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Abstract—This paper presents a novel two-stage optimiza-
tion approach for the optimal sizing of static var compen-
sators and their operational management to maximize the
photovoltaic integration capacity of distribution systems. In
the first stage, the optimal locations for fixed size photovoltaic
(PV) systems are determined to minimize the sum of total
voltage violations. In the second phase, the size of the PV
units are resized and the optimal size, number, location,
and operating strategy of the SVC units are determined to
maximize PV hosting capacity. In both phases, the Marine
Predators algorithm is used for the solution optimization
equations. The performance of the proposed approach and
solution method is validated on modified 33-node and 141-
node radial distribution networks. The results are discussed
from the point of view of the maximum hosting capacity and
compared with the Grey Wolf Optimization and Whale Opti-
mization algorithms in terms of computational performance.

Index Terms—Distributed generation, Distribution Net-
works, Marine Predators Algorithm, Static VAR compen-
sator

I. INTRODUCTION

Increasing the penetration of renewable distributed
generation (RDG), particularly photovoltaics (PV), is a
promising approach to addressing global environmental
and energy challenges. The popular uses for the PV sys-
tems include improving voltage profiles, reducing energy
losses and harmful emissions, reducing dependence on
fossil fuels, and deferring transmission grid upgrades. On
the other hand, excessive use of PV systems may disrupt
the operation of the system. Researchers have therefore
attempted to solve the main difficulties associated with
large-scale penetration of PVs, such as overloading of
distribution lines and overvoltage problems [1].

From the customer’s perspective, RDG units provide
backup generation and sell the excess energy to the util-
ities. To take advantage of the potential benefits of RDG
units, utilities have begun to adapt their infrastructure
to accommodate more RDG units in their distribution
systems.

The transition from no PV penetration to large-scale
PV penetration follows three main phases in a distribution

network. In the first phase with low PV penetration, local
consumption is much higher than PV production and PV
units have minimal adverse impacts on the network. In the
second phase, PV output exceeds the power consumption,
and there are noticeable adverse effects of PV generation.
Finally, when the penetration of PV systems is very high,
a large amount of PV output is injected into the network.
The negative impacts can reach unacceptable levels, which
involves some additional precautions to alleviate them.
The maximum cumulative PV generation capacity that a
grid can support without violating any operational restric-
tions is called the PV hosting capacity (PVHC) of the grid.

Several researches have focused on solving the voltage
quality problems while integrating PVs into medium volt-
age (MV) and low voltage (LV) grids. Aziz and Ketjoy
found that the LV grids could handle higher relative
penetration of PV systems than the MV grids, but voltage
problems such as overvoltages in the MV grid were less
when compared to LV grids [2]. Another study focused
on controlling the reactive and active power of PV units
using inverters to create the possibility of connecting more
units to the grid [3]. The research proposed to minimize
the negative impact of PV output on the voltage level of
the system based on new strategies and laws proposed
for Volt-VAr and Volt-Watt coordination of the PVs. In
other words, the voltage profiles so do the system’s power
quality can be improved by throttling the extra active
power of the PV systems during overvoltage problems and
adjusting the reactive power control of the system during
undervoltage problems. In summary, it is an important task
to develop techniques that enable maximum PVHC while
keeping the operational constraints of the grid within the
specified limits [4].

Approaches to assess the maximum PVHC using prob-
abilistic and deterministic methods were discussed in the
literature [5]–[8]. Electric utilities worldwide are trying to
develop policies to enhance PVHC while keeping accept-
able grid performance. Specific methods to improve PVHC
involve using various energy storage system units, smart
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inverter technologies, load tap changing transformers, and
static var compensator (SVC) [9]–[12]. Nonetheless, there
is still a need for general and flexible criteria for PV
system connection, including a straightforward method for
evaluating PVHC without violating grid operating limits
[13].

Installing an SVC in the distribution grid is one of
the practical and economical means of improving PVHC,
as SVC can perform voltage adjustments by releasing
or absorbing reactive power [14], [15]. The SVCs can
continuously consume and compensate reactive power and
respond quickly to voltage fluctuations.

