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Deep kernel learning of dynamical 
models from high‑dimensional 
noisy data
Nicolò Botteghi *, Mengwu Guo  & Christoph Brune 

This work proposes a stochastic variational deep kernel learning method for the data-driven discovery 
of low-dimensional dynamical models from high-dimensional noisy data. The framework is composed 
of an encoder that compresses high-dimensional measurements into low-dimensional state variables, 
and a latent dynamical model for the state variables that predicts the system evolution over time. 
The training of the proposed model is carried out in an unsupervised manner, i.e., not relying on 
labeled data. Our learning method is evaluated on the motion of a pendulum—a well studied baseline 
for nonlinear model identification and control with continuous states and control inputs—measured 
via high-dimensional noisy RGB images. Results show that the method can effectively denoise 
measurements, learn compact state representations and latent dynamical models, as well as identify 
and quantify modeling uncertainties.

Understanding the evolution of dynamical systems over time by discovering their governing laws is essential for 
science and and engineering1. Traditionally, governing equations are derived from physical principles, such as 
conservation laws and symmetries. However, the governing laws are often difficult to unveil for many systems 
exhibiting strongly nonlinear behaviors. These complex behaviors are typically captured by high-dimensional 
noisy measurements, which makes it especially hard to identify the underlying principles. On the other hand, 
while measurement data are often abundant for many dynamical systems, physical equations, if known, may not 
exactly govern the actual system evolution due to various uncertainties.

The progress of Machine Learning2 and Deep Learning3, combined with the availability of large amounts of 
data, has paved the road for new paradigms for the analysis and understanding of dynamical systems1. These 
new paradigms are not limited to the discovery of governing laws for system evolution, and have brought revo-
lutionary advancements to the field of dynamical system control. In particular, Reinforcement Learning4 (RL) 
has opened the door to model-free control directly from high-dimensional noisy measurements, in contrast to 
the traditional control techniques that rely on accurate physical models. RL has found its success in the nature-
inspired learning paradigm through interaction with the world, in which the control law is solely a function of 
the measurements and learned by iteratively evaluating its performance a posteriori, i.e., after being applied to 
the system. Especially, RL stands outs in the control of complex dynamical systems5. However, RL algorithms 
may suffer from high computational cost and data inefficiency as a result of disregarding any prior knowledge 
about the world.

While data are often high-dimensional, many physical systems exhibit low-dimensional behaviors, effectively 
described by a limited number of latent state variables that can capture the principal properties of the systems. 
The process of encoding high-dimensional measurements into a low-dimensional latent space and extracting 
the predominant state variables is called, in the context of RL and Computer Science, State Representation 
Learning6,7. At the same time, its counterpart in Computational Science and Engineering is often referred to as 
Model Order Reduction8.

Reducing the data dimensionality and extracting the latent state variables is often the first step to explicitly 
represent a reduced model describing the system evolution. Due to their low dimensionality, such reduced models 
are often computationally lightweight and can be efficiently queried for making predictions of the dynamics9 and 
for model-based control, e.g., Model Predictive Control10 and Model-based RL4. The problem of dimensionality 
reduction and reduced-order modeling is traditionally tackled by the Singular Value Decomposition11 (SVD) 
(depending on the context, the SVD is often referred to as Principal Component Analysis12 or Proper Orthogo-
nal Decomposition13). Examples include the Dynamics Mode Decomposition14,15, sparse identification of latent 
dynamics16 (SINDy), operator inference17–19, and Gaussian process surrogate modeling20. More recently, Deep 
Learning3, especially a specific type of neural network (NN) termed Autoencoder3 (AE), has been employed 
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to learn compact state representations successfully. Unlike the SVD, an AE learns a nonlinear mapping from 
the high-dimensional data space to a low-dimensional latent space through an NN called encoder, as well as 
an inverse mapping through a decoder. AEs can be viewed as a nonlinear generalization of the SVD, enabling 
more powerful information compression and better expressivity. AEs have been used for manifold learning21, in 
combination with SINDy for latent coordinate discovery22, and in combination with NN-based surrogate models 
for latent representation learning towards control23,24.

