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Abstract— Road surface extraction from high-resolution
remote sensing images has many engineering applications; how-
ever, extracting regularized and smooth road surface maps that
reach the human delineation level is a very challenging task, and
substantial and time-consuming manual work is usually unavoid-
able. In this article, to solve this problem, we propose a novel
regularized road surface extraction framework by introducing
a graph neural network (GNN) for processing the road graph
that is preconstructed from the easily accessible road centerlines.
The proposed framework formulates the road surface extraction
problem as two-sided width inference of the road graph and
consists of a convolutional neural network (CNN)-based feature
extractor and a GNN model for vertex attribute adjustment. The
CNN extracts the high-level abstract features of each vertex in
the graph as the input of the GNN and also the road boundary
features that allow us to distinguish roads from the background.
The GNN propagates and aggregates the features of the vertices
in the graph to achieve global optimization of the regression
of the regularized widths of the vertices. At the same time,
a biased centerline map can also be corrected based on the width
prediction result. To the best of the authors’ knowledge, this is the
first study to have introduced a GNN to regularized human-level
road surface extraction. The proposed method was evaluated on
four diverse datasets, and the results show that the proposed
method comprehensively outperforms the recent CNN-based
segmentation methods and other regularization methods in the
intersection over union (IoU) and smoothness score, and a visual
check shows that a majority of the prediction results of the
proposed method approach the human delineation level.

Index Terms— Convolutional neural network (CNN), graph
neural network (GNN), regularization, road extraction.

I. INTRODUCTION

ROAD extraction from high-resolution satellite or aerial
images has been a hot research topic in the field of

remote sensing image processing over the past decades, and
accurate and regularized road maps have important and broad
applications in city planning, geographic information updating,
vehicle navigation, and autonomous driving. However, the
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construction and updating of road surface maps is still a
time-consuming and labor-intensive task even though the rapid
development of Earth observation technology and automated
machine learning methods has been witnessed. During the past
few decades, deep learning has achieved excellent results in
semantic segmentation [1]–[4], object detection [5]–[9], and
other vision-based fields, and a variety of methods, espe-
cially deep learning-based semantic segmentation methods,
have been proposed to extract road surface maps from high-
resolution remote sensing images. These methods have made
considerable advances, but they also suffer from occlusions,
noise, and the complexity of the background in remote sensing
images. At present, the fully automated delineation of accurate,
regularized, and manual-level road vector maps is still diffi-
cult to achieve. The up-to-date representative road extraction
methods are based on deep learning, and the first attempt at
deep learning-based road extraction can be traced back to
2010 [10]. However, a decade of development has mainly
focused on the development of specific convolutional neural
network (CNN) structures for pixel-level road semantic seg-
mentation [11]–[22], and how to regularize the extracted road
surface maps to reach human-level and vector-based delin-
eation has not been tackled in depth. In this article, we propose
a practical regularized road surface map extraction method
based on a combined CNN and graph neural network (GNN)
and the aid of road centerline maps, aiming to replace the use
of human labor by directly predicting regularized and smooth
double-line road vector maps. In this section, we review the
development of the recent deep learning-based road extraction
methods and then propose our novel approach for human-level
road surface extraction.

Over the last decade, road surface extraction has been
widely studied, and the classic machine learning and
CNN-based methods have been gradually introduced to the
field. Mnih and Hinton [10] proposed a method employing
restricted Boltzmann machines to segment roads from high-
resolution aerial images, in which unsupervised pretraining
and supervised postprocessing were introduced to improve
the performance. Das et al. [23] exploited two salient features
of roads and proposed a multistage framework to extract
roads from high-resolution multispectral satellite images using
four probabilistic support vector machine (SVM) models.
Saito et al. [11] combined the textural and spectral parameters
and input them into an artificial neural network (ANN) to
extract road surfaces from satellite images and employed
a CNN to extract buildings and roads simultaneously from
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remote sensing imagery. Panboonyuen et al. [12] presented an
enhanced deep CNN framework to extract road objects from
aerial and satellite images, and they applied landscape metrics
and a conditional random field (CRF) model to further improve
the detection results. Zhang et al. [13] proposed an architec-
ture named ResUnet for road extraction, which combines the
strengths of residual learning and the U-Net architecture to
ease the training burden. Zhou et al. [14] proposed a seg-
mentation network named D-LinkNet to extract road surfaces
in high-resolution satellite imagery. This method is built on
the LinkNet [24] architecture and has dilated convolutional
layers in its center part. Yang et al. [15] designed a recurrent
CNN (RCNN) unit and incorporated it into the U-Net archi-
tecture to simultaneously achieve the tasks of road detection
and centerline extraction. Zhang et al. [16] proposed an end-
to-end road extraction framework based on an improved gen-
erative adversarial network (GAN). Shamsolmoali et al. [17]
introduced adversarial networks and domain adaptation for
road segmentation. Wei et al. [18] proposed a multistage
framework, which consists of boosting segmentation, multiple
starting point tracing, and fusion of the segmentation and
tracing results, to extract road surfaces and road centerlines
simultaneously. Similarly, such coarse-to-fine or multitask
scheme has also been used in [19] and [20]. Wang et al. [21]
proposed the nonlocal LinkNet model with nonlocal blocks in
the encoder part to segment road surfaces from VHR satellite
images. Zhou et al. [22] proposed a network that embeds
a universal iteration reinforcement module to enhance the
learning ability.

