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A B S T R A C T

High performance vibration isolation can be realized by disturbance feedforward control with a self-tuning
generalized FIR filter and residual noise shaping. For this application, filtered-error recursive least squares
(FeRLS) self-tuning is proposed in a multi-input multi-output context. In comparison to filtered-error least
mean squares (FeLMS), FeRLS achieves faster and more uniform parameter convergence without the need of
pre-whitening. Efficient implementation is realized by exploiting sparsity in the involved matrices. Feasibility
of implementation is demonstrated on a multi-axis hard-mount vibration isolation setup. Experimental results
show the better parameter convergence and the ability to track changes in the floor vibration spectrum. A
reduction of the transmissibility of floor vibrations up to 40 dB in the frequency range of interest is obtained,
reducing vibration power by 90–94% in the 1–300 Hz frequency band in multiple directions.
. Introduction

Vibration isolation is employed in many high-precision machines
o reduce the effect of floor vibrations on precision [1,2]. Active
ibration isolation avoids the need for high masses typical for passive
ibration isolation. A hard-mount suspension with disturbance feedfor-
ard control combines a low compliance to internal forces with a low

ransmissibility of floor vibrations [3]. Disturbance feedforward control
DFC) [4], also referred to as active vibration control [5], employs
loor-mounted sensors to generate actuator forces that counteract the
ffect of floor vibrations. The required counter force is predicted from
model of the isolator dynamics.

A self-learning filter enhances model accuracy, which improves
ibration isolation performance. Typically, variants of the least mean
quares (LMS) algorithms are used, such as filtered-reference LMS
FxLMS, [6,7]), filtered-error LMS (FeLMS, [8,9]), and filtered-U LMS
FuLMS, [10,11]). The main advantage of these algorithms is the
ow computational load. However, convergence speed is typically low,
hich can be attributed to large eigenvalue spread in the so-called

ovariance matrix. Various methods have been proposed to reduce this
ssue; Pre-whitened LMS [8] and normalized LMS (NLMS, [12]) reduce
he eigenvalue spread for colored input signals, while eigenvalue spread
ue to plant dynamics can be reduced with modified FxLMS [8,13] and
eneralized filters with pre-defined controller poles stored in orthonor-
al basis functions [14,15]. Residual noise shaping was proposed
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previously [16] to reduce the effect of modeling errors and poor
signal-to-noise ratio (SNR). Although these methods lead to improved
convergence, these LMS algorithms still minimize the instantaneous
squared error instead of the mean squared error (MSE), which leads to a
steady-state variance on the estimated parameters. This is particularly
severe in case of undermodeling or poor SNR in combination with a
large adaptation rate. The variance in the parameters can be reduced
by lowering the adaptation rate, but this slows down convergence.

The steady-state variance on the parameters can be reduced by min-
imizing the MSE, which can be obtained through recursive least-squares
(RLS) algorithms. A further advantage of RLS is the fast convergence
in mean without the need of pre-whitening and orthonormal basis
functions [14]. Similar to LMS, filtered-reference RLS (FxRLS) and
filtered-error RLS (FeRLS) can be used to deal with plant dynam-
ics [17,18]. The use of FxRLS has been proposed for active noise
control [19,20] and active vibration isolation [21]. However, FxRLS is
not preferred for multi-input multi-output systems because of the use of
the computationally heavy Kronecker product. Therefore, in this paper
FeRLS is proposed for a multi-axis vibration isolation system. Although
FeRLS no longer minimizes the original output error, but the filtered
output error, it is shown previously that good vibration isolation can be
realized for high-precision machines using residual noise shaping [16].

The main contribution of this paper is the application and ex-
perimental validation of FeRLS for active vibration isolation on a
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multi-axis vibration isolation system. FeRLS updates the coefficients of
a generalized FIR filter and residual noise shaping is used to focus the
optimization for the relevant frequency band and to negate the effect
of modeling errors. The paper extends the prior proposal of FeRLS
for active vibration isolation [22] to multi-axis systems and adds on
the inclusion of a forgetting factor and experimental validation. An
efficient implementation of FeRLS for a multi-axis system is proposed
exploiting sparsity of the regression matrix. This enables real-time
implementation, which is validated experimentally. The experimental
setting and approach used for FeRLS in this paper are similar to the
prior research using FeLMS [16], but extended by including the pole
of the actuator dynamics, enabling minimization of the error in a
wider frequency band. Parameter convergence, disturbance tracking
and vibration isolation performance are shown and compared to the
FeLMS case.

The remainder of this paper is organized as follows. A description
of the experimental setup for active vibration isolation is presented
in Section 2. The problem formulation is found in Section 3, whereas
the self-tuning controller with FeRLS is presented in Section 4. Experi-
mental results comparing the proposed FeRLS method with an existing
FeLMS method are presented in Section 5, and the main conclusions
are summarized in Section 6.

2. Hard-mount vibration isolation system

The vibration isolation strategy in this paper is intended for preci-
sion machinery such as equipment for wafer inspection in semiconduc-
tor industry. Conventionally, these systems rely on soft-mount isolators
for suppression of floor vibrations. In this paper we use hard-mount
isolators to provide a better stiffness to counteract direct disturbance
forces acting on the platform, but needing an active system for sup-
pression of floor vibrations [23]. The vibration isolation setup that will
be used throughout this paper is shown in Fig. 1(a). This setup has
six suspension frequencies that are representative for a hard-mount
isolator [23]. The suspension frequencies are between 15 and 45 Hz.
The isolated part of the setup consists of a platform body with a mass
of 5.4 kg connected to six voice coil motors (VCMs, type Geeplus
VM4032-250) via wire springs in the configuration resembling a Stew-
art platform. The VCMs are provided with the actuator voltages 𝒖(𝑡) ∈
R6 and are guided by circular leaf springs. The VCMs are mounted
via bridge structures on a rectangular floor plate. The floor plate
is equipped with three accelerometers (type Endevco 7703A-1000),
measuring the vertical floor plate accelerations denoted by 𝒂𝟎(𝑡) ∈ R3.
Moreover, six accelerometers (type Endevco 7703A-1000) are attached
to the Stewart platform, measuring the platform accelerations, denoted
by 𝒂𝟏(𝑡) ∈ R6, in the actuator’s directions. The sensors are connected to
signal conditioners containing a second-order high-pass filter at 0.1 Hz
and a second-order low-pass filter at 3000 Hz to filter sensor noise.
The controllers are implemented on a dspace DS-1005 digital signal
processor running at a sampling frequency of 𝑓𝑠 = 5000 Hz.

