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A B S T R A C T

The use of energy storage systems (ESS) and distributed generators (DGs) to improve reliability is one of the
solutions that has received much attention from researchers today. In this study, we utilize a multi-objective
optimization method for optimal planning of distributed generators in electric distribution networks from the
perspective of multi-objective optimization. The objective is to improve the reliability of the network while
reducing the annual cost and network losses. A modified version of the multi-objective sine–cosine algorithm is
used to determine the optimal size, location, and type of DGs and the optimal capacity, location, and operation
strategy of the ESS. Three case studies of IEEE 33-bus, 69-bus and 141-bus test systems with Turkish DG
and load data were conducted to validate the effectiveness of the proposed approach. The distribution of the
Pareto front solutions and the optimal objective functions are compared with the other known algorithms. The
simulation results show that the average energy not supplied and annual energy losses for the test systems are
reduced by up to 68% and 64%, respectively. Moreover, the Pareto fronts of the proposed method show a better
distribution and dominate those obtained by MOGWO, MOSMA, NSGA-II, MOPSO and MOEA-D according to
three different Pareto optimization metrics. Finally, the computational effort result shows faster convergence
of MOSCA compared to MOGWO, MOSMA, NSGA-II, MOPSO and MOEAD.
1. Introduction

1.1. Motivations

Today, energy supply is one of the most important concerns of
planners and designers of energy systems. This issue has become one
of the fundamental problems of mankind in the forthcoming years.
In electrical distribution networks (EDNs), most of the encountered
problems can be solved by proposing proper planning and operation
strategies while maintaining system reliability.

The traditional EDNs are composed of radial feeders with laterals
through which the customers are supplied. Utilizing radial structure
in EDNs has several advantages such as lower fault currents, easy
protection and operation control, better voltage regulation, and so on.
However, radial EDNs suffer from voltage problems and poor reliabil-
ity, especially for the customers connected at the end of the feeders. To
improve reliability, one can consider proper placement and operation
of switches [1] and protection devices to reconfigure the network in
case of component failures [2]. Nevertheless, such a reconfiguration
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itself may not be effective for voltage magnitude problems and network
losses. In this context, Energy Storage Systems (ESSs) and Distributed
Generators (DGs) may help to reduce the outage durations while mini-
mizing the voltage magnitude problems and network losses, if they are
planned adequately [3].

1.2. Literature review

Due to the stochastic nature of the power generated by renewable
based DGs such as photovoltaic (PV) and wind turbines (WT), distribu-
tion companies need to deploy ESS to mitigate these uncertainties [4].
ESSs provide a shaved peak load profile [5,6] and maximize the in-
tended benefits of DGs, such as reducing losses [7], improving power
quality [8], and grid reliability [9]. On the other hand, if the locations
of DGs and ESSs are not chosen appropriately, grid reliability may be
compromised, power losses may increase, and ultimately lead to higher
costs.
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The models used to determine proper optimal or near-optimal plan-
ning and operation strategies for the achievement of intended objec-
tives are generally non-linear and non-convex. They are formulated
as constrained optimization problems comprising of continuous and
integer decision variables [10]. The derivative-based optimization algo-
rithms may suffer from complex derivative computations and get stuck
in local minimums [11]. Therefore, heuristic algorithms are generally
preferred for solving optimization problems because they provide a fast
solution and are easy to understand and implement. Moreover, heuristic
algorithms are able to escape from local optima by relying on simple
concepts from nature and can be used for a wide variety of problems in
different disciplines. The No Free Lunch (NFL) theorem [12] states that
a single heuristic algorithm cannot solve all possible optimization prob-
lems; therefore, heuristic algorithms must be tuned and implemented
for specific problems.

Besides the benefit of an optimal solution found by the heuristic
algorithm for integrating DGs and ESSs with EDNs in reducing outage
duration and increasing the effective operation of distribution system
capacity, there are several advantages in the technical, economic, and
environmental impacts of distributed energy resources integration. The
work published in [13] focused on integrating WT units and ESSs
to reduce distribution losses and customer’s energy not supplied as
reliability improvement. In [14], to find an optimal allocation of fast-
acting ESS units, a continuous-time approach based on coefficients of
the Bernstein polynomial was used and compared to existing available
strategies. Also, ESSs were implemented in different WT integration
applications such as frequency regulation, peak shaving, and ancillary
services [15–17].

In order to improve the reliability of EDN, the research studies
mainly focused on investigating the role of placement or upgrading
of switches and protection devices, determining the optimal system
reconfiguration, optimal allocation of DG, and the impact of ESS to
improve the overall reliability of the system through the reliability
indices [18]. Alam et all proposed a model to determine the optimal
placement of reclosers and switches for improving system reliability
and minimizing the outage costs [19]. They have also considered
the uncertainties in failure rates, load data, and repair rates in the
formulation using a three-point estimate method. In determining the
optimal placement of reclosers and switches to improve the system
reliability and minimize the outage cost considering several uncer-
tainties such as failure and repair rate in [19,20]. In [21], a novel
statistical method is provided to estimate the impact of DG units on
the reliability, resilience, and economic analysis of the EDNs. In [22],
a new hybrid particle swarm optimization-aunt colony optimization
algorithm was used to determine the optimal sizes, types, and locations
of automatic switching devices/protective devices in MV distribution
feeders based on their protective coordination. In [23], a three-state
particle swarm optimization approach was presented to determine the
optimum number of sectionalizers and breakers and the locations of
the units simultaneously in EDNs. In [24], the authors used a genetic
algorithm (GA) aiming to improve reliability indices in EDNs and
determined the optimal switch locations.

Besides optimal switch allocation, network reconfiguration and net-
work expansion planning were used to improve system reliability.
In [25,26], a multi-objective stochastic model was proposed for deter-
mining the optimal system reconfiguration and DG allocation. Jang-
doost et al. in [27] claimed that the optimal system reconfiguration
involving plug-in hybrid electric vehicles improved reliability indices
and minimized the operation costs of EDNs. In [28], the authors
used the teaching–learning optimization algorithm to find the optimal
system reconfiguration to improve the system reliability-based indices
such as system average interruption duration index (SAIDI), system
average interruption frequency index (SAIFI), and average energy not
2

supplied (AENS).
1.3. Contribution and paper organization

Although there are several efforts reported in the literature with
regards to the reliability improvement of active EDNs, most of them
were based on the switching/network configuration actions, without
considering the other prospective objectives. This study aims at de-
termining optimal planning of DERs in EDNs from a multi-objective
optimization perspective. The Pareto optimal solutions are determined
to improve the system reliability while minimizing the annual DER
costs and power losses. In this regard, optimal location, size, and type of
PV and WT units as well as charging/discharging management strate-
gies of ESS units are determined. We utilized and used the modified
version of Multi-Objective Sine–cosine Algorithm (MOSCA) [29] as a
computational tool reason of which can be summarized as follows. The
ability to explore and escape from local minima of single objective
SCA is transferred to MOSCA, which, like all other nonderivative-
based methods, uses random initial solutions. The algorithm uses sine
and cosine functions that exhibit two types of behavior: the ability
to explore when the functions take values above 1 or below −1, and
the ability to exploit when they are between 1 and −1. Thus, the
cyclic pattern of the sine and cosine functions help exploration of
the search space. The algorithm uses Pareto dominance concept to
compare the solution candidates. Moreover, the implementation of
the algorithm is easy due to requirement of adjusting few number of
control parameters. The proposed solution algorithm and formulations
are implemented and tested on IEEE 33-bus EDN and 69-bus standard
test systems. Simulation results are compared with the corresponding
base case values to quantify all the benefits obtained from different
Pareto solutions. Moreover, Pareto fronts of the proposed methodology
are compared with the ones obtained by Multi-Objective Evolution-
ary Algorithm based on Decomposition (MOEA-D), Multi-Objective
Grey Wolf optimizer (MOGWO) [30], Multi-Objective Slime Mould
Algorithm (MOSMA) [31], Non-dominated Sorting Genetic Algorithm
II (NSGA-II) [32] and Multi-Objective Particle Swarm Optimization
(MOPSO) by using different Pareto optimal metrics.

