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Channel Contribution in Deep Learning Based
Automatic Sleep Scoring—How Many
Channels Do We Need?

Changging Lu

Abstract— Machine learning based sleep scoring meth-
ods aim to automate the process of annotating polysomno-
grams with sleep stages. Although sleep signals of multiple
modalities and channels should contain more information
according to sleep guidelines, most multi-channel multi-
modal models in the literature showed only a little per-
formance improvement compared to single-channel EEG
models and sometimes even failed to outperform them.
In this paper, we investigate whether the high performance
of single-channel EEG models can be attributed to spe-
cific model features in their deep learning architectures
and to which extent multi-channel multi-modal models
take the information from different channels of modalities
into account. First, we transfer the model features from
single-channel EEG models, such as combinations of small
and large filters in CNNs, to multi-channel multi-modal
models and measure their impacts. Second, we employ
two explainability methods, the layer-wise relevance prop-
agation as post-hoc and the embedded channel attention
network as intrinsic interpretability methods, to measure
the contribution of different channels on predictive per-
formance. We find that i) single-channel model features
can improve the performance of multi-channel multi-modal
models and ii) multi-channel multi-modal models focus on
one important channel per modality and use the remaining
channels to complement the information of the focused
channels. Our results suggest that more advanced methods
for aggregating channel information using complementary
information from other channels may improve sleep scoring
performance for multi-channel multi-modal models.

Index Terms— Channel contribution, deep learning, EEG,
EOG, EMG, multi-channel multi-modal sleep scoring.
SLEEP stage annotations assist clinicians in detecting

sleep disorders and formulating treatment plans for

patients. Sleep stages are scored based on polysomno-
grams (PSGs) consisting of activity recordings of various
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parts of human body, e.g. electroencephalograms (EEGs),
electrooculograms (EOGs) and electromyograms (EMGs). For
annotation, PSGs of approximately 8-h sleep are segmented
into 30-s epochs and annotated by sleep technicians following
standardized guidelines. The Rechtchaffen and Kales standard
(R&K manual) [1] and the American Academy of Sleep
Medicine rules (AASM manual) [2] are the two most widely
used guidelines, distinguishing between seven stages': Wake,
Non-REM1 (N1), Non-REM2 (N2), Non-REM3 (N3), Rapid
Eye Movement (REM), Movement and Unscored. Each sleep
stage is characterized by distinctive time- and frequency-
domain patterns. Table I provides a summary of these specific
patterns as defined in the AASM manual [2].

Sleep scoring is traditionally performed manually by sleep
technicians. To reduce the manual effort and time for anno-
tation, automatic sleep scoring approaches have been devel-
oped. In general, automatic sleep scoring approaches can be
categorized into traditional machine learning approaches and
deep learning approaches. The former (e.g., [3], [4], [5])
relied on manually defined features and applied traditional
machine learning models to classify sleep stages based on
these features. The latter (e.g., [6], [7], [8]) captured temporal
and sequential features from raw sleep signals or transformed
frequency representations (e.g., spectrograms) automatically
using end-to-end deep learning models, such as convolu-
tional neural networks (CNNs) and recurrent neural networks
(RNNs). In our work, we focus on deep learning approaches,
as they are more generalizable when applied to highly hetero-
geneous data sets [9].

Most early deep learning approaches were based on
single-channel EEG (e.g., [6], [7]), as it contains the most
information [2]. Khalighi et al. [10] showed that incorporating
multiple modalities and channels (i.e., EOGs and EMGs)
could improve the performance. Yet, surprisingly, most current
multi-channel multi-modal models obtained very little perfor-
mance improvement compared to single-channel EEG models
and sometimes even failed to outperform them (cf., Table II).
Additionally, it was found in [11] that while adding EEG
channels improved the performance, using more than 6 EEG
channels did not improve it further. We propose the following
hypotheses: i) some single-channel EEG models successfully
added particular model features into their deep learning archi-
tectures, which improved the performance, such as combining
small and large filters in temporal learning to respectively

IThe R&K manual distinguishes between eight stages, with stage N3 further
split into stages N3 and N4. Following prior work, we use the AASM manual
in our study.

For more information, see https://creativecommons.org/licenses/by/4.0/
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TABLE |
SUMMARY OF EEG, EOG AND EMG TIME- AND FREQUENCY-DOMAIN PATTERNS FOR FIVE MAIN SLEEP STAGES IN THE AASM MANUAL [2]

Stages EEG EOG EMG
Delta Theta Alpha Beta Time-domain
(<4Hz) (@4-THz) (8-13Hz) (>13Hy ‘medoma
Wake X « Eye movement (0.5-2Hz) VarlableAamplltude but usually higher
than during sleep stages

N1 X X Vertex waves Slow eye movement Lower amplitude than in stage Wake

N2 X K-complexes Usually no eye movement, but Lower amplitude than in stage Wake
Sleep spindles slow eye movements may persist ~ and may be as low as in stage REM
High amplitude . Lower amplitude than in stage N2 and

N3 X Sleep spindles Usually no eye movement sometimes as low as in stage REM

REM X X Sawtooth waves ~ Rapid eye movement Lower chin EMG tone; the lowest

amplitude among all stages

capture time- and frequency-domain features [6], but the
utilities of these model features have not been tested in the
multi-channel multi-modal setting; ii) although all modalities
and channels contain information, the information of certain
channels of modalities may be sufficient to obtain accurate
predictions.

To verify the hypotheses proposed above, in this paper,
we investigate in two directions: i) whether multi-channel
multi-modal models can be improved by adding particular
model features from high-performing single-channel EEG
models and ii) which channels contribute to a high-performing
multi-channel multi-modal model. Specifically, our contribu-
tions are:

1) We evaluate the impacts of particular model features
proposed for high-performing single-channel EEG mod-
els in the multi-channel multi-modal setting on a public
benchmark data set, SleepEDF-13.

2) We incorporate the model features that improve
the performance into a multi-channel multi-modal
model and evaluate it on two public benchmark data
sets, SleepEDF-13 (39 PSGs, small) and SHHS-1
(5,793 PSGs, large), obtaining state-of-the-art results.

3) We apply the layer-wise relevance propagation (LRP)
[12], a post-hoc explainability method for model agnos-
tic, to extract channel importance. We also adopt an
embedded channel attention network (eCAN), motivated
by [13] and [14], which intrinsically incorporates chan-
nel importance to deep sleep scoring models. We com-
pare the results from both methods.