To simulate an industrial environment, the floor plate can be excited
using three vertical piezo shakers generating three independent random
noise excitations. For the experiments in this paper, two different
floor spectra have been considered, see Fig. 2. The first spectrum is
referred to as ‘‘Flat’’ and applies excitations with an approximately
flat power spectral density comparable to the frequently used BBN-B/C
curves [24,25]. The second spectrum is referred to as ‘‘Colored’’, and
has enhanced frequency power between 40–90 Hz and around 150 Hz.
The results of these experiments are further discussed in Section 5.

2.1. Feedback control

The focus of this paper is feedforward control. Nonetheless, feed-
back control is added for skyhook damping [26] of the suspension
modes. This damping reduces the amplitude of the payload modes,
which have only little mechanical damping, to make sure that the
2

Fig. 1. (a) Photo of the test setup with the brass platform suspended to the cylindrical
actuators, which are connected to the floor plate via the black bridge structures [23];
and (b) schematic picture including the coordinate frame of the elastic center; the VCMs
provide actuator voltages 𝒖 and are suspended in circular leaf springs providing passive
stiffness and damping. The floor plate is excited using piezo actuators and equipped
with six accelerometers measuring 𝒂𝟎 of which only the vertical components are used
in this paper. The platform body is equipped with six accelerometers measuring 𝒂𝟏,
which are aligned with the actuator’s line of action.

Fig. 2. Power spectral density (PSD) of the measured flat and colored floor vibration
spectra induced by the piezo shakers, plus a comparison to the BBN-B/C specification
curves from literature representing industrial environments.
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Fig. 3. Main diagonal elements of the measured frequency response matrix (FRM) of
he system with feedback control, using 𝒖 as inputs and 𝒂𝟏 as outputs; the parametric
it (dashed black) is obtained from discretization of the continuous transfer function
̂
𝟐 in (2) using the Tustin method and adding one sample delay.

ystem does not hit its limits. The design of the setup in Fig. 1 is such
hat its 6 × 6 transfer matrix from actuator voltages 𝒖 to platform
ccelerations 𝒂𝟏 is diagonally dominant. Thereby a diagonal feedback
ontroller is applied. Skyhook damping is added by proportional feed-
ack of the platform velocities, which are obtained by integrating the
nputs (accelerations) using weak integrators with a cut-off frequency
f 𝜔𝑖 = 1 rad/s. Furthermore a notch filter is used to avoid excitation of
high-frequency resonance at 𝜔𝑛 = 2𝜋 ⋅962 rad/s. This feedback control

s implemented as

𝐅𝐁(𝑠) =
𝜔𝑖

𝑠 + 𝜔𝑖
𝑘𝑣

1 + 1
100𝜔𝑛 + 𝜔2

𝑛

1 + 𝜔𝑛 + 𝜔2
𝑛

𝐈𝟔. (1)

he feedback gain is tuned to 𝑘𝑣 = 225 Ns/m, resulting in a relative
amping of the suspension modes of about 0.7 for all six suspension
odes. This tuning is based on the measured frequency response matrix

FRM) of the system with feedback discussed hereafter.
The diagonal elements of the measured FRM of the system with

kyhook damping is shown in Fig. 3. The six lines are rather similar
s a result of the axi-symmetric system design. A parametric fit of
he FRM is obtained by manually fitting a physics-based model of the
lectromechanical dynamics to these diagonal elements, discretization
f this model using the Tustin method and adding one sample delay
sample time 𝑇𝑠 = 1∕𝑓𝑠 = 2 ⋅ 10−4 s). The physics-based model of the
lectromechanical system is

̂ 𝟐(𝑠) =
𝑠2

𝑚𝑠2 + 𝑑𝑠 + 𝑘
𝜔𝑎

𝑠 + 𝜔𝑎
𝐈𝟔, (2)

with equivalent mass 𝑚 = 1.4 kg, damping 𝑑 = 290 Ns/m, stiffness
𝑘 = 60 ⋅ 103 N/m and actuator pole 𝜔𝑎 = 2𝜋 ⋅ 300 rad/s. Input
voltages are scaled to force units at DC, to ease interpretability of the
parameters. Note that the parametric fit resembles the magnitude of
the measured FRM up to about 500 Hz, which is beyond frequency
range of interest. The deviations beyond this frequency are mainly
due to parasitic dynamics of the platform suspension, which result in
a high resonance peak at 962 Hz. The parametric fit of the transfer
unction from actuator voltages 𝒖 to platform accelerations 𝒂𝟏 is used

in Section 4 for feedforward controller design.

3. Problem formulation

In this paper, multi-input multi-output feedforward control is con-
3

sidered for which the block diagram is shown in Fig. 4. The measured
Fig. 4. Block diagram of a vibration isolation system with self-tuning disturbance
feedforward control. In this figure 𝒂𝟎 is the floor acceleration with additive noise 𝒏𝟎
and 𝒂𝟏 is the payload acceleration with additive noise 𝒏𝟏. 𝐏𝟏 is the primary path with
output 𝒚𝟏, 𝐏𝟐 is the secondary path with output 𝒚𝟐, �̂�𝟐 the estimate of the secondary
path, 𝐍 is the noise shaping filter and 𝐂𝟎 is the self-tuning feedforward controller with
output 𝒖 and parameter vector 𝒘.