The highlights of the manuscript are as follows:

• Determining optimal planning of DERs and management of ESSs
in EDNs using a three-dimensional multi-objective optimization
framework.

• Improving the network reliability together with minimizing the
power losses and the annual costs.

• Considering 72 h optimization period to take the seasonal char-
acteristics of the load and the DGs into account.

• Utilizing real load curve, and considering wind and solar radia-
tion data of Turkish territory.

• Utilizing a multi-objective sine–cosine algorithm providing better
Pareto fronts according to three performance indices.

The structure of the paper is as follows. The statement of the
problem including the objective functions and constraints is described
in Section 2. Section 3 presents the solution methodology and MOSCA
implementation. The results of test system implementations are illus-
trated in Section 4. Finally, the paper terminates with the conclusions
at Section 5.

2. Multi-objective formulation of the problem

This study aims the formulation and solution of a three-dimensional
constrained optimization problem through Pareto optimal concept.
The objectives are annual energy losses, annual installation and op-
eration costs of DERs, and average energy not served (AENS). The
mathematical statement of the problem can be given as;

minimize {𝑓AEL, 𝑓cost, 𝑓AENS} (1)

𝑤.𝑟.𝑡. ⃖⃗𝐿, ⃖⃗𝑇 , ⃖⃗𝑆, ⃖⃗𝐸, ⃖⃗𝑃 , ⃖⃗𝑂
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{

ℎ𝑛 = 0, 𝑛 = 1, 2,… , 𝑙
𝑔𝑛 ≥ 0, 𝑛 = 1, 2,… , 𝑘

where 𝑓AEL, 𝑓cost, and 𝑓AENS are the aforementioned objectives. The
erms ⃖⃖⃗𝐿, ⃖⃖⃗𝑇 , and ⃖⃖⃗𝑆 denote the locations, the types, and the sizes of
ifferent DG units, respectively. ⃖⃖⃗𝐿, ⃖⃖⃗𝑃 , ⃖⃖⃗𝐸, and ⃖⃖⃗𝑂 denote the location,

maximum charging/discharging power rates, energy capacity (size),
and operational strategy of ESS units, respectively. The terms ℎ𝑛 and
𝑔𝑛 show the equality and inequality constraints, respectively.

2.1. Objectives

Details of the objective functions are given below.

2.1.1. Annual energy losses
Real power losses of the 𝑗th branch of a distribution network at time

𝑖 can be calculated using 𝑃 𝑙𝑖𝑗 = (𝐼 𝑖𝑗 )
2.𝑅𝑗 , where, 𝑅𝑗 is the resistance of

the 𝑗𝑡ℎ branch. Energy losses will be the sum of hourly power losses for
an intended period. Annual energy losses (AEL) of a system comprising
𝑁𝑏𝑟 branches would be the sum of hourly losses along a year. It can be
expressed as follows:

𝑓AEL =
𝑁𝑇
∑

𝑖=1

𝑁𝑏𝑟
∑

𝑗=1
𝑃 𝑙𝑖𝑗 (2)

here the optimization period 𝑁𝑇 is 365.

.1.2. Annual investment, maintenance and operation costs
WT and PV plant costs depend on the market strategy and the

eographical location for the installment point. Since DG plant costs
ostly depend on the power rating of the units but the ESS costs depend

n both the power rating and the energy size of the units, it is better
o model the costs of ESS and DG separately.

The objective function is mathematically formulated as follows:

𝐜𝐨𝐬𝐭 = 𝐶𝐷𝐺 + 𝐶𝐸𝑆𝑆−𝐸 + 𝐶𝐸𝑆𝑆−𝑃 (3)

𝐷𝐺 =
𝑁𝐷𝐺
∑

𝑛=1
(𝐼𝐶𝐷𝐺 × 𝐶𝜏𝐷𝐺

+ 𝑂&𝑀𝐷𝐺) × 𝑆𝐷𝐺𝑛
(4)

𝐶𝐸𝑆𝑆−𝐸 =
𝑁𝐸𝑆𝑆
∑

𝑛=1
(𝐼𝐶𝐵𝐸 × 𝐶𝜏𝐵 + 𝑂&𝑀𝐵𝑣) × 𝐸𝐸𝑆𝑆𝑛

(5)

𝐸𝑆𝑆−𝑃 =
𝑁𝐸𝑆𝑆
∑

𝑛=1
(𝐼𝐶𝐵𝑃 × 𝐶𝜏𝐵 + 𝑂&𝑀𝐵𝑓 ) × 𝑃𝐸𝑆𝑆𝑛

(6)

𝜏 =
𝑟(1 + 𝑟)𝜏

(1 + 𝑟)𝜏 − 1
(7)

where 𝐶𝐷𝐺, 𝐶𝐸𝑆𝑆−𝐸 , and 𝐶𝐸𝑆𝑆−𝑃 are the expressed DGs costs, ESSs
nergy costs, and ESSs power rating costs. The term of 𝐼𝐶 used for
resenting the units investment cost in USD/kW or USD/kWh; whereas

𝑂&𝑀 shows the units annual maintenance and operation costs in
SD/kW-yr or USD/kWh-yr. The estimated lifetime of the DG and
SS units in years shown with 𝜏, 𝑃𝐸𝑆𝑆 and 𝐸𝐸𝑆𝑆 are the maximum
harging/discharging power rate and the rated state of charge of the
SS units, and 𝑆𝐷𝐺 is the DGs installed size. Regarding the maintenance
nd operation costs of the ESSs, the subscripts v and f denote the vari-
ble and the fixed maintenance and operation costs, respectively. The
umber of ESS units (𝑁𝐸𝑆𝑆 ) and the DG units (𝑁𝐷𝐺) are determined
hrough the optimization process. In Eq. (7), 𝐶𝜏 represent the DG and

ESS units capacity recovery factor, with an interest rate of r. Table 1
shows all the parameters used for modeling the DG and ESS units costs.
3

Table 1
ESS and DG units parameters [33–35].

Parameter: Value Units

𝜏𝑃𝑉 30 year

𝜏𝑊 𝑇 25 year

𝐼𝐶𝑃𝑉 1830 $/kW

𝐼𝐶𝑊 𝑇 1600 $/kW

𝑂&𝑀𝑃𝑉 18 $/kW-year

𝑂&𝑀𝑊 𝑇 25 $/kW-year

𝜏𝐵 10 year

𝐼𝐶𝐵𝐸 160 $/kWh

𝐼𝐶𝐵𝑃 1800 $/kW

𝑂&𝑀𝐵𝑓 10 $/kW-year

𝑂𝑀𝐵𝑣 0.03 $/kWh-year

2.1.3. Reliability
In radial EDNs, a load connected to a bus can be supplied if all

the components between the supply point and the mentioned bus
are operating. Hence, load point reliability indices can be calculated
using the component reliability parameters of the serially connected
components along the load–supply chain [36]. Component reliability
parameters are determined using the outage statistic data for the failure
rate (𝜆) and the average outage time (𝑟) of the components.

