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a b s t r a c t

We study tracking control for a nonlinear moving water tank system modeled by the linearized Saint-
Venant equations, where the output is given by the position of the tank and the control input is the
force acting on it. For a given reference signal, the objective is that the tracking error evolves within a
pre-specified performance funnel. Exploiting recent results in funnel control, this can be achieved by
showing that inter alia the system’s internal dynamics are bounded-input, bounded-output stable.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

When a liquid-filled containment is subject to movement,
he motion of the fluid may have a significant effect on the
ynamics of the overall system and is known as sloshing. The
atter phenomenon can be understood as internal dynamics of
he system and it is of great importance in a range of applica-
ions such as aeronautics and control of containers and vehicles,
nd has been studied in engineering for a long time, see e.g.
ardoso-Ribeiro, Matignon, and Pommier-Budinger (2017), Fed-
ema et al. (1997), Graham and Rodriguez (1951), Grundelius
nd Bernhardsson (1999), Venugopal and Bernstein (1996), Yano,
oshida, Hamaguchi, and Terashima (1996).
The standard model for the one-dimensional movement of a

luid is given by the Saint-Venant equations, which is a system of
onlinear hyperbolic partial differential equations (PDEs). Models
f a moving water tank involving these equations without friction
ave been studied in various articles, where the control is the
cceleration and the output is the position of the tank. The first
pproach appears in Dubois, Petit, and Rouchon (1999) where
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a flat output for the linearized model is constructed. Several
additional control problems related to this model are studied
in Petit and Rouchon (2002) and it is proved that the linearization
is steady-state controllable. Moreover, the seminal work (Coron,
2002) shows that the nonlinear model is locally controllable
around any steady state. Different stabilization approaches by
state and output feedback using Lyapunov functions are studied
in Prieur and de Halleux (2004). In Auroux and Bonnabel (2011)
observers are designed to estimate the horizontal currents by
exploiting the symmetries in the Saint-Venant equations. Con-
vergence of the estimates to the actual states is studied for
the linearized model. In Cardoso-Ribeiro et al. (2017) a port-
Hamiltonian formulation of the system is provided as a mixed
finite-infinite dimensional system. For a recent numerical treat-
ment of a truck with a fluid basin see e.g. Gerdts and Kimmerle
(2015).

In this note we consider output trajectory tracking for moving
water tank systems by funnel control. The concept of funnel con-
trol was developed in Ilchmann, Ryan, and Sangwin (2002), see
also the survey (Ilchmann & Ryan, 2008). The funnel controller is
an adaptive controller of high-gain type and proved its potential
for tracking problems in various applications, such as temper-
ature control of chemical reactor models (Ilchmann & Trenn,
2004), control of industrial servo-systems (Hackl, 2017) and un-
deractuated multibody systems (Berger, Otto, Reis, & Seifried,
2019), voltage and current control of electrical circuits (Berger
& Reis, 2014), control of peak inspiratory pressure (Pomprapa,
Weyer, Leonhardt, Walter, & Misgeld, 2015) and adaptive cruise
control (Berger & Rauert, 2020). We like to emphasize that the
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Fig. 1. Horizontal movement of a water tank.

unnel controller is a model-free feedback controller, i.e., it does
ot require specific system parameters for feasibility. This makes
t a suitable choice for the application to the water tank system,
or which we assume that it contains a non-vanishing friction
erm as modeled in the Saint-Venant equations e.g. in Bastin
nd Coron (2016), but the exact shape/magnitude of this term is
nknown and not available to the controller.
While funnel control is known to work for a large class

f functional differential equations with higher relative degree
s shown in Berger, Lê, and Reis (2018) (cf. also Section 2),
t is often not clear if a particular system involving internal
ynamics governed by PDEs are encompassed by these re-
ults. Recently (Berger, Puche, & Schwenninger, 2020), we have
utlined an abstract framework to answer this question affirma-
ively. In the present work we follow this approach to show that
racking with prescribed transient behavior of the moving tank
subject to sloshing effects modeled via the linearized shallow
ater equations – can indeed be achieved by funnel control.

.1. Nomenclature

In the following let N denote the natural numbers, N0 =

N∪{0}, and R≥0 = [0,∞). We write Cω = { λ ∈ C | Re λ > ω } for
ω ∈ R and C+ = C0. For a Hilbert space X , Lp(I; X) denotes the
usual Lebesgue–Bochner space of (strongly) measurable functions
f : I → X , I ⊆ R an interval, where p ∈ [1,∞]. We write ∥ · ∥∞

for ∥·∥L∞(R≥0;X). By L∞

loc(I; X) we denote the set of measurable and
locally essentially bounded functions f : I → X , by W k,p(I; X), k ∈

N0, the Sobolev space of k-times weakly differentiable functions
f : I → X such that f , ḟ , . . . , f (k) ∈ Lp(I; X), and by Ck(I; X) the
set of k-times continuously differentiable functions f : I → X ,
k ∈ N0 ∪ {∞}, where C(I; X) := C0(I;Kn). By B(X ;Y), where
X ,Y are Hilbert spaces, we denote the set of all bounded linear
operators A : X → Y . The symbol ‘‘≲’’ is a placeholder for
‘‘≤ c ·’’ where the multiplicative constant c is independent of the
variables occurring in the inequality.

1.2. The model

In the present paper we study the horizontal movement of a
water tank as depicted in Fig. 1, where we neglect the wheels’
inertia and friction between the wheels and the ground. We
assume that there is an external force acting on the water tank,
which we denote by u(t) as this will be the control input of the
resulting system, cf. also Section 1.3. The measurement output
is the horizontal position y(t) of the water tank, and the mass
of the empty tank is denoted by m. The dynamics of the water
under gravity g are described by the Saint-Venant equations (first
derived in de Saint-Venant (1871); also called one-dimensional
shallow water equations)

∂th + ∂ζ (hv) = 0,

∂tv + ∂ζ

(
v2

+ gh
)

+ hS
(v )

= −ÿ
(1)
2 h
2

with boundary conditions v(t, 0) = v(t, 1) = 0. Here h : R≥0 ×

0, 1] → R denotes the height profile and v : R≥0 × [0, 1] → R
the (relative) horizontal velocity profile, where the length of the
container is normalized to 1. The friction term S : R → R is
typically modeled as the sum of a high velocity coefficient of
the form CSv

2/h2 and a viscous drag of the form CDv/h for some
positive constants CS, CD. In the present paper, we do not specify
he function S, but we do assume that S(0) = 0 and S ′(0) > 0.
he condition S(0) = 0 means that, whenever the velocity is zero,
hen there is no friction. The condition S ′(0) > 0 means that the
iscous drag does not vanish; this is the case in most real-world
on-ideal situations, but sometimes neglected in the literature,
ee e.g. Bastin and Coron (2016, Sec. 1.4).
For a derivation of the Saint-Venant equations (1) of a moving

ater tank we refer to Cardoso-Ribeiro et al. (2017), Petit and
ouchon (2002), see also the references therein. The friction term
n the model is the general version of that used in Bastin and
oron (2016, Sec. 1.4). Let us emphasize that in our framework
he input is the force acting on the water tank, which can be
anipulated using an engine for instance. In contrast to this,

n Coron (2002), Petit and Rouchon (2002) the acceleration of the
ank is used as input, but this can usually not be influenced di-
ectly. Note that – in the presence of sloshing – the applied force
oes not equal the product of the tank’s mass and acceleration.
e also stress that, if the acceleration is used as input, then the

nput–output relation is given by the simple double integrator
¨ = u, and the Saint-Venant equations (1) do not affect this
elation.

