data. Regarding flood and so-
cial media related research, Songchon et al. (2021) has assessed the 
effective quality of social media data acquired from Twitter during flood 
events in Thailand. 

Data shortage and complex urban mechanisms are two major bar-
riers in urban flood susceptibility modelling and mapping research 
(Zhao et al., 2018). The deficient hydro-meteorological and hydraulic 
characteristics data make it hard to determine the most important urban 
flood mechanisms. For example, it is difficult to obtain spatiotemporal 
rainfall data of a high resolution and detailed sewer drainage data. 
Complex urban mechanisms are characterized by high-density build-
ings, winding waterways and culverts, and increasing land fragmenta-
tion (Xiang et al., 2021). Several hydrological and hydrodynamic 
models have been applied with varying degrees of success in urban 
flooding area, such as SWMM (X. Wu et al., 2017), Mike (Hénonin et al., 
2015), SUSIM (Li et al., 2019) and Info Works ICM (Cheng et al., 2017). 
Time-consuming modeling and complicated parameter estimation, 
however, are restricting their application (Zhao et al., 2019). 

Considering the above difficulties, machine learning models, which 
have shown advantages in modeling complex systems (Casali et al., 
2022), may be useful for urban flood susceptibility modelling with 
limited data (Zhao et al., 2018). Based upon statistical methods and 
computer science, machine learning models aim to develop and train 
mathematical models to find the relationship between explanatory fac-
tors and observed flood samples. These models can then be used to urban 

flood susceptibility modelling or support decision making (Ke et al., 
2020). Naïve Bayes (NB) models, comprising classical machine learning 
algorithms, apply Bayes’ theorem with predictor independence as-
sumptions. NB models can perform surprisingly well with effectively 
handling complex and incomplete data when making large-scale pre-
dictions (Tang et al., 2020). In the past, NB models have shown 
acceptable performances in landslide susceptibility mapping, wildfire 
susceptibility mapping (Pham et al., 2017) and flood susceptibility. For 
instance, Khosravi et al. (2019) used a NB model to assess the flood 
susceptibility in the Ningdu Watershed, one of China’s most flood-prone 
areas, but there has been little use of NB in predicting urban flood. 

The main objective of this study is to use social media data to map the 
urban flood prone area based on NB modeling. To achieve the primary 
purpose, this study has three sub-objectives: (1) to analyst the dynamic 
spatial characteristics changes of the urban flood events, and find the 
area of interest (AOI) based on standard deviation ellipse (SDE); (2) to 
select the related urban flood influencing factors and analyze the 
contribution of factors; and (3) to develop an NB model and train this 
model to map urban flood spatial susceptibility. The modeling will be 
carried out in Chengdu city, China. 

2. Study area and data preprocessing 

2.1. Study area 

Chengdu city (30◦39′ N, 104◦04′ E), the capital city of Sichuan 
Province, China, covers about 14,335 km2 (Fig. 1a). According to the 
administrative division standard of 2018 from the Chengdu Civil Affairs 
Bureau, there are 11 municipal districts, 4 counties and 5 county-level 
cities in Chengdu city. As the capital of Sichuan Province, Chengdu 

Fig. 1. Location of study area: (a) the administrative division of study area with the social media data; (b-e) the urban flood pictures from social media blogs, and (f-i) 
the urban flood pictures from mainstream media. The red boxes in the pictures can show the location information and the yellow boxes can reflect the severity of 
the flood. 
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city is the most important economic center in southwest China. Frequent 
urban flood disasters, however, have caused large economic losses and 
have seriously threatened the safety of people’s lives and property. 
Affected by heavy rainfalls in July 2018, Sichuan Province suffered from 
severe flooding that was not seen in 50 years. Many rivers had over- 
alerted and over-protected water levels, causing heavy losses in many 
places. Chengdu city, one of the most severely affected cities, experi-
enced 5 floods in the city on July 2, 9-11, 14-16, 15-17, and 19-21, all 
severely affecting citizens’ lives. 

