
Article

Evaluating Degradation Coefficients from Existing
System Models

Jude A. Osara 1,* and Michael D. Bryant 2

����������
�������

Citation: Osara, J.A.; Bryant, M.D.

Evaluating Degradation Coefficients

from Existing System Models. Appl.

Mech. 2021, 2, 159–173. https://

doi.org/10.3390/applmech2010010

Received: 8 February 2021

Accepted: 9 March 2021

Published: 12 March 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 Department of Mechanics of Solids, Surfaces and Systems, Universiteit Twente,
7522 NB Enschede, The Netherlands

2 Mechanical Engineering Department, The University of Texas at Austin, Austin, TX 78712, USA;
bryantmd@austin.utexas.edu

* Correspondence: j.a.osara@utwente.nl

Abstract: A generalization of the Degradation-Entropy Generation (DEG) theorem to multi-disciplinary
multi-physics system-process analysis via a combination with pre-existing system models is presented
in this article. Existing models and the DEG methodology are reviewed, and a method for evaluating
degradation coefficients Bi is proposed. These coefficients characterize the system’s transformation
based on active dissipative mechanisms, including temperature effects. The consistency of entropy
generation in characterizing degradation is then inherited by these often-empirical system models,
thereby rendering them more robust and applicable to similar systems without the need for numerous
tests and measurements for model corrections. The approach applies to all systems and can quickly
analyze and predict a system’s performance and degradation, even in the absence of experimental
data (using known properties and material constants). Demonstrated applications herein include
mechanically loaded systems (frictional wear, grease shearing, fatigue loading), electrochemical energy
systems, thermal processes, and others.

Keywords: system analysis; degradation; thermodynamics; entropy generation; fatigue; lubricating
grease; electrochemical systems; batteries; frictional wear

1. Introduction

System characterization models are discipline specific. Formulations are often derived
from the natural laws governing the prevalent active interactions using properties that
characterize the system and the process. For example, a strain-loaded system is often
characterized using the system’s strength (or stress σ) and the strain process rate (or
strain rate

.
ε); electrochemical systems are characterized using the system’s electrochemical

potential (or voltage E) and the discharge/charge process rate (or current
.
q); tribological

systems use friction force F (the product of the system’s friction coefficient and normal force,
often the system’s weight) and interfacial velocity

.
x; thermal processes use the system’s

heat capacity C (the product of its mass and specific heat capacity) or thermal conductivity
k, and the temperature change rate

.
T or gradient ∇T (also the heat transfer rate); and

mass transfer processes use the system’s pressure P, density ρ (or specific volume v) or
concentration and mass flow rate

.
m. Note that in the above examples, interactions are

appropriately described by conjugating system variables with process variables.
Engineers in industry combine time-invariant system response simulations with

experimental data to characterize a system. In fields where established simulation tools are
not available, statistical analyses and curve fits of measured data are used. A large number
of system- and process-specific empirical models are published regularly, which are not
applicable to other similar systems when parameters change. Individual manufacturers
and laboratories utilize vast research and development resources in characterizing a system,
thereby reducing resources available for optimizing or improving the system. In this study,
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existing multi-physics system models are reviewed and combined with the Degradation-
Entropy Generation DEG theorem [1]. Degradation coefficients are obtained to unify all
system analyses consistently via one approach, irrespective of the base model, response
parameter or material constant selected for analysis.

Entropy Generation, a Measure of System Degradation

The consistency of entropy generation in characterizing irreversibilities in systems
and processes continues to attract degradation/failure experimentalists from various fields.
Recent multi-disciplinary works have shown excellent correlations between entropy-based
failure models and experimental measurements [2]. Basaran et al. [3–7] defined damage,
via Boltzmann’s entropy, as a measure of the change in order/disorder. Using several
experimental verifications including solder joints and composites, the authors demon-
strated high model-to-experiment correlation. This series of works led to the formulation
of the unified mechanics theory [8] which combines a thermodynamic state index with
otherwise steady-state physical laws to render them more consistent with experimental
observations. Combining thermodynamic laws with damage mechanics, Sosnosvskiy and
Sherbakov [9,10] introduced the tribo-fatigue entropy to measure local damage accumula-
tion in a mechanical system. Their approach, termed mechanothermodynamics, includes
damage distribution in a volume, correlating well with measurements. Entropy-based
works of Khonsari et al. [11–20] have shown consistently accurate characterizations of
various mechanical systems under diverse forms of loading, such as grease shearing, metal
and composite laminate fatigue as well as interfacial sliding wear. Cuadras et al. [21–23]
used entropy generation to estimate damage in resistors, capacitors and batteries, show-
ing consistent correlations between model and measurements. Various works by Bryant
et al. [1,24–26] characterizing frictional wear via entropy transfer out of a tribo-control vol-
ume led to the formulation of the universally consistent Degradation-Entropy Generation
(DEG) theorem [1], which has been shown highly accurate in characterizing real systems
undergoing spontaneous degradation often leading to failure. Using several experimental
verifications, Osara and Bryant [2,27–30] extended the original DEG theorem to unsteady
interactions and nonlinear degradation of multi-component multi-physics system-process
interactions including batteries, grease and general fatigue. This article presents a simple,
direct and practical approach for evaluating system-characteristic degradation coefficients
via a combination of existing system models (theoretical, semi-empirical or empirical) with
the minimum entropy generation. The approach is demonstrated for multidisciplinary
systems. To keep the discussion herein concise and focused on the primary objective,
detailed thermodynamics derivations and discussions are excluded from this article. In
the Appendix A, a short summary of relevant foundational irreversible thermodynamics
concepts is presented, with several references provided for further reading.

2. Existing System Characterization Models and Material Constants

Here we briefly review a few models selected from the literature for diverse
engineering systems.

2.1. Grease

The rheological properties—thixotropy and viscoelastoplasticity—of grease, a semi-
solid, make it only partially compliant with Newtonian physics. Manufacturers use in-
house application-dependent half-empirical grease models curve-fitted from hundreds of
data sets. NLGI classifications of grease types are given in ranges [31] to provide manu-
facturers a margin for experimental inconsistencies. Over time, extensive grease research
has led to several models describing grease behavior under load. Most of these models
are based on very slow shearing of grease at constant temperature, to minimize plastic
deformation and strength dissipation, which in turn yields the most consistent experimen-
tal correlations. Validity of grease models is often limited to certain operating conditions.
Shear stress τ, shear strain rate

.
γ (also shear rate or strain rate), viscosity η, penetration,
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thixotropic index and shear modulus G are some commonly used grease characterization
parameters and material constants. Table 1 highlights a few grease characterization models
for various operational mechanisms.

Table 1. Highlights of a few commonly used grease models.

