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Abstract. Neural Radiance Fields (NeRF) is a powerful novel technol-
ogy for the reconstruction of 3D scenes from a set of images captured
by static cameras. Renders of these reconstructions could play a role in
virtual presence in the operating room (OR), e.g. for training purposes.
In contrast to existing systems for virtual presence, NeRF can provide
real instead of simulated surgeries. This work shows how NeRF can be
used for view synthesis in the OR.

A depth-supervised NeRF (DS-NeRF) is trained with three or five syn-
chronised cameras that capture the surgical field in knee replacement
surgery videos from the 4D-OR dataset. The algorithm is trained and
evaluated for images in five distinct phases before and during the surgery.
With qualitative analysis, we inspect views synthesised by a virtual cam-
era that moves in 180 degrees around the surgical field. Additionally, we
quantitatively inspect view synthesis from an unseen camera position in
terms of PSNR, SSIM and LPIPS for the colour channels and in terms
of MAE and error percentage for the estimated depth.

DS-NeRF generates geometrically consistent views, also from interpo-
lated camera positions. Views are generated from an unseen camera
pose with an average PSNR of 17.8 and a depth estimation error of
2.10%. However, due to artefacts and missing of fine details, the synthe-
sised views do not look photo-realistic. Our results show the potential of
NeRF for view synthesis in the OR. Recent developments, such as NeRF
for video synthesis and training speedups, require further exploration to
reveal its full potential.
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1 Introduction

The presentation of a novel approach for view synthesis called Neural Radiance
Fields (NeRF) [6] caused an explosion of interest in the field of computer vision.
Even though the original paper was presented recently, a large number of follow-
up studies have already been published [19]. However, NeRF-based methods for
clinical use remain largely unexplored. At the same time, there is increasing
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interest in virtual presence in operating rooms (ORs) during real or simulated
surgeries. For example, the National Autonomous University of Mexico used
virtual reality to simulate an OR, including distractions and interruptions, to
train paediatric surgical residents during the COVID-19 pandemic [10]. Apart
from surgical training with virtual reality [I5], physician assistant students can
greatly benefit from training in a virtual environment [2].

NeRF is a powerful technology for the reconstruction of a 3D scene from a set
of images that capture the scene from various camera positions. Likewise, this
technology could be used to build 3D representations of clinical environments
such as the OR. NeRF requires only a set of calibrated cameras that capture
the scene of interest and does not depend on any physical marker or complex
sensory system. When applied to overhead cameras in the OR, NeRF could
build 3D reconstructions of the surgical environment, providing the ability to
render videos that virtually record surgical scenes. These videos could be used for
virtual presence, helping students or clinicians to experience a surgery without
the need to be actually present. The advantage over the existing systems for
virtual presence in the OR, such as the ones mentioned above, is that NeRF can
provide real instead of simulated surgeries.

In this paper, we show how NeRF can be used for view synthesis in the
OR. We show that depth-supervision [I] helps to increase the render quality
and reduces the need for many camera positions. This is particularly relevant
for clinical environments, where it is generally impossible to capture the scene
with tens to hundreds of cameras. In fact, we find that a depth-supervised NeRF
with only three or five synchronised camera views captures the surgical field, and
is able to generate images of the surgical intervention from a range of camera
angles. In contrast to existing depth-supervision in NeRF, we directly optimise
our model using measured RGB-D sensor data instead of estimated depth from
a Structure from Motion (SfM) algorithm.

2 Related work

2.1 Neural Radiance Fields

NeRF is a method for volume rendering, based upon the implicit representation
of a 3D scene in the weights of a neural network Fg [6]. This network is generally
a standard multi-layer perceptron (MLP) that takes a 5D vector (x,y, 2,0, ¢) as
input and that outputs a 4D vector (RGB, o). An input vector consists of a
3D location (z,y, z) in the captured scene and an orientation (6, ¢) from which
this location is viewed. Fg returns for each vector a colour RGB and a volume
density o. With this simple setup, NeRF can reconstruct images by casting a
viewing ray from each pixel, sampling points along that ray, asking the MLP
to find the colours and densities for these points and to sum over these results.
In this way, it is possible to use a discrete set of sampled points in the 3D
scene, while representing the 3D scene in continuous form. Reconstructed images
are compared with ground truth images that are taken from the same camera
positions. Importantly, the rendering function that sums over the found colours
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and densities is differentiable such that the MLP can be optimised by stochastic
gradient descent. The loss function is often a total squared error between the
colours of the rendered and the ground truth images.