2.2. Data sources 

This study requires the use of urban flooding records, topography, 
precipitation, remote sensing images, and other surface information. 
Flooding records were used to construct flood inventory maps, while the 
remaining datasets were utilized as the influencing factors of urban 
flooding. Detailed information of the datasets and their sources is shown 
in Table 1. All data are available at http://www.sciencedb.cn/dataSet 
/handle/712 (Li et al., 2018). 

2.3. Social media data cleaning and mining 

The historical urban flood records during July, 2018 were derived 
from a published social media dataset (Li et al., 2018). The open 
Application Programming Interface (API) of the Sina Weibo platform 
(https://open.weibo.com/wiki/API) provides an opportunity to capture 
blog data (Deng et al., 2016). The original dataset included 1432 blogs 
which were captured from the Weibo API by the searching strategy: 

[location = Chengdu; keywords = {‘flood disaster’, ‘flood’, ‘inun-
dation’, ‘overflow’, ‘submerge’, ‘heavy storm’}; time = 01-07-2018 to 
31-07-2018]. 

Every record had the attributes: post location, blog content, post 
time, and forwarding times. During data pre-processing, we took five 
steps to control the data quality to obtain two datasets: First, 42 dupli-
cate records were removed, resulting in dataset-1 which was used for 
precipitation-heavy storm time analysis. Second, retweeted blogs were 
removed by selecting the blogs from people that used Weibo to express 
their own conditions during the flood period, rather than to share con-
tent generated by others (Kankanamge et al., 2020). Third, blog posts 
were selected with detailed information on the geographical location of 
the street, as several records in dataset-1 provided too coarse location 
information in city/district level. We thus removed 318 records with 
locations that were at the city/district level only. Fourth, we used the 
news and reports from different sources like the mainstream media such 
as Chinanews.com, sina.com, sohu.com, scnews.newssc.org, tianqi.com, 
and official government website, e.g., gk.chengdu.gov.cn to 
cross-validate the flooding locations to assure the reliability of the data. 
Fifth, we selected blogs with photos and videos documenting the flood to 
cross-validate the flooding locations. The geotagged photos and videos 
posted in the blogs usually provided location specific, more trustworthy 
information than the text messages (Fig. 1b-i). This resulted into 325 

ultimately recognized flood sites as dataset-2. Their distribution is 
shown in. Fig. 1a. For the subsequent analysis, also 325 non-flooded 
sites were chosen according to the field survey and local news, which 
were located at high elevations and in high drainage capacity areas 
(Hosseini et al., 2020; Zhao et al., 2019). Moreover, the first author 
knows the city personally very well, as she was grown up there, and she 
used this rather subjective knowledge to help selecting the non-flooded 
sites. 

2.4. Urban flood influencing factors 

According to previous research and data availability (Hosseini et al., 
2020; Tien Bui et al., 2020; Zhao et al., 2019), we initially selected ten 
urban flood influencing factors: elevation (E), aspect (As), slope (S), 
curvature (C), average precipitation/Day (P), land cover types (LC), 
normalized difference built-up index (NDBI), the fraction of vegetation 
cover (FVC), distance to river (DR) and population density (PD). We 
divided these influencing factors into three categories: topographic 
factors, precipitation factors, and land surface factors. 

2.4.1. Topographic factors 
Topographic factors are important drivers that influence urban flood 

occurrences. Based upon the DEM, the topographical factors are derived 
either directly or indirectly. Among these factors, aspect, slope, and 
curvature were determined from the DEM, using ArcGIS 10.8.  

(1) Elevation (E): Elevation is an important influencing factor of 
urban flood, as runoff will flow from high to lower elevation areas 
(Coulthard & Frostick, 2010). The elevation in Chengdu ranges 
from 322 to 7134 m (Fig. 2a).  

(2) Aspect (As): Aspect influences the soil humidity and affects the 
flow directions (Costache, 2019). Therefore, it may have an in-
direct influence on urban flood occurrence (Tien Bui et al., 2020).  

(3) Slope (S): Slope represents the elevation change rate. Slope can 
influence the runoff speed (Kassogué et al., 2017). Steeper slopes 
can cause rapid flows, while floods tend to occur on gentle slopes.  

(4) Curvature (C): The profile curvature affects the acceleration and 
deceleration of flow and the planform curvature influences 
convergence and divergence of flow (Shahabi et al., 2021). 