There are a number of reliability indices that can be calculated
in EDNs and they are generally categorized into two groups, namely,
system-oriented and customer-oriented indices [36]. In this paper,
average energy not served (AENS) is used as the reliability index, which
is defined as:

𝑓AENS =
∑𝑁𝑏𝑢𝑠

𝑘=1 𝐿𝑘𝑈𝑘
∑𝑁𝑏𝑢𝑠

𝑘=1 𝑁𝑘

(8)

where 𝐿𝑘 is the average load connected to the 𝑘th load point, 𝑁𝑘 is
the number of costumers at load point or bus 𝑘, and 𝑈𝑘 is the annual
outage time which is defined as 𝑈𝑘 = 𝜆𝑘 × 𝑟𝑘.

2.2. Constraints

Equality and inequality constraints comprising of power balance
equations and technical restrictions of the electrical variables are de-
scribed below.

1. Power balance constraint:
⎧

⎪

⎨

⎪

⎩

𝑃 𝑖
MG + 𝑃 𝑖

DG + 𝑃 𝑖
ESSD = 𝑃 𝑖

load + 𝑃 𝑖
ESSC + 𝑃 𝑖

losses
𝑄𝑖

MG = 𝑄𝑖
load +𝑄𝑖

losses
∀𝑖 ∈ 𝑁T

(9)

where 𝑃MG and 𝑃DG represent the active power supplied from
the main grid and DG units, 𝑄MG is reactive power provided by
the main grid. The discharge powers and charge powers of ESS
units denoted by 𝑃ESSD and 𝑃ESSC. The active and reactive losses
and load shown by 𝑄load, 𝑄losses, 𝑃load, and 𝑄losses, respectively.

2. Bus voltage magnitude limits: In order to maintain power qual-
ity, the node voltages should be within operation limits as shown
below.

𝑉 𝑖,min
𝑗 ≤ 𝑉 𝑖

𝑗 ≤ 𝑉 𝑖,max
𝑗 ∀𝑖 ∈ 𝑁T, 𝑗 ∈ 𝑁Bus (10)

where the values of 𝑉 𝑖,max
𝑗 and 𝑉 𝑖,min

𝑗 are 1.05 p.u. and 0.95 p.u.,
respectively

3. Generation constraints:
⎧

⎪

⎨

⎪

⎩

𝑃 𝑖
MG ≤ 𝑃MG𝑚𝑎𝑥

𝑄𝑖
MG ≤ 𝑄MG𝑚𝑎𝑥

∀𝑖 ∈ 𝑁T

(11)
𝑃DG ≤ 1MW (12)
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4. Storage constraints:

⎧

⎪

⎪

⎨

⎪

⎪

⎩

EESS ≤ 1MWh
(𝑃 𝑖

𝐸𝑆𝑆𝐶 , 𝑃
𝑖
𝐸𝑆𝑆𝐷) ≤ 1MW

0.2 ∗ 𝐸𝐸𝑆𝑆 ≤ 𝑆𝑜𝐶 𝑖
𝐸𝑆𝑆 ≤ 0.8 ∗ 𝐸𝐸𝑆𝑆

∀𝑖 ∈ 𝑁T

(13)

where state of charge(SoC) of the ESS for each time step shown
with 𝑆𝑜𝐶 𝑖

𝐸𝑆𝑆 .
Note that the charging and discharging phases of ESS units
are identical at each time interval to avoid the internal energy
exchange between ESS units.

. Solution methodology

.1. Constrained multi-objective optimization problems

The mathematical formulation for an n-dimensional multi-objective
ptimization can be given as follows:

minimize
𝑤.𝑟.𝑡 𝑥⃗

𝐹 ( ⃖⃗𝑥) = [𝑓1( ⃖⃗𝑥), 𝑓2( ⃖⃗𝑥), 𝑓3( ⃖⃗𝑥),… , 𝑓𝑛( ⃖⃗𝑥)] (14)

⃖⃗𝑥 = {𝑥1, 𝑥2,… , 𝑥𝑑}

𝑆𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜

⎧

⎪

⎨

⎪

⎩

𝑔𝑡( ⃖⃗𝑥) ≥ 0, 𝑡 = 1, 2,… , 𝑘
ℎ𝑡( ⃖⃗𝑥) = 0, 𝑡 = 1, 2,… , 𝑙
⃖⃗𝑥𝑙𝑏 ≤ ⃖⃗𝑥 ≤ ⃖⃗𝑥𝑢𝑏

where a set of solutions can be found for n individual objective func-
tions that each solution includes 𝑑 variables between the ( ⃖⃗𝑥)𝑙𝑏 and ( ⃖⃗𝑥)𝑢𝑏

bounds as an acceptable trade-off instead of an optimal solution. The
optimal solutions can be characterized by dominance relation and can
also be referred as Pareto efficiency or optimality as defined in [37].

3.2. Multi-objective sine–cosine algorithm

The single objective sine–cosine algorithm (SCA) is a novel
population-based method that starts searching for the optimal solution
with a random set of solutions [38]. The two different mathematical
formulations are used to evaluate each solution to balance exploitation
and exploration phases for the process. These expressions are given as:

𝑋𝑡+1
𝑑 =

{

𝑋𝑡
𝑑 + 𝐴 sin

(

2𝜋𝑟1
)

×𝐷 𝑖𝑓 𝑟3 ≥ 0.5
𝑋𝑡

𝑑 + 𝐴 cos
(

2𝜋𝑟1
)

×𝐷 𝑖𝑓 𝑟3 < 0.5
(15)

𝐷 = |𝑟2𝑋𝑏𝑡𝑑 −𝑋𝑡
𝑑 | (16)

𝐴 = 𝑎 − 𝑎( 𝑡
𝑡𝑚𝑎𝑥

)

where 𝑋𝑡
𝑑 is the 𝑑th solution variable in iteration-t and 𝑋𝑏 shows the

best solution of the population. In the above equations 𝑟1, 𝑟2, and 𝑟3 are
random numbers generated between 0 and 1 and the terms 𝑎 is constant
numbers and sets to 2. These parameters are used for controlling the
solution to go through the exploration or exploitation phases.

The cyclic pattern of sinusoidal functions allows for re-positioning
of the solution variables around another solution (the optimal solution
in the current iteration) and guarantees the exploitation of the search
space. For exploring the search space, the solutions should be able to
explore the outside of the space by changing the range of the sine and
cosine functions.

For multi-objective optimization problems, Pareto optimal domi-
nance is proposed to find non-dominated solutions. Some definitions
regarding the Pareto front solution concept are first summarized below
for a better understanding of the subject [29]:

Let us define two solution vectors: ⃖⃗𝑎 = {𝑎1, 𝑎2, 𝑎3,… , 𝑎𝑘} and ⃖⃗𝑏 =
{𝑏 , 𝑏 ,… , 𝑏 },
4

1 2 𝑘
Definition 1 (Pareto Dominance). The solution ⃖⃗𝑎 dominates ⃖⃗𝑏, denoted
as 𝑎 > 𝑏, if:

∀𝑖{1, 2, 3,… , 𝑘},
[

𝑓
(

𝑎𝑖
)

⩾ 𝑓
(

𝑏𝑖
)]

∧
[

𝑖 ∈ 1, 2, 3,… , 𝑘 ∶ 𝑓
(

𝑥𝑖
)]

(17)

Definition 2 (Pareto Optimality). The solution ⃖⃗𝑎 ∈ 𝑋 is a Pareto optimal
solution if:

∄𝑏⃗ ∈ 𝑋 ∣ 𝐹 (𝑏⃗) > 𝐹 (𝑎) (18)

The two solutions are non-dominated solutions to each other if
neither of two solutions dominates the other one.