2.2 NeRF with Depth Priors

Although the original NeRF has the ability to synthesise photo-realistic images
from unseen camera perspectives, there are some limitations. One is that NeRF
does not guarantee to capture 3D geometry accurately, which appears to be
problematic for poorly textured areas that often occur in indoor scenes [18].
Additionally, points are randomly sampled along a viewing ray, even though
most of these points will describe empty space. It is likely that these problems
will play a role when NeRF is applied to scenes in the OR, as these involve a
large indoor environment.

Several solutions are proposed that enforce NeRF to find a more accurate
geometry by regularisation with depth priors. Nerfing MVS [18] provides a guided
optimisation scheme for NeRF, where points are sampled along a viewing ray
only around depth values found earlier. A sparse set of depth values is found
by applying the COLMAP SfM algorithm [I4] on the multi-view images. The
sparse sets are used to train a depth completion network that provides full sets
of depth values. With this optimisation scheme, NeRF is able to provide more
accurate depth maps and has a better understanding of the scene’s 3D geometry.
[8] have shown that computational costs at inference can be reduced significantly
when conditioning NeRF on depth information. Their method involves another
sampling strategy to include only points located around surfaces. These point
locations are predicted by an oracle network.

[13] present a similar approach to leverage depth priors with depth-guided
sampling. Additionally, the authors propose to add a loss term that enforces
NeRF to terminate rays close to the most certain depth observations that are
provided by a depth completion network. The work by [12] shows how a depth-
constrained NeRF is able to reconstruct large urban areas by training the net-
work with an additional loss term as well. The loss enforces NeRF to represent
a large amount of volume density around ground truth depth values found with
a LiDAR sensor and a small amount in the area along the viewing ray that
is closer to the camera. The depth-supervised NeRF [I] uses an additional loss
function that operates with known depth values from RGB-D data or that are
obtained from the COLMAP algorithm. This loss constraints the distribution of
ray terminations to be similar to the known depth distribution by minimising
the KL divergence between the two. The key insight is that they consider the
uncertainty of the known depth values and constrain NeRF proportionally to
the uncertainty.

The work above shows that depth priors help to reduce the number of camera
poses required for NeRF to synthesise high-quality images. This is particularly
relevant for the OR, where it is not possible to put cameras at all locations and
the overall number of available cameras is limited.
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2.3 NeRF for Clinical Interventions

Although NeRF has not been widely adopted in the field of computer-assisted
interventions, the technology has been used for 3D reconstruction of soft tis-
sues in robotic surgery videos by [16]. Because the laparoscopic view is a single
view, their method uses time-dependent modelling of neural radiance and dis-
placement fields, based upon D-NeRF [11]. Using the stereoscopic camera of the
surgical robot, the method finds depth maps along the coloured image frames.
The depth information is used to constrain NeRF optimisation with an addi-
tional loss function.

3 Methods

3.1 Depth-Supervised NeRF

We use the depth-supervised NeRF (DS-NeRF) by [1] for building 3D recon-
structions of OR scenes. This method regularises the training with an additional
depth loss such that a model can be optimised with relatively few camera po-
sitions. The key idea in DS-NeRF is that most viewing rays terminate at the
closest surface, which is often opaque. Therefore, most volume density should
be found close to the distance of this surface along the viewing ray. DS-NeRF
enforces such a distribution of volume density by minimising the KL divergence
between the volume density distribution h;(¢) and a normal distribution around
the ground truth depth d; of keypoint x; € X:

KL[N(d;, ;)i (t)], (1)

where X is the set of all keypoints in an image for which the depth is known
and t is the far endpoint of the viewing ray. The variance 6; is set to the uncer-
tainty of the depth estimation for keypoint x;. When depth is estimated with
COLMAP, the uncertainty is calculated by re-projecting the keypoint to and
from another camera position in which the keypoint is visible. In RGB-D data,
however, the depth values are measurements rather than estimations. Therefore,
we set 6; = 1.0 for all keypoints such that each depth value is weighted equally.
We sample 10° depth values in each ground truth image at random positions,
where pixels that have a depth value equal to zero are never included.