These methods have boosted the performance of road sur-
face extraction; however, in complex scenes, they usually
produce poor connectivity and incomplete and irregular results
that are far from the human delineation level, due to the
occlusion of trees, buildings, and shadows, and the ambiguity
between roads and background in remote sensing images.
Although some approaches [10], [12] have attempted to allevi-
ate these shortcomings by postprocessing after detection, they
are generally ineffective as the heuristic rules used in these
methods cannot adapt to the wide variety of roads. In contrast,
our motivation is different from the aforementioned pixel-
based image processing methods, in which we attempt to real-
ize smooth, continuous, and regularized road surface extraction
to save on human labor. Starting from this practical viewpoint,
we focus on two aspects.

One aspect is to gather and utilize the other available or eas-
ily accessible road-relevant data as a supplement, in addition
to the information provided by the images. Road centerline
data can be obtained in a variety of ways, such as volunteered
geographic information (VGI) and historical road centerline
data. In particular, the emergence of VGI has allowed users
to collect, edit, and share geographic information around the
world, making the free and large-scale acquisition of road
centerline data simple, easy, and convenient. As one of the
most extensive VGI data sources, OpenStreetMap (OSM) [25]
now covers a majority of the world, with the quality and
quantity of the annotation growing over time as more and
more contributors join in. In addition, a lot of historical
centerline road data are available in the GIS maps provided

by departments of surveying and mapping. However, the
information in these two types of data is often of low quality
and the centerline coordinates often deviate from the actual
road centerlines in newly accessed remote sensing images due
to a variety of factors, including outdated maps, geometric
rectification errors, and different levels of details of manual
delineation.

The other aspect is to develop an advanced regularization
method at the theoretical level to approach the delineation of
the human level. There have been a few studies of this aspect
in the past. For example, Máttyus et al. [26] framed the road
surface extraction task as width inference of each vertex in the
road centerline graph, and they regularized the road extraction
result by developing a Markov random field (MRF) model that
encodes the different image features, such as edges, the pixel
intensity, and the smoothness of the road, to postprocess the
output from the local classifier. However, on the one hand,
each of these features needs domain knowledge and is data-
specific; on the other hand, the global postprocessing can
only use the local classifier’s prediction as the input, and it
overlooks the spatial correlation of the road features. We are
not currently aware of any deep learning-based methods for
the task of road regularization. In this study, we attempted
to simultaneously extract and regularize road surfaces through
the use of a GNN.

Since non-Euclidean graph data, such as traffic network,
social network, and biological network data, cannot be
processed effectively by a traditional CNN, the GNN archi-
tecture [27] was proposed and has been gradually developed.
Over the past decade, a great number of GNN variants
[28]–[32] have been proposed. Due to the strong power of
the modeling relationships between the vertices in a graph,
GNNs have been successfully applied to many computer vision
tasks, such as point cloud classification [33], [34], action
recognition [35], and object boundary extraction [36]. In the
field of remote sensing image processing, GNNs have been
mainly applied to boundary extraction and attribute prediction.
For example, Ling et al. [36] utilized a graph convolutional
network (GCN) for object instance segmentation, where they
represented an object instance as a graph and continuously
adjusted the position of the vertices in the graph through the
GCN to predict the boundaries of the objects. He et al. [37]
applied a GNN to infer the number of lanes and the road
type from satellite imagery. Jepsen et al. [38] designed a GCN
architecture for road attribute inference, for attributes such as
the speed limit. However, to date, we are not aware of any
research that has attempted to apply a GNN to the task of
regularized road surface extraction.

In this study, inspired by the recent development of GNNs
and the easily accessible road centerline information, we intro-
duced a GNN to regularized road boundary regression for the
first time and developed a novel end-to-end combined CNN
and GNN framework for regularized and human delineation-
level road surface extraction from remote sensing images.
Furthermore, the method can also correct the offsets of the
biased centerlines in new remote sensing images.

The main contributions of our work are summarized as
follows.
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Fig. 1. Flowchart of the proposed framework for road surface extraction and centerline correction.

1) A new framework is proposed for regularized road sur-
face extraction (and centerline correction) from remote
sensing images and the available road centerline data.
The proposed framework formulates the road surface
extraction task as width (as an attribute of the vertices)
inference in a graph that is prebuilt from the road
centerline data. To the best of our knowledge, this is the
first framework for regularized road surface extraction
based on a GNN.

2) The framework consists of a novel combination of a
CNN and a GNN. The front-end CNN extracts both
the high-level abstract features for the subsequent GNN
regression step and the boundary feature of each vertex
for recognizing roads from backgrounds. The back-
end GNN propagates and aggregates these high-level
features of the vertices in the graph to achieve global
optimization of the road width prediction, to achieve
regularized road surface extraction.

3) Centerline offset correction is also simultaneously
achieved by postprocessing of the two-sided width
predictions of each road vertex. In our experiments,
the average distance between the corrected center-
line and the ground-truth centerline was 1.4 pixels,
which is very small and reaches the human delineation
level.

4) The proposed method was thoroughly evaluated on four
different and versatile datasets, which confirmed that
the proposed method can comprehensively outperform
the existing segmentation-based methods, regularization-
based methods, and the other GNN-based methods in
the intersection over union (IoU), F1 score, and road
smoothness indicator. In particular, the excellent perfor-
mance in the road smoothness metric that we designed
to measure the continuous, structured, and human-level
road boundaries shows that the proposed method is the
most suitable method for extracting a regularized road
surface map.

