
SpecifyThis – Bridging Gaps Between
Program Specification Paradigms

Wolfgang Ahrendt1(B), Paula Herber4, Marieke Huisman2,
and Mattias Ulbrich3

1 Chalmers University of Technology, Gothenburg, SE, Sweden
ahrendt@chalmers.se

2 University of Twente, Enschede, NL, The Netherlands
m.huisman@utwente.nl

3 Karlsruhe Institute of Technology, Karlsruhe, DE, Germany
ulbrich@kit.edu

4 University of Münster, Münster, DE, Germany

paula.herber@uni-muenster.de

Abstract. We motivate and summarise the track SpecifyThis – Bridg-
ing gaps between program specification paradigms, taking place at the
International Symposium on Leveraging Applications of Formal Meth-
ods, ISoLA 2022.

Keywords: Specification · Verification · Formal methods

1 Introduction

The field of program verification has seen considerable successes in recent years.
At the same time, both the variety of properties that can be specified and the
collection of approaches that solve such program verification challenges have spe-
cialised and diversified a lot. Examples include contract-based specification and
deductive verification of functional properties, the specification and verification
of temporal properties using model checking or static analyses for secure infor-
mation flow properties. While this diversification enables the formal analyses of
ever more kinds of properties, it may leave the impression of isolated solutions
that solve different, unrelated problems.

Here lies a great potential that waits to be uncovered: If either of the
approaches can be extended to enable the interpretation of specifications used
in other approaches and to use them beneficially in its analyses, a considerable
extension of the power and reach of formal analyses is achievable. A discipline
of “separation and integration of concerns” can be obtained, by, e.g., combining
temporal specifications of a protocol with a contract-based specification of its
implementation units.

The theme of this track is to investigate and discuss what can be achieved in
joint efforts of the communities of different specification and verification tech-
niques. This track is a natural next step following a series of well-structured

c© The Author(s), under exclusive license to Springer Nature Switzerland AG 2022
T. Margaria and B. Steffen (Eds.): ISoLA 2022, LNCS 13701, pp. 3–6, 2022.
https://doi.org/10.1007/978-3-031-19849-6_1

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-19849-6_1&domain=pdf
https://doi.org/10.1007/978-3-031-19849-6_1


4 W. Ahrendt et al.

online discussions within the VerifyThis community during the last year. There,
we identified first candidates for the combination/interplay of formal program
verification methods. Following that, the ISoLA 2022 track addresses questions
such as how specifications which are shared between different approaches should
look like, how different abstraction levels can be bridged, how semantical differ-
ences can be resolved, which application areas can benefit from which method
combinations, what artifacts can be carried forward through different verifica-
tion technologies, what role user interaction (in form of specifications) plays, and
how one can integrate the various techniques into the development processes.

2 Summary of Contributions

Jesper Amilon, Christian Lidström, and Dilian Gurov [1] (Deductive Verifica-
tion Based Abstraction for Software Model Checking) describe a combination
of model-checking and deductive verification, where deductive verification is
applied to prove local pre-post specifications of source code units, and model
checking is applied to prove global (temporal) properties of the system. The
model checker is not applied to the source code, but to the abstractions pro-
vided by the pre-post-specifications. The approach is theoretically well founded
in abstract contract theory [7], implemented in a combination of Frama-C and
TLA+, and demonstrated on an example.

David Cok and Gary Leavens [2] (Abstraction in Deductive Verification:
Model Fields and Model Methods) report how different abstraction techniques
available in the Java Modeling Language JML can be employed to verify Java
programs. To this end, the authors describe how model fields and methods can
serve as means of abstraction and sketch how existing logical encodings of heap
memory can be enriched to accommodate model entities. Abstraction from con-
crete program states to more abstract notions of state is an important vehicle
to cross boundaries between different verification techniques.

Gidon Ernst, Alexander Knapp and Toby Murray [3] (A Hoare Logic with
Regular Behavioral Specifications) introduce a variant of Hoare logic, which
allows to capture trace properties (of terminating programs). In this way,
behavioural and state properties can be combined in a single specification. The
idea is that a program explicitly emits certain statements, which together form
the trace of the program. The Hoare triples specify the assumptions on the trace
so far, and capture the trace that will be emitted by the current program frag-
ment. The Hoare logic with traces is proven sound in Isabelle, and the sketch of
a completeness argument is given. The approach is implemented in a prototype
tool, and illustrated on two case studies.