2.4.2. Precipitation 
Precipitation (P) is the direct cause of urban flood in Chengdu city 

(Ke et al., 2020). The precipitation amount and duration is key in urban 
flooding, especially precipitation of a high intensity in a short duration 
(Hong et al., 2018; Wu et al., 2020). Precipitation data were available as 
text data at a district-level resolution. The average daily precipitation at 
the district-level was used as precipitation influencing factor. 

2.4.3. Land surface factors 
(1) Land cover types (LC): Runoff is influenced by different land 

cover characteristics due to its impact on infiltration and flow (Darabi 
et al., 2019). The Chengdu 2018 LC map at a 10 m resolution was ob-
tained from finer resolution observation and monitoring (Gong et al., 
2020). It contains eight classes: cropland, forest, grassland, shrubland, 
wetland, water, bare land, and impervious surface in Fig. 2e. 

(2) Normalized difference built-up index (NDBI): Built-up area rep-
resents an impervious surface and therefore plays an important role in 
urban flooding. The NDBI map was derived from the Google Earth En-
gine (GEE) platform. As shown in Fig. 2f, higher NDBI values correspond 
with a higher building density. The NDBI values were obtained by Eq. 
(1): 

NDBI =
SWIR − NIR
SWIR + NIR

(1)  

where SWIR is the short-wave infrared band, and NIR is the near- 

Table 1 
Datasets used in this study.  

Data and format Format Time Source 

Flood records Shapefile- 
Point 

July, 
2018 

Social Media data from Weibo 

Administrative 
divisions 

Shapefile- 
Polygon 

2018 Chengdu Civil Affairs Bureau 

Digital Elevation 
Model (DEM) 

Raster-30 m - The Geospatial Data Cloud 

Precipitation data Text- District July, 
2018 

Chengdu Meteorological 
Bureau 

River Shapefile- 
Polygon 

2018 National Catalogue service For 
Geographic Information 

Sentinel 2 images Raster-10 m 2018 Google Earth Engine Platform  
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infrared band. 
(3) Fraction of Vegetation Cover (FVC): The FVC corresponds to the 

fraction of ground covered by green vegetation, quantifying the spatial 
extent of the vegetation (Chu, 2020). The FCV map (Fig. 2g) was ob-
tained from Sentinal-2 satellite images acquired during the flood season 
in 2018 from the GEE platform, using the following formula: 

FVC =
NDVI − NDVImin

NDVImax − NDVImin
(2)  

where NDVI is the normalized difference vegetation index. The NDVI 
values were obtained by the red band (R) and the near-infrared band 
(NIR) using formula (3): 

NDVI =
NIR − R
NIR + R

(3) 

(4) Distance to rivers (DR): Areas close to rivers are more susceptible 
to flooding than more distant areas (Chapi et al., 2017). Distance to 
rivers (Fig. 2h) was determined from the DEM using Euclidian Distance 
module in ArcGIS 10.8.1. 

(5) Population density (PD): The impact of human activities on hy-
drology is huge, therefore we considered the influence of PD on urban 
flooding. The PD data was from Gridded Population of the World with 

the resolution of 1 km (https://sedac.ciesin.columbia.edu/data/collecti 
on/gpw-v4). 

All influencing factors were rasterized and resampled to 30 m spatial 
resolution for spatial analysis and model development. The raster 
comprised of 6169 rows by 5018 columns, corresponding to 2,427,151 
cells. 

3. Methods 

This study attempted to evaluate urban flood susceptibility based on 
social media data. To achieve this objective, the study followed the 
following steps: (1) pre-process the flood related social media data and 
collect environmental data; (2) analyze the historical urban flood 
spatiotemporal characteristics and find the AOI in study area; (3) select 
the main influencing factors by considering the complex urban features; 
and (4) train and validate the NB susceptibility model and map the 
urban flood susceptibility. 