The rest of this article is arranged as follows. In Section II,
we present the details of the proposed method. Section III
provides a detailed description of the datasets, metrics, and the
experimental evaluation of the road surface extraction. We also

evaluate the performance of the different GNN modules,
propagation rules, different orders of neighborhood in the
GNN aggregation, and the effectiveness of the offset centerline
correction in this section. Finally, our conclusions are outlined
in Section IV.

II. METHODS

A. Framework

We propose a novel framework for regularized road surface
extraction from remote sensing imagery. Taking the easily
accessible road centerline data as a prerequisite, we formulate
the road surface extraction problem as the regression of the
piecewise and smooth widths of both sides of the roadway
in a combined CNN and GNN framework. Furthermore, the
output of the network can also naturally correct the possible
offset of the centerlines at the same time.

The framework of the proposed method is shown in Fig. 1.
The preprocessing includes three steps conducted at three
levels of detail. First, we handle the original large-capacity
remote sensing image to preserve the complete road topo-
logical information, instead of precropping the image into
fixed small patches. The key is to generate a road graph
from the road centerline map that has been geographically
aligned with the remote sensing image by discretizing the
centerline with a set of equidistant vertices. Each vertex has
a direction property that represents the heading of the road.
Second, we process n (a preset number) vertices that consist
of a subgraph in a batch, according to the capacity of the
GPU memory. The subgraph is dynamically generated from
a current vertex. The current vertex’s n − 1 neighbor vertices
are determined with depth- or breadth-first strategies in the
graph. The next current vertex skips these processed vertices
(including the neighboring vertices) in the training stage to
rapidly cover the whole graph. Third, we handle each vertex
in a subgraph. We crop a patch (e.g., 256 × 256 pixels)
from the aligned and concatenated image and centerline map
centered at a vertex position, all of which are uniformly rotated
to the vertical direction (i.e., the road direction at the current
vertex is upward) to form the individual inputs of the CNN
encoder.
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Fig. 2. Structure of the proposed network.

A lightweight CNN encoder is applied to extract the fea-
tures of the vertices from each patch. We also introduce a
road boundary extraction branch to help the CNN encoder
concentrate on the roads rather than the background. All of
the vertex features in the subgraph are input into the GNN,
in which the information of the vertices is propagated within
the subgraph and exchanged in the dynamically constructed
subgraphs to obtain the global representation. The position
attribute of the vertices is then adjusted, to finally output the
two-sided widths of the vertices.

Finally, the complete road surface is directly produced by
connecting the boundary points of all the vertices without
any postprocessing, with the irregular vertices having been
smoothed by the GNN, and the centerline is corrected through
the two-sided widths of each vertex.

B. Network Structure

We propose a novel network structure combining a CNN
encoder and a GNN model to extract the two-sided widths of
each vertex in a road graph from the remote sensing image
and the corresponding road centerlines. In the first stage, the
CNN encoder extracts both the high-level features of each
vertex and the road boundary information. The road boundary
branch helps the model distinguish roads from the background
and initially locates the boundary of the road surface so that
the vertices on the boundaries can be recognized. The high-
level features represent the information of a vertex in the graph
as the input of the GNN. The GNN adjusts the width attribute
of each vertex. It updates the state of the current vertex
by aggregating its neighborhood information, propagates the
information to the adjacent vertices, and integrates them within
the subgraph to capture the spatial and topological correlation.
The full information exchange eliminates the information com-
munication obstacles existing in the common local extractors,
reduces the irregularities of the road surface map caused by the

occlusions (e.g., buildings, shadows, and trees) in the remote
sensing image, and finally constructs a regularized road surface
map that reaches the level of human-level delineation.

The details of the proposed network are shown in Fig. 2.
The CNN extractor consists of 11 convolutional layers and
three fully connected (FC) layers. The extractor layerwise
abstracts the aligned and concatenated RGB image patch and
rasterized centerline map to form a 64-D feature vector that
represents the high-level features of each vertex. Meanwhile,
a 3 × 3 convolutional layer is employed to process the result
of the fourth convolutional layer, to output a coarse road
boundary feature map, which we use to extract the boundary
information. A subsequent soft-max operation obtains a road
boundary segmentation probability map, which is supervised
by the road boundary map. The boundary information is then
compressed to a 62-D vector from the road boundary feature
map through the three FC layers. The position of the vertex
(x and y) in the cropped image, the 64-D vertex feature vector,
and the 62-D road boundary feature vector are concatenated
to make up a final and comprehensive 128-D feature, as the
input of the next stage of GNN adjustment.

The GNN module is designed to have two distinct functions.
First, it should adjust the position of each vertex twice, accord-
ing to the 128-D feature input; in other words, it should adjust
the vertex to both the left- and right-hand intersection points of
the road boundaries and the perpendicular line through the cur-
rent vertex, thereby creating a double-line road surface without
the impact of possible centerline bias. To solve this problem,
we send the vertex to the GNN module to simultaneously
output the two vertex positions (four parameters). As each
patch has been rotated to the upward direction of the road
segment, the module can easily distinguish left and right.