Operational
Mechanism

Transformation
Measure System Model Notes

Mechanical

Shear stress
(Yield stress τy)

Power-law: τ = K
.
γ

n
Earliest widely adopted model, limited to a narrow range of

medium shear rates [32]. K is consistency factor and n is
flow index.

Herschel-Bulkley:
τ = τy + K

.
γ

n

Currently the most widely used. Good correlation with data at
shear rates between 0.001 and 1000 s−1 [33,34]. n ≈ 0.5

for greases.
Sisko [35]:

τ = K
.
γ

n
+ ηb

.
γ

Typically applied to high shear rates (>1000 s−1).

Maxwell:
dτ
dt = G

( .
γ− τ

η

) Widely used to describe viscoelasticity using a spring in series
with a viscous damper. Gives an accurate time-based shear stress

response at constant shear but does not accurately describe
response to constant shear stress [36].

Gecim and Winer [37]:
.
γ =

1
G∞

dτ
dt +

τL
µ tanh−1

(
τ
τL

) Adds a nonlinearity to the Newtonian component in the Maxwell
model using the limiting shear stress τL concept [37].

Shear strain
Kevin-Voigt:
dγ
dt = τ−γG

η

Connects the spring and damper in parallel and accounts for the
constant shear stress time-dependent strain response. Does not

accurately predict relaxation [36].

Viscosity

Mewis [38]:
dη
dt = k

[
ηe
( .
γ1
)
− η

]n Gives rate of change of viscosity at constant shear rate. Constants
ki are empirically determined.

Cross [39]:
dN
dt =

k2P−
(
k0 + k1

.
γ1

m)N

Gives the rate of bond breakdown in grease in terms of number of
linkages N. The number of links per chain N is further related

to viscosity.

Thermal

Shear stress τ = γ0G
[
exp
(

Ea
RT

)] Uses the Arrhenius formulation to describe grease response to
temperature changes [36]. Ea is activation energy, R is universal

gas constant.

Yield stress
Lugt [32]:

τy
τy0

= exp
[(

T0−T
b

)
ln2
] Extends the Arrhenius formulation to yield stress τy. Constant b

is empirical.

Viscosity
Lugt [32]:

η = η0

[
exp
(

Ea
RT

)] Arrhenius formulation using viscosity.

Chemical

Shear stress Osara [2]:
dτ
dt = τ0kexp(−kt)

Based on Rhee’s [40]
% degradation = e−kt

Viscosity
Osara [2]:

dη
dt = η0kexp(−kt)

Extends Rhee’s [40]
% degradation = e−kt

to viscosity.

Mass
Lugt [41]:

dm
dt = m0kexp(−kt)

Describes oxidation in grease via mass change. Here, k is
rate constant.

In Table 1, the mechanical grease shearing models combine Newtonian, Hookean
and power law formulations—the thermal and chemical models are Arrhenian—with
experimental measurements. These models are limited to a range of shear rates, grease
types and load types, and deviate significantly when applied to uncontrolled grease
degradation. Manufacturers apply Table 1 models, and others, with empirical corrections
from measured data.

2.2. Electrochemical Energy Storage

Energy storage systems such as batteries and capacitors provide portable storage of
electrochemical energy. Rechargeable energy storage systems continue to gain significance
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in consumer devices and industrial facilities. Safety and durability issues have plagued
the battery industry since the first battery was made, limiting the availability of a battery’s
energy during operation. Typical battery life is the number of full discharge-charge cycles
before available charge content drops below 80% of initial charge capacity. Battery instabil-
ity is exacerbated by fast and/or deep cycling. The complex internal kinetics of batteries
limit the validity of available characterization models to battery types, configurations and
scales. Battery materials researchers and manufacturers rely on voltage-charge curves and
Coulomb-counted charge transfer obtained from controlled low-rate cycling, for perfor-
mance analysis. These are inconsistent when the battery undergoes typical in-operation
use—irregular and abusive. Battery models, often empirical, use voltage and charge as
characterization parameters. Physics-based models use electrochemical energy. Table 2
reviews a few electrochemical system models or “figures of merit” [42] in the literature.
Here, E is voltage, R is resistance,

.
q is charge rate or current, q is charge content, F is

Faraday’s constant and t is time.

Table 2. A review of a few selected electrochemical system models [42].

Transformation
Measure System Model Notes

Voltage E = R
.
q Ohm’s law: voltage as a function of current

and resistance.
Charge content q = q0 ±

∫ t
t0

.
qdt Charge levels via Coulomb counting.

Concentration change ∆c = ϕ
.
qt

nFE

Evaluates active species concentration change via
Faraday’s electrolysis laws, where ϕ is current

efficiency, t is time, n is number of active species and
F is Faraday’s constant.

Internal resistance Z = EOC−E
.
q

A measure of the battery’s degradation via its
resistance to charge flow, where EOC is

open-circuit voltage.

Fractional conversion XA = m0±m
m0

Fraction of active species converted during
electrochemical reaction, where m is amount of

reactant (mass or number of moles).

Mass transport
coefficient kL =

.
qL

AnFc

Measures flow/consumption of active species in
electrochemical systems with significant mass

transfer/diffusion, where
.
qL is limiting current, A is

electrode area and c is active species concentration.

2.3. General Fatigue

All dynamically loaded non-fluid systems eventually fail. Solids are analyzed using
combinations of Newtonian and Hookean mechanics. For metals, which show significant
elastic response to certain load magnitudes, steady-state three-dimensional Hookean-based
simulations are combined with experimental load-to-failure tests to establish structural
integrity under fatigue loading. To avoid unexpected failure due to the inconsistencies in
characterization approaches and in situ material response, safety factors are applied during
design stages. For high-cycle fatigue (HCF), stress-based approaches such as the stress-life
and Modified Goodman curves are used. Components prone to low-cycle fatigue (LCF)
are designed using a combination of strain-based models such as Coffin-Manson’s strain-
reversals relation [43] and Morrow’s plastic strain energy density [44] with significant
safety margins. Table 3 lists a few commonly used fatigue measures (σ = stress or strength,
M = moment, Mt = torque, I = second moment of inertia, J = polar moment of inertia,
σ′ f = fatigue strength coefficient, ε′ f = fatigue ductility coefficient, N = number of cycles).
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Table 3. A few commonly used fatigue models [43,45].

Transformation
Measure System Model Notes

Stress/Strength

Bending Stress: σ =
My

I
Shear Stress: τ =

Mty
J

Fatigue Strength (HCF):

σN =
σ′ f

2(4E6)b Nb

σe

σN = σ0

(
1+N/Ne

N

)α

Based on Hookean mechanics, which assumes elastic response to loading.
The fatigue strength (σN) equations are obtained from load-to-failure

tests on standard specimens. Special factors are included to account for
materials, surface finishes and other physical aspects of the specimen.
Typically used in high-cycle fatigue analysis. Here, y is distance, σe is

endurance strength, Ne is endurance cycle number, and b and α are
empirically determined parameters.