3.1. Spatiotemporal analysis of social media data 

Since the distribution of social media data is heterogeneous, the 
spatial distribution of the data needs to be explored to find the highly 

Fig. 2. Influencing factors of urban flooding in this study: (a) Elevation, (b) Aspect, (c) Slope, (d) Curvature, (e) Land cover types, (f) Normalized difference built-up 
index, (g) The fraction of vegetation cover, (h) Distance to river and (i) Population density. 
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concentrated area as AOI. The standard deviation ellipse (SDE) devel-
oped by Lefever (1926), can capture approximately 68 % of the data 
(Xiang et al., 2021). It can help to find AOI that overcomes difficulties 
with conducting analysis in low social media density areas (Richter 
et al., 2021). It is a geospatial model that can analyze the spatial dis-
tribution characteristics of point data, central tendency, dispersion, and 
directional trends (Cheng et al., 2022). Assume the total number of so-
cial media data is n, then the location of a social media point has co-
ordinates (ai, bi) (i = 1, 2, …, n). There are mainly three steps to obtain 
the SDE:  

(1) Determine the spatial mean center point of the ellipse (a0, b0) as: 

a0 =

∑n
i=1ai

n
(4)  

b0 =

∑n
i=1bi

n
(5)  

(2) Determine the rotation angle α: 

tanα =

∑n
i=1ãi

2
−
∑n

i=1b̃i
2
+

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
( ∑n

i=1ãi
2
−
∑n

i=1b̃i
2)2

+ 4
( ∑n

i=1ãib̃i
)2

√

2
∑n

i=1x̃ib̃i
(6)  

where α refers to the azimuth of the ellipse, ãi = ai − a0, b̃i = bi − b0.  

(3) Determine the lengths of minor axe (A) and major axe (B) of the 
ellipse (Li et al., 2021). A and B are obtained as below: 

A =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ãisinα + b̃icosα)2

n

√

(7)  

B =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
∑n

i=1(ãicosα + b̃isinα)2

n

√

(8)  

where α refers to the azimuth of the ellipse, ãi = ai − a0, b̃i = bi − b0. 

3.2. Influencing factors selection process 

3.2.1. Multi-collinearity analysis of influencing factors 
The basic assumption of Naïve Bayes modeling is that all influencing 

factors are independent (Rice, 2014). Therefore, it is necessary to check 
for multicollinearity of the urban flood influencing factors. The variance 
inflation factor (VIF), or its reciprocal T = 1/VIF, were used to assess 
multicollinearity: 

VIFi =
1

1 − Ri
2 (9)  

where Ri
2 is coefficient of determination, obtained by regressing the 

factor i on all other factors in the analysis (Miles, 2014). Following 
O’brien (2007), a VIF of more than 10 and/or a T of less than 0.1 implies 
serious multicollinearity. 

3.2.2. Factor selection using recursive feature elimination algorithms 
Factor selection selects key urban flood influencing variables, thus 

avoiding redundancy in factors during modeling. Recursive feature 
elimination algorithms (RFE) aim to improve generalization perfor-
mance by removing the least important factors whose deletion will have 
the least effect on training errors (Chen & Jeong, 2007). In the absence 
of universal guidelines for urban flood factor selection, RFE was 
employed to select the key features. 

3.3. Naïve Bayes and model training 

The Naïve Bayes (NB) classifier is a classification algorithms based 
upon probability theory of the classical machine learning algorithms 
(Pérez et al., 2009). It relies on Bayes’ theorem and assumes that the 
factor features are conditionally independent given a class (Pham et al., 
2017). Therefore, classification converts to a maximum finding problem 
based upon maximum a posteriori estimation by comparing the values of 
each factor at every point with whether flooding would be expected or 
not expected. 

3.3.1. NB susceptibility model 
The NB susceptibility model is constructed following four steps: (1) 

collecting flood and non-flood samples and the influencing factors, (2) 
estimating the prior probabilities of flood class and non-flood class, (3) 
determining each class label and compute covariance matrices for each 
class, and (4) obtaining the inverse and determinant to ultimately 
construct the discriminant function for each class. 