Definition 3 (Pareto Optimal Set (Archive Set)). The set with all the
non-dominated solutions is called the Pareto set:

𝑃𝑠 ∶= {𝑎, 𝑏 ∈ 𝑋 ∣ ∃𝐹 (𝑏) > 𝐹 (𝑎)} (19)

Definition 4 (Pareto Optimal Front). The set with the corresponding
objective values of the Pareto solutions in the archive set is called the
Pareto optimal front:

𝑃𝑓 ∶= {𝐹 (𝑎) ∣ 𝑎 ∈ 𝑃𝑠} (20)

𝑃𝑓 is referred as an ‘archive’, which is used to store all the non-
dominated Pareto solutions during the iterative process of optimization
algorithm. Furthermore, two mechanisms are employed to increase the
distribution of the solutions since the number of the solutions in the
archive is fixed. Firstly, a roulette-wheel mechanism with a probability
value of 𝑃𝑖 (Shown in Eq. (21)) is used for selecting the new solutions
among the solutions in the least populated area (neighborhood) to
improve the distribution of the Pareto optimal front.

𝑃𝑖 =
𝑐
𝑁𝑖

(21)

where 𝑁𝑖 represents the number of solutions in the vicinity of the 𝑖th
solution and 𝑐 is a constant value.

The second mechanism is used when the archive is full. The solu-
tions with the most populated neighborhoods are removed and the new
non-dominated solutions are added to the archive. The roulette-wheel
mechanism used for selecting the solutions with a probability of 𝑃𝑖:

𝑃𝑖 =
𝑁𝑖
𝑐

, 𝑐 > 1 (22)

The other proposed rules for updating the solution of the archive
are as follows. Suppose that none of the archive members or a new
generated solution dominates each other or a new generated solution
dominates one or more archive members. In that case, the new solution
is included in the archive, and the dominated ones are removed.

A dynamic stopping criterion is added to the algorithm to find
more accurate Pareto solutions. The dynamic stopping criterion uses
the C index [39] of the obtained solutions and will be explained in
4.4. The percentage of domination of the solutions at each iteration is
compared to the predefined iteration number before. The optimization
process is stopped if the percentage is small enough. The mathematical
formulation of the stopping criteria applied to the process is given in
Eq. (23).

𝐵𝑠𝑡𝑜𝑝 =

{

1 𝑖𝑓 |𝐶(𝑛, 𝑛 − 𝛥)| < 𝜖
0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

(23)

where 𝐵𝑠𝑡𝑜𝑝 is a binary variable used for the stopping process, 𝜖 denote a
small number sets as a tolerance, 𝑛 and 𝛥 represent the current iteration
number and a predefined integer value for comparing the solutions
using C index.

3.3. Implementation of MOSCA into the problem

The steps of the proposed MOSCA algorithm to determine the Pareto
fronts comprising near-optimal DG sizes, types, and sites and ESS
powers, energies, and state of charges are illustrated in Algorithm 1

(see [40] for Forward-backward sweep calculation).
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Algorithm 1: MOSCA
Set the basic parameters of algorithm;
Set the input parameters of DGs, ESSs, DNs;
Initialize the solutions vector ( ⃖⃖⃗𝑥𝑖) randomly;
Create the empty archive repository;
while t ≤ 𝑡𝑚𝑎𝑥 do

for each solution do
Check the boundaries of search agent position variables
using proposed method [5];

Calculate the objective values of the solutions (𝐹𝑖)
through the Forward-backward sweep calculation [40]
and analytic calculation of reliability measurement;

Update the archive with the non-dominated solutions;
end
if the number of archive solutions exceed the maximum archive
size then

Omit the solutions with high density population in the
neighborhood;

end
Choose the Xb randomly from the set of archive solution;
for each solution do

Update 𝑟1, 𝑟2, and 𝑟3;
Update the solution position (𝑋𝑗) using (15)

end
𝑡 = 𝑡 + 1;
if secondary stopping criteria satisfied then

stop the loop;
end

end
Return the archive fitness and solutions vectors;

4. Case studies and results

4.1. Test systems data

The proposed formulations are applied on IEEE 33-bus, 69-bus, and
141-bus EDNs. Feeder data of the test systems are taken from [41,42],
and [43]. Reliability data, load types, and the number of customers
at each bus are extracted from Table 11 in the Appendix for 141-
bus system, [44,45] for 33-bus and 69-bus system. Optimization period
is selected as 72 h (24 h for each representative summer, winter and
spring/fall day) to account the seasonal effects.

At first, base-case load flow calculations are performed for the test
systems without any DER sources. Active power losses at peak load
conditions (3.7 MW) is found to be 201.9 kW for IEEE 33-bus test
system. Similarly, 69-bus test system showed 224.5 kW of active power
losses at a peak load of 3.8 MW and 550.4 kW power losses for 141-bus
system with 11.1 MW peak load.

Two different failure rates are assigned to the branches in the
system. 𝜆𝑙 denotes the main feeder branches’ failure rate between the
busbars, and 𝜆𝑑 denotes the laterals’ failure rates between the busbars
and the loads. Both failure rates are assumed to be proportional to
the length of the branches. On the other hand, the main branches
and laterals’ average repair time are assumed to be 4 h and 2 h,
respectively. The residential, commercial, and industrial loads’ hourly
load characteristics are shown in Fig. 1.

4.2. DGs and ESS outputs

One-year solar irradiation and wind speed data for a specific district
in Turkey [46,47] were used to calculate the WT and PV outputs. Since
the locations of DG units are close to each other (at the same feeder),
we used the same output patterns given in [46,47] for all WTs and
5

PVs. Mean capacity factors for WT and PV units were found as 35%
Fig. 1. Scaled hourly loads.

Fig. 2. Estimated scaled WT outputs.

Fig. 3. Estimated scaled PV outputs.

and 34%, respectively. The DG outputs are illustrated in Figs. 2 and 3.

4.3. Results and discussion

The results are discussed in this section from the point of intended
objectives and Pareto front characteristics. Among the three basic
objectives, priority is given to the system reliability, which is quan-
tified by AENS. The Pareto optimal solution of the proposed objective
function is determined using the MOSCA for the three case studies of
33-bus, 69-bus, and 141-bus systems.

We ran the MOSCA algorithms on a PC with 16 GB RAM, an Intel
Core i7-7700 3.6 GHz processor configuration, and MATLAB version
2020b. For each case study, the solution that has the smallest distance
to the origin of the 3-dimensional objective space is set as the candidate
Pareto solution (CPS). The results of CPS are highlighted and compared
with the values of the base case to evaluate the benefits of the optimiza-
tion process. We have also included the flowchart of the process for the
mentioned formulation in Fig. 4.

4.3.1. Case study I
The Pareto solutions of the optimization problem formulated in
Eq. (1) are determined using MOSCA for 33-bus test system. The
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Fig. 4. The flowchart of finding the optimal Pareto solutions for the proposed
formulation.

Fig. 5. Pareto optimal solution for Case Study I.

resulting non-dominated Pareto solution of ten independent trials are
shown in Fig. 5 where the red one denotes the CPS.

The annual energy losses for the Pareto solutions are between
227 and 406 MWh, which was 623 MWh for the base case operating
conditions. The base case AENS value of 24.48 kWh/customer reduces
to the range of 7.76 to 19.72 kWh/customer by the Pareto optimal
solutions.