3.2 Dataset

The 4D-OR dataset [9] from the Technical University of Munich contains RGB-D
images and camera poses from ten simulated knee replacement surgeries. We use
this dataset to train a DS-NeRF in the reconstruction of five distinct phases in
the surgery: “empty OR”, “patient in”, “draping”, “cleaning” and “procedure”
(see Figure . In this way, we can evaluate the quality of synthesised views for
different OR activities.

The dataset contains synchronised images from six cameras that have fixed
locations in the OR. Three of these cameras are located above the surgical field,
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Empty OR Patient in Draping Cleaning Procedure

Fig. 1. Five distinct phases during or before the surgery. All images are obtained with
the same camera.

Fig. 2. Locations of the RGB-D cameras are indicated by a red or green dot. The view-
ing angle is directed by the arrows. Red dots indicate three cameras located above the
surgical field, whereas the green dots capture the OR from very different perspectives.
The scene is a coloured point cloud formed by camera projection using depth values.

each rotated approximately 90 degrees around the yaw axis (the red dots in Fig-
ure . Two of the three other cameras capture the OR from a wide perspective,
while the sixth camera records from a position that is closer to the ground (the
green dots in Figure [2)).

3.3 Experimental Setup

Our experiments are separated into two steps: a qualitative and quantitative
analysis. In the qualitative step, we train DS-NeRF with three images from
the cameras above the surgical field (the “red” cameras). After training, we
instruct the algorithm to synthesise views from these exact poses as well as from
interpolated poses that together form a 180 degrees rotation around the surgical
field. In the quantitative step, we train DS-NeRF with five images captured by
the camera positions that are not circled in Figure[2} At inference, the algorithm
synthesises views from the remaining sixth position (the circled camera pose)
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which is unseen during training. We compare the resulting coloured images with
ground truth images in terms of PSRN, SSIM [17] and LPIPS [20]. Similarly, we
evaluate the quality of depth perception in terms of mean absolute error (MAE)
and in percentage of the ground truth depth value. Note that depth values equal
to zero in the ground truth images are not included in this evaluation, since
these values can be perceived as inaccurate measurements.

For all reconstructed scenes, DS-NeRF is trained to synthesise images with a
resolution of 512 x 384 pixels with the following hyperparameters: 4096 selected
rays per batch, 64 points sampled per ray, 5 x 10% iterations and depth loss
weighting factor A\p set to 0.1.

4 Results

4.1 Qualitative Analysis

The synthesised views for surgical phases “empty OR”, “patient in” and “proce-
dure” are given in Figure[3] When comparing the top-row synthesised views with
the ground truth images, it can be seen that DS-NeRF is able to reconstruct
the surgical scenes independent of surgical phase. Lighting conditions such as
reflections on the floor and shadows are realistically rendered. However, the re-
constructed scene looks smoothed with missing details, e.g. in the keyboard of
the mobile monitor or the sterile clothing of the physician.

Synthesised views from the interpolated camera poses (images without red
borders in Figure [3)) correctly grasp the geometry of the scenes and realistically
find the right lighting conditions. Nevertheless, the images do not look realis-
tic due to a number of artefacts. One is the white background pixels that are
rendered when DS-NeRF does not find any material density along viewing rays.
These are present in the far corners of the OR. Second, a number of objects
seem to be misaligned and occurring twice. For example, the tape on the floor
and the instrument table are not always represented correctly. Surprisingly, this
artefact seems to be less present in the “procedure” phase. Third, fine-grained
details, such as the surgical instruments in the hands of the left physician, are
missing to make the images convincingly realistic.