floor acceleration 𝒂𝟎 is considered as input disturbance while the
measured payload acceleration 𝒂𝟏 = 𝒚𝟏 + 𝒚𝟐 is considered as the signal
to be minimized in some norm-based sense. The latter is formed by two
signals: 𝒚𝟏 is caused by 𝒂𝟎 via the primary path 𝐏𝟏, and 𝒚𝟐 represents
the impact of the control signal 𝒖 transferred via the secondary path
𝐏𝟐. The feedback controller (1) is considered as an integral part of 𝐏𝟏
and 𝐏𝟐. The self-tuning feedforward controller 𝐂𝟎 provides disturbance
feedforward control based on the measured signal �̃�𝟎 = 𝒂𝟎 + 𝒏𝟎,
denoting the floor plate acceleration with additive measurement noise
represented by 𝒏𝟎(𝑡) ∈ R3. Similarly, sensor noise 𝒏𝟏(𝑡) ∈ R6 is added
to the measured signal 𝒂1 = 𝒂𝟏 +𝒏𝟏. For fixed parameters in 𝐂𝟎, 𝒂1 can
be written in the Laplace domain as

𝑨𝟏(𝑠) =  (𝑠)𝑨𝟎(𝑠) + 0(𝑠)𝑵𝟎(𝑠), (3)

with transmissibility matrix  and noise sensitivity matrix 0 which are
defined as

 (𝑠) = 𝐏𝟏(𝑠) + 𝐏𝟐(𝑠)𝐂𝟎(𝑠), (4)

0(𝑠) = 𝐏𝟐(𝑠)𝐂𝟎(𝑠). (5)

ere,  is a measure for vibration isolation performance, whereas 0
s a measure for noise amplification.

The control problem can now be formulated as follows. Given
isturbance 𝑨𝟎 and noise 𝑵𝟎, find a feedforward controller 𝐂𝟎 such
hat the power of 𝑨𝟏 is minimized in the frequency range of interest
1–300 Hz). In the absence of 𝑵𝟎, perfect cancellation is obtained if
= 0 which requires

𝟎,𝐨𝐩𝐭 (𝑠) = −𝐏−1
2 (𝑠)𝐏𝟏(𝑠). (6)

his controller follows from substitution of (6) in (4). However, a
iscrete-time implementation of (6) could result in a non-causal and
nstable feedforward controller due to time delays and non-minimum
hase zeros in 𝐏𝟐. In practice, the aim is therefore to obtain the best
ausal and stable approximation of (6), see, e.g., [4,8]. For the hard-
ount system considered in this paper, such an approximation is de-

ived in [16] by means of a feedforward controller using spring–damper
ompensation:

𝟎(𝑠) = − 1
𝑠2

(𝐃𝑠 +𝐊) , (7)

with damping matrix 𝐃 ∈ R6×3 and stiffness matrix 𝐊 ∈ R6×3. The
expression in (7) is extended in this paper by including the effect of
the actuator pole, caused by the inductance of the voltage-controlled
VCMs. This pole was previously included in the parametric fit of the
secondary path in (2). Including the inverse of the actuator dynamics
in the feedforward controller gives

𝐂 (𝑠) = − 1 (

𝐀𝑠 + 𝐈
)

(𝐃𝑠 +𝐊) , (8)
𝟎 𝑠2 6
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with 𝐀 ∈ R6×6 a diagonal matrix with the inverse of the actuator poles
n its diagonals. Expanding the result gives

𝟎(𝑠) = − 1
𝑠2

⎛

⎜

⎜

⎜

⎝

𝐀𝐃
⏟⏟⏟

�̃�

𝑠2 + (𝐃 + 𝐀𝐊)
⏟⏞⏞⏟⏞⏞⏟

�̃�

𝑠 + 𝐊
⏟⏟⏟

�̃�

⎞

⎟

⎟

⎟

⎠

(9)

with �̃� ∈ R6×3, �̃� ∈ R6×3 and �̃� ∈ R6×3 the controller parameters. Any
varying or unknown gains of the actuators or sensors can be absorbed
in these controller parameters as well.

The controller in (9) is not feasible in practice because it induces
drift and actuator saturation as a result of using pure integrators. To
cope with this problem, it is proposed in [16] to replace the pure inte-
grators by 𝑛th-order weak integrators. That is, the integrating actions
are cut off below a certain frequency 𝛼. By doing so, the controller is
given by

𝐂𝟎,𝑛(𝑠) = −
(

�̃� +𝐻(𝑠)�̃� +𝐻(𝑠)2�̃�
)

, (10)

with

𝐻(𝑠) =
1 − 𝐿(𝛼,𝑛)(𝑠)

𝑠
, (11)

that describes an 𝑛th-order weak integrator with relative degree one,
and

𝐿(𝛼,𝑛)(𝑠) =
( 𝛼
𝑠 + 𝛼

)𝑛
, (12)

representing an 𝑛th-order low-pass filter with cut-off frequency 𝛼. As a
esult, an 𝑛th-order roll-off is obtained in  for frequencies beyond 𝛼.
ere, the cut-off frequency 𝛼 = 2𝜋 ⋅ 2 rad/s (2 Hz) and 𝑛 = 3 are taken.

In this paper, the controller parameters in terms of �̃�, �̃� and �̃� in
(10) are obtained using self-tuning for three reasons. First, self-tuning
prevents the need of doing extensive system identification experiments
to get sufficiently accurate estimations of the controller parameters.
Second, self-tuning automatically accounts for the contribution of sen-
sor noise 𝑵𝟎 in the minimization of 𝒂𝟏, which was neglected in the
derivation of (10). Third, self-tuning enables online controller adapta-
tions to track time-varying system parameters or changes in the input
vibration spectrum. Self-tuning is explained in detail in the next section.

4. Self-tuning controller

This section presents the self-tuning FeRLS algorithm in discrete-
time, as well as the FeLMS algorithm which is used for comparison
of performance. The parameters will be updated at every time sample
𝑡𝑘 = 𝑘𝑇𝑠, with index 𝑘 ∈ N and sampling time 𝑇𝑠. Both FeLMS and
FeRLS use the same controller structure adopted from [16], where it
was introduced for the FeLMS algorithm. This structure is summarized
first. Afterwards, the self-tuning algorithms are presented.