In this study, let the vector Y correspond to the predicted class var-
iables Y = (y1, y2) (y1represents flood, and y2 represents non-flood). 
Given a specific sample to be predicted, the explanatory variables are 
expressed by a vector X = (x1, .., xm) representing the m factors (inde-
pendent variables). Using Bayes’ theorem, the posterior probability of 
sample X predicted as flood (y1) equals: 

P(Y = y1|X) =
P(Y = y1)

∏m
j=1P

(
xj|Y =y1

)

P(X)
(10)  

where P(Y= y1) is the prior probability of flooding, P(xj|Y = y1) is the 
conditional probability of the xj given that flooding occurs and the de-
nominator, P(X) is the probability of X. Note that P(X) is constant and is 
independent of the observations as the values of the factors xj are given. 

The Naïve Bayes model is based upon maximum a posterior proba-
bility. Hence, the NB susceptibility model was formulated by the 
following equation: 

fNB = argmax P(Y = y1)
∏m

j=1
P
(
xj|Y = y1

)
(11)  

where, P(Y = y1) was estimated from the training set and expressed as: 
P(Y = y1) =

Ny1
Nall

, in which Ny1 means the number of flooding samples 
and Nall means the total number of all training samples. The conditional 
probability P(xj|Y = y1) is derived using maximum likelihood estima-
tion, while the factor data format is of two types:  

(1) For LC, being a categorical variable as input, the conditional 
probability equals 

P
(
xj|Y = y1

)
=

Nxj ,y1

Ny1

(j= 1, 2, 3,…,m) (12)  

where Nxj ,y1 is the number of samples whose factor xj belongs to flooding 
samples.  

(2) For continuous variables as inputs, the Gaussian density function 
is used: 

P
(
xj|Y = y1

)
=

1
σj1

̅̅̅̅̅
2π

√ e
− (xj − μj1)

2

2σ2
j1 (13)  

where σj1 and μj1 are respectively the standard deviation and the mean 
of the factor xj in the flooding samples. 

The NB susceptibility model was implemented in R Studio 4.0.3 
using the ‘klaR’ package (Weihs et al., 2005). 
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3.3.2. Model training and validation 
The flooding and non-flooding records were assigned with the values 

1 and 0, respectively. Then, the records were converted into pixels (30 ×
30 m) and unified the coordinate system with the corresponding factors 
to form the final training and testing datasets. During the running pro-
cess of the models, 10-fold cross-validation method was used to reduce 
variability of the model results (Sylvain & Alain, 2010). 

3.4. Model performance evaluation 

True positive (TP) and false positive (FP) represent the number of 
actual flood and non-flood samples that were predicted as flood points. 
The true negative (TN) and false negative (FN) represents the number of 
actual non-flood and flood that were predicted as non-flood points. 
Among these, TP and TN are correctly predicted. We used the accuracy 
(Eq. (14)) to evaluate the model predictive performance. Accuracy is the 
correctly predicted ratio of all samples. 

Accuracy =
TP + TN

TP + TN + FP + FN
(14) 

The receiver-operator characteristic (ROC) curve is the most crucial 
method applied for verification of the susceptibility models (El-Haddad 
et al., 2021). The ROC curve that plots the ratio of correctly predicted 
pixels by the model (True Positive Rate, TPR, also known as sensitivity) 
against the ratio of incorrectly predicted pixels (False Positive Rate, FPR, 
also known as 1-Specificity). 

TPR(Sensitivity) =
TP

TP + FN
(15)  

FPR(1 − Specificity) = 1 −
TN

FP + TN
(16) 

The area under the ROC curve (AUC) is a significance measurement 
to assess the model performance (Gorsevski et al., 2006). Therefore, 
AUC is employed to validate the success of the model. It ranges from 0.5 
(poor predictive ability) to 1 (the highest accuracy and reliability). 
Normally, values exceeding 0.8 indicate very good model performance 
(Chen et al., 2018). 

Random Forest (RF) classifier proposed by Breiman in 2001 was 
selected for model comparison to test the performance of the NB model 
(Zhao et al., 2018). And the RF classifier was implemented with the 
“Random Forest” package in R Studio 4.0.3. 

4. Results 

4.1. The spatiotemporal analysis of social media flooding data 

4.1.1. Temporal analysis of social media data 
According to the rainstorm level standard from China Meteorological 

Administration, there were two extremely heavy rainstorms on 2nd and 
11th of July. The temporal distribution of the social media volume 
during July is shown in Fig. 3. It shows that the number of social media 
posts has almost the same change trends as precipitation, especially 
during the rainstorms. There are three high peaks on July 2nd, 11th and 
15th corresponding with the highest number of labeled floods. These are 
the top three social media high peak events in July, 2018. 