This study presents a two-stage framework for maximiz-
ing PVHC in an active distribution network by identifying
the optimal location, size, and operating strategy of SVCs.
In the first stage, the optimal locations of PV units are
determined to minimize the voltage profile improvement
function. Then, the optimal location, size, and operation
strategy of the SVC units are determined along with the
resizing of the PV units to maximize the PVHC without
causing any voltage violation problems in the system.

Since the proposed formulation is a Mixed-Integer Non-
linear Programming (MINLP) problem, solving the prob-
lem with classical optimization algorithms involves scal-
ability and convergence problems due to the non-convex
nature of the problem and the integer, binary, and contin-
uous control parameters. Although there have been many
efforts to optimally size and allocate distributed generation
units, finding an optimal solution using heuristic methods
is still a challenge. In contrast, heuristic methods are better
suited for non-linear constrained optimization problems as
they can handle both the integer and continuous control
variables in an optimization cycle. For this reason, the
use of alternative optimization techniques, such as meta-
heuristics, should be explored to find the maximum PVHC
while having SVC units. The Marine Predators Algorithm
(MPA) [16] is used as a representative meta-heuristic
solution algorithm for both stages. The proposed two-stage
optimization method is applied to 141-bus and 33-bus
radial distribution test systems. The coding of all relevant
processes is done in MATLAB 2021a environment.

This paper,

• proposes an efficient method for improving PVHC,
which plays an essential role in determining the
capability of a distribution system to support more
PV generation.

• explores the possible advantages of optimal SVC
planning to improve PVHC by eliminating voltage
violation problems due to large-scale PV generation.

• extends the conventional PV allocation problem with
the management of SVC operation to maximize the
PVHC.

• takes into account weather-related volatilities of the
load and PV generation with a 72-hour optimization
period (one representative day for each season).

• uses real load patterns and PV power characteristics
of a Turkish area.

• adapts the MPA algorithm for the proposed problem

and extends it with an additional stopping criterion
to improve the convergence properties.

• provides a better performance in finding a near global
solution for different scenarios compared to other
meta-heuristic algorithms such as Whale Optimiza-
tion Algorithm (WOA) [17] and Grey Wolf Optimizer
(GWO) [18].

The rest of the paper is organized as follows. The
objective function formulations are discussed in section II.
Section III briefly describes the MPA and focuses on the
implementation of the optimization problem. Simulation
results of 33-bus and 141-bus test system applications are
presented in section IV. Final remarks and conclusions are
summarized in section V.

II. PROBLEM FORMULATION

A constrained optimization problem can mathematically
expressed as follow;

minimize
w.r.t X

OF (X) (1)

X = {
−→
L PV ,

−→
S PV ,

−→
L SV C ,

−→
S SV C ,

−→
OSV C}

subject to :

{
gi(X) ≥ 0, i = 1, 2, ...,m

hi(X) = 0, i = 1, 2, ..., p

where
−→
S and

−→
L represent the size and location vectors of

the units,
−→
OSV C denotes to the operation strategy of the

SVC units. The terms gi(X) and hi(X) represent the ith

inequality and eequality constraints for the control variable
vector X. In the Eq. (1), the terms of m and p denote the
numbers of inequality and the equality constraints.

In this work, a two-stage allocation approach is used to
find the maximum PVHC of the grid. In the first stage,
the optimization process determines the optimal locations
of the PV units to minimize the voltage violation. In the
second stage, the PVHC of the grid is maximized by
optimizing the locations, sizes, and operating strategy of
the SVC units for the PV locations determined in the first
stage. The objective functions of the optimization stages
are defined below.