Strain εa =
σ′ f
E

(
2N f

)b
+ ε′ f

(
2N f

)c

Coffin-Manson equation: empirically determined plastic strain response
to loading, in addition to elastic strain. Typically used for low-cycle

fatigue, where b and c are evaluated from empirical load-to-failure data.
Nf is number of cycles to failure.

CDM Damage D =
−DNf −1

lnN f
ln
[
1− N

N f

] Based on Continuum Damage Mechanics, the damage variable D
predicts a logarithmic load-to-failure response [45].

Fracture rate da
dN = C(∆K1)

m Paris law for predicting crack growth, where a is crack length, ∆K1 is
stress intensity range per cycle, C and m are empirical material constants.

Fatigue models in Table 3 are either steady-state physics-based or load-to-failure
empirical [43]. Their correlations with actual in-operation data are inconsistent, requiring
significant corrections and safety factors. Highly conservative design (or over-designing),
which wastes resources, is often an undesired result of using these approaches.

3. The Degradation-Entropy Generation (DEG) Theorem

Bryant et al. [1], following a series of experimental studies of friction wear, proposed
the Degradation-Entropy Generation DEG theorem which linearly correlates a degradation
measure w and entropy generation S′ i. Mathematically,

′
w = ∑

i
Bi

.
S
′
i (1)

where degradation/transformation coefficients Bi = ∂w
∂S′ i

∣∣∣
pi

are obtained as slopes of

degradation measure w, with respect to entropy generations S′ i; the
∣∣pi notation indicates

active processes pi numbered by index i. Details of the DEG theorem, including statements
and proof, can be found in [1]. Frictional wear [1,24–26] and fatigue [11–17] experiments
verified the theorem. A breakdown of entropy generation can be found in this article‘s
Appendix A. Osara and Bryant [2,27–30], via a combination of Equations (A3) and (A4)
(see Appendix A) with Equation (1), instantaneously characterized unsteadily loaded multi-
component multi-physics systems, with verification using measured data from grease aging,
lithium-ion battery and lead-acid battery degradation, and general fatigue experiments.

3.1. DEG Methodology Procedure

Bryant et al. proposed a structured approach for applying the DEG theorem to
degradation analysis: identify and measure the degradation measure w and active process
energies pi (or powers); evaluate entropy generation S′i = S′i(pi) caused by the pi; relate
degradation measure to entropy generation terms to obtain transformation coefficients.
When measurements are available, the extended approach for instantaneous analysis
by Osara and Bryant, presented in recent publications [2,27–30], is recommended. With
entropy defined as the quotient of energy and temperature, the DEG approach subsumes
temperature effects.

3.2. DEG Coefficients

DEG coefficients Bi show the system’s natural response to active dissipative processes
and conditions by estimating the processes’ contributions towards system degradation
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and eventual failure. For monotonically aging systems, e.g., a solid under low-cycle
fatigue loading, DEG coefficients from the first few time steps predict the system’s normal
operating path, and can be used for instantaneous health monitoring and failure detection.
In non-reactive systems, load-to-failure DEG coefficients from a representative sample of
the system can characterize other systems of the same composition undergoing similar
processes in operation. In secondary (rechargeable) energy systems, DEG coefficients
obtained from the first few cycles predict subsequent cycles to failure. Evaluating the
Bi from Equation (1) indicates a high entropy generation rate yields a low Bi for a given
transformation rate. Hence a high Bi (for primary interactions) is favorable to system
transformation. This article combines the DEG theorem with existing system-specific
models to obtain characteristic DEG coefficients.

4. A Brief Review of Existing DEG Models

The DEG theorem is general and about the dynamics of loss and dissipation. The theo-
rem renders the differential equations governing any loss or dissipative process, including
material degradation and processes that dissipate energy, such as battery discharge and
flow disruption. Several experimental studies have applied the DEG theorem to multi-
physics systems undergoing steady, unsteady and abusive loadings with results yielding
characteristic DEG coefficients.

4.1. Frictional Wear

Characterization of material wear occurring at a dynamic tribological interface is one
of the earliest applications of the DEG theorem [1,24–26]. Relating measured wear volume
to entropy transfer out of the interface (obtained from temperature-only measurements)

wv = BW
Q
T

(2)

Bryant et al. obtained the wear-characteristic DEG coefficient. Here, Q is heat transfer
into/out of the tribo-control volume.

4.2. Grease

Osara and Bryant, applying the DEG theorem to grease degradation, obtained the
shear stress-based relationship [27]

∫ t

t0

τdt = BµT

∫ t

t0

−
(

ρclnT +
α

κT
γ

) .
T
T

dt + BW

∫ t

t0

−τ
.
γ

T
dt (3)

Data from mechanical shearing of two grease types yielded DEG coefficients BµT =
−0.504 Pa-s K/J and BW = −10.36 Pa-s K/J (NLGI 4 grease), and BµT = −0.031 Pa-s K/J
and BW = −10.38 Pa-s K/J (NLGI 2 grease), obtained using strain rate-controlled grease
shearing. In Equation (3), ρ is density, c is specific heat capacity, α is thermal expansion
coefficient, κT is isothermal shearability (the inverse of the shear modulus G) and other
variables are as defined previously.

4.3. Electrochemical Energy Storage Systems

Measurements from abusive cycling of several 6 V lead-acid and 3.7 V lithium-ion
batteries verified the DEG battery model given as [28,30]

q =
∫ t

t0

.
qdt = BVT

∫ t

t0

q
.
E

T
dt + BW

∫ t

t0

E
.
q

T
dt (4)

where variables are as defined previously. Degradation coefficients obtained from battery
discharge data are BVT = 13.8 Ah K/Wh and BW = 51.9 Ah K/Wh for lead-acid batteries;
and BVT = 113 Ah K/Wh and BW = 76.6 Ah K/Wh for lithium-ion batteries.
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4.4. General Fatigue

Application of the DEG methods to fatigue yielded the strain-based model (for stress-
controlled loading) [29]

ε =
∫ t

t0

.
εdt = BµTSµT + BWSW (5)

where microstructurothermal (MST) entropy SµT = −
∫ t

t0

(
ρclnT + εα

κT

) .
T
T dt and load en-

tropy SW = −
∫ t

t0
Ndt

σN
T :

[ .
εeN +

(
1−n′
1+n′

) .
εpN

]
dt. For very high-cycle fatigue and infinite

life, assuming elastic (and isothermal) load, Equation (5) reduces to

ε = BW
σN
T

εe. (6)

For strain-controlled loading, stress response may be used as transformation measure.
Data measured during low-cycle fatigue of a stainless-steel specimen SS 304 yielded
DEG coefficients BµT = 0.22 (bending) and 0.42 (torsion); and BW = −0.92 (bending) and
−1.96 (torsion).