As shown in Dubois et al. (1999), Petit and Rouchon (2002),
he linearization of the Saint-Venant equations is relevant in
he context of control since it provides a model which is much
impler to solve (both analytically and numerically) and still is
n insightful approximation for motion planning purposes. There-
ore, we restrict ourselves to the linearization of (1) around the
teady state (h0, 0) = (

∫ 1
0 h(0, ζ )dζ , 0), given by

tz = Az + bÿ = −

[
0 h0∂ζ

g∂ζ 2µ

]
z +

(
0

−1

)
ÿ (2)

with boundary conditions z2(t, 0) = z2(t, 1) = 0, µ =
1
2S

′(0) > 0
nd b = (0,−1)⊤. The state space in which z(t) evolves is X =
2([0, 1];R2) and A : D(A) ⊆ X → X ,

D(A) =

{
(z1, z2) ∈ X

⏐⏐⏐⏐ z1, z2 ∈ W 1,2([0, 1];R),
z2(0) = z2(1) = 0

}
. (3)

By conservation of mass in (2),
∫ 1
0 z1(t, ζ )dζ = h0 for all t ≥ 0.

The model is completed by the momentum

p(t) := mẏ(t) +

∫ 1

0
z1(t, ζ )

(
z2(t, ζ ) + ẏ(t)

)
dζ , t ≥ 0. (4)

Substituting the absolute velocity x2 = z2 + ẏ for z2, x1 = z1 and
using the balance law ṗ(t) = u(t) and (2) we obtain

mÿ(t) =
g
2
x1(t, ·)2|10+2µ⟨x1(t), x2(t)⟩ − 2µh0ẏ(t) + u(t),

here ⟨f , g⟩ =
∫ 1
0 f (s)g(s)ds. Altogether, the nonlinear model on

he state space X reads

∂tx = A(x + bẏ) (5a)

ÿ(t) =
g
2 x1(t, ·)

2
|
1
0+2µ⟨x1(t), x2(t)⟩ − 2µh0ẏ(t) + u(t) (5b)

with input u, state x and output y.
We like to note that system (5) is basically a hyperbolic PDE

coupled with an ODE (when (5b) is rewritten as a system of first
order equations). Therefore, it might be amenable to stabilization
by backstepping methods, which have been successfully used for
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Fig. 2. Error evolution in a funnel Fϕ with boundary 1/ϕ(t).

uch systems in the recent past, see e.g. Deutscher and Gabriel
2021), Di Meglio, Bribiesca Argomedo, Hu, and Krstic (2018),
ang, Krstic, and Pi (2018). However, we like to emphasize

hat (5b) is nonlinear, which is out of the scope of these works,
nd the funnel control techniques studied in the present work
which do not aim at stabilization) can be directly applied to
he present form, which is more natural from a modeling point
f view. Still the question how funnel control is related to this
road scope of existing results is not entirely clear and remains
nteresting.

.3. Control objective — funnel control

Our goal is to design an output error feedback of the form

(t) = F
(
t, e(t), ė(t)

)
, (6)

where e(t) = y(t) − yref(t) is the tracking error and yref ∈

W 2,∞(R≥0;R) is a given reference position, which applied to (5)
results in a closed-loop system that satisfies:

• the pair (t, e(t)) evolves within the prescribed set

Fϕ :=
{
(t, e) ∈ R≥0 × R

⏐⏐ϕ(t)|e| < 1
}
,

which is determined by a function ϕ belonging to

Φ :=

{
ϕ ∈ C1(R≥0;R)

⏐⏐⏐⏐⏐ ϕ, ϕ̇ are bounded,
ϕ(τ ) > 0 for all τ > 0,
lim infτ→∞ ϕ(τ ) > 0

}
and

• the signals u, e, ė are uniformly bounded on R≥0.

The set Fϕ is called the performance funnel. Its boundary, the
funnel boundary, is given by the reciprocal of ϕ, see Fig. 2. The
case ϕ(0) = 0 is explicitly allowed and puts no restriction on the
initial value since ϕ(0)|e(0)| < 1; in this case the funnel boundary
1/ϕ has a pole at t = 0.

On the other hand, note that boundedness of ϕ implies that
there exists λ > 0 such that 1/ϕ(t) ≥ λ for all t > 0. This
implies that signals evolving in Fϕ are not forced to converge
to 0 asymptotically. Furthermore, the funnel boundary is not
necessarily monotonically decreasing and there are situations,
like in the presence of periodic disturbances, where widening the
funnel over some later time interval might be beneficial. It was
shown in Berger et al. (2018) that for ϕ0, ϕ1 ∈ Φ , the following
choice for F in (6)

F (t, e(t), ė(t)) = −k1(t)
(
ė(t) + k0(t)e(t)

)
,

k0(t) =
1

1 − ϕ0(t)2∥e(t)∥2 ,

k1(t) =
1

1 − ϕ1(t)2∥ė(t) + k0(t)e(t)∥2 ,

(7)

achieves the above control objective for a large class of nonlinear
systems with relative degree two. In the present paper we extend
3

this result and show feasibility of (7) for the model described
by (5). We highlight that the functions ϕ0, ϕ1 are design param-
eters in the control law (7). Typically, the specific application
dictates the constraints on the tracking error and thus indicates
suitable choices.