4.2 Quantitative Analysis

Results of the quantitative analysis can be found in Table[l] On average, DSNeRF
is able to synthesise views from the unseen camera pose with 17.8 PSNR, 0.60
SIMM and 0.47 LPIPS. These results are comparable to the performance of the
original NeRF on the NeRF Real dataset [5] when trained with 5 images: 18.2
PSNR, 0.57 SSIM and 0.50 LPIPS [1]. However, DSNeRF on the same dataset
gains higher performance scores: 22.6 PSNR, 0.69 SSIM and 0.35 LPIPS. This
indicates that our dataset is more challenging for the synthesis of high-quality
images. The image quality of the rendered views on the 4D-OR dataset differs
per phase and ranges in PSNR from 16.9 for “patient in” to 19.3 for “empty
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Phase: Empty OR Patient in Procedure

Ground truth

view:

Synthesised
views:

Fig. 3. DS-NeRF synthesised views for three phases in the OR where the virtual camera
rotates 180 degrees around the surgical field. The top row displays the ground truth
images for the starting camera pose. Views with a red border are generated from the
camera poses with which the algorithm is trained, corresponding to the red camera
positions in Figure [2]
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Table 1. Evaluation metrics comparing DS-NeRF synthesised views with unseen
ground truth RGB-D images.

Colour Image Depth Map
Surgery phase PSNR?t SSIM?t LPIPS| MAE (in cm)] Error (in %){
Empty OR 19.3 0.71 0.44 2.3 0.97
Patient in 16.9 0.57 0.48 3.4 1.48
Draping 18.3 0.60 0.46 5.3 2.11
Cleaning 17.3 0.57 0.48 4.4 2.28
Procedure 17.3 0.57 0.50 5.8 3.67
Average 17.8 0.60 0.47 4.2 2.10

Table 2. Evaluation metrics for NeRF synthesised views with and without depth-
supervision.

Colour Image Depth Map
Depth-supervision ~ PSNRtT  SSIMt  LPIPS| MAE (in cm)]  Error (in %)
v 17.8 0.60 0.47 4.2 2.10
X 14.2 0.50 0.64 56.2 23.35

OR”. This shows that the image quality is dependent on the complexity of the
surgical scene.

Table |2 displays the quality of the colour images and depth maps for NeRF
with and without depth-supervision. The quality of the colour images decreases
from 17.8 to 14.2 PSNR, while the error in depth estimation accuracy increases
drastically from 4.2 to 56.2 cm. In terms of percentages, the depth error increases
from 2.10 to 23.35 %. These results show that depth-supervision helps NeRF to
reconstruct the scene’s 3D geometry accurately, resulting in a higher quality of
synthesised images.

Figure [4] displays the estimated depth for an unseen camera position in the
“procedure” phase in comparison with the ground truth depth channel captured
from the same camera pose. It can be seen that DS-NeRF is able to grasp
the geometry of the captured scene accurately. Moreover, the algorithm is able
to generate depth values that are not present in the ground truth image due
to the depth sensor’s hexagon shape or sensor artefacts (e.g. the zero-valued
“shadows”).

5 Discussion

In this work, we explored the use of Neural Radiance Fields (NeRF) [6] for
reconstructing surgical scenes in the operating room (OR) with multi-view RGB-
D images from the 4D-OR dataset [9]. We showed that the application of an
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Fig. 4. Example depth estimation output of DS-NeRF for the “procedure” phase
(right) in comparison with the ground truth depth channel (left). Color bar displays
distance in cm.

original NeRF does not provide optimal reconstruction results and that the use of
depth-supervision benefits the quality of the synthesised views. Depth-supervised
NeRF (DS-NeRF) [I] removes the necessity to train the algorithm with tens to
hundreds of camera positions, which are difficult to obtain during a surgical
procedure.

Visual inspection of synthesised views around the surgical field showed that
DS-NeRF is able to generate realistic images from the camera poses that the
algorithm is trained with. Additionally, it is possible to use the technology to
virtually rotate around the surgical field while the synthesised images remain
geometrically consistent. However, the synthesised views from unseen camera
poses miss fine details and contain artefacts that make the images look unreal-
istic. Training with more camera positions, larger image resolutions or stronger
geometric priors can potentially help the algorithm produce views with higher
quality.