4.1. Controller structure

The controller structure is derived from the continuous-time form in
(10). Defining 𝑞 representing the backward shift operator, a self-tuned
feedforward control signal is defined as

𝒖𝑭𝑭 (𝑘) =
[

−�̃�(𝑘) − 1
𝛽 �̃�(𝑘) − 1

𝛽2
�̃�(𝑘)

]

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐖(𝑘)

⎡

⎢

⎢

⎣

�̃�𝟎(𝑘)
𝛽𝐻(𝑞)�̃�𝟎(𝑘)
𝛽2𝐻(𝑞)2�̃�𝟎(𝑘)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
�̃�(𝑘)

. (13)

The matrix 𝐖(𝑘) ∈ R6×9 consists of the self-tuning controller gain
matrices �̃�(𝑘), �̃�(𝑘) and �̃�(𝑘), and �̃�(𝑘) ∈ R9 represents the regression
vector. The constant 𝛽 ∈ R is chosen such that the power of the product
𝛽𝐻(𝑞) is normalized, which is shown in [16] to be optimal for FeLMS
4

convergence. For a practical implementation, (13) is rewritten such that
the parameters from 𝐖(𝑘) are stored in a single column vector 𝒘(𝑘), or

𝒖𝑭𝑭 (𝑘) = 𝐻(𝑞)⋅

⎡

⎢

⎢

⎣

�̃�𝑇 (𝑘) … 𝟎
⋮ ⋱ ⋮
𝟎 … �̃�𝑇 (𝑘)

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Ψ̃(𝑘)

⎡

⎢

⎢

⎣

(𝐖(1,∶)(𝑘))𝑇

⋮
(𝐖(6,∶)(𝑘))𝑇

⎤

⎥

⎥

⎦

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝒘(𝑘)

, (14)

ith regression matrix Ψ̃(𝑘) ∈ R6×54, parameter vector 𝒘(𝑘) ∈ R54

ontaining the self-tuning controller parameters using either FeLMS or
eRLS, and (𝐖(𝑖,∶)(𝑘))𝑇 denoting the transposed 𝑖th row of 𝐖(𝑘).

.2. Filtered-error LMS

Stochastic gradient algorithms based on least mean squares (LMS)
re derived from a steepest descent method satisfying the update
aw [8,10]

(𝑘 + 1) = 𝒘(𝑘) − 𝜇(𝑘)
( 𝜕𝐽
𝜕𝒘

)𝑇
, (15)

with possibly time-varying step-size 𝜇(𝑘), and cost function 𝐽 =
1
2E[𝒆

𝑇 (𝑘)𝒆(𝑘)] representing a mean squared filtered error. For the
pecific case of FeLMS with residual noise shaping, the filtered error
s given by

(𝑘) = 𝐍(𝑞)�̂�−1
2 (𝑞)�̃�𝟏(𝑘). (16)

To obtain the filtered error in (16), the measured accelerations are
iltered by the inverse of the secondary path denoted by �̂�−1

𝟐 (q), in line
ith the use of filtered-error LMS. The additional filter 𝐍 is used for

esidual noise shaping and specifies the frequency range of interest for
ibration isolation. The model inverse of the secondary path �̂�−1

𝟐 (q)
s obtained by subsequent Tustin discretization and inversion of the
arametric fit in (2). Since this parametric fit has more poles than
eros, inversion would lead to a non-proper system. Therefore, the
iscretization and inversion are combined with the multiplication with
which will have sufficient relative degree to make the product 𝐍�̂�−1

𝟐
roper.

The role of 𝐍 is to remove signal contents at very low and high
requencies where model errors are expected to occur and which are
utside the frequency range of interest [16]. Therefore, 𝐍 = 𝑁(𝑞)𝐈
s designed as a diagonal filter containing a 3rd order high-pass filter
t 6 Hz and a 3rd order low-pass filter at 300 Hz. This filter differs
rom [16] by a higher low-pass filter frequency, which is allowed by

reduction of the model error as a result of including the actuator
ole in the dynamics (see (2) and (8)). Furthermore notch filters are
dded to 𝑁(𝑞) to suppress the strong response at the 962 Hz resonance
nd electrical power grid induced disturbances at 50, 100 and 200 Hz.
urthermore, the filter 𝑠2

𝑚𝑠2+𝑑𝑠+𝑘 is added to compensate the change in
magnitude characteristics induced by �̂�−1

𝟐 .
LMS algorithms use an instantaneous approximation of the gradient

n (15) by minimizing the instantaneous squared error, i.e. 𝐽 (𝑘) =
1
2 𝒆

𝑇 (𝑘)𝒆(𝑘). Given (16), it is derived in [16] that, under the assumptions
f slow adaptation and perfect secondary path estimation �̂�𝟐 = 𝐏𝟐, the
radient is approximated as
(

𝜕𝐽 (𝑘)
𝜕𝒘

)𝑇
= Ψ̃𝑁 (𝑘)𝒆(𝑘), (17)

ith filtered regressors Ψ̃𝑁 (𝑘) = 𝐍(𝑞)�̃� (𝑘). Next, define a normalized
daptation rate,

(𝑘) =
�̄�

𝜖 + Tr
(

Ψ̃𝑇
𝐍(𝑘)Ψ̃𝑁 (𝑘)

) , (18)

ased on the trace of the instantaneously estimated covariance matrix
f Ψ̃𝑁 and a small regularization constant 𝜖 ∈ R. Substitution of (17)
nd (18) in (15) yields the update law for FeLMS with residual noise
haping:

(𝑘 + 1) = 𝒘(𝑘) −
�̄�

( ̃ 𝑇 ̃ ) Ψ̃𝑇
𝐍(𝑘)𝒆(𝑘). (19)
𝜖 + Tr Ψ𝐍(𝑘)Ψ𝑁 (𝑘)
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4.3. Filtered-error RLS

Recursive least squares (RLS) algorithms provide the exact solution
to a well-defined estimation problem with an exponentially weighted
least-squares cost function 𝐽 (𝑘) = 1

2
∑𝑘

𝑗=1 𝜆
𝑘−𝑗𝒆𝑇 (𝑗)𝒆(𝑗). Here, the for-

getting factor 0 < 𝜆 ≤ 1 introduces exponential weighting to assign less
weight to past samples such that it can track changes.