4.5. Combined Adhesive and Abrasive Wear

Lijesh and Khonsari [19] presented a DEG model characterizing multiple wear modes.
Combining frictional entropy generation—from frictional force F and velocity

.
x—with

measured volumetric wear rate

wv = B1

∫ t1

t0

F1
.
x1

T1
+ B2

∫ t2

t1

F2
.
x2

T2
+ B3

∫ t3

t2

F3
.
x3

T3
(7)

the authors obtained degradation coefficients from data measured on a tribometer with a
stationary pin on a rotating disk: B1 = 0.422 mm3 K/J (for adhesion wear mode), B2 = 0.436
mm3 K/J (for transition wear, an unsteady process) and B3 = 0.464 mm3 K/J (for abrasion
wear) for the three wear regions identified.

5. Degradation Coefficients from a Combination of the DEG Models and Other
Existing Multi-Physics Models

To use the system-specific models in Section 2 (Tables 1–3), researchers and indus-
try engineers have to adhere to strict assumptions, use specialized equipment and test
several samples of the component or system. Since all systems dissipate energy which
generates entropy during loading, a combination of the DEG theorem with an established
system-specific governing equation can yield degradation coefficients that consistently
characterize the systems. Simple or in situ measurements can then be used to evaluate
entropy generated by the active processes. A concise discussion of entropy generation is
presented in the Appendix A. Table A1 lists minimum (or pseudo-steady) entropy gener-
ation equations for various system-process interactions. In the absence of measurement
capabilities, existing data in the literature can also be used to estimate values for a system’s
degradation coefficients.

For solid interfacial wear due to sliding friction governed by Coulomb’s friction
law F = ηN and Archard’s wear law

.
w = kN

.
x/H, minimum entropy generation rate,

from Equation (A1) with X = F and
.
J =

.
x, is

.
S′min = ηN

.
x/T. Via the DEG theorem,

Equation (1), wear rate
.

w = BηN
.
x/T which, via comparison with Archard’s wear law,

yields degradation coefficient B = kT/ηH. Here, k is wear constant, T is temperature, µ
is friction coefficient, H is the hardness of the softer material and

.
x is interfacial sliding

velocity. Doelling et al., using an experimentally measured B, obtained a value of Archard’s
wear constant k similar to that obtained by Rabinowicz. This procedure can be applied to
all and sundry systems, as demonstrated in the subsequent sub-sections for the previously
reviewed systems.
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5.1. Grease

Steady entropy generation rate due to mechanical shearing of grease, Table A1, is
.
S′min = Vτ

.
γ/T and for chemical degradation,

.
S′min = µ

.
m

MMT . Thermal entropy rate due

to temperature change, a transient phenomenon, is
.
S = C

.
T/T. V is volume, τ is shear

stress,
.
γ is shear strain rate, T is temperature, µ is chemical potential,

.
m is mass flow rate,

MM is molecular mass and C is heat capacity. Presented in Table 4 are combinations of
various system models (column 3) with DEG models (column 4) to yield degradation
coefficients (column 5), as done for interfacial wear in the previous paragraph. In Table 4,
Pen = penetration depth; see definitions of other variables in Table 1.

Table 4. Degradation coefficients from existing grease models reviewed in Table 1.

Mechanism Measure System Model DEG Model Degradation Coefficient

Mechanical

Shear stress Maxwell:
dτ
dt = G

( .
γ− τ

η

) dτ
dt = B Vτ

.
γ

T B = TG
Vτ

.
γ

( .
γ− τ

η

)
Shear strain

Kevin-Voigt:
dγ
dt = τ−γG

η

dγ
dt = B Vτ

.
γ

T B = T
Vτ

.
γη

(τ − γG)

Viscosity
Mewis:

dη
dt = k

[
ηe
( .
γ1
)
− η

]n
Cross: dN

dt = k2P−
(
k0 + k1

.
γ1

m)N

dη
dt = B Vτ

.
γ

T

B =
kT[ηe−η]n

Vτ
.
γ

B =
T[k2P−(k0+k1

.
γ

m
)N]

Vτ
.
γ

Yield stress
H-B: τ = τy + K

.
γ

n

τy = 3E10 ∗ Pen−3.17 τ = B
V

.
γ
∫

tN
τdt

T B =
T(τy+K

.
γ

n
)

V
.
γ
∫

tN
τdt

Consistency Pen =
(
32.5 ∗ 1031.7τy

−0.315)
Pen = B

V
.
γ
∫

tN
τdt

T B =
T(32.5∗1031.7τy

−0.315)
V

.
γ
∫

tN
τdt

Thixotropic
Index TI = ηs

η10s
=

10(τ−γG)s
(τ−γG)10s

TI = B
V

.
γ
∫

tN
τdt

T
B = 10Tτs.

γV τ10s
∫

tN
τ

Thermal
Yield stress τy

τy0
= exp

[(
T0−T

b

)
ln2
]

τy = BCln
[

T
T0

]
BT =

τy0exp
[

T0−T
b ln2

]
Cln[T/T0]

Viscosity η = η0

[
exp
(

Ea
RT

)]
η = BCln

[
T
T0

]
BT =

η0[exp( Ea
RT )]

Cln[T/T0]

Chemical
Shear stress dτ

dt = τ0kexp(−kt) dτ
dt = B µ

.
m

MM T Bm =
τ0kMM Texp(−kt)

µ
.

m

Viscosity dη
dt = η0kexp(−kt) dη

dt = B µ
.

m
MM T Bm =

η0kMM Texp(−kt)
µ

.
m

Mass dm
dt = m0kexp(−kt) dm

dt = B µ
.

m
MM T Bm =

m0kMM Texp(−kt)
µ

.
m

5.2. Electrochemical Energy Storage Systems

For a battery or other electrochemical energy device governed by Ohm’s law E =
R

.
q, minimum entropy generation rate is S′min = E

.
qt/T. Thermal entropy rate due to

temperature change only is
.
S = C

.
T/T. Table 5 presents previously reviewed battery

models (in column 2) which are directly compared (equated) to DEG models (in column 3)
to yield degradation coefficients (column 4).
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Table 5. Degradation coefficients from existing electrochemical energy storage models reviewed in Table 2.