Second, the GNN module should consider how to prop-
agate the current vertex’s information to the other adjacent
vertices in a subgraph to achieve a smooth and structured
road centerline by utilizing the complete information of a
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Fig. 3. Three forms of vertex propagation rules. (a) Vertex information can
be propagated to all the other vertices. (b) Vertex information can only be
propagated along its current road. (c) Propagation is restricted between two
adjacent intersection/endpoint vertices.

batch. To solve this problem, we designed a two-step strategy.
First, we define the neighborhood of the current vertex for
updating its state. We use the vertices’ information in the
first-order neighborhood (N1) to infer the left- and right-hand
widths of the current vertex. The number of neighborhood
points can be 1 (starting vertex), 2 (vertex in a straight road),
or n (intersection vertex with n branches). The second-order
neighborhood (N2) can also be used to obtain similar results.
However, N2 is more complex and takes more running time
and memory, which is discussed in Section III-F. Second,
we define the propagation rule, i.e., how the information of the
current vertex is propagated within the subgraph. We assume
that there are three types of possible message propagation,
according to the topological property of the road network.
The first (Type A) is when the information of a vertex can be
unrestrictedly propagated to all of the other vertices [Fig. 3(a)].
The second (Type B) is when the current vertex (we ignore the
intersection vertices) can only be propagated along its current
road [Fig. 3(b)]. The current road is defined so that the turn
angle in this road is smaller than a given angle (e.g., 30◦).
The third (Type C) is when the message propagation of the
vertex is restricted between two adjacent intersection/endpoint
vertices [Fig. 3(c)], which is a supplement for Type B as the
road segments in a complete road may have different widths
to be inferred. Type A is a default setting in most GNN-based
applications, and however, it ignores that different roads or
road segments probably have different widths; in contrast,
the other two types adapt to practical road vertex message
propagation as they enable the GNN to learn specific road
attributes by guaranteeing that the different types of roads do
not interfere with each other. Therefore, we apply the second
and third propagation forms separately, to generate the feature
vectors. These are then concatenated as the output feature of
the GNN model.

The last thing is to choose a suitable GNN module that
operates on the current vertex and its neighborhood. The typ-
ical problem for a segmentation network is inferred abnormal
points that result in irregular boundaries. In the GNN, we need
to introduce a specific mechanism that can weaken the impact
of abnormal neighbors (specifically, the occlusion effects on
the image) during the propagation, to achieve more regularized
and smoother results. We selected a graph attention network
(GAT) module [32], which introduces an attention mecha-
nism to graph convolution for estimating the contributions of

neighboring vertices and the current vertex by introducing a
learnable weight parameter instead of setting a fixed equal
weight. We also tried other GNN network modules, such as
a GCN [28] and a gated graph neural network (GGNN) [29],
and found that the GAT module is the most suitable network
module (this is shown in detail in the experiments).

The GAT module calculates the hidden state of each vertex
with the weighted average of the neighboring features by using
the self-attention mechanism. The hidden state at propagation
step t of vertex v is denoted as hu(t), where hu(0) is the
128-D features extracted by the CNN, as the original input of
the GAT module. The convolutional layer of the GAT module
can be denoted as

α(t)
vu = softmax
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where α(t)
vu denotes the attention weight of vertex v over its

neighbor u, W denotes the trainable weight matrix of a shared
linear transformation, which is applied to every vertex, N(v)
denotes the neighborhood of vertex v in the graph (the first
order of neighborhood N1 is applied in the experiments), g(·)
is a LeakyReLU activation function, and a is a vector of
the learnable parameters. The GAT module utilizes multihead
attention, which is implemented by applying several indepen-
dent attention mechanisms to compute the hidden states and
then concatenating or averaging their features. We refer the
reader to [32] for more details.

In the GNN model, we use three GAT layers for information
exchange. The first layer has four attention heads and trans-
forms the 128-D features into 64 dimensions in each head, and
the second layer has four attention heads and transforms the
concatenated 64 × 4-D features into eight dimensions each.
In the last layer, there is only one attention head module,
and the final 4-D outputs (which contain the coordinates of
both sides of the boundary points) are extracted from the 8-D
features. We can then obtain the widths of both sides of each
vertex by the vertex position and the network output.

The loss function of the proposed network consists of two
parts. The first part is the mean square loss of width prediction,
which is implemented by calculating the difference between
the ground-truth vertex (the position x and y) and the regressed
vertex and is defined as

lwidth = 1

4

4�
k=1

��Wk − W �
k

��2
(3)

where W refers to the predicted 4-D output (left- and right-
hand positions) and W � refers to the ground-truth vertex.

The second part is the mean square loss for the boundary
branch, which calculates the pixel-level difference between the
predicted coarse boundary map and the ground truth, and is
defined as

lboundary = 1

w × h
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Fig. 4. Process of generating a road surface map and corrected centerline.
(a) Road graph. (b) Image. (c) CNN result. (d) GNN result. (e) Corrected
road centerline. (f) Road surface.

where Y is the predicted coarse boundary map, Y � is the
ground truth, and w and h represent the width and height
of the boundary map, respectively.

The complete loss function is then defined as

L = lwidth + λlboundary (5)

where λ is the weight of the boundary loss, and it was
empirically set to 100 in our experiments.

In the training process, we first train only the CNN by
adding an FC layer after the 128-D features of each vertex
to obtain a 4-D vector as the output and then train the
combination of the CNN and GNN to avoid overfitting.