Alternative approaches, derived by [8,12], consider RLS as a
stochastic gradient algorithm based on Newton’s method:

𝒘(𝑘 + 1) = 𝒘(𝑘) − 𝜇(𝑘)𝐀−1(𝑘)
(

𝜕𝐽 (𝑘)
𝜕𝒘

)𝑇
. (20)

Similar to the steepest-descent method in (15), some step-size 𝜇(𝑘)
and cost function 𝐽 = 1

2E[𝒆
𝑇 (𝑘)𝒆(𝑘)] are used. In contrast to (15),

the method in (20) contains an additional scaling with the inverse
of 𝐀, representing the Hessian matrix of 𝐽 with respect to 𝒘. This
is useful because it compensates for eigenvalue spread in the auto-
correlation matrix of the regressors, which is known to be a main
cause for non-uniform convergence speeds of the parameters in LMS
algorithms [14].

To arrive at the FeRLS algorithm from (20), for the Hessian matrix
𝐀(𝑘) = E[Ψ̃𝑇

𝐍(𝑘)Ψ̃𝐍(𝑘)], an exponentially weighted sample average is
taken [12]

𝐀(𝑘) = 𝛼(𝑘)

[

𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝑗=0
𝜆𝑘−𝑗Ψ̃𝑇

𝐍(𝑗)Ψ̃𝐍(𝑗)

]

, (21)

where the gain 𝛼(𝑘) is defined as

𝛼(𝑘) =

{ 1−𝜆
1−𝜆𝑘+1 for 0 < 𝜆 < 1
1

1+𝑘 for 𝜆 = 1
. (22)

The gain 𝛼(𝑘) is introduced to get the proper exponentially weighted
sample average. The gain for 𝜆 = 1 gives the normal sample aver-
age [12], while the gain for 0 < 𝜆 < 1 is derived in Appendix B. Eq. (21)
provides an accurate estimation for the co-variance matrix, where the
regularization constant 𝜖 will automatically vanish for increasing 𝑘.
Next, to obtain the FeRLS algorithm, the adaptation gain is taken as

𝜇(𝑘) = 𝛼(𝑘), (23)

where 𝛼(𝑘) is defined in (22). The adaptation gain is 1 for 𝑘 = 0 and
decreases for increasing 𝑘. The adaptation gain decreases to the limit
1 − 𝜆 as 𝑘 → ∞ and thus a vanishing adaptation gain is obtained for
𝜆 = 1, while the adaptation gain remains nonzero for smaller 𝜆.

Substitution of (17), (23) and (22) in (20) (for 0 < 𝜆 < 1) yields

𝒘(𝑘 + 1) = 𝒘(𝑘) − 1 − 𝜆
1 − 𝜆𝑘+1

𝐀−1(𝑘)Ψ̃𝑇
𝐍(𝑘)𝒆(𝑘), (24)

and further substitution of (21) in (24) gives

𝒘(𝑘 + 1) = 𝒘(𝑘) − �̄�(𝑘)Ψ̃𝑇
𝐍(𝑘)𝒆(𝑘), (25)

with adaptation gain matrix

�̄�(𝑘) = 𝜇(𝑘)𝐀−1(𝑘)

=

[

𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝑗=0
𝜆𝑘−𝑗Ψ̃𝑇

𝐍(𝑗)Ψ̃𝐍(𝑗)

]−1

. (26)

Note that the inclusion of the exponential weighting makes sure �̄�(𝑘)
does not go to zero. For a practical implementation, direct use of (25) is
not desired as it implies the inversion of a 54 × 54 matrix to obtain �̄�(𝑘)
at every time step. This computationally heavy operation is avoided by
taking two steps to turn (24) into an efficient FeRLS algorithm. These
steps are discussed hereafter and elaborated in Appendix A.

First, due to the block diagonal structure of Ψ̃𝐍(𝑗) (see Eq. (14)),
the multi-input multi-output adaptation gain matrix has a repeating
block-diagonal structure as well:

�̄�(𝑘) =
⎡

⎢

⎢

𝐏(𝑘) … 𝟎
⋮ ⋱ ⋮

⎤

⎥

⎥

, (27)
5

⎣ 𝟎 … 𝐏(𝑘) ⎦

s

where 𝐏(𝑘) ∈ R9×9 is defined as

𝐏(𝑘) =
[

𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝑗=0
𝜆𝑘−𝑗 �̃�𝑁 (𝑗)�̃�𝑇

𝑁 (𝑗)

]−1

. (28)

Second, the matrix inversion lemma is used to turn (25) into the
recursive update

𝐏(𝑘) =𝜆−1 [𝐏(𝑘 − 1)−

𝐏(𝑘 − 1)�̃�𝑁 (𝑘)�̃�𝑇
𝑁 (𝑘)𝐏(𝑘 − 1)

𝜆 + �̃�𝑇
𝑁 (𝑘)𝐏(𝑘 − 1)�̃�𝑁 (𝑘)

]

, (29)

with filtered regressors �̃�𝑁 (𝑘) = 𝑁(𝑞)�̃�(𝑘). The algorithm is initialized
y 𝐏(−1) = 𝜖−1𝐈, where 𝜖 ∈ R should be chosen as a small number.
ote that no matrix inverse needs to be calculated at all. The ability to
se a scalar division is the result of the block-diagonal parametrization
f the feedforward controller in (14).

The block-diagonal structure and repetitions in �̄�(𝑘) and Ψ̃𝐍(𝑘) are
xploited further to improve computational efficiency by reformulating
25) to

(𝑘 + 1) = 𝒘(𝑘)

−
[

𝐏(𝑘)�̃�(𝑘) … 𝐏(𝑘)�̃�(𝑘)𝑇
]

𝒆(𝑘), (30)

here 𝐏(𝑘) and 𝐏(𝑘)�̃�(𝑘) only need to be computed once. This efficiency
xploits the fact that each input is affected by the same regressor vector
s shown in (14).

.4. FeRLS versus FeLMS

Two key differences can be distinguished by comparing the FeRLS
pdate law (24) to (19) for FeLMS. First, it is observed that FeLMS has
fixed adaptation rate �̄� such that the algorithm keeps on updating.
s a consequence, FeLMS will remain a non-zero variance on the esti-
ated parameters in steady-state. In contrast, FeRLS has a decreasing

daptation gain resulting in smaller parameter variance. The variance
n the estimated parameters completely disappears for 𝜆 = 1, because
he adaptation gain vanishes completely. For 0 < 𝜆 < 1 tracking ability
s preserved at cost of a (small) remaining variance of the estimated
arameters.