Measure System Model DEG Model Degradation Coefficient

Voltage E = R
.
q dE

dt = B E
.
q

T B = T
q

Charge content q =
∫ t

t0

.
qdt q = B

∫ t
t0

E
.
q

T dt B = T
E

Concentration change ∆c = ϕ
.
qt

nFE ∆c = B E
.
qt
T B =

Tϕ
nFE2

Internal resistance Z = EOC−E
.
q Z = B E

.
q

T B =
T(EOC−E)

E
.
q2

Fractional conversion XA = m0±m
m0 XA = B E

.
q

T B =
T(m0±m)

E
.
qm0

Mass transport coefficient kL =
.
qL

AnFc kL = B E
.
q

T B =
T

.
qL

E
.
qAnFc

5.3. General Fatigue

Similar to grease, a semi-solid, mechanically loaded solid materials, via stress σ and
cyclic strain amplitude

.
ε, generate steady-state entropy at rate

.
S′min = σ :

.
ε/T and for

chemical degradation including metal rust,
.
S′min = µ

.
m

MMT . Thermal entropy rate due to

temperature change is
.
S = C

.
T/T. In the absence of measured stress and strain, empirical

relations can be used to estimate entropy generation. For steels, combining elastic energy
We with Morrow’s cyclic plastic strain energy Wp gives

.
S′min =

.
W/T =

( .
We +

.
Wp

)
/T =

σN
T :

[
εeN + εpN

(
1−n′
1+n′

)]
, where the subscript N denotes cyclic. In Table 6, previously

reviewed fatigue models (column 2) are combined with DEG models (column 3) to obtain
degradation coefficients (column 4).

Table 6. Degradation coefficients from existing fatigue models reviewed in Table 3. Note the logarithmic entropy generation

ln
[

1− S′W
S′Wf

]
derived for CDM damage [2] where load entropy S′W =

.
W/T and S′W f is the value at failure.

Measure System Model DEG Model Degradation Coefficient

Stress/Strength

σ =
My

I
τ =

Mty
J

σN =
σ′ f

2(4E6)b Nb

σe

σN = σ0

(
1+N/Ne

N

)α

σ = B σ:
.
ε

T

τ = B τ:
.
γ

T

σN = BW
σ′ f :ε

T

BWσ
=

MyT
Iσ

.
ε

BWτ
=

MtyT
Jτ

.
γ

BWN =
σ′ f

2(4E6)b Nb

σe
/
[

σ′ f :ε
T

]
BWN =[

σ0

(
1+N/Ne

N

)α]
/
[

σ′ f :ε
T

]
Strain εa =

σ′ f
E

(
2N f

)b
+ ε′ f

(
2N f

)c
εa = BWN

∫ Nlc f
N0

.
W
T dN BWN =

σ′ f
E (2N f )

b
+ε′ f (2N f )

c∫ Nlc f
N0

.
W
T dN

CDM Damage D =
−DNf −1

lnN f
ln
[
1− N

N f

]
D = BWD ln

[
1− S′W

S′Wf

]
BWD = −

DNf −1

lnN f

Fracture rate da
dN = C(∆K1)

m da
dN = B (G−2γ0)

.
J

T B =
TC(∆K1)

m

(G−2γ0)
.
J

In Tables 4–6, a consistent approach for obtaining DEG coefficients from existing
system models was demonstrated for variegated multi-physics system transformations.
The degradation coefficients can then be used to predict aging/degradation behavior and
trajectory of the system as done in prior DEG publications.

5.4. High-Rate Processes and Multiple Simultaneous Dissipation Mechanisms

High-rate mechanical, electrical and chemical processes generate heat in the system
which, in turn, raises the system’s temperature. For such systems and others undergoing
multiple energy transformations, the DEG theorem suggests degradation is determined
from the sum of the individual contributions of all the active transformations. For mate-
rials undergoing high-rate processes accompanied by temperature rise, a thermal model
should be added to the primary process model. However, for relatively steady processes
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or slow to average-speed processes, individual models in Tables 4–6 apply adequately
and consistently.

For systems undergoing multiple concurrent interactions, a degradation coefficient is
obtained for each interaction. Combined, total degradation due to simultaneously active
processes is

.
w = B1

.
S
′
1 + B2

.
S
′
2 + . . . + Bi

.
S
′
i (8)

where i indexes active interactions. This renders a degradation model—which can be cali-
brated via pre-existing models—-that weighs influence of energy changes due to individual
dissipative processes. Substituting the degradation coefficients from the viscosity rows of
Table 4 into Equation (8)—selecting the Mewis model for mechanical—yields total rate of
degradation due to mechanical, chemical and thermal mechanisms, gauged with viscosity

dη

dt
=

η0

[
exp
(

Ea
RT

)]
ln(T/T0)

 .
T(t)
T(t)

+

[
kT(ηe − η)n

τ

]
τ(t)
T(t)

+

[
−η0kMMTexp(−kt)

.
m

] .
m(t)
T(t)

(9)

where constants C,
.
γV and µ divide out. Similarly, total degradation rate via shear stress,

using the Maxwell model for mechanical, is

dτ

dt
=

τy0exp
[

T0−T
b ln2

]
ln[T/T0]

 .
T(t)
T(t)

+

[
TG
τ

(
.
γ− τ

η

)]
τ(t)
T(t)

+

[
−τ0kMMTexp(−kt)

.
m

] .
m(t)
T(t)

(10)

The terms in square brackets can be evaluated from known properties or models of
grease, or measured on samples. The coefficients determine the significance of individual
dissipative processes and can be used in in situ optimization. In Equations (9) and (10), only
changing values of temperature, shear stress and mass need be monitored to determine
degradation rate.

5.5. Unsteady Interactions

Processes with significant fluctuations render steady-state or single-process models in
Tables 1–3 often inadequate for system characterization, introducing errors and inconsistency
of results. As anticipated, obtained DEG coefficients will inherit the inconsistencies associated
with the extent of invalidity/deviation of the used model from the actual process. For such
highly unsteady interactions, which typically do not have established system models, a more
detailed thermodynamic analysis employing the free energies (see Equations (A3) and (A4) in
the Appendix A) was presented by the authors in recent publications (references [2,27–30]).

6. Summary and Conclusions

In this study, the universal and direct applicability of the Degradation-Entropy Gen-
eration DEG theorem to interdisciplinary multi-physics system degradation analysis was
demonstrated. Degradation coefficients Bi were obtained via a combination of the DEG
theorem with pre-existing system-specific models. The proposed method was applied
to several grease, battery and fatigue models. Using measured or existing data in the
literature, system transformation/degradation behavior can be readily characterized for
diagnostic and prognostic analysis.
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Abbreviations

Nomenclature Name
B Degradatioin (or DEG) Coefficient
q Charge content or capacity
F Force
S Entropy or entropy content
S’ Entropy generation or production
t Time
T Temperature
E Voltage
V Volume
w Degradation measure
N Number of cycles or Normal force
Symbols
σ Stress or strength
ε Strain
τ Shear stress or shear strength
γ Shear strain
η Viscosity
µ Chemical potential
ρ Density
Subscripts & Acronyms
0 Initial
f Failure or Final
VT Electro-Chemico-Thermal
MST, µT MicroStructuroThermal
min Minimum
rev Reversible
phen Phenomenological
DEG Degradation-Entropy Generation
N Number of cycles
W Work or Load

Appendix A. Entropy Generation in Active Systems

In this section, we concisely review relevant irreversible thermodynamics concepts,
from Prigogine’s minimum entropy generation (Equation (A1)) and variation of entropy
generation (Equation (A2)) to Osara and Bryant’s phenomenological entropy generation
rate (Equations (A3) and (A4)). To keep this article focused on the discussion in the
main body, this Appendix A excludes detailed discussions of thermodynamics which are
beyond the current scope. This paper’s primary goal is to present a quick, practical and
easy-to-adopt combination of entropy with existing models via the DEG theorem. We
recommend to the interested reader references [2,27–30] for more on detailed derivations
and breakdowns.