Whether we aim to identify parameters of a physical equation or learn the entire system evolution from data, 
we may face an unavoidable challenge stemming from data noise. Inferring complex dynamics from noisy data is 
not effortless, as the identification, understanding and quantification of various uncertainties is often required. 
For example, uncertainties may derive from noise-corrupted sensor measurements, system parameters (e.g., 
uncertain mass, geometry, or initial conditions), modeling and/or approximation processes, and uncertain system 
behaviors that may be chaotic (e.g., in the motion of a double pendulum) or affected by unknown disturbances 
(e.g., uncertain external forces or inaccurate actuation). When data-driven methods consider stochasticity and 
uncertainties quantification, AEs are often replaced with Variational AEs25 (VAEs) for learning low-dimensional 
states as probabilistic distributions. Samples from these distributions can be used for the construction of latent 
state models via Gaussian models26–30 and nonlinear NN-based models31,32. However, NN-based latent models 
often disregard the distinction among uncertainty sources, especially between the data noise in the measurements 
and the modeling uncertainties stemming from the learning process, and only estimate the overall uncertainty 
on the latent state space through the encoder of a VAE model. We argue, however, that disentangling the uncer-
tainty sources is critical for identifying the governing laws and discovering the latent reduced-order dynamics.

In this work, we propose a data-driven framework for the dimensionality reduction, latent-state model learn-
ing, and uncertainty quantification based on high-dimensional noisy measurements generated by unknown 
dynamical systems (see Fig. 1). In particular, we introduce a Deep Kernel Learning33 (DKL) encoder, which 
combines the highly expressive NN with a kernel-based probabilistic model of Gaussian process34 (GP) to reduce 
the dimensionality and quantify the uncertainty in the noisy measurements simultaneously, followed by a DKL 
latent-state forward model that predicts the system dynamics with quantifiable modeling uncertainty, and an 
NN-based decoder designed to enable reconstruction, prevent representation-collapsing, and improve interpret-
ability. Endowed with quantified uncertainties, such a widely applicable and computationally efficient method for 
manifold and latent model learning is essential for data-driven physical modeling, control, and digital twinning.

Preliminaries
In scalar-valued supervised learning, we have a set of M d-dimensional input samples X = [x1, . . . , xM ] ∈ X ⊂ R

d 
and the corresponding set of target data y = [y1, . . . , yM ]T ∈ Y ⊂ R related by some unknown function 
f # : X → Y . The goal is to find a function f that best approximates f # . Many function approximators can 
be used to learn f, but here we introduce Gaussian process regression (GPR)34—a non-parametric method for 
data-driven surrogate modeling and uncertainty quantification (UQ), deep NNs—a popular class of parametric 
function approximators of Deep Learning, and the Deep Kernel Learning33 (DKL) that combines the nonlinear 
expressive power of deep NNs with the advantages of kernel methods in UQ.

Figure 1.   Deep Kernel Learning for data-driven dimensionality reduction, latent-state model learning, and 
uncertainty quantification of dynamical systems from high-dimensional noisy data.
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Gaussian process regression.  A GP is a collection of random variables, any finite number of which follow 
a joint Gaussian distribution34.

where the GP is characterized by its mean function µ(x) = E[f (x)] and covariance/kernel function 
k(x, x′; γ ) = kγ (x, x

′) = E[(f (x)− µ(x))(f (x′)− µ(x′))] hyperparameters γ , x and x′ being two input loca-
tions, and ε is an independent added Gaussian noise term with variance σ 2

ε  . A popular choice of the kernel is the 
automatic relevance determination (ARD) squared exponential (SE) kernel:

where σf  is the standard deviation hyperparameter and lj ( 1 ≤ j ≤ d ) is the lengthscale along each individual 
input direction. The optimal values of GP hyperparameters [γ , σ 2

ε ] = [σ 2
f , l1, . . . , ld , σ

2
ε ] can be estimated via 

maximum marginal likelihood given the training targets y34:

Optimizing the GP hyperparameters through Eq. (3) requires to repeatedly inverse the covariance matrix 
kγ (X,X)+ σ 2

ε I , which can be very expensive or even untrackable in the cases of high-dimensional inputs (e.g., 
images with thousands of pixels) or big datasets ( M ≫ 1).