4) Based on the observations obtained from the inter-
pretability experiments, we hypothesize that incorporat-
ing all channels is not necessary to obtain acceptable
performance and verify it in a reverse ablation study.

The remainder of the paper is organized as follows.
Section II presents the related work on deep learning based
automatic sleep scoring and reviews the methods for extracting
channel importance from deep learning models. Section III
introduces data sets and data preprocessing. The experiment
for evaluating single-channel model features in the multi-
channel multi-modal setting and the accordingly improved
multi-channel multi-modal model structure are described in
Section IV. Afterwards, we present two interpretability meth-

ods to analyze channel contribution in Section V. Section VI
provides the experiment setup for evaluating our multi-channel
multi-modal model. All results are presented and discussed in
Section VII. Finally, we conclude and outline the directions
for future work in Section VIII.

Il. RELATED WORK

In this section, we review deep learning based automatic
sleep scoring approaches and the prior work on channel
contribution analysis.

A. Automatic Sleep Scoring

We distinguish between single-channel EEG and multi-
channel multi-modal deep sleep scoring models. Table II pro-
vides an overview of them in terms of data sets, used features,
approaches and performance.

1) Single-Channel EEG Models: The most classic archi-
tecture is a combination of convoluational neural net-
works (CNNs) and recurrent neural networks (RNNs)
(e.g., [6], [7], [16], [17]). Usually, CNNs are used to extract
temporal features from sleep epochs and RNNs are employed
to capture transition information from sleep sequences. To fur-
ther improve the scoring performance, particular model fea-
tures were added to this base architecture. Supratak et al. [6]
employed filters of small and large sizes in the first layer
of CNNs to capture both time- and frequency-domain fea-
tures. Sors et al. [15] used deep CNNs to extract complex
patterns of sleep epochs, because feature complexity can be
increased by deeper layers [27]. Mousavi et al. [7] applied
attention mechanisms in RNNs to focus on the important parts
of sleep sequences when considering context information.
Moreover, to enable the model to consider temporal and
sequential features evenly in the final classification of sleep
stages, Supratak et al. [6] also built a residual connection
that concatenated features from temporal encoding layers.
Additionally, there were also different model architectures
proposed, such as using large-scale CNNs to capture transition
information from neighbouring sleep epochs instead of using
RNNs [15], [20] and learning sleep features not only from raw
signals but also from their frequency representations [8], [18].
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TABLE Il
OVERVIEW OF THE STATE-OF-THE-ART DEEP LEARNING BASED AUTOMATIC SLEEP SCORING MODELS. WE DISTINGUISH BETWEEN
SINGLE-CHANNEL EEG AND MULTI-CHANNEL MULTI-MODAL MODELS. THE ‘FEATURES’ COLUMN INDICATES WHETHER RAW
SIGNALS OR TRANSFORMED FREQUENCY REPRESENTATIONS WERE USED IN CORRESPONDING PUBLICATIONS

Paper Year  Dataset PSGs  Channels Features Approach Evaluation Accuracy
Supratak et al. [6] 2017 SleepEDF-13 39 1EEG raw CNN-RNN 20-fold CV 82.0
MASS 62 1EEG 31-fold CV 86.2
Sors et al. [15] 2018  SHHS-1 5,728 1EEG raw CNN 50-20-30 86.8
Mousavi et al. [7] 2019 SleepEDF-13 39 1EEG raw CNN-RNN 20-fold CV 84.3
Supratak et al. [16] 2020  SleepEDF-13 39 1EEG raw CNN-RNN 20-fold CV 85.4
MASS 62 1EEG 31-fold CV 87.5
Seo et al. [17] 2020  SleepEDF-13 39 1EEG raw CNN-RNN 20-fold CV 83.9
MASS 62 1EEG 31-fold CV 86.3
SHHS-1 5,791 1EEG 50-20-30 86.7
Wang et al. [8] 2020  SleepEDF-13 39 1EEG frequency CNN 20-fold CV 86.1
Sun et al. [18] 2020 MASS 147 1EEG raw-+frequency CNN-RNN leave-one-out CV 86.1
Eldele et al. [19] 2021 SleepEDF-13 39 1EEG raw CNN 20-fold CV 85.6
SHHS 329 1EEG 20-fold CV 86.6
Firillo et al. [20] 2021 SleepEDF-13 39 1EEG raw CNN 20-fold CV 84.0
Paisarnsrisomsuk et al. [21] 2018 SleepEDF-13 39 2EEGs+1EOG raw CNN 4-fold CV 81.2
Phan et al. [22] 2018 SleepEDF-13 39 1EEG+1EOG frequency CNN 20-fold CV 82.3
MASS 200 1EEG+1EOG+1EMG 20-fold CV 83.6
Chambon et al. [11] 2018  MASS 61 6EEGs+2EOGs+3EMGs raw CNN 5-fold CV 83.0
Sun et al. [18] 2020 MASS 147 1EEG+1EOG+1EMG raw-+frequency CNN-RNN leave-one-out CV 87.8
Jia et al. [23] 2020 MASS 62 20EEGs+2EOGs+3EMGs+1ECG  frequency Graph CNN 31-fold CV 88.9
Pathak et al. [24] 2021 SHHS-1 5,793 2EEGs+2EOGs+1EMG raw CNN-RNN 81-9-10 85.0
Phan et al. [25] 2021 SleepEDF-13 39 1EEG+1EOG raw+frequency ~ CNN-RNN 20-fold CV 86.3
MASS 200 1EEG+1EOG+1EMG 20-fold CV 87.6
SHHS-1 5,791 1EEG+1EOG+1EMG 70-30 89.1
Jia et al. [26] 2021 SleepEDF-13 39 1EEG+1EOG raw CNN 20-fold CV 87.5
This paper 2022 SleepEDF-13 39 2EEGs+1EOG+1EMG raw CNN-RNN 20-fold nested CV 87.2
SHHS-1 5,793 2EEGs+2EOGs+1EMG 81-9-10 89.1

2) Multi-Channel Multi-Modal Models: Most of the multi-
channel multi-modal models also used classic CNN-RNN
architectures but with some additional spatial learning modules
added to incorporate the sleep features of multiple modal-
ities and channels. Paisarnsrisomsuk et al. [21] employed
large-scale CNNs to extract both temporal and sequential
information from 2 EEGs and 1 EOG and found that adding
EOG signals increased the accuracy by 1%. A similar result
was observed by Phan et al. [22] who generated the spec-
trograms of sleep signals and trained multi-task CNNs to
create joint predictions for the current and neighbouring sleep
epochs. Chambon et al. [11] proposed a spatio-temporal CNN
architecture and used linear spatial filters to increase the
signal-to-noise ratio. Pathak et al. [24] also designed a spatial-
temporal-sequential model to extract sleep features from multi-
channel multi-modal data input and verified that EEG is
the most important modality using post-hoc interpretability
methods. In [25], Phan et al. created a multi-view sequen-
tial model via learning joint representations from both raw
signals and time-frequency images. Recently, more advanced
architectures were developed to particularly model correlations
among modalities and among channels within a modality.
For instance, Jia et al. [23] employed graph CNNs to cap-
ture intrinsic connections among EEG channels. In another
paper [26], they designed a multi-modal attention module
which helped detect the relevance between EEG and EOG
signals.