C. Road Surface Map Generation

The process of generating the final road surface map is
shown in Fig. 4. With the vertex information from the road
graph [Fig. 4(a)] and image [Fig. 4(b)] as inputs, the CNN
obtains rough width results for each vertex, and their connec-
tions form the two sides of the road surface [Fig. 4(c)]. The
GNN further processes the features of vertices and adjusts the
width of each vertex in the graph [Fig. 4(d)], to achieve a
smooth and human delineation-level road surface map. Note
that the CNN is trained first and then the whole network.
Obviously, the result of our method [Fig. 4(d) and (f)] is
essentially a vector map, which is different from a pixel-level
segmentation map obtained from the mainstream methods.
It should be noted here that it is difficult and also unnecessary
to determine the ambiguous road widths of the intersection
points. Instead, we do not calculate their widths during the
training and testing process and instead obtain the road width
and directions according to the adjacent vertices.

We can also obtain more accurate centerlines by averaging
the widths of each side of the roadway. As shown in Fig. 4(e),
each vertex in the corrected centerline is located at the center
of the road. This function can also be applied to correct offset
centerline data. Fig. 4(e) also shows that the proposed method
is free from bias in the centerlines. The proposed method
can obtain accurate and smooth road maps with both high-
precision or biased centerlines, which is further discussed in
Section III.

III. EXPERIMENTS AND ANALYSIS

A. Datasets

We performed experiments on four diverse datasets: Bavaria
[26], Aerial KITTI [26], Shaoxing, and Wuhan. We also
simulated biased centerline data with the Aerial KITTI dataset
to test the robustness of the algorithm. All of these datasets
contain high-resolution aerial or satellite images and the
corresponding segmentation ground truth, with variable road
widths.

The open-source Bavaria dataset contains aerial images
with a 13-cm ground resolution and the corresponding road
segmentation annotations. This dataset was captured in the
Bavaria region of Germany and covers urban, suburban, and
rural areas. The total area is 4.95 km2. There are 12 regions
in this dataset. We used nine regions for the training and the
other three for the testing.

The open-source Aerial KITTI dataset consists of aerial
images downloaded from Google Earth Pro and the corre-
sponding segmentation ground truth for the city of Karlsruhe,
Germany. The total area is 5.96 km2 and the ground resolution
is 13 cm/pixel. There are 21 images in the Aerial KITTI
dataset, and we used 16 images for the training and the rest
for the testing.

To compensate for the small open-source datasets, we pre-
pared two large datasets. The Shaoxing dataset we built con-
tains six regions with 532 aerial images of 1024 × 1024 pixels
and the corresponding ground truth, with a 0.6-m ground
resolution. This dataset covers 200.82 km2 of Shaoxing,
which is a typical water city in China. We used four regions
with 404 images for the training and the two other regions
with 128 images for the testing.

The Wuhan dataset we built contains eight 8192 ×
8192 satellite images and the corresponding segmentation
annotations. The ground resolution of the images is 0.5 m/pixel
and the total area is 134.22 km2. In the experiments, six images
were used for the training and the other two were used for the
testing.

For the datasets not providing the centerlines, we obtained
the centerline map by skeletonizing the pixel-level segmenta-
tion annotations. For each complete image in these datasets,
we created the corresponding road graph by sampling vertices
with equal distance in each centerline map. The sampling
interval in the Aerial KITTI and Bavaria datasets was 12.5 m,
and the sampling interval was 25 m in the Shaoxing and
Wuhan datasets, according to their ground resolutions.

The setting of the road graph consists of two steps. First,
we set the directions of all the vertices in the centerline
map. We divided the vertices into three types—endpoints,
midpoints, and intersection points—according to their degree
of connection. For an endpoint, its direction is defined by
itself and its only neighbor, for a midpoint, its direction is
defined by its two neighbors, and an intersection point has no
direction. Second, the vertical line passing through a vertex
intersects with the boundaries of the road to create the left
and right widths of the vertex. For an intersection vertex, the
width is calculated by averaging the widths of its neighboring
vertices.
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To evaluate the method performance on an offset dataset,
we also produced an analog offset dataset from the Aerial
KITTI dataset. We randomly moved the vertices toward the
vertical direction based on the original nonoffset centerline
with random offsets (the offset was set the same within a road
segment). The offset was less than one-half of the shortest
width of the road section.

B. Evaluation Metrics and Settings

To evaluate the road surface extraction results at the pixel
level, the precision, recall, F1 score, and IoU are introduced.
The precision is the fraction of the predicted road pixels that
are true road pixels, and the recall is the fraction of all the
true road pixels that are correctly predicted. The F1 and IoU
are overall metrics that offer a tradeoff between precision and
recall. These evaluation metrics are defined as follows:

precision = TP

TP + FP
(6)

recall = TP

TP + FN
(7)

F1 = 2TP

2TP + FP + FN
(8)

IoU = TP

TP + FP + FN
(9)

where TP, FP, and FN refer to the true positives, false positives,
and false negatives, respectively.

To quantitatively assess the effect of a regularized and
smooth road surface extraction that reaches human-level delin-
eation, we introduce a smoothness index with an empirical
threshold. We regard a vertex whose two-sided width differ-
ence with its N1 neighboring vertices is less than the threshold
(three pixels here) as a correctly predicted smooth vertex. It is
acknowledged that most of the vertices in a common road
or a road segment are smooth ones. The ratio of the smooth
vertices and all the smooth vertices in the ground truth denotes
the smoothness index, as shown in the following equation:

road smoothness = NumTP

Numlabeled
(10)

where Numlabeled represents the number of labeled smooth
vertices and NumTP represents the number of labeled smooth
vertices that are correctly predicted. This index reflects the
smoothness property of a common road segment, so an algo-
rithm obtaining a higher smoothness score indicates that it
generates fewer abnormal points.