A. Voltage violation (VV) objective function

The VV objective function is expressed as [19]:

OFVV =

NT∑
i=1

[

NBUS∑
j=1

(Vi,j −Ki,j)
2] (2)

Ki,j =


Vi,j , if 0.95Vref ≤ Vi,j ≤ 1.05Vref

1.05Vref if Vi,j ≥ 1.05Vref

0.95Vref if Vi,j ≤ 0.95Vref

(3)

where NT is the total duration of the optimization period,
NBUS is the number of busses in the feeder, and Vi,j is
the jth bus voltage magnitude at hour i, calculated by
forward/backward sweep (FBS) power flow [20] method.
The reference voltage (Vref ) is assumed as 1 p.u in this
study.
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B. PV hosting capacity (PVHC) objective function

The proposed objective function for maximizing the PV
size in the network is defined as follows;

OFPVHC =
1 +

∑NT

i=1(
∑NBUS

j=1 Pi,j)∑NPV

n=1 SPV

(4)

Pi,j =

{
0, if 0.95Vref < V i

j < 1.05Vref

b× (2− it
itmax

), if other
(5)

where the maximum number of iterations in the optimiza-
tion process and the current iteration are shown with itmax

and it, respectively. The term b is a fixed quantity used
to penalize the objective function for the violating voltage
magnitudes.

C. Constraints

The proposed formulations for the network inequality
and equality constraints, including voltage magnitude lim-
itations, nodal power balance equations, PV output limits,
and SVC unit constraints, are given in [21].

1) Power balance:

PMGi + PPVi − Ploadi − Plossesi = 0

QMGi −Qloadi −Qlossesi +QSVCi = 0

i = 1, 2, · · · , NT (6)

where PMG is the active and QMG is the reactive
power supplied from the main grid at the slack bus.
PPV is the total active power generated by PVs and
QSVC is the reactive power injected or observed by
SVC units. The active and reactive system loads and
line losses are represented by Pload, Plosses, Qload, and
Qlosses.

2) Generation constraints:

PMGi ≤ PMGmax (7)

QMGi ≤ QMGmax (8)

PPV ≤ PPVmax (9)

III. OPTIMIZATION PROCESS

A. Marine Predators Algorithm

Faramarzi et al. [16] developed MPA, which mimics
the lifestyle of marine predators and their prey. In MPA,
the prey and predator are viewed as search representatives
since the marines are searching for the prey, while the prey
itself is looking for its food. The algorithm is classified as
the meta-heuristic technique, and it starts the optimization
process with a random set of solutions and tries to evaluate
the solutions using the local and global search questions
to find the near-optimal solution. The details of the math-
ematical formulation used in the MPA algorithm can be
found in [22].

Set the input data,
objectives, and

algorithm parameters

Initialize the set of
X randomly

Calculate the OF(X)
values

Update the set of
positions (X) using the
algorithm formulations

Find the best X and OF

Report the best
solution

Dissatisfied

Satisfied

Check the X constraint

Check
stopping criteria

Fig. 1. The flowchart of the optimization process for heuristic methods.

B. Implementation of optimization algorithms

The implementation of the proposed MPA, GWO, and
WOA to solve the optimization model comprises the
following steps shown in Fig. 1.

IV. SIMULATION RESULT AND DISCUSSION

A. Load characteristics and system data

The proposed formulations are applied to 141-bus and
33-bus radial networks. The details of the line data, peak
load data, and the daily load curves are taken from the
Turkish medium voltage distribution feeder [1], [23]. The
load curves for the three illustrative days are shown in Fig.
2. Note that the curve’s peaks and valleys are critical for
considered under and over-voltage problems, respectively.

B. PV models

Seasonal averages are used for the power outputs of
PV units. The scaled values for PV outputs [1], [23] are
illustrated in Figure 3. According to yearly PV outputs, the
average capacity factor for PV units was found as 34%.
The same output patterns and capacity factors are used for
all PV units since the length of the feeder is short enough
to consider the identical atmospheric conditions.
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Fig. 2. Scaled load curve.
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Fig. 3. Estimated scaled PV output.

C. Test system results

The constrained single objective formulation for the
first stage of the optimization process can be expressed
mathematically as follows.

minimize
w.r.t X

OFVV(X) (10)

X = {
−→
L PV }

subject to :


gi(X) ≥ 0, i = 1, 2, ...,m

hi(X) = 0, i = 1, 2, ..., p
−→
S PV = 100kW

Note that all the PV sizes are assumed to be 100 kW in
this stage. In order to ensure the near optimality of the PV
locations obtained by MPA, objective function statistics
(average, standard deviation, and the best) are compared
to those obtained by GWO and WOA in Table I. Note
that the average objective functions and corresponding
standard deviations are the results of fifty independent
runs, where the optimal locations correspond to the best
objective function values.