In summary, although some studies showed that adding
the information of multiple modalities and channels could
improve the performance, the improvement was rather small
(cf., Table II). In addition, there was also evidence that the
improvement vanished after adding many EEG channels [11].

Hence, it is important to understand how multi-channel multi-
modal models use the information from different channels of
multiple modalities. To that end, we built a state-of-the-art
multi-channel multi-modal model and analyzed channel con-
tribution in detail. More specifically, we first tested the impacts
of particular model features developed for single-channel
EEG models in the multi-channel multi-modal setting. Then,
we designed an architecture aggregating the promising model
features and investigated channel importance using inter-
pretability methods. Since advanced architectures (i.e., [23],
[26]) were designed for particular data> and focused on mod-
elling the relevance among modalities and channels instead
of understanding channel importance, we stayed with classic
CNN-RNN architectures in our study to analyze channel
contribution.

B. Analyzing Channel Contribution

We propose to analyze channel contribution in a deep
sleep scoring model by assessing the importance of channel
information acknowledged by that model. To the best of
our knowledge, no particular study has investigated chan-
nel importance in multi-channel multi-modal sleep scoring,
although some literature (e.g., [6], [7]) showed that the scoring
performance varied based on different channels.

In related domains, Bohle et al. [28] used the layer-wise
relevance propagation (LRP) to assist clinicians in explaining
the area importance of MRIs for diagnosing Alzheimer’s

2GraphSleepNet [23] needs a relatively large amount of channels to build
the graph structure, which are not available in SleepEDF-13 and SHHS-1.
If SalientSleepNet [26] considers the relevance from EMGs and from different
channels within a modality, the model complexity will increase rapidly.
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TABLE Il
OVERVIEW OF SLEEPEDF-13 AND SHHS-1, SHOWING THE AMOUNT
OF 30-s EPOCHS AND CLASS FREQUENCIES

Sleep Stages

Data set Wake N1 N2 N3 REM Total
8,285 2804 17,799 5703 7717
SIeepEDF-I3 (1560%)  (66%)  (421%)  (35%) (182%) ‘2308
1691288 217,583 2397460 739403 817473
SHHS-1 288%)  (GI%)  (409%)  (126%) (13.9%) 503207

disease. Hu et al. [13] developed a Squeeze-and-Excitation
block (SE-Net) to recalibrate channel-wise feature responses
by modelling inter-channel dependencies. Wang et al. [14]
proposed a similar model, the efficient channel attention net
(ECA-Net), where an extra CNN block was employed to detect
channel importance. Bastidas and Tang [29] also implemented
a channel attention network (CAN) to allocate large attention
weights to important channels in image predictions.

In this work, we used two kinds of methods to assess chan-
nel importance in multi-channel multi-modal sleep scoring
in different directions. We applied the LRP [12] where the
importance score of a channel is concluded by its relevance
score for predictions. We also employed an embedded CAN,
motivated by [13] and [14], to intrinsically measure channel
importance, i.e. the importance score of a channel is learned
and allocated via an extra neural network.

[1l. DATA SETS AND PRE-PROCESSING

We based our experiments on two public benchmark data
sets: the SleepEDF-13 data set containing 39 PSGs and the
SHHS-1 data set containing 5,793 PSGs. Table III provides
an overview of them.

A. SleepEDF-13

SleepEDF-13 [30], [31] is a small data set initially used for
two studies: investigating age effect in health subjects (SC)
and investigating Temazepam effects on sleep (ST). Following
prior work (e.g., [6], [7]), we used the 20 SC subjects in our
study. For each subject, except one, 2 PSGs are available,
resulting in 39 PSGs. Each PSG consists of 2 EEGs (channels
Fpz-Cz and Pz-Cz), 1 EOG (horizontal) and 1 EMG. The
EEG and EOG signals are sampled at 100 Hz, while the
EMG signals are sampled at 1 Hz. Sleep epochs are manually
annotated as one of the 8 sleep stages (Wake, N1, N2, N3,
N4, REM, Movement and Unscored), according to the R&K
manual [1].

B. SHHS-1

Sleep Heart Health Study (SHHS) [32] is a large data set
used for sleep-disordered breathing research and consists of
the data collected during two patient visits. Following prior
work (e.g., [15], [24]), we used the subjects from the first
visit (SHHS-1). Overall, 5,793 PSGs are collected from 5,793
subjects, where 2 EEGs (channels C3-A2 and C4-Al), 2 EOGs
(left and right) and 1 EMG are recorded. The EEG and

EMG signals are sampled at 125 Hz, while the EOG signals
are sampled at 50 Hz. Similar to SleepEDF-13, the R&K
manual [1] is used for annotating SHHS-1, also resulting in
8 sleep stages.

C. Data Pre-Processing

For both data sets, we merged stages N3 and N4 into stage
N3 to comply with the AASM manual [2] and removed the
Movement and Unscored epochs which are irrelevant for sleep
scoring. In addition, following [6], we excluded long wake
periods that are located 30 minutes before and after sleep
periods for SleepEDF-13.

We preprocessed the signals in both data sets as follows.
First, we resampled the signals at smaller sampling rates to
the highest sampling rate among all signals in that data set
(i.e., resampling the EMG signals in SleepEDF-13 to 100 Hz
and the EOG signals in SHHS-1 to 125 Hz) such that all
modalities in a data set share an identical feature extraction
mechanism in deep sleep scoring models. Second, follow-
ing [11], [24], [33], we filtered the EEG and EOG signals
of both data sets to 0.16-30 Hz and the EMG signals to
10-30 HZ? and standardized the signals of every channel to
mean 0 and standard deviation 1.

V. IMPROVING MULTI-CHANNEL MULTI-MODAL MODEL

In this section, we present the improved multi-channel
multi-modal model that is based on the promising model
features developed for single-channel EEG models.