Appendix A.1. The Single-Variable System and Minimum Entropy Generation

System-process properties (or variables) often conjugate in pairs to define the system’s
power, e.g., σ

.
ε, E

.
q, F

.
x, C

.
T, k∇T, Pv

.
m define mechanical, electrochemical, frictional/dynamic,

thermal (heat storage and transfer) and flow powers, respectively. Power and energy for-
mulations define macro transformations of systems between equilibrium states, hence are
reversible. Real systems, undergoing non-equilibrium transformations, are irreversible.
Theory and experiments have long established that the accuracy of energy formulations
in real system characterization is higher at slow process rates: a quasi-static (very slow or
nearly stationary) system is quasi-reversible. For example, cycling a battery at a high rate
generates internal heat at a high rate, rendering power E

.
q inadequate for full characteri-

zation of the battery’s transformation. This is similarly observed in other systems whose
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models require temperature correction or isothermal conditions in experiments. However,
many systems operate long enough to asymptotically approach steady state, during which
temperature variation is minimal and therefore, negligible. Such a system undergoing a
single predominant process is termed a single-variable system [1]. For example, steel fa-
tigue measurements by Naderi and Khonsari [12,15] showed a pseudo-steady temperature
region for most of the sample’s fatigue life, prior to failure. Via temperature control, Bryant
et al. [1] adequately characterized a frictional process using only the frictional work.

To measure the internal material disorganization that accompanies energy trans-
formation in real systems, the second law introduces entropy. Generalizing Clausius’
entropy—the quotient of heat transfer and temperature—to all systems, seminal works by
Rayleigh, Onsager and Prigogine defined a system’s minimum entropy generation rate as the
quotient of power and temperature. Mathematically [46–48],

.
S
′
min =

X
.
J

T
(A1)

where X is generalized force (or potential),
.
J is generalized flow rate, T is temperature,

and X/T is termed the thermodynamic force. The dot notation represents time rate of
change. Equation (A1) applies to single-variable systems—systems that are minimally
perturbed from equilibrium, defining the minimum condition (reference limit) for any
real system to exist in nature, also known as the stationary non-equilibrium state [46,48].
The single-variable system, a pseudo steady-state system-process interaction, generates
minimal entropy. Table A1 lists minimum entropy generation rate equations for various
multi-physics systems.

Table A1. Steady-state or minimum entropy generation rate for multi-physics active dissipative processes.

Mechanism Minimum Entropy Generation

Solid Interfacial Sliding—Friction
.
S
′
min =

ηN
.
x

T
Battery Cycling

.
S
′
min =

E
.
q

T
Heat Transfer

.
S
′
min = Q

(
1
T2
− 1

T1

)
Lubricant Shearing

.
S
′
min = Vτ

.
γ

T
Diffusion

.
S
′
min =

(µhigh−µlow)
.

N
T

Abrasion/Cutting
.
S
′
min = F

.
xc
T

Reactions (Chemical, Nuclear, etc.)
.
S
′
min =

µ
.

m
MM T

Stress/Fatigue Loading
.
S
′
min = Vσ:

.
ε

T
Fracture

.
S
′
min = (G−2γ0)

.
J

T

Appendix A.2. The Thermodynamic Simple System and Phenomenological Entropy Generation

According to the thermodynamic state postulate [47,49–51], the state of a simple system
is completely specified by r+1 independent intensive properties where r is the number of prevalent
work interactions. To fully characterize a real system undergoing one, often unsteady,
work interaction, at least two intensive properties are needed, the limit of which is the
thermodynamic simple system. At steady state, the simple system reduces to the single-
variable system described in Equation (A1). For example, the accuracy of Coulomb-counted
charge capacity is directly dependent on the rechargeable battery’s cycling rate—higher
accuracy for slow cycling with minimal temperature rise [52–56].

For real systems undergoing nonequilibrium transformations, Prigogine defined the
variation of entropy production [46,48]

.
S
′
local =

J
.

X
T

+
X

.
J

T
(A2)
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where the first right-hand side term characterizes internal instabilities. Combining the first
and second laws of thermodynamics with the free energies, Osara and Bryant showed that
a (thermodynamic) system’s free entropy generation rate [2,27–30]

.
S
′
=
−S

.
T

T
+

X
.
J

T
−

.
Arev

T
(A3)

where S is entropy content, Arev is the free energy (Helmholtz or Gibbs) and other vari-
ables are as defined previously. Equation (A3) applies to all real macroscopic systems
undergoing far-from-equilibrium energy transformations. The last right-hand side term
in Equation (A3), the reversible entropy rate, can be assumed constant and defined at an
initial/final reference time, and can be neglected in active system analysis. The first two
right-hand side terms form the phenomenological entropy generation rate [2,27–30]

.
S
′
phen =

−S
.
T

T
+

X
.
J

T
(A4)

which measures a real system’s instantaneous maximum work-based entropy generation
rate [2,27–30]. In Equations (A3) and (A4), the first right-hand side term measures the
internal dissipation effects and fluctuations that accompany unsteady processes, and the
second term is the primary interaction entropy (used throughout the main article) that de-
fines minimum entropy generation. Hence, for highly transient interactions, the minimum
entropy generation, Equation (A1), is inadequate; Equations (A2)–(A4) are recommended
instead. For a pseudo steady-state process or a process with minimal temperature variation
(

.
T ≈ 0) or a quasi-static—approximating a very slow—process, Equations (A2) and (A4)

reduce to Equation (A1), making the latter adequate for characterizing such processes.
Significantly unsteady interactions are beyond the scope of this article, hence, for more on
Equations (A1) and (A2), the interested reader should consult references [46,47]. Detailed
derivations and discussions of Equations (A3) and (A4) can be found in references [2,27–30].