Optimal parameters for the CPS are illustrated in Table 2. It com-
prises of five WTs, one PV, and 6 ESS units. The total DG capacity
and ESS size are 3920 kW and 3250 kWh, respectively. The total DER
cost of the CPS is 0.8 MSD. On the other hand, it reduces the energy
losses to 248 MWh, corresponding to 60.1% of the base case losses.
AENS reductions of Pareto solution candidate (PSC) is almost 50.8%.
Hourly power losses for the base conditions and the PSC are shown in
Fig. 6. It is clear that the loss reductions are more remarkable for higher
load levels (peak load durations). For example, peak load power losses
reduce from 173.3 kW to 76.3 kW (57.0%). Note that the ratio between
the peak load and the minimum load decreases due to effective peak
shaving of ESS units. ESS units SoC along the simulation period shown
in Fig. 7.

The final discussion is on bus voltage magnitudes. Among several
undervoltage problems for the base case operating conditions, the most
critical one is 0.9189 p.u. at bus number 18 at hour 6 p.m. in a
summer day. All the Pareto solutions have fixed all the undervoltage
problems and the minimum bus voltage magnitudes were improved to
a range between 0.9501 and 0.9660 p.u. The minimum bus voltage
magnitude for the CPS is 0.9549 p.u. at bus 18 on a summer day at
7 p.m. Bus voltage profiles for the CPS configuration are illustrated
6

T

Fig. 6. Hourly loss reductions in 33-bus test system for the CPS.

Fig. 7. SoC for ESS units in IEEE 33-bus test system for the CPS.

Fig. 8. Voltage magnitude profiles in 33-bus test system for the CPS and the base case
(6 p.m. of the summer day).

Table 2
ESS and DG parameters for candidate Pareto solution.

# DG ESS

Location Size [kW] Type Location Energy [kWh] Power [kW]

1 14 500 WT 9 680 62
2 17 500 WT 15 800 73
3 25 1000 WT 22 860 78
4 29 500 WT 24 190 17
5 31 640 PV 25 340 31
6 32 780 WT 32 390 35

n Fig. 8 together with the worst ones in the base case (6 p.m. of the
ummer day). Note that each characteristic shows the voltage profiles
t different hours of three representative days.

.3.2. Case study II
The non-dominated Pareto solutions of ten independent optimiza-

ion trials in 69-bus test system are shown in Fig. 9. The red one denotes
he CPS. The resulting objective functions of the Pareto solutions are
llustrated in Table 3 together with the minimum voltage magnitude.
he result shows that the Pareto solutions with the installation of
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Fig. 9. Pareto optimal solution for Case Study II.

Table 3
Objective function values of the Pareto solutions for 69-bus test system.

Pareto solutions Base case

min max

AEL (MWh) 264 352 738
AENS (kWh) 2.81 7.06 7.82
COST (MUSD) 0.65 1.17
Minimum voltage magnitude (p.u.) 0.95 0.96 0.91

Table 4
ESS and DG parameters in 69-bus test system for the CPS.

# DG ESS

Location Size [kW] Type Location Energy [kWh] Power [kW]

1 14 500 WT 12 680 94
2 16 370 WT 21 740 102
3 58 840 WT 25 620 86
4 62 290 WT 46 600 83
5 64 680 WT
6 65 1000 PV

proper ESS and DG units reduce the annual energy losses up to 64.2%.
On the other hand the Pareto solutions reduce the amount of energy
not-supplied up to 64%.

The CPS with 0.75 MUSD annual DG and ESS cost includes 6 DGs
and 4 ESS units. Table 4 presents the optimal DG and ESS locations
and sizes. The results show that 1 PV and 5 WTs are the best numbers
of different DG types. The total DG size in CPS is 3.68 MW, and the
total ESSs capacity is 2.64 MWh. The CPS reduces the annual energy
losses by 59.3% compared to the 738 MWh annual losses in the base
case. Hourly power losses and SoC of ESS units are shown for the
two operating conditions in Figs. 10 and 11, respectively. One can
easily recognize that the loss reductions are more remarkable for higher
load levels. It indicates an effective peak shaving due to the operation
management of ESS units.

Finally, the voltage profiles provided by CPS are compared with the
base case ones in Fig. 12. Note that the voltage profiles for the base case
operating conditions are given only for summer - 4 p.m., as being the
most critical one. The minimum voltage magnitude is 0.916 p.u. at bus
65. It is improved to 0.957 p.u. by the CPS.

4.3.3. Case study III
The obtained Pareto front solutions for 141 bus system with over

63% improvement in annual energy losses and up to 40% improvement
in AENS value are shown in Fig. 13. Table 5 illustrates the summary
of the achieved improvement for the Pareto solutions. The ESS and DG
parameters for CPS are listed in Table 6. Note that CPS is shown with
a red dot in Fig. 13.

The hourly losses of the system, SoC of the ESS units and the voltage
magnitudes are illustrated in Fig. 14, 16, and 15, respectively. One can
realize that there are some slight shifts in the peak periods and almost
57% loss reductions in Fig. 14. Optimal control strategy for the ESS
units provide a 1.3 MWh of energy exchange between peak and off-
peak hours per day. Finally, the minimum voltage magnitude of 0.93
7

Fig. 10. Hourly loss reductions in 69-bus test system for the CPS.

Fig. 11. ESS’s SoC in 69-bus test system for the CPS.

Fig. 12. Voltage magnitude profiles in 69-bus test system for the CPS and the base
case (6 p.m. of the summer day).

Fig. 13. Pareto optimal solution for Case Study III.

p.u. (bus 87) for the base case operating conditions is improved to 0.95
p.u. (bus 52) for the CPS.

4.4. Comparison of the solution algorithms

The quality of the non-dominated Pareto solutions obtained by
the proposed algorithm is measured and compared with those of the
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Table 5
Objective function values of the Pareto solutions for 141-bus test system.

Pareto solutions Base case

min max

AEL (MWh) 111 757 2083
AENS (kWh) 23.4 36.3 39.3
COST (MUSD) 1.03 2.11
Minimum voltage magnitude (p.u.) 0.95 0.96 0.93

Table 6
ESS and DG parameters in 141-bus test system for the CPS.

# DG ESS

Location Size [kW] Type Location Energy [kWh] Power [kW]

1 61 800 WT 60 370 31
2 67 580 WT 65 940 99
3 72 860 WT 71 600 63
4 75 840 PV 83 750 78
5 77 240 PV
6 78 900 PV
7 79 920 WT
8 82 810 WT
9 83 1000 WT
10 84 510 WT
11 85 410 WT
12 94 900 WT
13 109 780 WT
14 115 490 PV

Fig. 14. Hourly losses reductions in 141-bus test system for the CPS.

Fig. 15. ESS’s SoC in 141-bus test system for the CPS.

OGWO, MOSMA, NSGA-II, MOEA-D and MOPSO algorithms by using
everal performance metrics, namely the spacing metric (SM), the C-
ndex metric [48], Hypervolume (HV) [49–51] and the computational
urden for the solutions. For a fair comparison, we set the param-
ters of MOPSO, MOEA-D, MOGWO, MOSMA, and NSGA-II to the
alues given in Table 7, where n in MOEA-D algorithm is the number
f population. We analyzed the impacts of the different algorithmic
arameters of methods on the solution performance in terms of C-
ndex values. The results show that the algorithmic parameters of
OPSO, NSGA-II and MOEA-D solutions are the best parameters for

omparison. For the methods, the population count was set to 100 and
8

Fig. 16. Voltage magnitude profiles in 141-bus test system for the CPS and the base
case (6 p.m. of a summer day).

Table 7
Parameters of NSGA-II, MOPSO, and MOEA-D.