Given the training data of input-output pairs (X, y) , the Bayes’ rule gives a posterior Gaussian distribution of 
the noise-free outputs f∗ at unseen test inputs X∗:

Deep neural networks.  NNs are parametric universal function approximators35 composed of multiple 
layers sequentially stacked together. Each layer contains a set of learnable parameters known as weights and 
biases. Collected in a vector θ , these NN parameters are optimized via backpropagation3 for a function f that 
best approximates f #:

where g(x; θ) denotes an NN with input x and parameters θ . There are three prominent types of NN layers3: 
fully-connected, convolutional, and recurrent. In practice, the three types of layers are often combined to deal 
with different characteristics of data and increase the expressivity of the NN model.

Deep kernel learning.  To mitigate the limited scalability of GPs to high-dimensional inputs, often referred 
to as the curse of dimensionality, Deep Kernel Learning33,36,37 was developed to exploit the nonlinear expressive 
power of deep NNs to learn compact data representations while maintaining the probabilistic features of kernel-
based GP models for UQ. The key idea of DKL is to embed a deep NN, representing a nonlinear mapping from 
the data to the feature space, into the kernel function for GPR as follows:

where g(x; θ) is an NN with input x and parameters (weights and biases) θ . Similar to conventional GPs, dif-
ferent kernel functions can be chosen. The GP hyperparameters and the NN parameters are jointly trained by 
maximizing the marginal likelihood as in Eq. (3).

Thanks to its strong expressive power and versatility, DKL has gained attention in many fields of scientific 
computing, such as computer vision33,38,39, natural language processing40, robotics36, and meta-learning41. How-
ever, DKL still suffers from computational inefficiency due to the need for repeatedly inverting the M ×M 
covariance matrix in Eq. (3) when the dataset is large ( M ≫ 1 ). In addition, the posterior will be intractable if 
we change to non-Gaussian likelihoods, and there is no efficient stochastic training3 (e.g., stochastic gradient 
descent) that is available for DKL models. All these facts make DKL unable to handle large datasets. To over-
come these three limitations, stochastic variational DKL42 (SVDKL) was introduced. SVDKL utilizes variational 
inference34 to approximate the posterior distribution with the best fitting Gaussian to a set of inducing data points 
sampled from the posterior. Our framework is built upon the SVDKL model.

Rather than other popular deep learning tools, SVDKL is chosen for three main reasons: (i) compared with 
deterministic NN-based models, GPs—kernel-based models—offer better quantification of uncertainties33,34, (ii) 
compared with Bayesian NNs43, SVDKL is computationally cheaper and feasible to the integration of any deep 
NN architecture, and (iii) compared with ensemble NNs, SVDKL is memory efficient as only a single model 
needs to be trained.

(1)f (x) ∼ GP(µ(x), k(x, x′; γ )), y = f (x)+ ε, ε ∼ N(0, σ 2
ε ) ,

(2)kγ (x, x
′) = σ 2

f exp
(

−
1

2

d
∑

j=1

(xj − x′j)
2

l2j

)

,

(3)

[γ ∗, (σ 2
ε )

∗] = argmax
γ ,σ 2

ε

log p(y|X)

= argmax
γ ,σ 2

ε

{

−
1

2
yT (kγ (X,X)+ σ 2

ε I)
−1y −

1

2
log |kγ (X,X)+ σ 2

ε I| −
M

2
log(2π)

}

.

(4)

f∗|X∗,X, y ∼ N(µ∗,�∗) ,

µ∗ = kγ (X,X
∗)T (kγ (X,X)+ σ 2

ε I)
−1(y − µ(X)) ,

�∗ = kγ (X
∗,X∗)− kγ (X,X

∗)T (kγ (X,X)+ σ 2
ε I)

−1kγ (X,X
∗) .