A. Evaluating Single-Channel Model Features

To apply particular model features that have been success-
fully used by single-channel EEG models for performance
improvement to multi-channel multi-modal models, we first
tested their utilities in the multi-channel multi-modal setting.
Based on the review presented in Section II-A.1, we selected
the four model features presented in Table IV as candidates.
The assumptions for these model feature choices are as fol-
lows. Adding large filters to capture frequency-domain patterns
enables the model to capture distinctive frequency features,
e.g. the Delta waves in stage N3. Increasing feature complexity
helps detect the sleep stages whose time-domain patterns are
indistinguishable, e.g. stages N1 and REM. A focus on the
important parts of sleep sequences improves the extraction
of transition information thus benefits to associated transition
stages. Moreover, an even attention on temporal and sequential
features avoids the loss of temporal information in sequential
learning. We selected the model by Pathak et al. [24] as
the baseline,* because it was based on classic CNN-RNN
architectures and obtained state-of-the-art performance. Addi-
tionally, we performed a reverse ablation study, i.e. adding

3Note that, the bandwidth selection for sleep scoring is not uniformly done
in related work. We followed recent papers [11], [24], [33] to filter the EMG
signals, while 0-100 Hz were selected in other work [34].

4For all model variants in this section, we excluded the spatial learning
module of the baseline model, as detecting correlations among channels within
a modality was not focused in this experiment.
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TABLE IV
TESTED MODEL FEATURES FROM SINGLE-CHANNEL EEG MODELS
AND THEIR FUNCTIONS, FOR IMPROVING MULTI-CHANNEL
MULTI-MODAL MODELS

No. Feature Function

small and large filters
in the first layer of CNNs

to capture time- and frequency- domain
features of sleep signals respectively

ii deeper layers in CNNs to increase feature complexity

attention mechanisms
embedded in RNNs

to concentrate on the important parts
of sleep sequences

residual connection that
iv concatenates features of
CNNs and RNNs

to consider temporal and sequential
features evenly in the final classification
of sleep stages

model modifications one at a time, to test their impacts. Our
experiment consists of three steps:

1) Model features in CNNs (cf., Table IV, 1 and ii): to
test their impacts independently, we added them to the
CNNs of the baseline model separately, one at a time,
and measured the performance.

2) Model feature in RNNs (cf., Table IV, iii): we applied
sequential learning with and without attention mecha-
nisms on the model obtained from the first step and
measured the performance.

3) Model feature in the whole architecture (cf., Table IV,
iv): we measured the performance on the model obtained
from the second step with and without the residual
connection to verify its impact.

We ran the experiment on SleepEDF-13 using all four
accessible channels (cf., Section III-A) and evaluated all
model variants under the nested cross validation scheme
(cf., Section VI-C). To determine the significance of adding
the model features from single-channel EEG models to multi-
channel multi-modal models, we employed statistical hypoth-
esis testing. Specifically, we assumed that the sleep data of
the 20 subjects in SleepEDF-13 is independent and identically
distributed, thus the evaluation metrics computed over the
data of each subject follow a Gaussian distribution [35].
Then, we reported a sequence of 20 macro Fl-scores (cf.,
Section VI-B) per model variant, obtained from the 20-fold
cross validation in the outer loop of the evaluation scheme.
Afterwards, we compared the model variants pairwise on their
respective sequences using an one-sided Welch’s t-test, where
the null hypothesis was set that the performance improved
by adding a model feature is smaller than or equal to zero.
We set a significance level to 0.05 for the test: if the p-value
is smaller than 0.05, the added model feature is improving
the performance of multi-channel multi-modal sleep scoring
models.

The results for evaluating the model features from
single-channel EEG models in the multi-channel multi-modal
setting are presented in Fig. 1. Overall, all four model features
are shown statistically significant, since they all achieved
p-values smaller than 0.05 in the Welch’s t-tests. We thus con-
cluded that all four tested model features from single-channel
EEG models are useful to improve multi-channel multi-modal
models under classic CNN-RNN architectures.

B. Final Multi-Channel Multi-Modal Model

Based on the experiment presented in the previous section,
we introduce our improved multi-channel multi-modal sleep
scoring model here. Our model consists of four components:
a temporal learning module used to extract temporal features,
a spatial learning part embedded in the first layer of temporal
learning to incorporate channel information within a modality,
a sequential learning module applied to capture sequential
features from sleep sequences and a residual connection
employed to concatenate CNN and RNN features. The final
classification of sleep stages is performed on the obtained
feature representations via a fully-connected layer with the
SoftMax activation function. Fig. 2 shows the full structure
of the improved multi-channel multi-modal model on the
SHHS-1 data set which contains 2 EEGs, 2 EOGs and 1 EMG.
Note that, each modality m € {EEG, EOG, EMG} can have
more than one signal which is referred as a channel throughout
this paper. We describe the four components above in more
detail as follows.

1) Temporal Learning: The first convolutional layer has two
pipelines, one with small filter size and the other with large
filter size, to respectively capture time- and frequency-domain
features from raw sleep signals. Additional convolutional
layers are added to extract complex underlying features.
Specifically, each pipeline of CNNs consists of four convolu-
tional layers and two max-pooling layers. Each convolutional
layer is followed by a batch normalization layer [36] and a
rectified linear unit (ReLU) activation layer (i.e., ReLU(x) =
max (0, x)). Details on the number of filters, filter sizes, stride
and pooling sizes are shown in Figure 2. Following [6],
we set the smaller filter size in the first convolutional layer
to half the sampling rate, as distinctive time-domain features
(e.g., K-complex) usually appear in 0.5-s ranges in sleep
epochs. We set the larger filter size to 4 times the sampling rate
to better detect the frequency components of these signals. Dif-
ferent from [6], we set the stride size in the first convolutional
layer to 1 instead of a large value to prevent the information
loss of basic features. Accordingly, we applied larger pooling
sizes in the max-pooling layers to filter out more representative
features and avoid overfitting. At the end of CNNs, the
features extracted from time- and frequency-domain pipelines
are concatenated as the final temporal feature representations
of sleep epochs. We also employed two dropout layers [37]
of probability 0.5 as regularization techniques to help prevent
overfitting in the training process.