In Berger et al. (2020) — extending the findings from Berger
et al. (2018) — it was shown that the controller (7) is feasible for
nonlinear systems of the form

ÿ(t) = S(y, ẏ)(t) + γ u(t)(
y(0), ẏ(0)

)
=

(
y0, y1

)
∈ R2,

(Sys)

where, under structural assumptions, the operator S may in
particular incorporate input–output dynamics from an infinite-
dimensional well-posed linear system. We note that correspond-
ing results hold for systems with relative degree other than two,
but this special case is sufficient for the present article. General
sufficient conditions on the operator S guaranteeing feasibility of
the controller (7) were given in Berger et al. (2018), Hackl, Hopfe,
Ilchmann, Mueller, and Trenn (2013), Ilchmann, Selig, and Trunk
(2016) and Ilchmann et al. (2002) before, while suitable adaptions
allowing for truly infinite-dimensional internal dynamics were fi-
nally explored in Berger et al. (2020). For details on the structural
assumptions on the systems class and the operator S and the
relation to prior results we refer to Berger et al. (2020).

1.4. Organization of the present paper

In Section 2 we formulate the main result of this article, stating
that the funnel control objective for the model of the moving
water tank is achieved in the sense of Section 1.3. For this, it
suffices to verify the conditions identified in Berger et al. (2020),
which is done in Section 3 by considering the model in the
framework of well-posed linear systems. Possible extensions of
the results to the case of steady states corresponding to non-
zero control values and invoking space-dependent friction terms
are discussed in Section 4. The application of the controller to
the moving water tank system is illustrated by a simulation in
Section 5.

2. Main result

In this section we formulate how the funnel controller (7) de-
scribed in Section 1.3 achieves the control objective for system (5)
— this is the main result of the article. The initial conditions for (5)
are

x(0) = x0 ∈ X,
(
y(0), ẏ(0)

)
=

(
y0, y1

)
∈ R2. (8)

We call (x, y) : [0, ω) → X × R a strong solution of (5)–(8) on
an interval [0, ω), if1

• y ∈ W 2,1
loc ([0, ω);R) and x ∈ C([0, ω); X),

• the initial conditions (8) hold,
• x ∈ W 1,1

loc ([0, ω); X−1) and (5a) holds for a.e. t ∈ [0, ω) as
equation in X−1,

• y satisfies (5b) for a.a. t ∈ [0, ω).

In other words, x is a strong solution of (5a) and y is a
Carathéodory solution of (5b). A solution (x, y) is called classical,
if x ∈ C1([0, ω); X) and y ∈ C2([0, ω);R2); it is called global, if it
can be extended to R≥0.

1 For the definition of X see Section 3.
−1
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heorem 2.1. Let yref ∈ W 2,∞(R≥0;R), ϕ0, ϕ1 ∈ Φ and (y0, y1) ∈
2, x0 ∈ X and v0 ∈ R be such that

x0 + bv0 ∈ D(A),
ϕ0(0)|y0 − yref(0)| < 1, and
ϕ1(0)|y1 − ẏref(0) + k0(0)

(
y0 − yref(0)

)
| < 1.

(9)

hen the closed-loop system (5)–(8) has a unique global strong
olution (x, y) : R≥0 → X × R. Moreover, the following properties
hold.

(i) The functions k0, k1, u and x, y, ẏ are bounded.
(ii) The error e = y − yref is uniformly bounded away from the

funnel boundary in the following sense:

∃ ε > 0 ∀ t > 0 : |e(t)| ≤ ϕ0(t)−1
− ε. (10)

(iii) If y1 = v0, then the solution is a classical solution.

roof. Step 1: We rewrite (5), (8) in the form of Eq. (Sys),
btaining

¨(t) = T (ẏ)(t) +
u(t)
m
, (11)

here the mapping T is formally given by

(η)(t) =
g
2m

x1(t, ·)2|10+
2µ
m

(
⟨x1(t), x2(t)⟩ − h0η(t)

)
= F

(
T̃ (η)(t), Cx(t)

)
with x being the strong solution of

ẋ(t) = A
(
x(t) + bη(t)

)
, x(0) = x0, (12)

where A, b are defined in (2)–(3) and we use the notation

F : R × R2
→ R, (α, β) ↦→

g
2m
β1β2 +

2µ
m
α,

T̃ : C(R≥0;R) → L∞

loc, η ↦→ ⟨x1, x2⟩ − h0η,

C : D(C) ⊂ X → R2, x ↦→ (C1x, C2x)⊤,

Cix := (x1(1) + (−1)ix1(0)), i = {1, 2}.

(13)

Since the operator C acts as point evaluation of functions in space,
the domain D(C) ⊂ X has to be chosen suitably, see (20). Also
note that T depends on x = x(t, ζ ) which in turn is given through
η and x0 as the solution of (12), the existence of which is an
outcome of Step 3 below.

Step 2: We show that T is well-defined from C(R≥0;R) to
L∞

loc(R≥0;R) and, in particular, that the mapping

F : C(R≥0;R) → L∞

loc(R≥0; X × R2), η ↦→
[

I
C

]
x,

associated with the PDE (12) is well-defined. Moreover we show
that

max{∥x∥∞, ∥Cx∥∞} ≲ cx0 + ∥η∥∞ (14)

for all η ∈ C(R≥0;R) ∩ L∞(R≥0;R), where cx0 = 0 if
x0 = 0. This step is performed in Proposition 3.3 by showing
that the triple (A, Ab,

[
I
C

]
) defines a well-posed bounded-input,

bounded-output stable linear system.
Step 3: Note that T̃ is uniformly Lipschitz on bounded sets,

i.e., for any R > 0 there exists L = Lx0 > 0 such that

∥T̃ (η) − T̃ (η̂)∥L∞([0,t];R) ≤ L∥η − η̂∥L∞([0,t];R) (15)

for all t > 0 and η, η̂ ∈ { η ∈ C([0, t];R) | ∥η∥∞ ≤ R }. This follows
easily from (14) and the fact that an inner product restricted to
bounded subsets is uniformly Lipschitz. Furthermore, it is clear
that T̃ is causal, and, by (14), that for all η ∈ C(R≥0;R) ∩

L∞(R≥0;R) we have

∥T̃ (η)∥ ≲ c̃ + ∥η∥2
+ ∥η∥ .
∞ x0 ∞ ∞

4

Since F ∈ C1(R × R2
;R), we conclude from the above that T

satisfies all the Properties (P1)–(P4) from Berger et al. (2020,
Def. 3.1) and thus Berger et al. (2020, Thms. 2.1 &3.3) imply the
existence of a global strong solution (x, y) and, together with (14),
that Assertions (i)–(ii) hold. Note that mild solutions of (5a) as
considered in Berger et al. (2020) are strong solutions, Staffans
(2005, Thm. 3.8.2).