All the methods were implemented based on TensorFlow,
and the experiments were executed on a computer with an
NVIDIA GTX1060 GPU with 6-GB memory.

We used dropout and L2 regularization to reduce the overfit-
ting, and batch normalization is to speed up the training. In the
loss function, the weights of the width loss and the coarse
boundary map loss were set to 1 and 100, respectively. For
each batch, we randomly selected a starting vertex in the road
network graph and started a random deep-first search or broad-
first search to find its first 32 neighborhood vertices, to form
a subgraph as the input data of the batch. We set 500 batches
as an epoch and saved the model with the smallest loss as the

best model in the training. The learning rate was initially set to
1e−3 and was divided by 5 if the total loss stopped decreasing
for eight continuous epochs. When the learning rate dropped
to 2e−8, we stopped the training and set the best model as the
final model.

C. Comparison of the Different Methods
We compared the proposed method with five different meth-

ods of three different types: 1) U-Net [2]; 2) D-LinkNet [14]
with max width buffer postprocessing; 3) NL-LinkNet [21]
with max width buffer postprocessing; 4) the MRF model [26];
5) a CNN classifier with empirical smoothing postprocess-
ing we designed; and 6) RoadTagger [37]. The first three
methods are segmentation methods, among which U-Net is a
classic fully convolutional network (FCN)-based method and
D-LinkNet and NL-LinkNet are specially designed for the road
extraction task. The three other methods take centerline data as
a prerequisite, as with the proposed method. Methods 4 and
5 predict the vertex width and perform regularization post-
processing, which has the same goal as the proposed method,
i.e., to produce a smooth road surface. Method 6 is a combined
CNN and GNN method, such as the proposed method, but it
attempts to count the number of lanes in a road with different
CNN and GNN structures.

To incorporate the centerline information into the segmen-
tation methods, we made some changes to the original U-Net,
D-LinkNet, and NL-LinkNet. For U-Net, we trained and tested
it with image patches of road vertices from the proposed
method as input data, so as to more accurately locate the scope
of the roads. For D-LinkNet and NL-LinkNet, we performed
postprocessing by intersecting the prediction result with the
maximum width buffer mask of the road centerline, to exclude
the background. The maximum width in our experiments
was 64 pixels.

For the MRF model, we cite the experimental results (IoU
and F1) reported in [26] for the Aerial KITTI and Bavaria
datasets as the method is difficult to reproduce and the source
code is unavailable. For the CNN classifier with smoothing
postprocessing, we used the CNN module from the proposed
method to predict the widths of each vertex and averaged the
widths with the neighbors to obtain a smooth width result.
The quantitative results of the different methods obtained on
the four datasets are listed in Table I.

As shown in Table I, the proposed method achieves the
best performance and comprehensively outperforms the other
methods in the IoU, F1 score, and road smoothness index on
all the datasets. Specifically, it outperforms the second best
method (RoadTagger) by 2.2%, 2.6%, 6.4%, and 4.2% in IoU
and by 27.9%, 34.8%, 33.0%, and 27.0% in the road smooth-
ness index on the KITTI, Bavaria, Wuhan, and Shaoxing
datasets, respectively. Although the proposed method is more
complex, it can run as fast as the other methods in the
Aerial KITTI and Bavaria datasets, processing one 1024 ×
1024 image with about 1 s; it runs slower in the Wuhan and
Shaoxing datasets as there are many complex roads where a
plenty of road vertices need to be processed.

Although we restricted the scope of the roads in the
remote sensing images for helping the three segmentation-
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TABLE I

ROAD SURFACE EXTRACTION RESULTS, WHERE THE VALUES IN BOLD REPRESENT THE BEST PERFORMANCE

based methods, i.e., U-Net, D-LinkNet, and NL-LinkNet, they
show the worst performance and obtain very low smoothness
scores. Another option is imbedding the centerline information
into a pixel-based segmentation framework, but it is outside
of the scope of this work. What we have observed is in
agreement with the common knowledge, i.e., the CNN-based
segmentation methods struggle to achieve smooth or structured
boundaries.

The conventional MRF-based method [26] considers the
road centerlines as known data. It performs better than
U-Net, D-LinkNet, and NL-LinkNet; however, it is outper-
formed by 12.57% and 9.63% in the IoU score by the proposed
method on the KITTI and Bavaria datasets, respectively. More-
over, the MRF-based method requires the empirical setting
and computing of various types of features, including edge
features, road and car detector results, domain knowledge of
road smoothness, and overlapping constraints. In contrast, the
proposed deep learning-based method gets rid of the need for
handcrafted feature design and is easier to use.

RoadTagger, which is the second best performing method,
was designed to count the number of lanes in a road by
the combination of a CNN and a GNN, as in the pro-
posed network structure. This implies that the cutting-edge
approach of GNN-based fine adjustment with CNN-based
feature extraction is the best baseline model for structured road
surface extraction. However, the proposed method outperforms
RoadTagger significantly, due to the specific CNN encoder
with road boundary branch and the GNN model with a proper
propagation rule. In particular, the road smoothness scores of
the proposed method are extremely high (27.86%, 34.84%,

32.92%, and 26.95% higher than RoadTagger on the Aerial
KITTI, Bavaria, Wuhan, and Shaoxing datasets, respectively).
The improvement in road smoothness is critical to practical
and automatic road extraction and is equivalent to manual
smoothing and structured double-line road delineation.