References
1. Bryant, M.D.; Khonsari, M.M.; Ling, F.F. On the thermodynamics of degradation. Proc. R. Soc. A Math. Phys. Eng. Sci. 2008,

2001–2014. [CrossRef]
2. Osara, J.A. Thermodynamics of Degradation; The University of Texas at Austin: Austin, TX, USA, 2017. [CrossRef]
3. Basaran, C.; Nie, S. An irreversible thermodynamics theory for damage mechanics of solids. Int. J. Damage Mech. 2004, 13,

205–223. [CrossRef]
4. Basaran, C.; Lin, M.; Ye, H. A thermodynamic model for electrical current induced damage. Int. J. Solids Struct. 2003, 40,

7315–7327. [CrossRef]
5. Basaran, C.; Yan, C.Y. A Thermodynamic Framework for Damage Mechanics of Solder Joints. ASME Trans. J. Electron. Packag.

1998, 120, 379–384. [CrossRef]
6. Gomez, J.; Basaran, C. Damage mechanics constitutive model for Pb/Sn solder joints incorporating nonlinear kinematic hardening

and rate dependent effects using a return mapping integration algorithm. Mech. Mater. 2006, 38, 585–598. [CrossRef]
7. Gomez, J.; Basaran, C. A thermodynamics based damage mechanics constitutive model for low cycle fatigue analysis of

microelectronics solder joints incorporating size effects. Int. J. Solids Struct. 2005, 42, 3744–3772. [CrossRef]
8. Basaran, C. Introduction to Unified Mechanics Theory with Applications, 1st ed.; Springer International Publishing: Berlin/Heidelberg,

Germany, 2021. [CrossRef]
9. Sosnovskiy, L.A.; Sherbakov, S.S. On the development of mechanothermodynamics as a new branch of Physics. Entropy 2019,

21, 1188. [CrossRef]
10. Sosnovskiy, L.; Sherbakov, S. Mechanothermodynamic Entropy and Analysis of Damage State of Complex Systems. Entropy 2016,

18, 268. [CrossRef]
11. Naderi, M.; Khonsari, M. Real-time fatigue life monitoring based on thermodynamic entropy. Struct. Health Monit. 2011, 10,

189–197. [CrossRef]
12. Amiri, M.; Naderi, M.; Khonsari, M.M. An Experimental Approach to Evaluate the Critical Damage. Int. J. Damage Mech. 2011, 20,

89–112. [CrossRef]
13. Naderi, M.; Khonsari, M.M. Thermodynamic analysis of fatigue failure in a composite laminate. Mech. Mater. 2012, 46, 113–122.

[CrossRef]

http://doi.org/10.1098/rspa.2007.0371
http://doi.org/10.15781/T2Z892W3V
http://doi.org/10.1177/1056789504041058
http://doi.org/10.1016/j.ijsolstr.2003.08.018
http://doi.org/10.1115/1.2792650
http://doi.org/10.1016/j.mechmat.2005.11.008
http://doi.org/10.1016/j.ijsolstr.2004.11.022
http://doi.org/10.1007/978-3-030-57772-8
http://doi.org/10.3390/e21121188
http://doi.org/10.3390/e18070268
http://doi.org/10.1177/1475921710373295
http://doi.org/10.1177/1056789509343082
http://doi.org/10.1016/j.mechmat.2011.12.003


Appl. Mech. 2021, 2 172

14. Amiri, M.; Khonsari, M.M. Rapid determination of fatigue failure based on temperature evolution: Fully reversed bending load.
Int. J. Fatigue 2010, 32, 382–389. [CrossRef]

15. Naderi, M.; Khonsari, M.M. An experimental approach to low-cycle fatigue damage based on thermodynamic entropy. Int. J.
Solids Struct. 2010, 47, 875–880. [CrossRef]

16. Naderi, M.; Amiri, M.; Khonsari, M.M. On the thermodynamic entropy of fatigue fracture. Proc. R. Soc. A Math. Phys. Eng. Sci.
2010, 46, 423–438. [CrossRef]

17. Naderi, M.; Khonsari, M.M. A comprehensive fatigue failure criterion based on thermodynamic approach. J. Compos. Mater. 2012,
46, 437–447. [CrossRef]

18. Lijesh, K.P.; Khonsari, M.M. Characterization of abrasive wear using degradation coefficient. Wear 2020, 450–451, 203220.
[CrossRef]

19. Lijesh, K.P.; Khonsari, M.M. Characterization of multiple wear mechanisms through entropy. Tribol. Int. 2020, 152, 106548.
[CrossRef]

20. Rezasoltani, A.; Khonsari, M.M. On the correlation between mechanical degradation of lubricating grease and entropy. Tribol. Lett.
2014, 56, 197–204. [CrossRef]

21. Cuadras, A.; Crisóstomo, J.V.; Ovejas, J.; Quilez, M. Irreversible entropy model for damage diagnosis in resistors. J. Appl. Phys.
2015, 118, 165103. [CrossRef]

22. Cuadras, A.; Romero, R.; Ovejas, V.J. Entropy characterisation of overstressed capacitors for lifetime prediction. J. Power Sources
2016, 336, 272–278. [CrossRef]

23. Cuadras, A.; Miró, P.; Ovejas, V.J.; Estrany, F. Entropy generation model to estimate battery ageing. J. Energy Storage 2020,
32, 101740. [CrossRef]

24. Doelling, K.L.; Ling, F.F.; Bryant, M.D.; Heilman, B.P. An experimental study of the correlation between wear and entropy flow in
machinery components. J. Appl. Phys. 2000, 88, 2999–3003. [CrossRef]

25. Ling, F.F.; Bryant, M.D.; Doelling, K.L. On irreversible thermodynamics for wear prediction. Wear 2002, 253, 1165–1172. [CrossRef]
26. Bryant, M.D. Entropy and Dissipative Processes of Friction and Wear. FME Trans. 2009, 37, 55–60.
27. Osara, J.A.; Bryant, M.D. Thermodynamics of grease degradation. Tribol. Int. 2019, 137, 433–445. [CrossRef]
28. Osara, J.A.; Bryant, M.D. A Thermodynamic Model for Lithium-Ion Battery Degradation: Application of the Degradation-Entropy

Generation Theorem. Inventions 2019, 2, 23. [CrossRef]
29. Osara, J.; Bryant, M. Thermodynamics of Fatigue: Degradation-Entropy Generation Methodology for System and Process

Characterization and Failure Analysis. Entropy 2019, 21, 685. [CrossRef]
30. Osara, J.A.; Bryant, M.D. Thermodynamics of Lead-Acid Battery Degradation: Application of the Degradation-Entropy Generation

Methodology. J. Electrochem. Soc. 2019, 166, A4188. [CrossRef]
31. ASTM, D. Standard Test Methods for Cone Penetration of Lubricating Grease Using One-Quarter. ASTM Int. 2003, 5, 1–9.
32. Lugt, P.M. Lubricating Grease Rheology. In Grease Lubrication in Rolling Bearings; John Wiley & Sons, Ltd.: Hoboken, NJ, USA,

2013; pp. 99–136.
33. Cyriac, F.; Lugt, P.M.; Bosman, R. On a New Method to Determine the Yield Stress in Lubricating Grease. Tribol. Trans. 2015, 58,