4.1.2. Spatial analysis and AOI selection 
The SDE model was used to visually express the spatial distribution 

of flood records during the top three social media high peak events and 
find AOI. The major SDE axis shows the data distribution direction, 
while the minor SDE axis represents the data distribution range (Li et al., 
2021). The size of the ellipse reflects the spatial concentration of social 
media data, where the area inside the SDE is the concentrated area of 
spatial points. SDEs for the top three social media high peak events are 
shown in Fig. 4, with more recent dates in darker shades. At the three 
high peaks, changes of the ellipse clearly show dynamic spatial char-
acteristics changes in the flooding influencing area. The results sug-
gested that the urban flooding social media data are concentrated in the 
northeast-central part of Chengdu city, especially in the center of the 
city. Three SDEs coincided at the city center. Meanwhile, the spatial 
mean centers (SMCs) of the SDEs capture the changes in the distribution 
of urban flood events and show the movement over time. Three SMCs 
are all located in the center city. Therefore, the center of Chengdu city 
(including Chenghua, Jingjiang, Jinniu, Qingyang, and Wuhou districts) 
is set as the AOI where the flood records concentrated. 

4.2. Influencing factors selection result 

4.2.1. Multi-collinearity analysis of influencing factors 
Table 2 shows the multicollinearity diagnostics. The collinearity 

statistics results showed the VIF values of the ten influencing factors 
were far below the critical value (10). Meanwhile, the T values were 
higher than the critical value (0.1). It indicated that there was no mul-
ticollinearity between the 10 factors, therefore, these factors were all 
selected as model inputs. 

4.2.2. Contribution analysis of influencing factors 
The NB method ranked the importance of different influencing fac-

tors (Fig. 5). The importance results showed that FVC had the highest 
importance (0.88), while the PD had the lowest importance (0.50). The 
green vegetation ratio of ground cover plays an important role in 
Chengdu city. The topographic factors show less importance than the 
land surface factors. The results showed that FVC, precipitation, and 
NDBI had high importance during urban flood susceptibility modelling 
and mapping, while population density had the lowest importance. 

Fig. 3. Temporal trends of Weibo numbers and daily precipitation during July, 2018.  
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Fig. 4. The Standard Deviational Ellipse changes of three high peak events.  

Table 2 
The multi-collinearity diagnostics results.  

Influencing factors E As S C P LC NDBI FVC DR PD 

Collinearity Statistics T 0.36 0.82 0.38 0.80 0.83 0.41 0.47 0.23 0.69 0.92 
VIF 2.81 1.22 2.65 1.25 1.20 2.46 2.13 4.27 1.46 1.08 

Note: The initially ten influencing factors are: elevation (E), aspect (As), slope (S), curvature (C), average precipitation/Day (P), land cover types (LC), normalized 
difference built-up index (NDBI), the fraction of vegetation cover (FVC), distance to river (DR) and population density (PD). 

Fig. 5. The importance rank of the influencing factors.  

Fig. 6. The ROC curve of testing dataset.  
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4.3. Model performance results 

The model achieved satisfactory accuracy performance with Accu-
racy=0.95. The ROC curve and AUC value (0.8299) of the testing 
dataset are shown in Fig. 6. Therefore, we think the model predicted 
performance is sufficient. 

4.4. Flood susceptibility mapping results 

After validating the NB model, the urban flood susceptibility of 
center area in Chengdu city is mapped (Fig. 7). According to the sus-
ceptibility map, the high urban flood susceptibility areas with red color 
were mainly concentrated in densely developed inner-city areas where 
mainly high-density building areas and roads. The area in blue color 
shows the low urban flood susceptibility areas is mostly distributed in 
mountain areas or parks with lush vegetation in the northeast, north-
west, and southeast parts of the inner-city area. We selected two classic 
example areas in rectangular labeled “A” and “B” as shown in Fig. 7. Part 
A, Chengdu Research Base of Giant Panda Breeding is a classic example 
of low flood susceptibility area, its lush vegetation could resist urban 
flood. There are eight people posted here during extreme rainfall and 
only tagged storm without flood/inundation tag. Part B, a classic 
example of high-density urban commercial/ residential area, shows high 
urban flood susceptibility. The high-density impervious surface and flat 
terrain in Part B make it easy for rainfall to accumulate and to generate 
surface runoff, resulting high urban flood susceptibility. 