Step 4: We show uniqueness of the solution. First recall that,
as a consequence of Proposition 3.1, the unique strong solution
of (12) is given by

x(t) = T (t)x0 +

∫ t

0
T−1(t − s)Bη(s) ds , t ≥ 0, (16)

where B = A−1b. Thus, invoking η = ẏ, it suffices to show unique-
ness of the solution y of (11). Assume that ȳ ∈ W 2,1

loc (R≥0;R)
is another solution of (11) with ȳ(0) = y0 and ˙̄y(0) = y1, and
let x̄ be the strong solution of (5a) with y = ȳ and x̄(0) =

x0. Define t0 := inf
{
t ≥ 0

⏐⏐ ẏ(t) ̸= ˙̄y(t)
}
and assume, seeking a

ontradiction, t0 < ∞. Clearly, x(t) = x̄(t) for all t ∈ [0, t0],
ence, by Proposition 3.3, there exists c0 > 0 such that for all t ∈

[t0, t0+1] we have ∥Cx(t)−Cx̄(t)∥R2 ≤ c0 sups∈[t0,t0+t] |ẏ(s) − ˙̄y(s)|.
Furthermore, for R := max{∥ẏ∥∞, ∥˙̄y∥∞} we obtain a constant
L > 0 such that (15) holds. The preparations are completed by
observing that, invoking Step 3 and (14), there exist compact
subsets K1 ⊆ R and K2 ⊆ R2 such that T̃ (ẏ)(s), T̃ ( ˙̄y)(s) ∈ K1 and
(Cx)(s), (Cx̄)(s) ∈ K2 for all s ∈ [t0, t0 + 1]. Since F from (13) is in
1(R × R2

;R), there exists c1 > 0 such that

F (α1, β1) − F (α2, β2)| ≤ c1(|α1 − α2| + ∥β1 − β2∥R2 )

or all α1, α2 ∈ K1 and β1, β2 ∈ K2. Now choose σ ∈ (0, 1) such
hat σ c1(L + c0) < 1. By definition of t0, ẏ(t0) = ˙̄y(t0) and there
xists t ∈ [t0, t0 + σ ] such that

ẏ(t) − ˙̄y(t)| = sup
s∈[t0,t0+σ ]

|ẏ(s) − ˙̄y(s)| =: ε > 0.

ence, integrating (11) yields the contradiction

= |ẏ(t) − ˙̄y(t)|

≤

∫ t

t0

⏐⏐F(
T̃ (ẏ)(s), Cx(s)

)
− F

(
T̃ ( ˙̄y)(s), Cx̄(s)

)⏐⏐ds
≤ σ c1(L + c0) sup

s∈[t0,t0+t]
|ẏ(s) − ˙̄y(s)| < ε.

hus, ẏ = ˙̄y and by y(0) = y0 = ȳ(0), it follows that y = ȳ.
Step 5: We show (iii). Note that ẏ ∈ W 1,2

loc (R≥0;R) by Step 3
nd ẏ(0) = v0 by assumption. Invoking well-posedness together
ith x(0)+bẏ(0) ∈ D(A) and Tucsnak and Weiss (2014, Prop. 4.6),
he solution x of (12) is indeed a classical solution and F(η) ∈

(R≥0; X ×R2). This implies that T (ẏ)(t) is continuous, whence ÿ
s continuous by (11), which proves the claim. □

emark 2.2. We like to emphasize that the funnel controller (7)
oes not require any knowledge of system parameters or ini-
ial values. Therefore, it is robust with respect to (arbitrary)
ncertainties in these parameters. More precisely, for any fixed
ontroller parameters ϕ0, ϕ1 ∈ Φ the controller (7) is feasible in
he sense of Theorem 2.1 for any system parameters µ > 0, m >

, h0, g ∈ R, any reference signal yref ∈ W 2,∞(R≥0;R) and any
nitial values (y0, y1) ∈ R2, x0 ∈ X which satisfy (9). In particular,
or any such parameters the controller achieves the prescribed
erformance of the tracking error as in (10), without the need to
odify or tune the controller. Via the gain functions k0 and k1

n (7) the controller is able to adapt its behavior to the specific
ituation.
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. Linearized model — abstract framework

In this section we collect and derive the results required
or Step 2 in the proof of Theorem 2.1 by using the frame-
ork of well-posed linear systems and showing bounded-input,
ounded-output stability of the considered systems.
Let us recall a few basics from semigroup theory and admis-

ible operators in the context of linear systems, which can all be
ound e.g. in Tucsnak and Weiss (2009). A semigroup (T (t))t≥0 on
is a B(X; X)-valued map satisfying T (0) = IX and T (t + s) =

(t)T (s), s, t ≥ 0, where IX denotes the identity operator. Fur-
hermore, we assume that semigroups are strongly continuous,
.e., t ↦→ T (t)x is continuous for every x ∈ X . Semigroups are char-
cterized by their generator A, which is a possibly unbounded
perator on X . The growth bound of the semigroup is the infimum
ver all ω ∈ R such that supt≥0 ∥e−tωT (t)∥ < ∞. For β ∈ C in
he resolvent set ρ(A) of the generator A, we denote by X−1 the
ompletion of X with respect to the norm ∥·∥X−1 = ∥(βI−A)−1

·∥X .
ecall that X−1 is independent of the choice of β and that (βI−A)

uniquely extends to a surjective isometry (βI −A−1) ∈ B(X; X−1).
The semigroup (T (t))t≥0 has a unique extension to a semigroup
(T−1(t))t≥0 in X−1, which is generated by A−1. Furthermore, let X1
be the space D(A) equipped with the graph norm of A. For Hilbert
spaces U, Y , a triple (A, B, C) ∈ B(X1; X)×B(U; X−1)×B(X1; Y ) is
called a regular well-posed system, if for some (hence all) t > 0,

(a) A is the generator of a semigroup (T (s))s≥0 on X;
(b)

∫ t
0 T−1(t − s)Bu(s) ds ∈ X for all u ∈ L2([0, t];U);

(c) (D(A), ∥ · ∥X )→L2([0, t]; Y ), x ↦→CT (·)x is bounded;
(d) there exists a bounded function G : Cω → B(U; Y ), ω > ωA,

such that for all r, s ∈ Cω ,

G(r) − G(s) = C((rI − A)−1
− (sI − A)−1)B, (17)

and lims→∞,s∈R G(s)v exists for every v ∈ U .

Operators satisfying (b) and (c) are called admissible in the lit-
erature and naturally appear in the theory of boundary control
systems, cf. Staffans (2005), Tucsnak and Weiss (2009). The func-
tion G is called a transfer function of (A, B, C) and is uniquely
determined up to a constant.

From now on we will, without loss of generality, consider the
complexification L2([0, 1];C2) of the state space X and the linear
operator A defined in (2)–(3). The following is a simple exercise
in the context of well-posed systems. We include a short proof
for completeness.