Method Parameter Value

MOPSO

Grid inflation rate 0.1
Personal learning coefficient (c1) 1.0
Global learning coefficient (c2) 1.0
Number of grids per dimension 10.0
Leader selection parameter 4.0
Damping ratio 0.95

MOEA-D
Scaling factor 0.5
Crossover rate 1.0
Scale parameter (𝜂) 20
Mutation probability 1/n

NSGA-II
Crossover probability 0.9
Mutation probability 0.5
Mutation strength 0.05

the maximum archive count was set to 200. Note that we optimized all
these parameters before making the comparisons.

4.4.1. The spacing metric
The SM evaluates the distribution of vectors throughout the set

of non-dominated Pareto solutions and calculates with a relative dis-
tance measure between consecutive solutions in the archived solutions.
Assume that 𝑓 𝑛

𝑘 (𝑥) is the 𝑘th objective function corresponding to 𝑛th
olution inside the archive set, where 𝑘 is in between 1 and m and 𝑛 is
n between 1 and 𝑡. The minimum Euclidean distance between the two
on-dominated solutions-i and -j, can be determined as:

𝑘 = 𝑚𝑖𝑛
{

𝑚
∑

𝑘=1
|𝑓 𝑖

𝑘(𝑥) − 𝑓 𝑗
𝑘 (𝑥)|

}

, 𝑗 ≠ 𝑖, 𝑗 = 1, 2,… , 𝑡 (24)

Moreover the distance found in the Eq. (24) can be normalized by
sing the maximum Euclidean distance in the set ([𝑓{𝑚−𝑚𝑎𝑥}−𝑓{𝑚−𝑚𝑖𝑛}]).
pacing is defined as the standard deviation of those minimum Eu-
lidean distances as given;

= (1
𝑡

𝑡
∑

𝑖=1
(𝑑 − 𝑑𝑖)2)

1
2 (25)

where 𝑑 is the average Euclidean distance between the solutions.
Note that the smaller SM value corresponding to closely-distributed

non-dominated solutions are better.
Box plots of the SM values for the algorithms are shown in Fig. 17,

where each box contains the SM distribution of ten independent trials.
Compared to the MOGWO, MOSMA, NSGA-II, MOPSO, and MOEA-D
algorithms, the SM distribution of the proposed MOSCA algorithm has
the lowest median and dispersion. This indicates that MOSCA performs
better than the other algorithms in finding uniformly distributed Pareto
solutions and that thereafter MOEA-D found better SM values.
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Fig. 17. The box-plots of SM values of different optimization methods.

Table 8
C index-based comparisons of the solution algorithms.

C index Mean STD Maximum Minimum

C(MOSCA,MOPSO) 3.0 14.2 58.7 0.0
C(MOPSO,MOSCA) 62.7 30.7 100 11.2
C(MOSCA,MOEA-D) 6.3 7.1 27.7 0.0
C(MOEA-D,MOSCA) 54.9 28.5 100 0.0
C(MOSCA,MOGWO) 44.6 43.3 100 0.0
C(MOGWO,MOSCA) 67.8 36.3 100 0.0
C(MOSCA,NSGA-II) 9.8 12.6 52.0 0.0
C(NSGA-II,MOSCA) 61.9 40.2 100 0.0
C(MOSCA,MOSMA) 33.1 37.7 93 0.0
C(MOSMA,MOSCA) 97.1 4.5 100 80

4.4.2. C-index metric
For definition of C index, assume that 𝑠𝑒𝑡1 and 𝑠𝑒𝑡2 are the two

sets of Pareto solutions. The C index, 𝐶(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) refers to the mapping
between the ordered pair (𝑠𝑒𝑡1, 𝑠𝑒𝑡2) to the interval [0, 100] percent and
it can be calculated as:

𝐶(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) ∶=
|{𝑠2 ∈ 𝑠𝑒𝑡2; ∃𝑠1 ∈ 𝑠𝑒𝑡1 ∶ 𝑠1 ≤ 𝑠2}|

|𝑠𝑒𝑡2|
× 100 (26)

where 𝑠1, and 𝑠2 are the near-Pareto optimal solutions in 𝑠𝑒𝑡1, and 𝑠𝑒𝑡2.
The C value shows the percentage of solutions in 𝑠𝑒𝑡2 that are domi-
nated by near- Pareto optimal solutions in set 𝑠𝑒𝑡1. Since, 𝐶(𝑠𝑒𝑡1, 𝑠𝑒𝑡2)
may not be equivalent to (100 − 𝐶(𝑠𝑒𝑡2, 𝑠𝑒𝑡1)), both 𝐶(𝑠𝑒𝑡1, 𝑠𝑒𝑡2) and
𝐶(𝑠𝑒𝑡2, 𝑠𝑒𝑡1) have to be calculated for better understanding of domi-
nance of the solutions.

The C index values for the obtained Pareto solutions in all three test
systems are shown in Table 8. It is clear that the solutions obtained
by MOSCA dominate more than 62%, 54%, 67%, 61% and 97% of
the solutions obtained by MOPSO, MOEA-D, MOGWO, NSGA-II, and
MOSMA algorithms, respectively. This shows that the MOSCA found
better near-Pareto optimal front solutions than other algorithms.

4.4.3. Hypervolume metric
Hypervolume (HV) was originally proposed for comparing the per-

formance of multi-objective evolutionary algorithms (MOEAs) [52].
It computes the volume dominated by a given set of non-dominated
solutions bounded by a reference point R. The index HV for a set
of non-dominated solutions gives us a clear idea of the convergence
and diversity of the set. The HV for a set of solutions called 𝑠𝑒𝑡1 that
normalizes the objective values is defined as:

𝐻𝑉 (𝑠𝑒𝑡1, 𝑅) = 𝑣𝑜𝑙𝑢𝑚𝑒(
|𝑠𝑒𝑡1|
⋃

𝑖=1
𝑣𝑖) (27)

where 𝑅 is the reference point and is chosen as the maximum value for
the normalized objective values. 𝑣 is the hypercube whose corners are
the 𝑅 and all solutions in 𝑠𝑒𝑡1. For an illustration of HV for a three-
dimensional space, see Fig. 18. Higher values of HV mean that the
solution set is closer to an optimal Pareto set and may also indicate
a more uniform distribution of solutions in the objective space.

Comparison of the HV index for two sets of non-dominated solutions
shows that a set that dominates another set (completely or partially)
9

Fig. 18. The estimated HV for 3-D space.

Table 9
The mean and standard deviations of HV values for the algorithms.

MOSCA MOSMA MOGWO MOPSO MOEA-D NSGA-II

Mean 0.838 0.772 0.83 0.794 0.762 0.786
STD 0.045 0.022 0.047 0.017 0.033 0.018

Table 10
The number of iterations and execution times for the methods used.

Case study Method # iteration Execution time [s]

# Mean STD Mean STD

I MOSCA 2684 55 4162 104
I MOPSO 3019 519 4680 804
I MOEA-D 5000 0 7940 59
I MOSMA 5000 0 6180 126
I MOGWO 2980 412 4361 609
I NSGA-II 5000 0 10 615 430
II MOSCA 2546 101 6216 251
II MOPSO 5000 0 12 183 318
II MOEA-D 5000 0 12 208 179
II MOSMA 5000 0 10 991 98
II MOGWO 4170 704 10 421 1018
II NSGA-II 5000 0 16 681 270
III MOSCA 4998 80 84 696 1273
III MOPSO 5000 0 84 536 164
III MOEA-D 5000 0 84 770 201
III MOSMA 5000 0 83 460 882
III MOGWO 5000 0 85 317 1018
III NSGA-II 5000 0 89 100 1061

has a better (higher) HV value. The mean and standard deviations of
the HV index found for the different methods are shown in Table 9. The
results are obtained by setting 𝑅 to (1,1,1) for 𝑓AENS, 𝑓cost, and 𝑓AEL and
normalizing the Pareto solution values. The purpose of normalizing the
values is to put the Pareto front solution found for different test systems
on the same scale and to have a general comparison for all algorithms.
The result of the HV index shows that MOSCA found a higher value
and therefore a better solution quality than the other solutions, and
that MOGWO found a better HV value in second place.