(5)f (x) = g(x; θ)

(6)kDKL(x, x
′; γ , θ) = kγ (g(x; θ), g(x

′; θ)) ,



4

Vol:.(1234567890)

Scientific Reports |        (2022) 12:21530  | https://doi.org/10.1038/s41598-022-25362-4

www.nature.com/scientificreports/

Methods
In our work, we consider nonlinear dynamical systems generally written in the following form:

where s(t) ∈ S ⊂ R
n is the state vector at time t, u(t) ∈ U ⊂ R

m is the control input at time t, 
F : S ×U → S is a nonlinear function determining the evolution of the system given the current state s(t) 
and control input u(t) , s0 is the initial condition, and t0 and tf  are the initial and final time, respectively. In many 
real-world applications, the state s(t) is not directly accessible and the function F is unknown. In spite of this, 
we can obtain indirect information about the systems through measurements from different sensor devices 
(measurements can derive, for example, from cameras, laser scanners, or inertial measurement units). Due to 
the time-discrete nature of the measurements, we indicate with xt the measurement vector at a generic time-step 
t, and xt+1 the measurement at time-step t + 1.

Given a set of M d-dimensional measurements X = [x1, . . . , xM ] ∈ X ⊂ R
d with d ≫ 1 and control inputs 

U = [u1, . . . , uM−1] ∈ U , we consider the problem of learning: (a) a meaningful representation of the unknown 
states, and (b) a surrogate model for F . However, the high-dimensionality and noise corruption of measurement 
data makes the two-task learning problem extremely challenging.

Learning latent state representation from measurements.  To begin with, we introduce an SVDKL 
encoder E : X → Z used to compress the measurements into a low-dimensional latent space Z . Due to the 
measurement noise, rather than being deterministic, E should map each measurement to a distribution over the 
latent state space Z . The SVDKL encoder is depicted in Fig. 2. A latent state sample can be obtained as:

where zi,t is the sample from the i th GP with kernel k and mean m, gE(xt; θE) is the feature vector output of 
the NN part of the SVDKL encoder E, εE is an independently added noise, and |z| indicates the dimension of z.

Because we have no access to the actual state values, we cannot directly use supervised learning techniques 
to optimize the parameters [θE , γ E , σ

2
E] of the SVDKL encoder. Therefore, we utilize a decoder neural network 

D to reconstruct the measurements given the latent state samples. These reconstructions, denoted by x̂t , are also 
used to generate trainable gradients for the SVDKL encoder, which is a common practice for training VAEs. 
Similar to VAEs, an important aspect of the architecture is the bottleneck created for the low dimensionality of 
the learned state space Z . While the SVDKL encoder E learns p(zt |xt) , the decoder D learns the inverse map-
ping p(x̂t |zt) in which x̂t is the reconstruction of xt . We call this autoencoding architecture SVDKL-AE. To the 
best of our knowledge, this is the first attempt at training a DKL model without labeled data (unsupervisedly).

Given a randomly sampled minibatch of measurements, we can define the loss function for an SVDKL-AE 
as follows:

where x̂t |zt ∼ N(µx̂t ,�x̂t ) is obtained by decoding the samples of zt |xt through D. By minimizing the loss 
function in Eq. (9) with respect to the encoder and decoder parameters, as analogously practiced with VAEs, we 
can obtain a compact representation of the measurements.

Though our SVDKL-AE resembles a VAE in terms of network architecture and training strategy, we highlight 
two major advantages of the SVDKL-AE, which have motivated its use in this work:

(7)
d

dt
s(t) = F (s(t),u(t)), s(t0) = s0, t ∈ [t0, tf ] ,

(8)
zi,t = f Ei (xt)+ εE , εE ∼ N(0, σ 2

E )

f Ei (xt) ∼ GP(µ(gE(xt; θE)), k(gE(xt; θE), gE(x
′
t′ ; θE); γ E,i)), 1 ≤ i ≤ |z| ,

(9)LE(θE , γ E , σ
2
E , θD) = Ext∼X[− log p(x̂t |zt)] ,

Figure 2.   Uncertainty quantification and disentangling with stochastic variational deep kernel learning for 
dynamical systems generating high-dimensional noisy data.
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•	 The SVDKL encoder explicitly learns the full distribution p(z|x) from which we can sample the latent states z 
reduced from the full-order states x . A VAE only learns the mean vector and covariance matrix (often chosen 
to be diagonal) of an assumed joint Gaussian distribution. Clearly, SVDKL-AE should be able to deal with 
different types of complex distributions more effectively.