Second, FeLMS in fact satisfies Newton’s method when one defines

−1(𝑘) = 54
𝜖 + Tr

(

Ψ̃𝑇
𝐍(𝑘)Ψ̃𝑁 (𝑘)

) 𝐈54 (31)

s an instantaneous estimated inverse of the Hessian matrix 𝐀 =
[Ψ̃𝑇

𝐍(𝑘)Ψ̃𝐍(𝑘)]. However, this instantaneous estimate used in FeLMS
ill be less accurate compared to the Hessian used in FeRLS for

wo reasons. First, it assumes that the regressor signals in Ψ̃𝐍 are
rthogonal (cross-terms are zero) and all have the same power (𝐀 in
31) has 54 identical diagonal elements). These properties are unlikely
or stochastic signals and a frequency-dependent residual noise shap-
ng filter. Second, it approximates the expected value of the power
y a regularized instantaneous estimate, i.e., E[�̃� 𝑇

𝐍(𝑘)�̃�𝐍(𝑘)] ≈ (𝜖 +
r
(

Ψ̃𝑇
𝐍(𝑘)Ψ̃𝑁 (𝑘)

)

)𝐈, which is not correct for stochastic signals satisfying
probability density function. Therefore, FeLMS will in general not

ave the fast and uniform convergence properties such as obtained with
eRLS.

. Experimental validation

This section presents an experimental validation to demonstrate
he feasibility of the proposed FeRLS algorithm and the performance
mprovements obtained with FeRLS compared to FeLMS. First, the
ransient performance of the vibration isolation system is studied.
econd, steady-state vibration isolation performance after convergence
s evaluated using plots of the transmissibility matrix and the power
pectral densities.
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Table 1
Data obtained from the measured convergence of the first nine parameters using FeLMS or FeRLS. The time constant 𝜏 (where the signal remains within 63% of its final value)
and the final value 𝑣f inal are listed.

Quantity Algorithm Parameter

1 2 3 4 5 6 7 8 9

𝜏 (s) FeLMS 67.4 47.5 37.4 13.2 6.6 9.6 7.3 16.4 24.7
FeRLS 39.0 26.2 1.0 7.8 3.3 6.1 1.8 3.1 4.3

𝑣f inal FeLMS −0.0320 0.0659 0.2543 0.1198 0.3808 −0.3944 0.5162 1.5028 −0.7239
FeRLS −0.0180 0.0884 0.2151 0.1404 0.3383 −0.3720 0.5321 1.5175 −0.7648
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Fig. 5. Measured convergence of the quadratic filtered error and some characteristic
parameters (𝑤1 in blue, 𝑤4 in green and 𝑤7 in red) using either FeLMS (dashed) or
FeRLS (solid). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

5.1. Transient performance

Transient performance is analyzed by observing both the initial con-
vergence behavior and the ability to respond to changing disturbance
frequency spectra.

5.1.1. Initial convergence
Self-learning is initialized as follows. For FeLMS, numerical values

̄ = 10−4 and 𝜖 = 10−5 are used. For FeRLS, the initial covariance matrix
𝟎 is set to a diagonal matrix with values equal to 10 times the steady-
tate values to speed up initial convergence, and the forgetting factor is
et to 𝜆 = exp

(

− 1
10𝑇𝑠

)

, providing adaptation capabilities with a time-
onstant of 10 s. This choice of the forgetting factor eventually results
n similar steady-state parameter variance for FeRLS and FeLMS as will
e shown later. Here, the flat floor vibration spectrum from Fig. 2 is
sed.

Convergence of the quadratic filtered error and some characteristic
arameters is shown in Fig. 5 for both FeLMS and FeRLS. Table 1
hows the results from convergence in terms of a time constant and the
inal value. The table shows the first nine parameters, corresponding
o the first control signal in 𝒖. Due to the system’s symmetry, the other
arameters show similar trends and have not been included for space
imitations.

It is observed that both algorithms converge to about the same
alues. Minor differences appear because both algorithms minimize a
lightly different cost function. Both algorithms show significant dif-
erences in convergence speed. FeLMS suffers from eigenvalue spread
ntroduced by the instantaneous estimate of the Hessian matrix, see
31), because the floor vibration spectrum is not perfectly flat. FeRLS
uffers from the fact that the initial estimate for the 𝐏 matrix is not
6

𝟎

erfect. Nevertheless, the time constants for FeRLS are much faster (1.7
ill 37 times, see Table 1), demonstrating the superiority of FeRLS. The
teady-state variance of the parameters is similar for both algorithms,
hich can be seen from Fig. 5. One could decrease this variance in
eLMS by setting a lower convergence rate �̄�, but this will further
ecrease the convergence rate. In FeRLS the variance can be decreased
y taking 𝜆 closer to 1; taking 𝜆 = 1 even results in convergence in
ean square, due to the vanishing adaptation rate. However, this is

lso at cost of convergence speed and the ability to track changes in
he disturbances.

.1.2. Disturbance tracking
Next, a comparison between FeLMS and FeRLS is made in view

f tracking a change in the floor vibration spectrum. To illustrate
his, the floor spectrum is instantaneously changed from a flat to a
olored spectrum (as defined in Fig. 2) and the resulting response in
arameter convergence has been measured, see Fig. 6(a). It is observed
hat the parameters converge faster to the new situation when FeRLS
s used. In Fig. 6(b), a similar measurement is shown but then for a
witch from a colored spectrum back to a flat spectrum. In this case,
he benefit of FeRLS is no longer there. This is because FeRLS first
as to re-adapt the 𝐏𝟎 matrix to the flat spectrum whereas FeLMS
irectly benefits from the fact that the system more or less satisfies
he strict assumptions for optimal FeLMS convergence speed (i.e., an
pproximately flat frequency spectrum, orthonormal basis functions,
nd proper choices for �̄� and 𝜀). Nevertheless, since FeRLS does not
equire these assumptions at all while still outperforming FeLMS in
ase of colored disturbances, FeRLS in general gives the best transient
erformance.