2) Spatial Learning: Li et al. [38] have shown that low
temporal relevance can exist among EEG channels in Non-
wake stages. To detect and incorporate channel information,
i.e. spatial correlations among channels within a modality,
we integrated a spatial block in the first temporal convolutional
layer, following [24], [39]. First, we reshaped the signals of
multiple channels of a modality m into an input of shape,
Cn x D, where C,, is the number of channels in this modality
and D is the number of data points. Then, we passed them
to the first convolutional layer of temporal learning including
Cy, input channels and 64 output channels. This layer learns
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Results for evaluating the model features from single-channel EEG models in the multi-channel multi-modal setting. Box plots show the

distributions of the 20 macro F1-scores obtained for corresponding model variants. The p-values of the Welch’s t-tests are also provided.

temporal features from raw sleep signals and then spatially
aggregates the feature maps learnt from each channel. Com-
pared to [24] where spatial learning was applied directly on
raw sleep signals, our spatial learning block is applied on
temporal feature maps, which has the advantage that distinctive
patterns (e.g., sawtooth waves) existing in raw sleep signals
will not be changed before they are identified.

3) Sequential Learning: To concentrate on the important
sleep epochs of a sleep sequence, we employed
the encoder-decoder sequential learning module by
Luong et al. [40] with attention mechanisms in order to
learn transition information from sleep sequences, as the
stage of a sleep epoch is determined by both its own features
and the information of neighbouring epochs [2]. Specifically,
there are two phases: an encoding phase used to capture
context information of sleep sequences and a decoding
phase used to predict sleep stages epoch by epoch. The
encoder employs two bidirectional long short-term memory
layers (Bi-LSTM) with 256 hidden units to learn the context
dependencies of sleep sequences containing multi-channel
multi-modal CNN features in both forward and backward
directions. The decoder uses a block composed of two long
short-term memory layers (LSTM), an attention module
and a fully-connected layer (FC) to predict sleep stages
iteratively. Consider a sequence of n sleep epochs. The
specific computation to predict the sleep stage for an epoch ¢
can be expressed as follows:

hs
hd,t

mean(LSTM 7, LSTMp) = Bi-LSTM(fuv.cxn).
= LSTM(hd,t—l’ YIfl),

exp (sct,;)
> exp(sc)’

n
¢ = Y arihsi, yi =FC(ci||hal|RCy),

i=1

scy,; = tanh (Wghg; + Wsﬁs,i)a agi =

where ¢ € {1,2,...,n}, fmMm-cNN 1s the multi-channel multi-
modal CNN features from temporal and spatial learning, ; is
the source hidden states from the encoder for all n epochs
in the sequence, h4; is the hidden state of the decoder at
epoch ¢ and y, is the predicted output for epoch ¢. Moreover,

a;,; is the SoftMaxed alignment score between /4, and ﬁs,,-
and calculated by the additive similarity function [41] where
W, and W; are trainable weights. ¢, is the context vector for
epoch t. RC; is the residual connection over fymv-cnn and ||
denotes the concatenation operation. For every sequence, the
decoder input for the first epoch, yg, was set to the true label
of the last epoch of the previous sequence. Exception to this
rule is the first sequence of a new PSG, where a zero label
was initialized as the starting decoder input.

4) Residual Connections: We added a residual connection
that concatenates CNN features to RNN features in order to
consider temporal and sequential information evenly in the
final classification of sleep stages. The residual connection
employs a fully-connected layer to map CNN features into a
feature vector, RC;, which shares the same dimension of RNN
features. Then, both features are concatenated side-by-side to
address: i) data imbalance arising in the sequential learning
as data balancing techniques discussed in Section IV-C were
only employed in the training process for CNNs and not for
RNNSs and ii) possible information loss of temporal features
when the model was trained for sequential features.

C. Addressing Class Imbalance

In PSGs, stages N1 and N3 usually occur much less
frequently, yielding imbalanced data sets (cf., Table III).
Moreover, complex deep neural networks are often biased to
detecting majority classes better than minority classes [42].
To guarantee that all classes can be learnt equally,
we employed two data balancing techniques: applying the
weighted loss function (WLF) in the training process and
oversampling (OS) the instances of minority classes [43]. For
WLE, we calculated the categorical cross entropy loss with
the weighted function, W, = 1 — N./N, to assign higher
loss on minority classes, where W, is the weight for class
¢, N, is the number of instances in class ¢ and N is the total
number of instances in all classes. For OS, we duplicated the
whole batch of instances of minority classes multiple times
until their number of instances were close to the number of
instances of the majority class. Then, we randomly duplicated
single instances from minority classes again to make the
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Fig. 2. Improved multi-channel multi-modal model structure, consisting
of four components: temporal learning, spatial learning, sequential learn-
ing and residual connection. The specifications and parameters of the
components are included. Note that, the spatial learning component is
an embedded part of the first layer of temporal learning; the yellow blocks
highlight its function. Dashed lines deriving from the residual connection
indicate that those CNN features are concatenated to RNN features side-
by-side for every epoch. Figure best viewed in color.

number of instances in all classes exactly the same. Note
that, we only applied data balancing techniques during training

the temporal and spatial learning components (i.e., in CNNs),
as the arrangements of sleep sequences would be invalidated
in the sequential learning phase (i.e., in RNNs) if we apply
data balancing techniques there.

V. CHANNEL CONTRIBUTION ANALYSIS

In this section, we present two explainability methods
to analyze channel contribution in multi-channel multi-
modal sleep scoring. The layer-wise relevance propagation
(LRP) [12] is a post-hoc explainability method for model
agnostic and extracts information from a trained deep neural
network. Although widely applied, post-hoc explainability
methods might not be faithful to the underlying model [44].
In contrast, the embedded channel attention network (eCAN),
motivated by [13] and [14], learns channel importance intrin-
sically. In our study, we focused on channel importance in the
CNNSs of our model structure to exclude context information
interactions from neighbouring sleep epochs. Furthermore,
we proposed a hypothesis based on the obtained results
and subsequently employed channel exclusion experiments to
verify our conclusion. All experiments were performed on
SHHS-1, as it contains a broad range of research subjects
(5,793 subjects) and more channels of sleep signals than
SleepEDF-13 (cf., Section III).