•	 SVDKL-AE can exploit the kernel structure of a Gaussian process to quantify uncertainties, even effectively 
in low-data regimes38,40,42. The kernel choice can be tailored to incorporate prior knowledge into the data-
driven modeling.

Learning latent dynamical model.  We aim to learn a surrogate dynamical model F predicting the sys-
tem evolution given the latent state variables sampled from Z and the control inputs in U . Due to the uncertain-
ties present in the system, we learn a stochastic model F : Z ×U → Z . Similar to E, the dynamical model F 
is constructed using an SVDKL architecture. The next latent states zt+1 can be sampled with F:

where zi,t+1 is sampled from the ith GP, gF(zt , ut; θE) is the feature vector output of the NN part of the SVDKL 
dynamical model F, and εF is a noise term.

Again, we do not have access to the true state values obtained by applying the (unknown) control law, but only 
the sequence of measurements at different time-steps. Here we employ a commonly used strategy in State Rep-
resentation Learning31,32,44, which encodes the measurement xt+1 into the distribution p(zt+1|xt+1) through the 
SVDKL encoder E, and uses such a distribution as the target for p(zt+1|zt , ut) given by the dynamical model F. 
Therefore, the dynamical model F is trained by minimizing the Kullback-Leibler divergence between the distribu-
tions p(zt+1|xt+1) and p(zt+1|zt , ut) (more details in Appendix). The loss for training F is formulated as follows:

where p(zt+1|zt , ut) is obtained by feeding a sample from p(zt |xt) and a control input ut to F.

Joint training of models.  Instead of training E and F separately, we train them jointly by allowing the gra-
dients of the dynamical model F to flow through the encoder E as well. The overall loss function is

in which β = 1.0 is used to scale the contribution of the two loss terms.

Variational inference.  The two SVDKL models in this work utilize variational inference to approximate 
the posterior distributions in (8) and (10) with a known family of candidate distributions (e.g., joint Gaussian 
distributions). The need for variational inference stems from the stochastic gradient descent optimization pro-
cedure used for the modeling training42. Therefore, we add two extra items to the loss function in Eq. (12), one 
for each SVDKL model in the following form:

in which p(v) is the posterior to be approximated over a collection of sampled locations v termed inducing 
points, and q(v) represents an approximating candidate distribution. Similar to the original SVDKL work42, the 
inducing points are placed on a grid.

Results
Numerical example.  For our experiments, we consider the pendulum described by the following equation:

where φ is the angle of the pendulum, φ̈ is the angular acceleration, m is the mass, l is the length, and g denotes 
the gravity acceleration. We assume no access to φ or its derivatives, and the measurements are RGB images of 
size 84× 84× 3 obtained through an RGB camera. Examples of high-dimensional and noisy measurements are 
shown in Fig. 3.

(10)
zi,t+1 = f Fi (zt , ut)+ εF , εF ∼ N(0, σ 2

F )

f Fi (zt , ut) ∼ GP(µ(gF(zt , ut; θF)), k(gF(zt , ut; θF), gF(z
′
t′ , u

′
t′ ; θF); γ F,i)), 1 ≤ i ≤ |z| ,

(11)LF(θF , γ F , σ
2
F) = Ext ,xt+1∼X,ut∼U[KL[p(zt+1|xt+1)||p(zt+1|zt , ut)]]] ,

(12)
LREP(θE , γ E , σ

2
E , θF , γ F , σ

2
F , θD) = Ext ,xt+1∼X,ut∼U[− log p(x̂t |zt))+ βKL[p(zt+1|xt+1)||p(zt+1|zt , ut)]] ,

(13)Lvar(θ , γ ) = KL[p(v)||q(v)] ,

(14)φ̈(t) = −
1

ml
(mg sin φ(t)+ u(t)) ,

Figure 3.   High-dimensional noisy measurements of the pendulum.
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The measurements are collected by applying torque values u sampled from a random control law with different 
initial conditions. The training set is composed of 15000 data tuples (xt , ut , xt+1) , while the test set is composed 
of 2000 data tuples. Different random seeds are used for collecting training and test sets. The complete list of 
hyperparameters used in our experiments is shown in Appendix.