Proposition 3.1. Let A and µ be defined as in (2)–(3), B = A−1b ∈

B(R; X−1) with b = (0,−1)⊤ and C ∈ B(X1;C2) as defined in (13).
Then A generates a contraction semigroup (T (t))t≥0 and the triple
(A, B,

[
I
C

]
) is a regular well-posed system with transfer function

G : C+ → B(C; X × C × C),G =

(
L − b,H + 2

√
h0
g , 0

)
here

L(λ) = λ(λI − A)−1b, (18)

(λ) = −

√
4h0λ

g(λ+2µ) tanh
(

√
λ(λ+2µ)
2
√

h0g

)
, λ ∈ C+. (19)

he restricted semigroup on Xexp = (ker A)⊥ = [( 10 )]
⊥ is well-

efined, ∥T (t)∥B(Xexp) ≤ et(−µ+Re
√
µ2−π2gh0) for all t ≥ 0 and

B ∈ B(R; (Xexp)−1).

Proof. By standard arguments (e.g. a Fourier ansatz or Lumer–
Phillips theorem), A generates a contraction semigroup (T (t))t≥0
which even extends to a group, whence Property (a). Moreover,
5

since A has a compact resolvent, it follows that there exists an
orthonormal basis of eigenvectors of A with eigenvalues θ±

n =

µ ± i
√
gh0π2n2 − µ2, n ∈ N. This shows that the semigroup

leaves ker A = [( 10 )] and its orthogonal complement ker A⊥

nvariant and that (T (t)|(ker A)⊥ )t≥0 has growth bound ω = −µ +

e
√
µ2 − π2gh0 < 0. Consider the holomorphic function λ ↦→

λI −A)−1B from C+ to X . By the resolvent identity, we have that

λI − A)−1B = λ(λI − A)−1b − b = λz − b,

here z can be computed by solving the ODE λz − Az = b,

=
1
gθ

(
cosh(θ)−1
sinh(θ)

[ cosh(θζ )
−

λ
h0θ

sinh(θζ )

]
+

[
− sinh(θζ )

λ
h0θ

(cosh(θζ )−1)

])
,

with θ =
1√
h0g

√
λ(λ+ 2µ). Since (λI − A)−1B = L(λ) − b

is bounded in λ on the half-plane Cµ+1, it follows that B is
admissible, Property (b), by Tucsnak andWeiss (2009, Thm. 5.2.2).
Thus, (A, B, I) is well-posed. Similarly, one can show that Property
(c) holds for C using Tucsnak and Weiss (2009, Cor. 5.2.4). Using
the explicit formula for L(λ) = λz shows that H has the form
s in (19) and is indeed a transfer function for (A, B, C) and
ims→∞,s∈R G(s) = 0. Thus Property (d) holds. Clearly, ker A =

( 10 )] and the fact that A has an orthonormal basis of eigenvectors,
ields that the semigroup is well-defined on Xexp = (ker A)⊥ and
he norm is bounded by the exponential related to the largest
egative eigenvalue of A. Finally, since b ∈ Xexp, it follows that
he range of B lies in (Xexp)−1. □

Next we show that the inverse Laplace transform of H is a
easure of bounded total variation on R≥0, i.e., H ∈ M(R≥0),
here the total variation of f ∈ M(R≥0) is denoted by ∥f ∥M(R≥0).

emma 3.2. Let σn = nπ
√
h0g, n ∈ N. The function H : C+ → C

defined in (19) can be represented as

H(λ) = −8h0

∑
n∈N

Hn(λ) = −8h0

∑
n∈2N0+1

λ

λ2 + 2µλ+ σ 2
n
,

with inverse Laplace transform h = L−1(H) ∈ M(R≥0). Moreover,

h = hL1 +
1
4c

hδ = hL1 +
1
4c
δ0 +

1
2c

∑
k∈N

(−1)ke−k µc δ k
c
,

where c =
√
h0g, and hL1 (t) = e−µt (t2f2(t) + tf1(t) + f0(t)), t ≥ 0,

for some f0, f1, f2 ∈ L∞(R≥0;R).

Proof. The asserted series representation of H, with Hn(λ) =
λ

λ2+2µλ+σ2
n
, follows from (19) and the following well-known series

epresentation of the hyperbolic tangent,

anh(z) = 8z
∞∑
k=1

1
π2(2k − 1)2 + 4z2

, z /∈ iπ (1 + 2Z).

Next we study the inverse Laplace transform of H; in particular,
Hn(λ) = 0 for n ∈ 2N0. It is clear that H is also continuous on C+

nd that the series converges locally uniformly along the imagi-
ary axis. Thus, the partial sums converge to α ↦→ H(iα) in the
istributional sense when considered as tempered distributions
n iR. By continuity of the Fourier transform F , this gives that
he series

8h0

∑
n∈N

F−1(Hn(i·)) = −8h0

∑
n∈N

L−1(Hn)

onverges to h = F−1(H(i·)) = L−1(H) in the distributional
ense.2 It remains to study L−1(Hn) and to show that the limit

2 We identify functions on R with their trivial extension to R.
≥0
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f the corresponding sum is in M(R≥0). By known rules for the
aplace transform, L−1(Hn)(t) = e−µtgn(t) for t ≥ 0, with φn =

σ 2
n − µ2 and

gn(t) = cos(φnt) − µφ−1
n sin(φnt), n ∈ 2N0 + 1.

The idea is to use Fourier series that are related to the frequencies
σn in contrast to the ‘perturbed’ harmonics sinφn and cosφn. We
rite

n(t) = [cos(φnt) − cos(σnt)] +
µ

φn
[sin(σnt) − sin(φnt)]

+ cos(σnt) +
µ

φn
sin(σnt)

and investigate each term in the sum separately. By the mean
value theorem there exist αn, βn ∈ [φn, σn] and ωn ∈ [αn, σn]
such that

cos(φnt) − cos(σnt) = t(σn − φn) sin(αnt) =
µ2t sin(αnt)
σn + φn

,

sin(αnt) = t(αn − σn) cos(ωnt) + sin(σnt),

sin(σnt) − sin(φnt) = t(σn − φn) cos(βnt) =
µ2t cos(βnt)
σn + φn

,

where we used that σ 2
n − φ2

n = µ2. Hence,

n(t) = t2
µ2(αn − σn)
σn + φn

cos(ωnt) +
µ3t

φn(σn + φn)
cos(βnt)

+ cos(σnt) +

(
t(σn − φn) +

µ

φn

)
sin(σnt).