A. Layer-Wise Relevance Propagation

We employed the LRP [12] to compute the relevance
scores of sleep signals of different channels to represent
their importance on predictions. Since we used the ReLU
activation layers in CNNs, which are always positive and
monotonically increasing, we employed the propagation rule
by Montavon et al. [45] to allocate the relevance scores from a
current layer k to a preceding layer j. This rule has a positive
and a negative contribution term. We focused on the positive
one, because it shows channel importance straightforwardly.
The relevance scores were then calculated as follows:
aj w;rk

+

Rj =% ——
J
Zjajwjk

Ry,

where R; and Ry are the relevance scores of the neurons at
layer j and k, a; is the activations of the neurons at layer j and
w;“k denotes the positive connections of the neurons between
layer j and k. Note again, this propagation rule has a constraint
that the activations in every preceding layer (including the
input data) must be non-negative. However, our input is sleep
signals and thus can be negative. To address this problem,
we adapted the original rule to

_(ajwjp"

b j (a jw jk)+ k

by considering a; and w;; as a whole. In this way, if the
product of the input data and the associated weights in the first
layer is positive, the input data has a positive contribution to
the output of this layer and is counted. In the experiment, the
relevance score of a channel to a prediction was defined as
the sum of the relevance of all signal points in the data input
of that channel. The channel importance for a particular sleep

Rj =%
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Fig. 3. Structure of the embedded channel attention network (€CAN).
Dashed lines connect each channel to the channel attention module and
indicate parallel operations over the intermediate data.

stage was obtained by averaging the channel relevance scores
over all predicted sleep epochs of that stage.

B. Embedded Channel Attention Network

Our eCAN (cf., Fig. 3) uses a channel attention module
which takes the sleep features of all channels as inputs and
outputs the attention weights per channel. We used the same
CNNs as outlined in Section I'V-B to extract temporal features
but removed the spatial learning component to capture the
individual contribution from each channel. Specifically, the
extracted temporal features of each channel of the modalities
obtained from CNNSs, in a shape of d x w where d and
w respectively denote the depth and width of the feature
representations, were first flattened and passed into a global
average pooling layer to generate one representative feature
per channel. Then, the generated features of all channels
were input to a block of two fully-connected layers and a
ReLU activation layer, to compute an attention weight for each
channel. Note that, this block has the same number of input
and output neurons as the number of channels. Next, both
the features of each channel and the attention weights were
self-normalized using the SoftMax function. The normalized
attention weights were multiplied with the normalized features
of corresponding channels, resulting in attention weighted
features for every channel which were finally passed into
another fully-connected layer with the SoftMax activation
function for sleep stage classification. We trained the eCAN
using the same data balancing techniques as introduced in
Section IV-C. Here, the channel importance for a particular
sleep stage was obtained from the trained model by averaging
the channel attention weights over all predicted sleep epochs
of that stage.

C. Verification Using Reverse Ablation

To verify the channel contribution results derived from the
LRP and the eCAN, we also performed a reverse ablation
study. Similar to the eCAN, we used the same CNNSs in
Section IV-B and removed the spatial learning component.
Then, we excluded one channel of the data input at a time
and trained the model on remaining channels. We reported

performance decreases in terms of per-class Fl-scores for
particular stages to illustrate the importance of the excluded
channel.

In addition, we also performed the same experiment on
the whole model structure including the sequential learning
and residual connection components, i.e. on CNNs & RNNs
& RC, to investigate the influence of sequential features on
compensating for the information loss of the excluded channel.
We still focused on performance decreases to identify the
positive contribution of a channel, i.e. the information added
by incorporating that channel.’

VI. EXPERIMENTAL SETUP

In this section, we introduce the training scheme, model
parameters, evaluation metrics and evaluation designs for our
multi-channel multi-modal sleep scoring model.

A. Training Scheme and Model Parameters

We used a two-step training scheme to address the class
imbalance problem. In the first step, we pre-trained CNNs
(i.e., temporal and spatial learning) via minimizing the cat-
egorical cross entropy loss between model predictions and
the ground truth. We used one of the two data balancing
techniques, WLF and OS, as discussed in Section IV-C. The
CNN features were passed into a fully-connected layer with
the SoftMax activation function for sleep stage classification.
This step enables our model to capture the time-invariant infor-
mation of a sleep epoch precisely and learn minority classes
equally to the majority class. In the second step, we froze
the parameters of CNNs and trained RNNs (i.e., sequential
learning), the residual connection and the final fully-connected
layer. We used the categorical cross entropy loss here again.
Note that, in this step, we did not use any data balancing
technique.

For both steps, we used early stopping with a patience
of 16. We used Adam [46] as the optimizer and set the
learning rate to 1074, f1 = 09 and B> = 0.999 in both
training steps. Following [24], we set the mini-batch size
to 192 segments of 30-s sleep epochs, as a sleep cycle
usually lasts around 96 minutes. We expected that one
mini-batch training can cover all classes of sleep stages.
For training RNNs and the residual connection, we set
the mini-batch size to 24 and the sequence length to 8.
However, the number of epochs in a PSG may not be exact
multiples of 8. To still include the last epochs in the training,
validation and test set, we padded them with the starting
epochs of the same PSG. Our models were implemented
using PyTorch and the source code is publicly available:
https://github.com/Bobby-Lu/Analyzing-channel-contribution-
in-multi-channel-multi-modal-sleep-scoring.

B. Evaluation Metrics

We used commonly used evaluation metrics to report the
performance of our multi-channel multi-modal sleep scoring

SWhen the performance increased after excluding a channel, i.e. the channel
had a negative influence (e.g., adding noise) on predictions, we set its
contribution to zero.
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model (e.g., [6], [7]): accuracy (Acc), macro Fl-score (MF1),
Cohen’s kappa (x) and per-class F1-score (pF1). Among them,
MF1 is the harmonic mean of precision and recall and reflects
the detection performance on minority classes. k¥ measures
the agreement between a model and the ground truth. pF1
shows the detection performance for specific classes. We list
the formulas to calculate them as follows:

C C
Ace — EclePC MF1 = Zc=1pFlC o — Po — Pe
N C ’ 1—p.’
c Mg Nep 2
P :Z: BV = 1 1>
CT TN N © Prel 4 Rel!

where ¢ is one class of sleep stages and C is the number of
classes. T P, is the number of true positives of class ¢. N is
the total number of epochs. pF 1. is the per-class Fl-score of
class c. p, is the relative agreement between the ground truth
and the predictions; p, integrates the hypothetical probability
of chance agreement, obtained from the number of sleep
epochs in the ground truth for a class, n., and the number
of epochs in the predictions for that class, n¢,. Pre is the
precision of class ¢ and Re, is the recall of class c.