Denoising.  In Fig. 4, we show the denoising capability of the proposed framework by visualizing the recon-
structions of the high-dimensional noisy measurements. The measurements are corrupted by additive Gaussian 
noise N(0, σ 2

x ):

Moreover, in Fig. 5, we show the reconstructions of the next latent states zt+1 sampled from the dynamic 
model distribution p(zt+1|zt , ut) when the control input ut is corrupted by Gaussian noise N(0, σ 2

u ):

(15)x̃t = xt + εx , εx ∼ N(0, σ 2
x ) .

(16)ũt = ut + εu , εu ∼ N(0, σ 2
u ) .

Figure 4.   Reconstructions x̂t with different noise levels in the measurements x̃t . As shown by the sharp 
reconstructions of zt , SVDKL-AE can effectively denoise the measurements.

Figure 5.   Reconstructions x̂t+1 with different noise levels in the control inputs ut . As shown by the sharp 
reconstructions of zt+1 , the SVDKL forward model can denoise the corrupted control inputs ut and predict the 
dynamics accurately.
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Eventually, in Fig. 6, we show the reconstructions when xt and ut are simultaneously corrupted by Gaussian 
noises N(0, σ 2

x ) and N(0, σ 2
u ) , respectively.

In all the three cases, our framework can properly denoise the input measurements by encoding the predomi-
nant features into the latent space. To support this claim, we show, in Fig. 7, the means of the current and next 
latent state distributions with different noise corruptions. It is worth noting that the means of such distributions 

Figure 6.   Reconstructions x̂t+1 with different noise levels in both the measurements x̃t and the control inputs 
ũt . With both the measurements and control inputs corrupted by significant noise, the proposed model shows 
good performance in denoising.

Figure 7.   t-SNE visualization for the means of current (top) and next (bottom) latent state distributions with 
different noise levels in the measurements and control inputs. The color bar represents the true angle of the 
pendulum. As expected for a good denoising scheme, the change in the means of latent states is inconsiderable 
while the level of noise in the measurements and control inputs is increased significantly.
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are a high-quality representation of the actual dynamics of the pendulum. Due to the dimensionality ( > 2 ) of 
the latent state space, we use t-SNE45 to visualize the results in 2-dimensional figures with the color bar rep-
resenting the actual angle of the pendulum. The smooth change of the representation with respect to the true 
angle indicates its high quality. Moreover, it is worth mentioning that, as the level of noise in the measurements 
and control inputs is increased dramatically, the changes in the means of learned distributions are insignificant 
because of the denoising capability of the proposed model.

Prediction of dynamics.  To better demonstrate how well the framework performs in prediction under 
uncertainties, we modify the pendulum dynamics in Eq. (14) to account for stochasticity due to, for example, 
external disturbances:

Again, we include an independently added Gaussian noise. While εx and εu are noise terms added to the 
noise-free measurements xt and control inputs ut to model, for example, the noise deriving from the sensor 
devices, εdyn approximates an unknown disturbance on the actual pendulum dynamics.

In Fig. 8, we show the means of p(zt |xt) and p(zt+1|zt , ut) with different noise levels, and the corresponding 
(decoded) reconstructions of zt+1 samples from p(zt+1|zt , ut) . From the mean of p(zt |xt) , we can notice that the 
SVDKL encoder properly denoises the measurements and extracts the latent state variables when both measure-
ment noise and disturbance on the actual pendulum dynamics exist. The SVDKL dynamical model recovers 
the mean of p(zt+1|zt , ut) when the dynamical evolution of the pendulum is affected by an unknown stochastic 
disturbance. Even with high level of disturbance, though the system evolution over time becomes stochastic and 
more difficult to predict, p(zt+1|zt , ut) can still capture and predict the evolution. Eventually, we can visualize 
the overall uncertainty in the dynamics reflected by the reconstruction of zt+1 via the decoder D. Note that the 
reconstructions in Fig. 8 are obtained by averaging 10 independent samples per data point.