Klaus Havelund [4] (Specification-based Monitoring of C++) proposes an
approach for specification-based monitoring of C/C++ applications using a mix
of a state machine and rule based language. He presents LogScope, a system
for monitoring event streams against formal specifications that are expressed
in state-machine style but with expressive rules to describe possible events.
LogScope takes such a formal specification together with an application, and



SpecifyThis 5

translates them into a monitored program. The author illustrates the applica-
bility and expressiveness of the specification language and the overall approach
with a number of examples.

Igor Konnov, Markus Kuppe, and Stephan Merz [6] (Specification and Ver-
ification With the TLA+ Trifecta: TLC, Apalache, and TLAPS ) show how dif-
ferent verification paradigms can be applied to models in the same modelling
language. The authors use the formalism TLA+ (temporal logic of actions) to
model a termination detection algorithm for distributed systems. The specifca-
tion, in which operations are defined using before-after-predicates in first-order-
logic over set theory, is then subjected to different formal verification approaches,
like explicit-state model checking, bounded symbolic model checking, and theo-
rem proving The paper provides insights into how the different formal tools for
TLA+ can be used in combination to solve a non-trivial case study.

Gordon Pace and Wolfgang Ahrendt [8] (Selective Presumed Benevolence in
Multi-Party System Verification) extend an existing sequent calculus for smart
contracts with the concept of selective benevolence. To achieve this, they define
new proof rules that enable us to assume benevolence of some (specified) parties
in smart contract verification, while assuming potentially malevolent (worst-
case) behavior from others. The benevolent parties can be defined as a predicate,
either statically or dynamically. The authors discuss the benefits of presumed
benevolence and its potential uses.

Thomas Santen [9] (On the Pragmatics of Moving from System Models to
Program Contracts) describes a case study on the VerifyThis Long Term Chal-
lenge problem (the Hagrid key server) [5] on how to construct a verified imple-
mentation from an abstract system model. It first presents a model for the key
server in Alloy. This model consists of a state description, and various transitions
that model the key server operations. It then describes how this is transformed
into executable code with contracts.

References

1. Amilon, J., Lidström, C., Gurov, D.: Deductive Verification Based Abstraction for
Software Model Checking. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS,
vol. 13701, pp. 7–28. Springer, Cham (2022)

2. Cok, D., Leavens, G.: Abstraction in deductive verification: Model fields and model
methods. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp.
29–44. Springer, Cham (2022)

3. Ernst, G., Knapp, A., Murray, T.: A Hoare logic with regular behavioral specifica-
tions. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 45–64.
Springer, Cham (2022)

4. Havelund, K.: Specification-based Monitoring in C++. Margaria, T., Steffen, B.
(eds.) ISoLA 2022. LNCS, vol. 13701, pp. 65–87. Springer, Cham (2022)

5. Huisman, M., Monti, R., Ulbrich, M., Weigl, A.: The verifyThis collaborative long
term challenge. In: Ahrendt, W., Beckert, B., Bubel, R., Hähnle, R., Ulbrich, M.
(eds.) Deductive Software Verification: Future Perspectives. LNCS, vol. 12345, pp.
246–260. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-64354-6 10

https://doi.org/10.1007/978-3-030-64354-6_10


6 W. Ahrendt et al.

6. Konnov, I., Kuppe, M., Merz, S.: Specification and verification with the TLA+

trifecta: TLC, Apalache, and TLAPS. In: Margaria, T., Steffen, B. (eds.) ISoLA
2022. LNCS, vol. 13701, pp. 88–105. Springer, Cham (2022)

7. Lidström, C., Gurov, D.: An abstract contract theory for programs with procedures.
In: FASE 2021. LNCS, vol. 12649, pp. 152–171. Springer, Cham (2021). https://doi.
org/10.1007/978-3-030-71500-7 8

8. Pace, G., Ahrendt, W.: Selective Presumed Benevolence in Multi-Party System
Verification. In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp.
106–123. Springer, Cham (2022)

9. Santen, T.: On the pragmatics of moving from system models to program contracts.
In: Margaria, T., Steffen, B. (eds.) ISoLA 2022. LNCS, vol. 13701, pp. 124–138.
Springer, Cham (2022)

https://doi.org/10.1007/978-3-030-71500-7_8
https://doi.org/10.1007/978-3-030-71500-7_8

	SpecifyThis – Bridging Gaps Between Program Specification Paradigms
	1 Introduction
	2 Summary of Contributions
	References