The CNN classifier with smoothing postprocessing we
designed can significantly improve the road smoothness when
compared with U-Net, D-LinkNet, and NL-LinkNet; however,
this empirical global postprocessing operation is isolated from
the learnable width regression, and it cannot tell whether the
road width really changes or if this is just a prediction error
made by the CNN classifier. In contrast, the GNN in the
proposed method can iteratively learn how to adjust the road
width of each vertex (road segment) and can improve the road
smoothness score by about 10%.

Fig. 5 shows a qualitative comparison of the different
road surface extraction methods on images from the differ-
ent datasets. From top to bottom, each pair of rows repre-
sents the results for images from the Aerial KITTI, Bavaria,
Wuhan, and Shaoxing datasets. From left to right, the images
denote the ground truth and the results of U-Net, D-LinkNet,
NL-LinkNet, CNN + smoothing postprocessing, RoadTagger,
and the proposed method. In the fifth to the seventh columns,
we use green circles and yellow lines to, respectively, represent
the vertices and centerlines. Fig. 5 also shows different road
conditions, including straight roads, T-junctions, and other
complicated roads.

It can be observed that U-Net, D-LinkNet, and NL-LinkNet
show the worst performance, in both the segmentation and
regularization effects. The segmentation-based methods are



YAN et al.: COMBINATION OF CONVOLUTIONAL AND GNNs FOR REGULARIZED ROAD SURFACE EXTRACTION 4409113

Fig. 5. Qualitative results of the different road surface extraction methods. From top to bottom, each pair of rows represents the prediction results for images
from the Aerial KITTI, Bavaria, Wuhan, and Shaoxing datasets. (a) Ground truth. (b) Result of U-Net. (c) Result of D-LinkNet. (d) Result of NL-LinkNet.
(e) Result of CNN + smoothing postprocessing. (f) Result of RoadTagger. (g) Result of the proposed method.

sensitive to shadows, trees, and other occlusions. As a result,
the predicted road boundaries are irregular and some of them
are broken. In addition, the segmentation-based methods also
misjudge backgrounds with similar textures to roads. Clearly,
this kind of method cannot be directly applied in the produc-
tion of road surface maps.

Due to the constraint of the centerlines, the extraction results
of the CNN + smoothing postprocessing and RoadTagger
methods are much smoother than those of the segmentation-
based methods; however, there are still many obvious flaws.
In some straight road sections, the smoothing postprocessing

can work well, but it performs worse in complicated situations,
such as at intersections and occluded parts of the road in
particular, as shown in the fifth and sixth columns of Fig. 5.

In contrast, the proposed method can not only handle the
diverse backgrounds in the images, including shadows, trees,
and other occlusions, but it can also handle the diverse fore-
grounds, including T-shaped intersections, X-shaped intersec-
tions, and other complex road sections, to obtain regularized,
smooth, and complete road surface maps, as shown in the last
column of Fig. 5. The well-designed GNN model allows us to
suppress the influence of abnormal road vertices through the
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Fig. 6. Offset centerlines (yellow) and the corrected centerlines (blue) by
our method.

weighted information aggregation in the neighborhood and the
proper message propagation in the graph, to obtain regularized
and accurate road extraction results that approach the human
delineation level.

D. Offset Centerline Correction

A side product of the proposed method is the corrected
centerline map, which is very useful in practical situations
as many newly accessed remote sensing images often cannot
exactly fit the existing centerline vector maps, due to the geo-
metric or geographical bias. We verified the performance of the
proposed method on the Aerial KITTI dataset with simulated
centerline bias through a comparison with the RoadTagger and
CNN + smoothing postprocessing methods.

In Table II, the centerline offset is the average distance
between the corrected centerline and the ground-truth center-
line. The proposed method comprehensively outperforms the
other two methods by at least 4% in IoU, 17% in smoothness,
and 0.25 pixels in centerline bias. The centerline offset of the
proposed method is only 1.4 pixels, which can be ignored
in practice, and reaches the human delineation level. Fig. 6
shows a comparison of before (yellow lines) and after (blue
lines) correction of the offset centerlines, where the centerlines
have been adjusted to the correct positions.

It can also be observed that the road surface extraction
results of the proposed method with biased centerlines as the
input data are comparable to those obtained using accurate
centerlines as the input data (by comparing Tables I and II),
which proves that the proposed method is robust to the
differing qualities of the existing centerline maps.

E. Comparison of Different Propagation Rules in the Road
Graph

We designed the specific propagation rule in the road
graph for propagating and aggregating the vertex information.
We also introduced three different forms of propagation rules
for the vertices in Section II-A: Type A (all vertices are con-
nected), Type B (the vertices from different straight roads are
blocked), and Type C (vertices from different road segments
are blocked). In this section, we analyze the performances
of each of these rules and their combination on the Aerial

Fig. 7. Examples of different orders of neighborhood. The green circle is
the current vertex, and the numbers in the vertices refer to the corresponding
nth order neighborhood of the current vertex.

KITTI dataset. Table III shows that the combination of Types
B and C outperforms the others. Compared with Type A,
which is the commonly used and default propagation rule in
GNN-based vision tasks, the combination of Types B and C
obtains an improvement of 1.07% in IoU and 0.64% in F1
score. This indicates that the constraints of Types B and C are
more adaptable to the practical road topological properties,
and they reduce the unnecessary and even adverse mutual
influence between roads (or road segments) of different types.
As a result, we chose the combination of Types B and C as
the final form of the propagation rule in the proposed GNN
model.