C. Evaluation Designs

We used different evaluation designs for SleepEDF-13 and
SHHS-1, because the two data sets differ greatly in size. The
SleepEDF-13 data set only contains 20 subjects with 39 PSGs.
Hence, we used a nested cross validation scheme. The outer
loop is a 20-fold cross validation corresponding to 20 subjects
used to estimate the global performance. This means, in every
outer fold k, we left out one of the 20 subjects as the test sub-
ject at a time. At the end, we combined the results of all 20 test
subjects. Every inner loop is a 10-fold cross validation used
to optimize the trainable weights of the models. We trained
10 models on 10 training-validation data combinations and
tested them on the data of subject k. Finally, we combined the
results of 200 sets (i.e., 20 outer loops x 10 inner loops) and
calculated performance metrics on the global confusion matrix.
For the SHHS-1 data set, we randomly shuffled the 5,793
subjects and split the data set into training (81%), validation
(9%) and test (10%) following [24]. We trained our model
on the training set, used early stopping on the validation set
and reported model performance on the test set. Note that,
the subjects were always kept separate to prohibit information
leakage.

VII.

In this section, we present and discuss the results for the
performance of our multi-channel multi-modal sleep scoring
model and for the channel contribution obtained by the LRP
and the eCAN methods. We also show the results of channel
exclusion experiments.

RESULTS & DISCUSSION

A. Sleep Scoring Performance

Table V gives an overview of the performance results. Our
best model variant achieved an accuracy of 87.2% & 89.1%,
a macro F1 score of 82.1% & 81.4% and a Cohen’s kappa of

0.82 & 0.85 on the small SleepEDF-13 and large SHHS-1 data
sets, respectively. We observe that adding transition informa-
tion from sleep sequences helps complement the insufficiency
of temporal information from sleep epochs thus improves
the detection of sleep stages, especially for stages N1, N3
and REM. The two data balancing techniques, WLF and OS,
showed comparable impacts on the performance, whereas the
latter is much more computationally expensive in the training
process. Nevertheless, the minority classes, stages N1 and N3,
were still difficult to detect; the prediction of the other three
stages achieved a F1-score around 90% for respective classes.

Compared to the state-of-the-arts, our model outperformed
all single-channel EEG and multi-channel multi-modal models
that were based on classic CNN-RNN architectures. Moreover,
comparing our model to SalientSleepNet [26] which used the
advanced U-Net architecture, we observe close albeit slightly
lower performance (i.e., 87.5% Acc vs. 87.2% Acc), show-
ing that classic CNN-RNN architectures are still competitive
for multi-channel multi-modal sleep scoring. SalientSleepNet
relied heavily on inter-modality attention modules to minimize
the redundancies in data streams, which may be extended
to build on our conclusion (cf., Section VIII) to reduce
inter-channel redundancies as well. However, note that, the
focus of this paper is to investigate channel contribution and
not to propose a novel multi-channel sleep scoring model that
outperforms the state-of-the-arts.

To conclude, adding particular model features from
single-channel EEG models (cf., Table IV) improves multi-
channel multi-modal models. The improved model out-
performs previous single-channel EEG and multi-channel
multi-modal models. Compared to the best performing
single-channel EEG models, the advantage of incorporating
the information of multiple modalities and channels is around
2% Acc on both SleepEDF-13 and SHHS-1. The result
suggests that the information of part of the modalities and
channels may be sufficient to obtain accurate predictions for
sleep scoring.

B. Channel Contribution

The proposed channel contribution experiments were based
on 60 randomly selected subjects® from the training set of
SHHS-1. For the LRP, we computed channel importance for
both models, including and excluding the spatial learning
component. Comparing Fig. 4b and Fig. 4c, we observe that
both the LRP and the eCAN attributed information usage to
all channels, which suggests that deep sleep scoring models
try to utilize all accessible information. However, the EEG
modality achieved much higher importance scores than the
EOG and EMG modalities, complying with the AASM man-
ual [2]. More specifically, both methods identified channel
C4-Al as the most important EEG channel, which is also
recommended in [2] with channel C3-A2 being a backup
for channel C4-Al. However, the two methods gave vague
views on the most important EOG channel, matching the fact
that the sleep signals of the 2 EOG channels in SHHS-1 are

OWe used 60 subjects only, for computational reasons.
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TABLE V
PERFORMANCE COMPARISON OF OUR MULTI-CHANNEL MULTI-MODAL MODEL AND THE STATE-OF-THE-ARTS ON SLEEPEDF-13 AND SHHS-1.

‘CNN’ AND ‘CNN-RNN’ IN THE ‘MODEL’ COLUMN CORRESPOND TO

THE MODELS OBTAINED IN THE TWO TRAINING STEPS INTRODUCED IN

SECTION VI-A; ‘WLF’ AND ‘OS’ REFER TO THE TWO DATA BALANCING TECHNIQUES DISCUSSED IN SECTION |V-C. BEST VALUES AMONG
THE MODELS BASED ON CLASSIC CNN-RNN ARCHITECTURES ARE MARKED IN BOLD. THE MODEL WHOSE METRICS ARE MARKED IN
ITALICS USED ADVANCED ARCHITECTURES AND OUTPERFORMED OUR MODEL. “—” DENOTES THAT THE
VALUE IS NOT AVAILABLE IN THE RESPECTIVE PUBLICATION