In these experiments, the computational loads were similar, i.e.,
.14 ms, although one might expect that FeRLS would need a higher
omputational load. This indicates that the update algorithm itself is
ot the most critical step in terms of computational load.

.2. Steady-state performance

Steady-state performance will be evaluated in terms of transmis-
ibility and (cumulative) power spectral density plots. For ease of
resentation, both the floor plate and platform accelerations are trans-
ormed to a central Cartesian coordinate frame as defined in Fig. 1, and
esults are shown in the directions 𝑧, 𝜃𝑥, 𝜃𝑦.

.2.1. Transmissibilities
Fig. 7 shows the measured transmissibility matrix for the directions

, 𝜃𝑥, and 𝜃𝑦. Results are shown for the passive, the feedback-controlled
nd the feedback- plus feedforward-controlled case using either FeLMS
r FeRLS. The transmissibilities are measured using the flat spectrum
ith fixed parameters after convergence. It is observed that FeLMS and
eRLS result in similar reductions in magnitude after self-tuning. This
s as expected, because it was previously observed that the parameters
n essence converge to the same value (see Fig. 5 and Table 1). The
ain diagonals of the transmissibility matrix associate with reductions

eyond 20 dB and up to 40 dB in all three directions with respect
o the feedback-only controlled system for frequencies between 3 and
00 Hz. Beyond 200 Hz, performance is slightly deteriorated due to
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Fig. 6. (a) Response in parameter convergence from flat to colored floor spectrum, and (b) vice versa; the solid lines correspond to FeRLS, the dashed lines correspond to FeLMS.
Fig. 7. Measured vibration isolation performance in terms of the transmissibility functions; performance is shown for the passive system (blue dashed), for the active system with
feedback (blue), and for the active systems with feedback plus feedforward using either FeLMS (green) or FeRLS (black). (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)
a waterbed effect caused by the causal nature of disturbance feedfor-
ward control, i.e. the floor disturbance occurs prior to detection and
compensation [27,28]. The off-diagonal terms in the transmissibility
matrix have different lower bounds because not all inputs and outputs
have the same units (meters vs. radians). For frequencies below 2 Hz,
performance is slightly deteriorated due to application of the weak
integrators [16]. A remarkable observation is that the low-frequency
transmissibilities for the passive system and the active system with
feedback are not 0 dB at low frequencies, probably due to the low
excitation level and high sensor noise levels at these frequencies. For
frequencies beyond 400 Hz, sensor noise and internal eigenmodes of
the floor plate dominate the response. At 100 Hz some sharp peaks are
visible, which were caused by disturbances from the electrical power
grid.

5.2.2. Residual output power
Recall the main objective of this paper defined in Section 3, i.e.,

minimization of the platform accelerations 𝒂𝟏 within the frequency
range of interest (1–300 Hz). To evaluate this objective, Fig. 8(a) shows
measured power spectral density (PSD) plots of 𝒂𝟏 for the different con-
trol cases. It is observed that within the frequency range of 3–200 Hz,
both FeLMS and FeRLS provide significant performance improvements
7

up to the theoretical limit given by the output noise covariance matrix.1
Again, the deteriorated performance below 2 Hz is due to the higher-
order weak integrators. Beyond 300 Hz, no performance improvements
up to the theoretical limit are obtained. This can be explained by
the fact that these frequencies are beyond the high cut-off frequency
(300 Hz) of the band-pass filter in the noise shaping filter 𝐍. As such,
the self-tuning algorithm does not optimize for such high frequencies,
but allows here for performance deterioration which is inevitable due
to the earlier mentioned waterbed effect.

Fig. 8(b) presents cumulative PSD plots, showing that the addition
of feedforward control leads to significant performance improvements.
Compared to the system using only feedback control, the cumulative
power at 300 Hz has reduced with 94 % in the 𝑧-direction, with
90 % in the 𝜃𝑥-direction, and with 93 % in the 𝜃𝑦-direction in case
of FeRLS-feedforward control. Similar reductions are found in case of
FeLMS-feedforward control, which is expected because the parameters
obtained by FeLMS and FeRLS in essence converge to the same global
minimum.

1 Under the assumption that the output noise is uncorrelated with 𝒂𝟎, it is
shown in [4] that the output noise covariance matrix can be calculated from
spectral analysis techniques, and that this matrix indicates a lower bound for
performance improvements possible with disturbance feedforward control
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Fig. 8. (a) measured power spectral density (PSD) plots of the platform accelerations, and (b) measured cumulative PSD plots, for the active system with feedback (blue), and
feedback plus FeLMS-feedforward (green) or FeRLS-feedforward (black). The PSD can be compared to the output noise, which is the theoretical minimum obtained by the used
feedforward approach. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
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6. Conclusions

The FeRLS algorithm with residual noise shaping for self-tuning
disturbance feedforward control is proposed for multi-axis vibration
isolation. It is shown that the estimation of the input covariance makes
orthonormalization of the basis functions or whitening of the input
signal obsolete.

An efficient algorithm for FeRLS is derived by exploiting the sparsity
of the covariance matrix. This allows online estimation of 54 parameters
at a sample rate of 5000 Hz.

The FeRLS algorithm with residual noise shaping is implemented on
a multi-axis hard-mount vibration isolation platform. The parameters
estimated by FeRLS show a higher convergence speed compared to
FeLMS. The forgetting factor of FeRLS is tuned to have similar param-
eter variance. The higher convergence speed allows faster deployment
and tracking of changes in the parameters. After convergence similar
parameters are found for FeLMS and FeRLS, giving similar vibration
isolation performance.

In addition to previous work, the actuator dynamics are included
in the dynamic description of the secondary path, which allows to
approximate the dynamics accurately up to 500 Hz. This allows to
increase the frequency band of the noise-shaping filter in the filtered-
error approach up to 300 Hz, thereby increasing the frequency band
for minimization of the (filtered) error. The transmissibility to floor
vibrations is reduced from 20 dB up to 40 dB in the frequency range of
interest compared to the feedback-only isolation.

The eventual vibration isolation of both FeRLS and FeLMS is limited
at low frequencies by the weak integrators [16] and at high-frequency
performance by the waterbed effect caused by the causal nature of
disturbance feedforward control [28]. Future research will consider
optimal balancing of all noise sources and limiting effects to achieve
optimal overall performance.