The coefficient sequences of the first two terms in the sum,

an := µ2 αn − σn

σn + φn
, bn :=

µ3

φn(σn + φn)
,

are absolutely summable sequences as σn + φn ≲ n and

0 > an > µ2 φn − σn

σn + φn
=

−µ4

(σn + φn)2
.

et us rewrite the coefficient of the last term, recalling that σ 2
n −

2
n = µ2 implies that 1

σn+φn
−

1
2σn

=
µ2

2σn(σn+φn)2
,

t(σn − φn) =
µ2t

σn + φn
=

µ4t
2σn(σn + φn)2

+
µ2t
2σn

,

µ

φn
=
µ

φn
+
µ

σn
−
µ

σn
=
µ

σn
+

µ3

σnφn(σn + φn)
.

Thus, with cn =
µ4

2σn(σn+φn)2
and dn =

µ3

σnφn(σn+φn)
, which define

absolutely summable sequences, we have that

gn(t) = t2an cos(ωnt) + tbn cos(βnt) + (tcn + dn) sin(σnt)

+ cos(σnt) + (µt + 2)
µ

2σn
sin(σnt).

Multiplying with e−µt , it is clear that the sums of terms involving
an, bn, cn, dn converge in the L1-norm. Thus, it remains to esti-
mate the last two terms in gn above. As σn = nπc , the sum∑

n∈2N0+1
4c
σn

sin(σnt) converges to

0(t) = (−1)k for t ∈ [k/c, (k + 1)/c), k ∈ N0,

or almost all t ≥ 0. Therefore, for almost all t ≥ 0,∑
n∈2N0+1

µ

2σn
sin(σnt) =

µ

8c
H0(t).

ince the coefficients µ

σn
are square summable, the series even

converges in L2 on any bounded interval and thus particularly in
the distributional sense on R .
≥0

6

Finally, by known facts on the Fourier series of delta distribu-
tions, 4c

∑
n∈2N0+1 cos(σn·) converges to the 2

c -periodic extension
of (δ0 − 2δ 1

c
+ δ 2

c
) in the distributional sense as

lim
→∞

⟨
4c

N∑
n=1, n odd

cos(σn·), ψ

⟩
=

⟨
δ0 − 2δ 1

c
+ δ 2

c
, ψ

⟩
for any function ψ ∈ C∞([0, 2

c ];R). Altogether, and as multiply-
ing with e−µt preserves the distributional convergence, this yields
that∑
n∈2N0+1

L−1(Hn)(·) =

∑
n∈2N0+1

e−µ·gn(·) = hL1 (·) +
1
4c

hδ

with hL1 , hδ as in the assertion and where the functions

f2(t) :=

∑
n∈2N0+1

an cos(ωnt)

1(t) :=
µ2

8c
H0(t) +

∑
n∈2N0+1

bn cos(βnt) + cn sin(σnt),

f0(t) :=
µ

4c
H0(t) +

∑
n∈N

dn sin(σnt), t ≥ 0,

are bounded since an, bn, cn, dn are absolutely summable se-
quences. By this representation, hL1 ∈ L1(R≥0;R) and can thus
e identified with an element in M(R≥0), while hδ ∈ M(R≥0) as

∥hδ∥M(R≥0) = 1 + 2
∑

k∈N e−µ k
c < ∞. □

For regular well-posed systems, it is convenient to consider an
extension of the observation operator C ∈ B(X1; Y ), the so-called
Λ-extension CΛ : D(CΛ) → Y , defined by

CΛx = lim
λ→∞

λC(λI − A)−1x

ith D(CΛ) =
{
x ∈ X

⏐⏐ limλ→∞ λC(λI − A)−1x exists
}
. It is easy

to see that this indeed defines an extension of C , cf. Tucsnak and
Weiss (2014). In the following we will replace the operator C
from (13) by its Λ-extension; thus, in particular, in (13),

D(C) = D(CΛ). (20)

ecall that the unique strong solution of (12) is given by (16).

roposition 3.3. Let x0 ∈ X and v0 ∈ C such that x0+bv0 ∈ D(A).
Then

F : C(R≥0;C) → L∞

loc(R≥0; X × C2), η ↦→
[

I
CΛ

]
x,

with x as in (16), is well-defined and

F(η)∥∞ ≲ ∥x0∥ + ∥Ax0∥ + ∥η∥∞ (21)

or all η ∈ C(R≥0;C) ∩ L∞(R≥0;C).

roof. Since (A, B,
[

I
C

]
) is a regular, well-posed system by Propo-

sition 3.1 with transfer function G, it follows that x(t) ∈ D(
[

I
CΛ

]
)

for a.e. t > 0 and that F is well-defined as a mapping from
L2loc(R≥0;C) to L2loc(R≥0; X×C2), see e.g. Tucsnak and Weiss (2014,
Thm. 5.3) or Staffans (2005, Thm. 5.6.5). We will discuss the two
components of the mapping F separately. By Proposition 3.1,
we have that the semigroup restricted to Xexp has a negative
growth bound and B ∈ B(R, (Xexp)−1) is admissible, thus it follows
from Tucsnak and Weiss (2009, Prop. 4.2.4) that, for all η ∈

C(R≥0;C) ∩ L∞(R≥0;C) and all t ≥ 0, t ↦→
∫ t
0 T−1(t − s)Bu(s)ds ∈

C(R≥0; X) and there exists a constant c independent of t and u
uch that∫ t

T−1(t − s)u(s)ds
 ≤ c∥η∥L2([0,t];C).
0
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y rescaling the semigroup we may replace u(s) by e−ε(t−s)u(s),
or some ε > 0, and further estimate the term on the right hand
side by c(2ε)−

1
2 ∥η∥∞, invoking Young’s convolution inequality.

Therefore, F1 : η ↦→ x maps C(R≥0;C) to L∞

loc(R≥0; X) with

∥F1(η)∥∞ = ∥x(t)∥∞ ≲ ∥x0∥ + ∥η∥∞.

Since lims→∞,s∈R G(s) = 0, we have for F2 : η ↦→ CΛx that

L(F2(η))(s) = CΛ(sI − A)−1x0 + G2(s) · L(η)(s)

for all s ∈ C+, η ∈ L2(R≥0;C) and where G2 = (H + 2
√
h0/g, 0)

are the functions defined in Proposition 3.1. To show that F2 is
well-defined from C(R≥0;C) to L∞

loc(R≥0;C2), it suffices to con-
sider only bounded, continuous functions η and to show that (21)
holds, as the rest follows by causality. We identify L−1(G2) and η
with their trivial extensions to R and get for a.a. t > 0 that

F2(η)(t) = CΛT (t)x0 + (L−1(G2) ∗ η)(t)

= CΛT (t)(x0 + bv0) + (L−1(G2) ∗ η̃)(t), (22)

with η̃(t) = etv0χR≤0 (t) + η(t) and where χR≤0 denotes the
indicator function on R≤0. Here, we used the fact that

−CΛT (t)b = CΛ

∫ 0

−∞

T−1(t − s)Besds

= (L−1(G2) ∗ e1χR≤0)(t)

for a.a. t > 0, with e1(s) = es, s ∈ R. The first term on the
right hand side of (22) is uniformly bounded on R≥0, because
x0 + bv0 ∈ D(A), ∥T (t)∥ ≤ 1 for all t ≥ 0 by Proposition 3.1
and thus

∥CΛT (t)(x0 + bv0)∥ ≤ ∥CΛA−1
∥B(X;C2)∥A(x0 + bv0)∥.