5. Discussion 

Urban flood susceptibility mapping is essential for urban planning 
and management to promote the sustainable development. However, 
the lack of hydrological monitoring data and the complex hydrological 
model limit the understanding process of urban flood. This study used 
social media data to carry out urban flood spatial analyses and map 

urban flood susceptibility in Chengdu city. As a new flood monitoring 
data source, social media data can provide refined spatiotemporal in-
formation about disasters with multidimensional information like 
timestamp, pictures, text, and location tag (Dou et al., 2021). More and 
more researchers began to address the importance of social media in-
formation for disaster assessment (Yao et al., 2021; Zhang et al., 2021). 
From the temporal analysis, this study found that the temporal changes 
of the social media data has a similar trend with the average precipi-
tation, especially the extremely heavy rainstorm period. Zeng et al. 
(2020) also found the public was very much active on the web during the 
flooding event. This study has shown that social media data as a new 
data source has potential in assisting urban flood monitoring. From the 
spatial perspectives, the SDE model can find the flood density area as the 
AOI and measure the distribution of social media data. 

Due to the complex urban flood process, the factors that influence 
urban flood are complicated (Chen et al., 2019). In summary, these 
influencing factors can be categorized into four categories: topograph-
ical factors (Botzen et al., 2013), precipitation factors (Ke et al., 2020), 
land surface characteristics (Zhang et al., 2020), and urban drainage 
capacity (Zhao et al., 2018). To improve the susceptibility model effi-
ciency and performances, it is necessary to find the optimal influencing 
factors and remove the factors without contributions on the models. In 
our study, after multi-collinearity test, 10 influencing factors were 
finally selected. Among these factors, FVC is the most important influ-
encing factor (0.88) based on the RFE algorithm. Similar factor impor-
tance rankings have been detected in previous studies (Chen et al., 2019; 
Hosseini et al., 2020). However, the influencing factors selection process 
changes from one study area to another due to the different local 
characteristics. For instance, Khosravi et al. (2019) found that altitude 
(0.99) and distance to the river (0.81) had the greatest effects on flood 
occurrence during flood susceptibility modeling in the Ningdu catch-
ment. There, the flood types are mainly river floods which are influ-
enced by topographic factors and the proximity to river. The appropriate 
influencing factors, therefore, need to be selected according to the 

Fig. 7. The flood susceptibility map of center area in Chengdu. A is part of the Chengdu Research Base of Giant Panda Breeding and B is highly developed inner- 
city areas. 
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particular situation. 
Comparing the validation results with a previous study (Zhao et al., 

2019), we found that the NB model in this study returns accurate and 
stable results (AUC=0.830) even with limited data. According to model 
validation with only two class, flood and non-flood, the RF model 
(AUC=0.852) has a slightly better performance than the NB model. 
These results are in line with other researches (Khosravi et al., 2019; 
Pham et al., 2017). For instance, Pham et al. (2017) compared the 
landslide susceptibility assessment capability of NB, multilayer percep-
tron neural networks (MPNN), and functional trees (FT) methods in the 
Uttarakhand area. The results showed that the NB model (AUC = 0.838) 
had a slightly lower predictive capability as compared to the FT model 
(AUC = 0.849) and the MPNN model (AUC = 0.850). However, The NB 
model is based upon probability theory, providing posterior probabili-
ties. It is thus much easier to understand than the other two models. 
Meanwhile, the NB model can deal with both discrete and continuous 
properties quickly and efficiently. From the model comparison of 
Khosravi et al. (2019), NB outperformed other models. In summary, NB 
is a simple, effective, and interpretable model that can successfully 
predict the urban flood by learning from the training dataset. 