1021–1030. [CrossRef]
34. Yeong, S.K.; Luckham, P.F.; Tadros, T.F. Steady flow and viscoelastic properties of lubricating grease containing various thickener

concentrations. J. Colloid Interface Sci. 2004, 274, 285–293. [CrossRef]
35. Sisko, A.W. The Flow of Lubricating Greases. Ind. Eng. Chem. 1958, 50, 1789–1792. [CrossRef]
36. Meyers, M.A.; Chawla, K.K. Mechanical Behavior of Materials; Cambridge University Press: London, UK, 2009.
37. Gecim, B.; Winer, W.O. Lubricant limiting shear stress effect on EHD film thickness. J. Lubr. Technol. 1980, 102, 213–220. [CrossRef]
38. Barnes, H.A. Thixotropy—A review. J. Nonnewton. Fluid Mech. 1997, 70, 1–33. [CrossRef]
39. Cross, M.M. Rheology of non-Newtonian fluids: A new flow equation for pseudoplastic systems. J. Colloid Sci. 1965, 20, 417–437.

[CrossRef]
40. Rhee, I.-S. Decomposition Kinetics of Greases by Thermal Analysis; DTIC Document; Tacom Research Development and Engineering

Center: Warren, MI, USA, 2007.
41. Lugt, P.M.; Pallister, D.M. Grease Aging. In Grease Lubrication in Rolling Bearings; Wiley: Hoboken, NJ, USA, 2013; pp. 171–190.
42. Walsh, F.C.; Reade, G.W. Industrial Electrochemistry, 2nd ed.; Chapman and Hall: London, UK, 1990.
43. Richard, G.; Budynas, J.K. Nisbett, Shigley’s Mechanical Engineering Design; McGraw-Hill: New York, NY, USA, 2015.
44. Morrow, J. Cyclic Plastic Strain Energy and Fatigue of Metals. ASTM Int. 1965. [CrossRef]
45. Duyi, Y.; Zhenlin, W. A new approach to low-cycle fatigue damage based on exhaustion of static toughness and dissipation of

cyclic plastic strain energy during fatigue. Int. J. Fatigue 2001, 23, 679–687. [CrossRef]
46. Prigogine, I. Introduction to Thermodynamics of Irreversible Processes. J. Electrochem. Soc. 1955. [CrossRef]
47. Kondepudi, D.; Prigogine, I. Modern Thermodynamics: From Heat Engines to Dissipative Structures; John Wiley & Sons Ltd.: Hoboken,

NJ, USA, 1998.
48. Glansdorff, P.; Prigogine, I. Thermodynamic Theory of Structure, Stability and Fluctuations; John Wiley & Sons Ltd.: Hoboken, NJ,

USA, 1971.
49. Moran, M.J.; Shapiro, H.N. Fundamentals of Engineering Thermodynamics, 5th ed.; Wiley: Hoboken, NJ, USA, 2004.

http://doi.org/10.1016/j.ijfatigue.2009.07.015
http://doi.org/10.1016/j.ijsolstr.2009.12.005
http://doi.org/10.1098/rspa.2009.0348
http://doi.org/10.1177/0021998311419540
http://doi.org/10.1016/j.wear.2020.203220
http://doi.org/10.1016/j.triboint.2020.106548
http://doi.org/10.1007/s11249-014-0399-8
http://doi.org/10.1063/1.4934740
http://doi.org/10.1016/j.jpowsour.2016.10.077
http://doi.org/10.1016/j.est.2020.101740
http://doi.org/10.1063/1.1287778
http://doi.org/10.1016/S0043-1648(02)00241-7
http://doi.org/10.1016/j.triboint.2019.05.020
http://doi.org/10.3390/inventions4020023
http://doi.org/10.3390/e21070685
http://doi.org/10.1149/2.0651916jes
http://doi.org/10.1080/10402004.2015.1035414
http://doi.org/10.1016/j.jcis.2004.02.054
http://doi.org/10.1021/ie50588a042
http://doi.org/10.1115/1.3251474
http://doi.org/10.1016/S0377-0257(97)00004-9
http://doi.org/10.1016/0095-8522(65)90022-X
http://doi.org/10.1520/STP43764S
http://doi.org/10.1016/S0142-1123(01)00027-5
http://doi.org/10.1149/1.2425756


Appl. Mech. 2021, 2 173

50. De Groot, S.R. Thermodynamics of Irreversible Processes; North-Holland Publishing Company: Amsterdam, The Netherlands, 1951.
[CrossRef]

51. Callen, H.B. Thermodynamics and an Introduction to Thermostatistics; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 1985.
52. Rahn, C.D.; Wang, C.-Y. Battery Systems Engineering; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2013. [CrossRef]
53. Rand, D.A.J.; Moseley, P.T. Energy Storage with Lead–Acid Batteries; Elsevier B.V.: Amsterdam, The Netherlands, 2015. [CrossRef]
54. Scrosati, B.; Garche, J. Lithium batteries: Status, prospects and future. J. Power Sources 2010, 195, 2419–2430. [CrossRef]
55. Vetter, J.; Novák, P.; Wagner, M.R.; Veit, C.; Möller, K.C.; Besenhard, J.O.; Winter, M.; Wohlfahrt-Mehrens, M.; Vogler, C.;

Hammouche, A. Ageing mechanisms in lithium-ion batteries. J. Power Sources 2005, 147, 269–281. [CrossRef]
56. Huggins, R.A. Energy Storage, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010. [CrossRef]

http://doi.org/10.1021/j150492a019
http://doi.org/10.1002/9781118517048
http://doi.org/10.1016/B978-0-444-62616-5.00013-9
http://doi.org/10.1016/j.jpowsour.2009.11.048
http://doi.org/10.1016/j.jpowsour.2005.01.006
http://doi.org/10.1007/978-3-319-21239-5

	Introduction 
	Existing System Characterization Models and Material Constants 
	Grease 
	Electrochemical Energy Storage 
	General Fatigue 

	The Degradation-Entropy Generation (DEG) Theorem 
	DEG Methodology Procedure 
	DEG Coefficients 

	A Brief Review of Existing DEG Models 
	Frictional Wear 
	Grease 
	Electrochemical Energy Storage Systems 
	General Fatigue 
	Combined Adhesive and Abrasive Wear 

	Degradation Coefficients from a Combination of the DEG Models and Other Existing Multi-Physics Models 
	Grease 
	Electrochemical Energy Storage Systems 
	General Fatigue 
	High-Rate Processes and Multiple Simultaneous Dissipation Mechanisms 
	Unsteady Interactions 

	Summary and Conclusions 
	Entropy Generation in Active Systems 
	The Single-Variable System and Minimum Entropy Generation 
	The Thermodynamic Simple System and Phenomenological Entropy Generation 

	References