The quantitative evaluation of DS-NeRF in generating views from an unseen
camera position finds that the algorithm can produce views with a PSNR of 17.8.
In comparison, DS-NeRF could generate views with larger image quality on the
NeRF Real and the Redwood-3dscan datasets [I]. The performance difference
can be explained by the distinct camera poses in the 4D-OR dataset, making
the dataset more challenging for view synthesis. On the contrary, we found that
DS-NeRF is able to find accurate depth maps for unseen camera poses, with an
average depth error of 2.10%.

We envision several potential uses for NeRF in the synthesis of OR images.
The technology could be used for rendering virtual environments displaying real
surgeries in 3D. With the current state of NeRF, where the rendering process is
time-consuming, the most obvious use is for post-surgery rendering, where videos
display the surgery from angles where no camera was originally positioned. In
the long term, when NeRF rendering becomes cheaper, one could think of more
interactive ways of experiencing a surgical procedure, either during or post-
surgery, where the user could choose camera position, angle and zoom. The
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virtual renders could be static moments in a procedure, like “snapshots”, or
could display the surgery over time.

Besides improving the quality of view synthesises, there are other develop-
ments that could increase the impact of NeRF for 3D reconstruction in the OR.
One is the synthesis of video instead of static images, which is shown to be pos-
sible []. The time dimension can put an additional constraint on the training
of NeRF, which is likely to benefit the rendering quality. More importantly, the
synthesis of video would make NeRF more interesting for the development of
virtual training applications. Another development is the drastic speedup in the
training and rendering of NeRF algorithms. For example, [7] have shown that it
is possible to train high-quality neural graphics in seconds rather than minutes
to hours. Last, the implicit 3D representation of the surgical scene could be used
for further processing. For example, methods that use 3D representations for de-
tecting human poses [3] have a potential benefit in using NeRF representations
of humans in the OR, especially when NeRF is fitted to videos. Other video pro-
cessing tasks, such as background removal, object detection and segmentation
could potentially benefit similarly.

In conclusion, depth-supervised NeRF is able to synthesise views of the sur-
gical field from OR images in which the 3D geometry is captured accurately. To
reveal the full potential of NeRF for OR view synthesis, there remain several
developments, such as video synthesis, training speedups and the use of implicit
representations for downstream video processing tasks, that require further ex-
ploration.

Declarations

Research at the Centre for Artificial Intelligence at Meander Medisch Centrum
is sponsored by Johnson & Johnson, Ltd. Jelmer M. Wolterink was supported
by NWO domain Applied and Engineering Sciences VENI grant (18192).

GitHub projects with the DS-NeRF code implementation [I] and instructions
for downloading the 4D-OR dataset [9] are available publicly online.

References

1. Deng, K., Liu, A., Zhu, J.Y., Ramanan, D.: Depth-supervised nerf: Fewer views and
faster training for free. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 12882-12891 (2022)

2. Francis, E.R., Bernard, S., Nowak, M.L., Daniel, S., Bernard, J.A.: Operating
room virtual reality immersion improves self-efficacy amongst preclinical physician
assistant students. Journal of surgical education 77(4), 947-952 (2020)

3. Gerats, B.G., Wolterink, J.M., Broeders, [.A.: 3d human pose estimation in multi-
view operating room videos using differentiable camera projections. arXiv preprint
arXiv:2210.11826 (2022)

4. Li, T., Slavcheva, M., Zollhoefer, M., Green, S., Lassner, C., Kim, C., Schmidt,
T., Lovegrove, S., Goesele, M., Newcombe, R., et al.: Neural 3d video synthesis
from multi-view video. In: Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition. pp. 5521-5531 (2022)



10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Depth-Supervised NeRF for Multi-View RGB-D Operating Room Images 11

Mildenhall, B., Srinivasan, P.P., Ortiz-Cayon, R., Kalantari, N.K., Ramamoorthi,
R., Ng, R., Kar, A.: Local light field fusion: Practical view synthesis with pre-
scriptive sampling guidelines. ACM Transactions on Graphics (TOG) 38(4), 1-14
(2019)