The urban flood susceptibility map can provide significant infor-
mation for urban plan and flood hazard management, as it can help to 
mitigate the social-economic losses of urban spaces. The urban flood 
susceptibility results in Chengdu central area suggested that densely 
developed inner-city areas has high flood susceptibility and the low 
flood susceptibility areas are mainly concentrated in the suburbs with 
lush vegetation. This also explained why the FVC is the most important 
factor. This emphasizes the importance of urban green spaces in flood 
mitigation and adaptation. Zimmermann et al. (2016) also highlighted 
the importance of green area for the urban flood risk reduction. Dense 
vegetation can help to absorb, hold the water, and decrease the runoff. 
In this regard, city planners might develop green spaces and increase the 
vegetation density with a focus on the high urban flood risk area 
throughout the city . For the places which has no option to provide urban 
green space, Afriyanie et al. (2020) provided some suggestions for urban 
flood protection, such as the improvement of water retention, drainage, 
and sewage in high-risk areas, the application of building regulations 
that can reduce risk. 

There are, however, some limitations in this study: (1) the social 
media data can easily be influenced by subjective factors; for example, 
some users may not share the geolocation considering their privacy. 
Meanwhile, we should consider the uncertainty of the real flood location 
and the location from social media data. In this research, every blog was 
reviewed manually and cross-validated by photos/video, mainstream 
media, and other flooding reports for the geographical locations. That 
may make the early acquisition, processing, and cleaning of social media 
data time-consuming. Therefore, disaster information extraction 
methods need to be further improved, including micro-blog precise 
geolocation information extraction and disaster information mining. In 
addition, areas without social media records may also be influenced by 
the flood. Thus, the number of urban flood occurrences may be under-
estimated in sparsely inhabited areas. (2) the data availability may affect 
the model performance. Due to the complexity and dynamic nature of 
urban flood, in order to further improve the model accuracy, more urban 
flood data and related influencing factors like drainage pipe density, the 
maximum of the total rainfall/day, rainfall duration and intensity 
should be collected and considered. (3) the model results only provide 
flood susceptibility mappings with flood susceptibility index. It can 
simulate the urban flood susceptibility under different influencing fac-
tors, but cannot reflect real-time flood situation including flood depth 
and velocity. In the future, we will try to integrate the hydrological/ 
hydrodynamic models with machine learning algorithm for fast and 
large-scale urban flood susceptibility mapping and protection. 

6. Conclusion 

This study presents a spatiotemporal analysis and NB machine 
learning model integration framework to evaluate the urban flood sus-
ceptibility using social media data at the central area of Chengdu city, 
Sichuan, China. The main conclusions are as follows:  

(1) The spatiotemporal analysis results of the social media data imply 
that there are three urban flood related social media high peaks in 
July, 2018 (on July 2nd, 11th, and 15th) and the historical urban 
flood events are concentrated in the northeast-central part of 
Chengdu city, especially the center of city area. SDEs can help to 
find the AOI. The same trend with extreme storm means social 
media data can be reliably used for urban flood detection and 
susceptibility mapping. Furthermore, the social media data and 
NB susceptibility model of our study framework can also be 
extended to other regions or natural hazards that are influenced 
by meteorological and environment conditions, such as wildfires, 
landslides, avalanches.  

(2) There were 10 urban flood related influencing factors including 
elevation, aspect, slope, curvature, average precipitation/Day, 
land cover types, NDBI, FVC, distance to river, and population 
density finally selected for model input. The rationality of these 
factors was diagnosed by multicollinearity test of tolerance and 
VIF. Among the factors, the FVC factor had the highest impor-
tance during the urban flood susceptibility modelling. This 
highlights the importance of green spaces and vegetation density 
in urban flood resilience.  

(3) The NB urban flood susceptibility model was validated and 
evaluated by using 10-fold cross-validation, Accuracy confusion 
matrix, and the ROC curve. The results showed a very good 
performance (Accuracy=0.95, AUC=0.83) and the urban flood 
susceptibility of center area in Chengdu city is mapped. The 
resultant urban flood susceptibility map estimates reveal where 
urban floods are likely to occur under certain environmental 
conditions, which can facilitate understanding the easy-flood 
area and provide Chengdu government a realistic reference for 
decision-making. 
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