4.4.4. Computational burden
Table 10 compares the mean and standard deviation of the iteration

count and execution time for the algorithms. The results of HV, C and
S measurements show the better quality of the solutions obtained by
MOSCA and the execution time results show that MOSCA converges
faster compared to other algorithms. Since the optimization problem
depends on the computation time of the power flow, an increase in the
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execution time is observed as the size of the test system increases for
all tested algorithms.

5. Summary and conclusion

This study has presented optimal planning of DERs in EDNs from
a multi-objective optimization perspective, in which the Pareto op-
timal solutions were determined to improve the system reliability
while minimizing the annual DER costs and power losses. In this
regard, optimal location, size, and type of DERs along with charg-
ing/discharging management strategies of ESS units were determined.
An improved multi-objective Sine–cosine Algorithm was used as a com-
putational tool. The proposed formulation and the solution algorithm
were implemented and tested on IEEE 33-bus, 69-bus, and 141-bus
EDNs.

Simulation results were compared with the corresponding base case
values to quantify the range of accomplished benefits with the Pareto
solutions. The results show that the Pareto solutions improved the
system’s AENS index compared to the base case EDNs in between 20%
to 68% in the 33-bus system. This improvement for the 69-bus system
is in between 10% and 64% and for the 141-bus network in between
7% to 40%, respectively.

The ESS and DG parameters and the benefits of the solution for a
Pareto solution with the minimum distance from the origin of objective
space were assigned as the candidate Pareto solution (CPS) and ana-
lyzed. Comparison of the objective functions and voltage magnitude
profiles of CPS to the base case ones showed that annual energy
losses were reduced by up to 60%, 55%, and 63% in the case studies,
respectively.

Moreover, Pareto fronts of the proposed methodology were com-
pared to those obtained by MOGWO, MOSMA, NSGA-II, MOPSO and
MOEA-D using three different Pareto optimal metrics. SM results show
that the Pareto fronts of the proposed method distribute more evenly,
providing fewer median values. On the other hand, HV and C-metric
comparison shows that the Pareto fronts of the proposed solution
10

method dominate most of the Pareto fronts obtained with the other
heuristic methods. The HV, SM and C-metric show the better quality
of the Pareto solution obtained by MOSCA. In addition to the better
quality of the solutions, the computational burden result shows faster
convergence of MOSCA compared to other methods. In future studies,
we plan to solve multi-objective optimization problems using parallel
computing techniques to speed up the search for Pareto solutions and
to study the optimal system’s restoration process after a blackout.
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Appendix
see Table 11.
Table 11
141-bus system data.

Branch number Sending node Receiving node R (Ω) X (Ω) Active load (kW) Reactive load (kvar) Load type 𝜆𝑙 𝜆𝑑
1 1 2 0.0580 0.0411 0 0 Residential 0.18 0.12
2 2 3 0.1733 0.1229 0 0 Residential 0.48 0.32
3 3 4 0.0009 0.0006 0 0 Residential 0.06 0.04
4 4 5 0.0092 0.0065 0 0 Residential 0.06 0.04
5 5 6 0.0068 0.0049 0 0 Residential 0.06 0.04
6 6 7 0.0471 0.0628 0 0 Residential 0.18 0.12
7 7 8 0.0740 0.0986 64 39.5 Residential 0.24 0.16
8 8 9 0.0652 0.0461 8 5.3 Residential 0.24 0.16
9 9 10 0.0509 0.0361 0 0 Residential 0.18 0.12
10 10 11 0.0117 0.0082 0 0 Residential 0.12 0.08
11 11 12 0.1297 0.0917 21 13.2 Residential 0.42 0.28
12 12 13 0.1233 0.0870 64 39.5 Residential 0.36 0.24
13 13 14 0.0490 0.0347 0 0 Residential 0.18 0.12
14 14 15 0.0962 0.0680 0 0 Residential 0.3 0.2
15 15 16 0.0864 0.0612 0 0 Residential 0.3 0.2
16 16 17 0.0400 0.0283 127 79 Commercial 0.18 0.12
17 17 18 0.0832 0.0569 0 0 Residential 0.3 0.2
18 18 19 0.0187 0.0133 0 0 Residential 0.12 0.08
19 19 20 0.0562 0.0397 64 39.5 Residential 0.18 0.12
20 20 21 0.0367 0.0247 64 39.5 Residential 0.18 0.12
21 21 22 0.0576 0.0308 0 0 Residential 0.18 0.12
22 22 23 0.0264 0.0192 64 39.5 Residential 0.12 0.08
23 23 24 0.0686 0.0499 0 0 Residential 0.24 0.16
24 24 25 0.0400 0.0283 0 0 Residential 0.18 0.12
25 25 26 0.0733 0.0533 127 79 Commercial 0.24 0.16
26 26 27 0.0337 0.0245 64 39.5 Residential 0.12 0.08
27 27 28 0.0587 0.0416 0 0 Residential 0.24 0.16
28 28 29 0.0658 0.0465 64 39.5 Residential 0.24 0.16
29 29 30 0.0344 0.0249 0 0 Residential 0.12 0.08
30 30 31 0.0129 0.0091 0 0 Residential 0.12 0.08