RLS algorithms are known to have limited numerical stability [12].
In the experiments no numerical stability issues were observed. The
limited number of recursion samples, the floating-point implementa-
tion and the use of a forgetting factor tend to attenuate numerical
instability, but probably do not eliminate it. Various methods for
mitigating numerical instabilities have been proposed, e.g. [12,29].
Numerical stability and mitigation of any instabilities are subject of
further research.
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ppendix A. Matrix inversion lemma

This section shows how the inverse of the Hessian matrix can be
ecursively computed. Define

̄ (𝑘) =

[

𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝑗=0
𝜆𝑘−𝑗Ψ̃𝑇

𝐍(𝑗)Ψ̃𝐍(𝑗)

]−1

(A.1)

s an intermezzo, note that the summation can be rewritten to
𝑘
∑

𝑗=0
𝜆𝑘−𝑗Ψ𝑇

𝐍(𝑗)Ψ𝐍(𝑗) =

𝑘
∑

𝑗=0
𝜆𝑘−𝑗

⎡

⎢

⎢

⎣

�̃�𝑁 (𝑗) … 𝟎
⋮ ⋱ ⋮
𝟎 … �̃�𝑁 (𝑗)

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

�̃�𝑇
𝑁 (𝑗) … 𝟎
⋮ ⋱ ⋮
𝟎 … �̃�𝑇

𝑁 (𝑗)

⎤

⎥

⎥

⎦

=

⎡

⎢

⎢

⎢

⎣

∑𝑘
𝑗=0 𝜆

𝑘−𝑗 �̃�𝑁 (𝑗)�̃�𝑇
𝑁 (𝑗) … 𝟎

⋮ ⋱ ⋮
𝟎 …

∑𝑘
𝑗=0 𝜆

𝑘−𝑗 �̃�𝑁 (𝑗)�̃�𝑇
𝑁 (𝑗)

⎤

⎥

⎥

⎥

⎦

Next, define

−1(𝑘) = 𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝜆𝑘−𝑗 �̃�𝑁 (𝑗)�̃�𝑇
𝑁 (𝑗), (A.2)
𝑗=0
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such that

�̄�(𝑘) =
⎡

⎢

⎢

⎣

𝐏−1(𝑘) … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐏−1(𝑘)

⎤

⎥

⎥

⎦

−1

(A.3)

=
⎡

⎢

⎢

⎣

𝐏(𝑘) … 𝟎
⋮ ⋱ ⋮
𝟎 … 𝐏(𝑘)

⎤

⎥

⎥

⎦

. (A.4)

In other words, to construct �̄�(𝑘) it is sufficient to calculate 𝐏(𝑘), which
can be written as

𝐏(𝑘) =
[

𝜆𝑘+1𝜖𝐈 +
𝑘
∑

𝑗=0
𝜆𝑘−𝑗 �̃�𝑁 (𝑗)�̃�𝑇

𝑁 (𝑗)

]−1

= 𝜆−1

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

𝜆𝑘𝜖𝐈 +
𝑘−1
∑

𝑗=0
𝜆𝑘−1−𝑗 �̃�𝑁 (𝑗)�̃�𝑇

𝑁 (𝑗)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
𝐏−1(𝑘−1)

+ 𝜆−1�̃�𝑁 (𝑘)
⏟⏞⏞⏞⏟⏞⏞⏞⏟

𝐁(𝑘)

�̃�𝑇
𝑁 (𝑘)

⏟⏟⏟
𝐂(𝑘)

⎤

⎥

⎥

⎥

⎥

⎦

−1

. (A.5)

Next, consider the matrix inversion lemma [8]:

[𝐀 + 𝐁𝐂]−1 = 𝐀−1 − 𝐀−1𝐁
[

𝐈 + 𝐂𝐀−1𝐁
]−1 𝐂𝐀−1,

which assumes that
[

𝐈 + 𝐂𝐀−1𝐁
]

is non-singular. Application of this
lemma to (A.5) yields

𝐏(𝑘) =

𝜆−1
[

𝐏(𝑘 − 1) −
𝐏(𝑘 − 1)𝜆−1�̃�𝑁 (𝑘)�̃�𝑇

𝑁 (𝑘)𝐏(𝑘 − 1)

1 + �̃�𝑇
𝑁 (𝑘)𝐏(𝑘 − 1)𝜆−1�̃�𝑁 (𝑘)

]

= 𝜆−1
[

𝐏(𝑘 − 1) −
𝐏(𝑘 − 1)�̃�𝑁 (𝑘)�̃�𝑇

𝑁 (𝑘)𝐏(𝑘 − 1)

𝜆 + �̃�𝑇
𝑁 (𝑘)𝐏(𝑘 − 1)�̃�𝑁 (𝑘)

]

Providing an efficient algorithm to compute 𝐏(𝑘) as it involves no
matrix inversion.

Appendix B. Exponentially weighted sample average

In this section the scaling gain 𝛼(𝑘) of the exponentially weighted
sample average is derived. Consider the exponentially weighted aver-
age of some signal 𝑐(𝑘)

𝑐(𝑘) = 𝛼(𝑘)
𝑘
∑

𝑗=0

(

𝜆𝑘−𝑗𝑐(𝑘)
)

, (B.1)

where a proper scaling gain 𝛼(𝑘) should result in 𝑐(𝑘) = 𝑐 for a constant
𝑐(𝑘) = 𝑐. A constant 𝑐 can be taken out of the summation and thus the
following should hold

𝛼(𝑘)
𝑘
∑

𝑗=0
𝜆𝑘−𝑗 = 1. (B.2)

Some rewriting, gives

𝛼(𝑘)
𝑘
∑

𝑗=0
𝜆𝑘−𝑗 = 𝛼(𝑘)

𝑘
∑

𝑗=0
𝜆𝑗 = 𝛼(𝑘) 1 − 𝜆𝑘+1

1 − 𝜆
= 1, (B.3)

where the well-known solution for a geometric series is used in the
second step. The previous equality is satisfied for

𝛼(𝑘) = 1 − 𝜆
1 − 𝜆𝑘+1

, (B.4)

providing the proper scaling gain for the weighted sample average.
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