Dataset Model Channels Input  Evaluation Acc MF1 K ‘Wake N1 N2 N3 REM
Supratak et al. [6] 1EEG raw 20-fold CV 82.0 76.9 0.76 84.7 466 859 848 82.4
Mousavi et al. [7] 1EEG raw 20-fold CV 84.3 79.7 0.79 89.2 522 86.8 85.1 85.0
Seo et al. [17] 1EEG raw 20-fold CV 83.9 77.6 0.78 87.7 434 877 867 82.5
Supratak et al. [16] 1EEG raw 20-fold CV 85.4 80.5 0.80 90.1 514 885 8383 84.3
SleepEDF-13 Eldele et al. [19] 1EEG raw 20-fold CV 85.6 80.9 0.80 90.3 479 898  89.0 85.0
Paisarnsrisomsuk et al. [21] 2EEGs+1EOG raw 4-fold CV 81.2 72.3 0.73 57.3 45.8 87.3 87.2 83.8
Jia et al. [26] 1IEEG+1EOG raw 20-fold CV 87.5 83.0 - 92.3 562 89.9 872 89.2
own (CNN,WLF) 2EEGs+1EOG+1EMG raw 20-fold nested CV  81.0 75.7 0.74 88.4 444 844 800 81.2
own (CNN,OS) 2EEGs+1EOG+1EMG raw 20-fold nested CV ~ 74.4 70.8 0.67 83.5 404 797 740 76.2
own (CNN-RNN,WLF) 2EEGs+1EOG+1EMG raw 20-fold nested CV ~ 87.2 82.1 0.82 92.2 541 89.0 84.6 90.6
own (CNN-RNN,OS) 2EEGs+1EOG+1EMG raw 20-fold nested CV  87.1 81.9 0.82 924 53.0 889 845 90.5
Sors et al. [15] 1EEG raw 50-20-30 86.8 78.5 0.81 91.0 427 819 850 85.4
Seo et al. [17] 1EEG raw 50-20-30 86.7 79.8 0.81 90.1 48.1 884 852 87.2
Pathak et al. [24] 2EEGs+2EOGs+1EMG  raw 81-9-10 85.0 76.6 0.79 92.1 413 848 763 88.7
own (CNN,WLF) 2EEGs+2EOGs+1EMG  raw 81-9-10 81.6 73.0 0.74 89.8 350 822 76.6 81.2
SHHS-1 own (CNN,OS) 2EEGs+2EOGs+1EMG  raw 81-9-10 77.1 68.8 0.68 89.4 320 805 68.6 73.5
own (CNN-RNN,WLF) 2EEGs+2EOGs+1EMG  raw 81-9-10 89.1 814 0.85 94.2 48.1 894 822 92.9
own (CNN-RNN,OS) 2EEGs+2EOGs+1EMG  raw 81-9-10 89.1 814 0.85 94.2 486 894 820 92.9
own (CNN,WLF) 1EEG+1EOG+1EMG raw 81-9-10 81.4 71.9 0.74 89.6 324 823 756 79.8
own (CNN-RNN,WLF) 1EEG+1EOG+1EMG raw 81-9-10 88.9 80.9 0.84 93.9 466 89.2 821 92.6
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Fig. 4. Channel contribution obtained by the LRP applied to the CNNs

of our multi-channel multi-modal model including (a) and excluding (b) the

spatial learning component, and channel contribution obtained by the eCAN (c).

collected from symmetric sensors and thus contain similar
information [2], [32].

Observations on the most important EEG and EOG channels
suggest that deep multi-channel multi-modal sleep scoring
models may select one channel per modality as their main
feature sources and use other channels to complement the
information. Moreover, compared to the model without the
spatial learning component, the one with that tried to give
more even attention to different channels in a modality
(cf., Fig. 4a and Fig. 4b), which reflects the intention of
spatial learning for feature attributions, i.e. aggregating infor-
mation from multiple channels. Furthermore, the LRP and
the eCAN are different feature attribution methods (i.e., post-
hoc vs. intrinsic). The specific importance scores of channels
to particular sleep stages identified by them varied slightly.
For instance, the LRP worked more naturally in assigning
larger importance scores to the EOG channels for stages Wake
and REM, as they contain more eye movements [2]. Similar

patterns can also be found in the relations between the EMGs
and stages Wake and N1. Despite this, the two methods both
showed a general pattern: multi-channel multi-modal models
mainly rely on a single important channel per modality, which
suggests that incorporating all channels may not be necessary
to obtain acceptable prediction performance.

C. Hypothesis Verification

Fig. 5 presents the performance decreases when excluding
single channels of different modalities. Overall, the results
verify the hypothesis above: mostly, one channel per modality
is relevant for model predictions. Specifically, excluding EEG
channels, especially the EEG C4-Al channel, resulted in a
larger performance decrease than excluding others. The EOG
left and right channels led to almost identical performance
decreases. However, we observe that the exact difference of the
decreases caused by excluding different channels of a modality
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component is excluded.

is rather small. In addition, comparing Fig. 5a and Fig. 5b, itis
interesting to find that CNNs & RNNs & RC achieved less
performance decreases when excluding single channels than
CNNs. This indicates that CNNs & RNNs & RC recovered
from excluding channels and points toward that the addition
of sequential information compensates for the information loss
of the excluded channel. We thus conclude adding transition
information is beneficial especially when only a few channels
are available.

For the sake of completeness, we additionally tested whether
one channel per modality is really sufficient for acceptable
prediction performance. We trained our multi-channel multi-
modal model on SHHS-1 only with the identified important
channel in each modality (the EEG C4-A1 channel, the EOG
left channel and the EMG channel). Results are shown in the
last two rows in Table V. Compared to the original multi-
channel multi-modal model (i.e., rows above), the best ¥ only
dropped from 0.85 to 0.84. This indicates that incorporating
multiple channels per modality, while increasing the number
of parameters to train, does not improve the performance
much. The most predictive information is contained in single
important channels of different modalities.

VIIl. CONCLUSION AND FUTURE WORK

In this paper, we investigated to which extent multi-channel
multi-modal sleep scoring models utilize information from
different channels of multiple modalities. To obtain a state-
of-the-art multi-channel multi-modal model, we first tested
the prospective impacts of particular model features from
high-performing single channel EEG models on the perfor-
mance in the multi-channel multi-modal setting. We found
that all four model features presented in Table IV improve
the performance. Second, we employed two explainability
methods, the LRP and the eCAN, to extract channel impor-
tance in multi-channel multi-modal sleep scoring. We found
that deep learning based multi-channel multi-modal models
incorporate information from all accessible channels but tend
to focus on one important channel per modality and use
the remainders to complement information. We verified this
hypothesis in a reverse ablation study, where we retrained the
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multi-channel multi-modal model by excluding single channels
of different modalities. Overall, the performance difference
between single-channel EEG and multi-channel multi-modal
approaches is still rather small, indicating that while additional
channels contain useful information, current multi-channel
multi-modal models under classic CNN-RNN architectures
may not be able to reliably use the predictive information
from additional channels but may also get distracted by the
confusing information or the noise from other channels.

The first direction in the future would be to evaluate the
channel contribution results on a sleep data set with many
channels per modality (e.g., Montreal Archive of Sleep Stud-
ies [47]). Moreover, based on our obtained empirical results,
the second direction would be to analyze channel contribu-
tion deeply, combining deep learning based predictions and
actual sleep mechanisms. The validated hypothesis can then
be utilized for efficient sleep scoring in small sleep study
laboratories: i) collecting and using only important channels of
the modalities and ii) training small deep learning models on a
limited amount of research subjects. Additionally, considering
that sleep is not a global homogeneous event in the brain,
another interesting direction is to design multi-channel multi-
modal sleep scoring models that, while learning from the chan-
nels that contain the most important predictive information,
can incorporate additional predictive information from other
channels but do not additionally learn the distractors.
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