(continued on next page)
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Table 11 (continued).
Branch number Sending node Receiving node R (Ω) X (Ω) Active load (kW) Reactive load (kvar) Load type 𝜆𝑙 𝜆𝑑
31 31 32 0.0349 0.0246 127 79 Commercial 0.12 0.08
32 2 33 0.0445 0.0316 0 0 Residential 0.18 0.12
33 33 34 0.0020 0.0009 127 79 Commercial 0.06 0.04
34 5 35 0.2285 0.0557 255 158 Commercial 0.6 0.4
35 5 36 0.1271 0.1573 127 79 Commercial 0.36 0.24
36 6 37 0.0055 0.0073 42 26.3 Residential 0.06 0.04
37 37 38 0.2046 0.1447 0 0 Residential 0.6 0.4
38 38 39 0.0943 0.0666 17 10.5 Residential 0.3 0.2
39 39 40 0.0349 0.0246 0 0 Residential 0.12 0.08
40 40 41 0.0922 0.0653 64 39.5 Residential 0.3 0.2
41 41 42 0.2329 0.1648 0 0 Residential 0.6 0.4
42 42 43 0.1213 0.0858 0 0 Residential 0.36 0.24
43 43 44 0.0445 0.0316 42 26.3 Residential 0.18 0.12
44 44 45 0.0407 0.0289 0 0 Residential 0.18 0.12
45 45 46 0.0161 0.0128 0 0 Residential 0.12 0.08
46 46 47 0.0639 0.0452 0 0 Residential 0.24 0.16
47 47 48 0.0419 0.0296 106 65.8 Residential 0.18 0.12
48 48 49 0.0736 0.0512 127 79 Commercial 0.24 0.16
49 49 50 0.0832 0.0559 0 0 Residential 0.3 0.2
50 50 51 0.0400 0.0283 106 65.8 Residential 0.18 0.12
51 51 52 0.0226 0.0160 64 39.5 Residential 0.12 0.08
52 38 53 0.0845 0.0598 42 26.3 Residential 0.3 0.2
53 42 54 0.0162 0.0115 0 0 Residential 0.12 0.08
54 54 55 0.0530 0.0375 0 0 Residential 0.18 0.12
55 55 56 0.0897 0.0635 21 13.2 Residential 0.3 0.2
56 56 57 0.0871 0.0616 0 0 Residential 0.3 0.2
57 57 58 0.0677 0.0479 255 158 Commercial 0.24 0.16
58 58 59 0.0471 0.0334 127 79 Commercial 0.18 0.12
59 55 60 0.0336 0.0237 0 0 Residential 0.12 0.08
60 60 61 0.0329 0.0233 255 158 Commercial 0.12 0.08
61 61 62 0.0413 0.0292 170 105.4 Commercial 0.18 0.12
62 60 63 0.0355 0.0251 0 0 Residential 0.18 0.12
63 63 64 0.1052 0.0745 255 158 Commercial 0.36 0.24
64 64 65 0.0677 0.0479 127 79 Commercial 0.24 0.16
65 65 66 0.0303 0.0215 191 118.5 Commercial 0.12 0.08
66 66 67 0.0458 0.0325 42 26.3 Residential 0.18 0.12
67 67 68 0.0219 0.0155 85 52.7 Residential 0.12 0.08
68 63 69 0.0368 0.0260 255 158 Commercial 0.18 0.12
69 55 70 0.0232 0.0165 0 0 Residential 0.12 0.08
70 70 71 0.0121 0.0029 255 158 Commercial 0.12 0.08
71 70 72 0.0703 0.0497 127 79 Commercial 0.24 0.16
72 42 73 0.0232 0.0165 255 158 Commercial 0.12 0.08
73 73 74 0.0030 0.0064 255 158 Commercial 0.06 0.04
74 43 75 0.0381 0.0269 38 23.7 Residential 0.18 0.12
75 44 76 0.0555 0.0393 64 39.5 Residential 0.18 0.12
76 46 77 0.0518 0.0438 127 79 Commercial 0.18 0.12
77 76 78 0.0168 0.0111 0 0 Residential 0.12 0.08
78 78 79 0.0417 0.0101 427 264.7 Industrial 0.18 0.12
79 79 80 0.1008 0.0245 637 395.1 Industrial 0.3 0.2
80 79 81 0.1520 0.0372 0 0 Residential 0.48 0.32
81 81 82 0.0033 0.0008 127 79 Commercial 0.06 0.04
82 47 83 0.0085 0.0062 64 39.5 Residential 0.06 0.04
83 49 84 0.0519 0.0451 191 118.5 Commercial 0.18 0.12
84 50 85 0.0148 0.0036 0 0 Residential 0.12 0.08
85 85 86 0.0037 0.0016 425 263.4 Industrial 0.06 0.04
86 86 87 0.0000 0.0001 127 79 Commercial 0.06 0.04
87 7 88 0.0175 0.0232 64 39.5 Residential 0.12 0.08
88 88 89 0.0471 0.0628 55 34.2 Residential 0.18 0.12
89 89 90 0.0300 0.0400 0 0 Residential 0.12 0.08
90 90 91 0.0213 0.0284 0 0 Residential 0.12 0.08
91 91 92 0.0317 0.0422 0 0 Residential 0.12 0.08
92 92 93 0.0281 0.0375 0 0 Residential 0.12 0.08
93 93 94 0.0207 0.0275 93 57.9 Residential 0.12 0.08
94 94 95 0.0207 0.0275 0 0 Residential 0.12 0.08
95 89 96 0.0690 0.0488 127 79 Commercial 0.24 0.16
96 96 97 0.0975 0.0689 0 0 Residential 0.3 0.2
97 97 98 0.0906 0.0197 255 158 Commercial 0.3 0.2
98 97 99 0.0033 0.0008 0 0 Residential 0.06 0.04
99 99 100 0.0033 0.0008 255 158 Commercial 0.06 0.04
100 91 101 0.0232 0.0165 13 7.9 Residential 0.12 0.08
101 101 102 0.0581 0.0411 0 0 Residential 0.18 0.12
102 102 103 0.0893 0.0218 106 65.8 Residential 0.3 0.2

(continued on next page)
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Table 11 (continued).
Branch number Sending node Receiving node R (Ω) X (Ω) Active load (kW) Reactive load (kvar) Load type 𝜆𝑙 𝜆𝑑
103 103 104 0.0632 0.0154 0 0 Residential 0.24 0.16
104 104 105 0.1176 0.0286 255 158 Commercial 0.36 0.24
105 104 106 0.0115 0.0026 127 79 Commercial 0.06 0.04
106 92 107 0.0853 0.0208 427 264.7 Industrial 0.3 0.2
107 94 108 0.0615 0.0261 0 0 Residential 0.24 0.16
108 108 109 0.0454 0.0193 637 395.1 Industrial 0.18 0.12
109 94 110 0.0033 0.0008 637 395.1 Industrial 0.06 0.04
110 7 111 0.0722 0.0511 21 13.2 Residential 0.24 0.16
111 10 112 0.1075 0.0262 425 263.4 Industrial 0.36 0.24
112 11 113 0.0349 0.0246 64 39.5 Residential 0.12 0.08
113 13 114 0.0626 0.0443 0 0 Residential 0.24 0.16
114 114 115 0.0671 0.0475 0 0 Residential 0.24 0.16
115 115 116 0.0040 0.0010 255 158 Commercial 0.06 0.04
116 14 117 0.0508 0.0368 55 34.2 Residential 0.18 0.12
117 15 118 0.0162 0.0115 0 0 Residential 0.12 0.08
118 118 119 0.0464 0.0329 93 57.9 Residential 0.18 0.12
119 119 120 0.0426 0.0301 0 0 Residential 0.18 0.12
120 120 121 0.0509 0.0361 0 0 Residential 0.18 0.12
121 121 122 0.0736 0.0520 0 0 Residential 0.24 0.16
122 122 123 0.0587 0.0416 85 52.7 Residential 0.24 0.16
123 123 124 0.0613 0.0434 106 65.8 Residential 0.24 0.16
124 124 125 0.0787 0.0557 0 0 Residential 0.24 0.16
125 125 126 0.0838 0.0610 0 0 Residential 0.3 0.2
126 126 127 0.0349 0.0246 64 39.5 Residential 0.12 0.08
127 127 128 0.0573 0.0422 64 39.5 Residential 0.18 0.12
128 128 129 0.0588 0.0427 93 57.9 Residential 0.24 0.16
129 129 130 0.0103 0.0073 96 59.3 Residential 0.06 0.04
130 119 131 0.0357 0.0254 0 0 Residential 0.18 0.12
131 131 132 0.0349 0.0246 64 39.5 Residential 0.12 0.08
132 131 133 0.0924 0.0672 38 23.7 Residential 0.3 0.2
133 121 134 0.0845 0.0615 30 18.4 Residential 0.3 0.2
134 16 135 0.0530 0.0375 21 13.2 Residential 0.18 0.12
135 16 136 0.0303 0.0215 64 39.5 Residential 0.12 0.08
136 18 137 0.0587 0.0416 47 29 Residential 0.24 0.16
137 23 138 0.0773 0.0562 42 26.3 Residential 0.24 0.16
138 25 139 0.0955 0.0676 42 26.3 Residential 0.3 0.2
139 30 140 0.0522 0.0379 127 79 Commercial 0.18 0.12
140 31 141 0.0587 0.0416 64 39.5 Residential 0.24 0.16
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