The uniform boundedness of the second term in (22) follows
since L−1(G2) is of bounded total variation by Lemma 3.2 and
thus defines a bounded convolution operator with respect to the
supremum norm, cf. Grafakos (2014). □

4. Extensions

In this section we consider some extensions (other steady
states, space-dependent friction) of the results of Sections 2 and 3.
Although the linearization around the steady state (h0, 0) consid-
ered in the previous sections is the most relevant from a control
theoretic viewpoint, cf. Remark 4.1 (ii), other scenarios may be
of interest. In the following we restrict ourselves to deriving the
new model, when (1) is linearized around other steady states, and
indicate how the approach of Sections 2 and 3 can be extended.

First we like to note that the steady state with constant water
level h = h0 and zero velocity v = 0 is not the only choice for
a stationary solution of (1). Indeed, considering as steady states
the solutions of the overall system constituted by (1), (4) and
ṗ(t) = u(t) in the variables h, v, u, which are constant in time,
the steady states are given by all solutions H, V : [0, 1] → R and
U ∈ R, with H being strictly positive, of

∂ζ (HV ) = 0,

∂ζ

(
V 2

2
+ gH

)
+ HS

(
V
H

)
= −

U
m + h0

,

here the right-hand side of the second equation is derived from
aking the time-derivative in (4) and using h0 =

∫ 1
0 H(ζ )dζ . By

he boundary conditions for the velocity, we conclude from the
irst equation that V = 0. Using that S(0) = 0, the second
equation thus becomes

g∂ζH = −
U

.

m + h0

t

7

Since H is strictly positive with h0 =
∫ 1
0 H(ζ )dζ , this is solved by

he function

(ζ ) = −
U

m + h0
ζ +

U
2(m + h0)

+ h0, (23)

rovided that |U | < 2h0(m + h0). The case U = 0 corresponds to
≡ h0, which leads to the linearization (2).

emark 4.1.

(i) In order to derive the steady states for control values U
with |U | ≥ 2h0(m + h0) a different approach must be
taken, which is only sketched here for completeness. In
such cases the height profile H will no longer be strictly
positive in general. Therefore, assuming that S is bounded
by a polynomial of order α, i.e., |S(z)| ≤

∑α

i=0 ci|z|
i, we may

multiply the second equation in (1) on both sides with hα ,
leading to a partial differential–algebraic equation (PDAE).
Computing the steady states of this equation again leads to
V = 0 and H is determined by

Hαg∂ζH = −
HαU

m + h0
,

which has, under the additional condition that h0 =∫ 1
0 H(ζ )dζ , unique weak solutions that may be zero on a

subinterval of [0, 1], and linear otherwise — we leave the
exact computation to the reader. Let H∗ be such a solution,
then the steady states are (H∗, 0,U), where U ∈ R is no
longer restricted. The left-hand side of the linearization
of the original PDAE around this steady state then reads(

∂t z1
(H∗)α∂t z2

)
, and the second component vanishes whenever

H∗ is zero. We may further compute that this is also true
for the second component of the right-hand side, so only
the first equation, reading ∂tz1 = 0 is present whenever
H∗

= 0. Therefore, the linearization is also a PDAE and
cannot be described in a simple form as in (2).

(ii) On the other hand, the linearization around steady states
with non-zero control values may be of limited interest
from a control theoretic viewpoint, since typically situa-
tions are considered where the system is steered from one
operating point to another, i.e., the control input has com-
pact support. This rather suggests to consider equilibria
with zero control value U = 0 in order to conclude that the
controlled linearized system approximates the controlled
nonlinear system in a certain sense.

Linearizing around the steady state (H, 0,U) with H as in (23)
ives the following generalization of (2),

tz = −

[
0 H∂ζ + (∂ζH)

g∂ζ 2µ

]
z +

(
0

−1

)
ÿ (24)

ith the same boundary conditions as in Section 1.2. The state
pace in which z(t) evolves is

(z1, z2)
⏐⏐ z1, (Hz2) ∈ L2([0, 1];R)

}
= L2([0, 1];R2) = X

nd the new operator, parameterized by the steady state control
alue U , is AU : D(AU ) ⊆ X → X ,

AUz = −

[
0 H∂ζ + (∂ζH)

g∂ζ 2µ

]
z,

(AU ) =

{
(z1, z2) ∈ X

⏐⏐⏐⏐ z1, (Hz2) ∈ W 1,2([0, 1];R),
z2(0) = z2(1) = 0

}
.

dditionally we allow for a space-dependent friction term µ :

0, 1] → R>0 in the following. Then, again invoking the momen-

um (4) and observing that by (23) and z2(t, 0) = z2(t, 1) = 0 we
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6

ave∫ 1

0
∂ζ

(
H(ζ )z2(t, ζ )

)
z2(t, ζ )dζ =−

1
2

∫ 1

0
H(ζ )∂ζ

(
z2(t, ζ )2

)
dζ

=−
U

2(m + h0)

∫ 1

0
ζ∂ζ

(
z2(t, ζ )2

)
dζ =

U
2(m + h0)

∥z2(t)∥2,

the nonlinear model on the state space X reads

∂tx = AU (x + bẏ) (25a)

ÿ(t) =
g
2
x1(t, ·)2|10+2⟨x1(t), µx2(t)⟩ − 2ẏ(t)⟨x1(t), µ⟩

+
U

2(m + h0)
∥x2(t) − ẏ(t)∥2

+ u(t) (25b)

This generalized system can be approached in a similar way as
in Section 3, however, although the steady states are explicitly
given by (23), the computations for the transfer function, in
particular the crucial Lemma 3.2, have to be adapted accordingly.
These technicalities will not be presented here as the authors
believe that a more abstract approach for the assessment of
bounded-input, bounded-output stability for linear systems of port-
Hamiltonian form, see e.g. Jacob and Zwart (2012), should be
considered. More precisely, it is not hard to show that the linear
dynamics in (25), linking ẏ(t) to the spatial boundary values of
x(t), can be rewritten in the port-Hamiltonian form

∂tx = (P1∂ζ − R)Hx

ẏ(t) = WB

[
f∂ (t)
e∂ (t)

]
, x(·, t)|0,1= WC

[
f∂ (t)
e∂ (t)

]
,

or suitable real matrices WB,WC , where

1 = −

[
0 1
1 0

]
, R =

[
0 0
0 2µH−1

]
, H =

[
g−1 0
0 H

]
and[
f∂ (t)
e∂ (t)

]
=

1
√
2

[
P1 −P1
I I

][
H(0)x(0, t)
H(1)x(1, t)

]
.