Uncertainty quantification.  In this subsection, we show that the proposed SVDKL-AE enables the quan-
tification of uncertainties in model predictions. It is worth mentioning that visualizing UQ properly is a com-
monly recognized challenging task in unsupervised learning.

The learned latent state vector z is 20-dimensional. To visualize the UQ capability of the proposed model, we 
select the ith-component ( i = 12 and i = 13 in Figs. 9 and 10, respectively) of the state vector that is correlated 
with the physical states, and depict its predictive uncertainty bounds for different noise levels ( σ 2

x = 0.0, σ 2
u = 0.7 

(17)φ̈(t) = −
1

ml
(mg sin φ(t)+ u(t)+ εdyn), εdyn ∼ N(0, σ 2

dyn).

Figure 8.   t-SNE visualization for the means of current and next latent state distributions with different levels of 
measurement noise and dynamics stochasticity, and the corresponding reconstructions x̂t+1.
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and σ 2
x = 0.5, σ 2

u = 0.5 , respectively). Because we are investigating an unsupervised learning problem, the latent 
variables may not have a direct physical interpretation. However, a good latent representation should present 
strong correlation with the physical states, and proper UQ should reflect the existence of noise in the measure-
ments x and/or control inputs u.

As seen in the figures, the proposed framework achieves a good system representation with latent vari-
ables that are highly correlated with physical quantities of interest (see Figs. 9a–c and 10a,b), devised by uncer-
tainty bands reflecting data noise and modeling errors (see Fig. 9a,b in comparison with 10a,b.)

Discussion and future work
Though well researched in supervised learning46, uncertainty quantification is still an understudied topic in 
unsupervised dimensionality reduction and latent model learning. However, the combination of these two tasks 
has the potential to open new doors to the discovery of governing principles of complex dynamical systems from 
high-dimensional noisy data. Our proposed method provides convincing indications that combining deep NNs 
with kernel-based models is promising for the analysis of high-dimensional noisy data. Our general framework 
relies only on the observations of measurements and control inputs, making it applicable to all physical modeling, 
digital twinning, weather forecast, and patient-specific medical analysis.

Learning compact state representations and latent dynamical models from high-dimensional noisy observa-
tions is a critical element of Optimal Control and Model-based RL. In both, the disentanglement of measurement 
and modeling uncertainties will play a crucial role in optimizing control laws, as well as in devising efficient 
exploration of the latent state space to aid the collection of new, informative samples for model improvement. 
The quantified uncertainties can be exploited for Active Learning47 to steer the data sampling48.

Figure 9.   Estimated uncertainties over the 12th-components of the latent state vectors zt (a) and zt+1 (b) 
predicted by the proposed model for a sampled trajectory. The y-position of the pendulum is given in (c), 
and the corresponding high-dimensional noisy measurements ( σ 2

x = 0.0, σ 2
u = 0.7 ) are shown in (d). The 

uncertainty bands are given by ± two standard deviation in the predictive distributions.
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Conclusions
SVDKL models are integrated into a novel general workflow of unsupervised dimensionality reduction and 
latent dynamics learning, combining the expressive power of deep NNs with the uncertainty quantification 
abilities of GPs. The proposed method has shown good capability of generating interpretable latent representa-
tions and denoised reconstructions of high-dimensional, noise-corrupted measurements, see Figs. 4, 5, 6 and 
7, respectively. It has also been demonstrated that this method can deal with stochastic dynamical systems by 
identifying the source of stochasticity.

Data availability
The datasets used and/or analysed during the current study are available from the corresponding author on 
reasonable request.
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Figure 10.   Estimated uncertainties over the 13th-components of the latent state vectors zt (a) and zt+1 
(b) predicted by the proposed model for a sampled trajectory. The corresponding high-dimensional noisy 
measurements ( σ 2

x = 0.5, σ 2
u = 0.5 ) are shown in (c). The uncertainty bands are given by ± two standard 

deviation in the predictive distributions.
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