. Mildenhall, B., Srinivasan, P.P., Tancik, M., Barron, J.T., Ramamoorthi, R., Ng,

R.: Nerf: Representing scenes as neural radiance fields for view synthesis. In: ECCV
(2020)

Miiller, T., Evans, A., Schied, C., Keller, A.: Instant neural graphics primitives
with a multiresolution hash encoding. ACM Trans. Graph. 41(4), 102:1-102:15
(Jul 2022). https://doi.org/10.1145/3528223.3530127, https://doi.org/10.1145/
3528223.3530127

Neff, T., Stadlbauer, P., Parger, M., Kurz, A., Mueller, J.H., Chaitanya, C.R.A.,
Kaplanyan, A., Steinberger, M.: Donerf: Towards real-time rendering of compact
neural radiance fields using depth oracle networks. In: Computer Graphics Forum.
vol. 40, pp. 45-59. Wiley Online Library (2021)

Ozsoy, E., Ornek, E.P., Czempiel, T., Tombari, F., Navab, N.: 4d-or: Semantic
scene graphs for or domain modeling. In: International Conference on Medical
Image Computing and Computer-Assisted Intervention. Springer (2022)
Pérez-Escamirosa, F., Medina-Alvarez, D., Ruiz-Vereo, E.A., Ordorica-Flores,
R.M., Minor-Martinez, A., Tapia-Jurado, J.: Immersive virtual operating room
simulation for surgical resident education during covid-19. Surgical Innovation
27(5), 549-550 (2020)

Pumarola, A., Corona, E., Pons-Moll, G., Moreno-Noguer, F.: D-nerf: Neural ra-
diance fields for dynamic scenes. In: Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition. pp. 10318-10327 (2021)

Rematas, K., Liu, A., Srinivasan, P.P., Barron, J.T., Tagliasacchi, A., Funkhouser,
T., Ferrari, V.: Urban radiance fields. In: Proceedings of the IEEE/CVF Conference
on Computer Vision and Pattern Recognition. pp. 12932-12942 (2022)

Roessle, B., Barron, J.T., Mildenhall, B., Srinivasan, P.P., Niefiner, M.: Dense
depth priors for neural radiance fields from sparse input views. In: Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2022)

Schonberger, J.L., Frahm, J.M.: Structure-from-motion revisited. In: Proceedings
of the IEEE conference on computer vision and pattern recognition. pp. 4104-4113
(2016)

Seymour, N.E.: Vr to or: a review of the evidence that virtual reality simulation
improves operating room performance. World journal of surgery 32(2), 182-188
(2008)

Wang, Y., Long, Y., Fan, S.H., Dou, Q.: Neural rendering for stereo 3d recon-
struction of deformable tissues in robotic surgery. In: International Conference
on Medical Image Computing and Computer-Assisted Intervention. pp. 431-441.
Springer (2022)

Wang, Z., Bovik, A.C., Sheikh, H.R., Simoncelli, E.P.: Image quality assessment:
from error visibility to structural similarity. IEEE transactions on image processing
13(4), 600-612 (2004)

Wei, Y., Liu, S., Rao, Y., Zhao, W., Lu, J., Zhou, J.: Nerfingmvs: Guided optimiza-
tion of neural radiance fields for indoor multi-view stereo. In: Proceedings of the
IEEE/CVF International Conference on Computer Vision. pp. 5610-5619 (2021)
Xie, Y., Takikawa, T., Saito, S., Litany, O., Yan, S., Khan, N., Tombari, F., Tomp-
kin, J., Sitzmann, V., Sridhar, S.: Neural fields in visual computing and beyond.
In: Computer Graphics Forum. vol. 41, pp. 641-676. Wiley Online Library (2022)


https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127
https://doi.org/10.1145/3528223.3530127

12 B.G.A. Gerats et al.

20. Zhang, R., Isola, P., Efros, A.A., Shechtman, E., Wang, O.: The unreasonable
effectiveness of deep features as a perceptual metric. In: Proceedings of the IEEE
conference on computer vision and pattern recognition. pp. 586-595 (2018)



	Depth-Supervised NeRF for Multi-View RGB-D Operating Room Images