The abstract characterization of when the corresponding transfer
function has a form as in Lemma 3.2 is a subject of future work.

5. Simulations

In this section we illustrate the application of the funnel
controller (7) to the system (5). Using the change of variables
z(t, ζ ) = Q

(
η1(t,ζ )
η2(t,ζ )

)
with Q :=

[
1 1
g
c −

g
c

]
in (2) enables us to solve

he PDE corresponding to η1 with an implicit finite difference
ethod and the PDE corresponding to η2 with an explicit finite
ifference method, respectively. For the simulation we have used
he parameters m = 1 kg, h0 = 0.5 m, g = 9.81 ms−2,
µ = 0.1 Hz and the reference signal yref(t) = tanh2(ωt) with
ω = 0.06π f , f =

√
g/h0. The initial values (8) are chosen as

0(ζ ) = (h0, 0.1 sin2(4πζ ) ms−1) and (y0, y1) = (0 m, 0 ms−1).
For the controller (7) we chose the funnel functions ϕ0(t) =

1(t) = 100 tanh(ωt). Clearly, Condition (9) is satisfied. For the
inite differences we used a grid in t with M = 2000 points
or the interval [0, 2τ ] with τ = f −1, and a grid in ζ with

= ⌊ML/(4cτ )⌋ points. The method has been implemented in
ython and the simulation results are shown in Figs. 3 and 4.
It can be seen that even in the presence of sloshing effects

prescribed performance of the tracking error can be achieved
ith the funnel controller (7), while at the same time the gen-
rated input is bounded and exhibits an acceptable performance.
inally, we demonstrate that the controller (7) is also feasible for
he nonlinear Saint-Venant equations (1) in certain situations. For
urposes of illustration we consider a friction term of the form
 i

8

Fig. 3. Output y, reference signal yref and corresponding first and second
derivatives.

Fig. 4. Performance funnel with tracking error e and input u.

S(z) = CDz + CSz2 with CD = 2µ and CS = 1. Analogously as
for the linearized model, utilizing the momentum leads to the
equation

mÿ(t) = u(t) + CD

∫ 1

0
h(t, ζ )v(t, ζ ) dζ

+ CS

∫ 1

0
v(t, ζ )2 dζ +

g
2

(
h(t, 1)2 − h(t, 0)2

)
,

(26)

hich is used for the simulation instead of (5b) by applying the
ame method as described above. We choose the same param-
ters as in the first simulation, except for µ = 0.01Hz, ω =

.025Hz and ϕ0(t) = ϕ1(t) = 10 tanh(ωt). We compare simu-
ations of the nonlinear Saint-Venant equations (1) with initial
alues

(
h(0, ζ ), v(0, ζ )

)
= (h0, 0 ms−1) under control (7) with the

inearized equations (5a) with initial values x0(ζ ) = (h0, 0 ms−1)
nder control (7); the results are shown in Figs. 5 and 6. Note that
ompared to the first simulation, lower frequencies µ and ω and
zero initial velocity are chosen here.

. Conclusion

In the present paper we have shown that the controller (7)
s feasible for the moving water tank system (5) which rests on
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c

B

B

B

B

B

C
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d

D

Fig. 5. Reference signal yref , outputs yn for (1), (7) and yl for (2), (7) and
orresponding first and second derivatives.

Fig. 6. Performance funnel with tracking errors en and el and inputs un and ul
for (1), (7) and (2), (7), respectively.

the linearized Saint-Venant equations. We stress that the system
is still nonlinear as the (linearized) sloshing effects influence the
position of the cart through the momentum, which constitutes an
internal feedback loop in (5). Nevertheless, the funnel controller
is able to handle these effects as shown in Theorem 2.1 and in
the simulations in Section 5.

We stress that the applicability of the results from Berger et al.
(2018, 2020) on funnel control strongly rests on the fact that the
original open-loop system can be viewed as an ODE–PDE coupling
with an input–output relation allowing for a relative degree,
i.e., the form (Sys) mentioned in Section 1.3. This, however, is in
general not the case for systems governed by evolution equations
and different approaches are required then, see Berger, Breiten,
Puche, and Reis (2021), Puche, Reis, and Schwenninger (2019),
Reis and Selig (2015). Furthermore, we like to point out that
the controller (7) requires that the derivative of the output is
available for control. This may not be true in practice, and it may
even be hard to obtain suitable estimates of the output derivative.
This drawback may be resolved by combining the controller (7)
with a funnel pre-compensator as developed in Berger and Reis
(2018a, 2018b), which results in a pure output feedback.
9

Some extensions of the results, such as linearizations around
other steady states and space-dependent friction, have been dis-
cussed in Section 4, but a complete study is subject of future
work. Other extensions of (5) which may be considered in future
research are e.g. sloshing suppressing valves inside the tank, the
interconnection of the tank with a truck as in Gerdts and Kim-
merle (2015) and, of course, the general nonlinear equations (1)
as well as the higher-dimensional case.

Another issue is that we assume µ > 0 for the friction
term. This implies that the system’s energy converges to the
steady state exponentially. In the case µ = 0 the statement
of Theorem 2.1 is false in general. More precisely, if µ = 0,
then h = L−1(H) derived in Lemma 3.2 does not have bounded
total variation, by which T̃ from the proof of Theorem 2.1 is not
bounded-input, bounded-output stable. This is consistent with
the results from Dubois et al. (1999), where it is shown that
the linearized Saint-Venant equations (without damping) are not
stabilizable. Nevertheless, as suggested by the findings in Prieur
and de Halleux (2004), the nonlinear model consisting of (1)
together with (26) may still have a solution under the control (7)
in the case S = 0.

It seems natural to assume some kind of damping in (1), but
one may relax the assumption of exponential stability, even in the
linearized case. This requires refined methods, whose develop-
ment is a topic of future research. In this context, let us mention
the recent work (Su, Tucsnak, & Weiss, 2020), where stabilization
of a linearized 2D-shallow water system subject to polynomial
damping was considered.
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