F. Comparison of Different Orders of Neighborhood During
the GNN Aggregation

In addition to the propagation rule, the definition of the
neighborhood in the road graph also impacts the performance
of GNN-based regression. In this experiment, we evaluated
the influence of different orders of neighborhood of a vertex
in the GNN aggregation on the Aerial KITTI dataset.

The order of neighborhood determines how many neighbors
participate in the vertex information exchange of the current
vertex, as shown in Fig. 7, where N1 represents the neighbors
of the first order, N2 represents the neighbors of the second
order (including the first order), and N3 represents the neigh-
bors of the third order.

Table IV lists the road surface extraction results obtained
using different orders of neighborhood during the GNN aggre-
gation. It can be seen that N1 achieves the best performance
in IoU and F1 score, and the result of using N2 achieves
the highest road smoothness. The result of using N3 is
the worst. These results can be explained by the fact that
using more neighborhood vertices (N2), which aggregate more
information, does improve the road smoothness when com-
pared to N1, but also introduces bias through the averaging
operation and difficulty in the proper message propagation at
the same time. Further increase of the neighborhood vertices
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TABLE II

ROAD SURFACE EXTRACTION RESULTS FOR THE AERIAL KITTI ANALOG OFFSET DATASET, WHERE THE
VALUES IN BOLD REPRESENT THE BEST PERFORMANCE

TABLE III

ROAD SURFACE EXTRACTION RESULTS OBTAINED USING DIFFERENT

PROPAGATION RULES ON THE AERIAL KITTI DATASET

TABLE IV

ROAD SURFACE EXTRACTION RESULTS OBTAINED USING DIFFERENT

ORDERS OF NEIGHBORHOOD ON THE AERIAL KITTI DATASET

TABLE V

ROAD SURFACE EXTRACTION RESULTS OBTAINED USING DIFFERENT

GNN MODULES ON THE WUHAN DATASET

(N3) instead results in the burden of information propagation
and aggregation.

G. Comparison of Different GNN Modules

The GNN module is the third factor that impacts the perfor-
mance of GNN-based regression. In this section, we compare
three recent GNN modules—GCN [28], GGNN [29], and
GAT [32]—on the Wuhan dataset. We used the same CNN
encoder and set the number of stacked GNN modules to three
for fairness. Table V and Fig. 8 show the quantitative and
qualitative comparison results of using different GNN modules
in the proposed framework.

It can be observed from Table V that using the GAT
module results in a clearly better performance in both IoU
and smoothness compared to the other two modules. This is
because the other two modules apply equal weights for all the
neighboring vertices when aggregating the vertex information,

Fig. 8. Qualitative results of using different GNN modules. (a) Ground truth.
(b) GGNN. (c) GCN. (d) GAT.

Fig. 9. IoU (blue line) and F1 (red line) curves with different λ values on
the Aerial KITTI dataset.

while the GAT module assumes that the contribution of each
neighboring vertex is different and introduces an attention
mechanism to learn the optimal weights instead of fixing them.

In Fig. 8, from top to bottom, we list three typical types
of road surface: straight, T-junction, and intersection. The
GGNN and GCN modules are more sensitive to occlusions
on the road, resulting in jagged and irregular road boundaries,
while the GAT module has a better aggregation strategy to
resist occlusions in the images, achieving more regularized
and smooth boundaries.
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H. Setting of Parameter λ

The tunable parameter λ balances the losses of road bound-
ary and width. By changing the values of λ, we obtained
IoU and F1 curves on the Aerial KITTI dataset, as shown in
Fig. 9. The very little fluctuations in the curves indicate that
the proposed method has good stability against the setting of λ.
We set λ = 100 where a small peak is reached. Please note
that we have trained the CNN part before training the whole
network.

I. Prerequisite

The aim of this article is different from the mainstream
methods that formulate road extraction as a pixel-level seg-
mentation problem and inevitably suffer from shadows, trees,
and other occlusions. In contrast, we start from a more
practical view, i.e., how to reach human-level (essentially
vector-level) delineation and reduce manual works. To achieve
this goal, our method requires rough road centerline maps as
prerequisite. Fortunately, OSM and other VGI sources have
provided road centerlines around the world. Moreover, the
historical centerline data can be accessed from the survey and
mapping, or GIS department in an engineering task. If there
is really no centerline data available, our method is also
beneficial: one can easily draw a rough centerline map, instead
of drawing the fine-grain road surface map with much heavier
manual work, and input it into our network to produce the
regularized road surface map.

IV. CONCLUSION

In this article, we have proposed a novel framework to
extract regularized road surfaces from remote sensing imagery
and easily accessible road centerline data. The offset of the
road centerlines can also be corrected at the same time. In this
framework, we formulate the road surface extraction problem
as piecewise two-sided width regression of the road centerlines
and introduce a novel combined CNN and GNN framework
for the width regression. The CNN extracts both the high-level
features and the boundary information from each patch of the
vertex, and the GNN propagates the vertex features within the
road graph with the constraint of two propagation rules to
output the smooth two-sided width of each vertex. The novel
design of the GNN-based adjustment results in regularized
and smooth road surface extraction in most of the testing
areas that approach the human delineation level, showing
great potential for reducing the manual work of road map
production.
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