TABLE I
COMPARISON OF THE PERFORMANCE OF THE ALGORITHMS

Average STD Best Fitness PV locations

33-bus
MPA 0.1926 0.0001 0.1924 14, 15, 16, 17,

18, 31, 32, and 33GWO 0.1941 0.0008 0.1928
WOA 0.1926 0.0001 0.1924

141-bus
MPA 0.1884 0.0017 0.1856 45, 46, 47, 48, 49, 50,

51, 52, 77, 82, 83, 84,
85, 86, and 87

GWO 0.1945 0.0020 0.1922
WOA 0.1927 0.0040 0.1880

The total size of the installed PV units was found to
be 800 kW for the 33-bus system and 1500 kW for the
141-bus system. The average and best solutions found
by MPA and WOA are the same for the 33-bus system.
Moreover, they show a smaller standard deviation than
GWA, indicating more uniform solutions. On the other
hand, MPA provides the best values in terms of the
average, best and standard deviations of the solutions for
the 141-bus system.

The second stage of the optimization process aims to
maximize the PVHC by optimizing the PV sizes whose
locations are already determined by the first stage. In
addition, SVC locations, sizes, and operation strategies are
also optimized to achieve the same objective. It can be
mathematically expressed as:

minimize
w.r.t X

OFPVHC(X) (11)

{
−→
S PV ,

−→
L SV C ,

−→
S SV C ,

−→
OSV C}

subject to :

{
gi(X) ≥ 0, i = 1, 2, ...,m

hi(X) = 0, i = 1, 2, ..., p

The resulting statistics of the objective functions ob-
tained by MPA are compared to the ones obtained by
GWO and WOA, again for the fifty independent runs. The
results are tabulated in Table II. The results show that MPA
has a better ability to find near-optimal solutions. In the 33-
bus system, MPA achieves the smallest best fitness value
(2.165E-04), corresponding to the highest PVHC of 4.62
MW installed at the 8 locations determined by the previous
stage. It is the maximum PVHC that can be integrated into
the system without any voltage violations and is 9-10%
greater than the values obtained by the other methods.
Moreover, MPA shows the minimum standard deviation
when compared to the other two methods. On the other
hand, although the MPA achieves the highest PVHC, there
are no significant differences between the statistics of the
three methods for the 141-bus test system.

The optimal number, locations, and sizes of SVCs
determined by MPA for the 33-bus system are illustrated
in Table III, together with the optimal sizes of 8 PV units.
There are 13 SVCs with a total size of 2.4 MVAr, and the
total PV size is 4.62 MW. The optimal number, locations,
and the sizes of SVCs determined by MPA for the 141-
bus system are illustrated in Table IV, together with the
optimal sizes of 15 PV units. There are 20 SVCs with a
total size of 3.83 MVAr, and the total PV size is 14.55
MW.

TABLE II
COMPARISON OF THE PERFORMANCE OF THE ALGORITHMS IN

SECOND STAGE

Average STD best Fitness total PV sizes [MW]
33-bus MPA 2.212E-04 3.491E-06 2.165E-04 4.62

GWO 2.404E-04 3.617E-06 2.353E-04 4.25
WOA 2.447E-04 3.956E-06 2.375E-04 4.21

141-bus MPA 3.235E-03 5.652E-05 3.163E-03 14.55
GWO 3.311E-03 7.652E-05 3.194E-03 14.40
WOA 3.264E-03 6.095E-05 3.194E-03 14.40

TABLE III
THE OPTIMAL SIZES OF THE PV AND SVC UNITS FOR 33 BUS

SYSTEM.

# LPV SPV [kW] LSV C SSV C [kVar]
1 14 520 2 10
2 15 110 3 280
3 16 110 4 10
4 17 450 5 60
5 18 500 6 300
6 31 1000 13 300
7 32 940 16 300
8 33 990 21 280
9 25 110
10 28 10
11 29 300
12 31 140
13 33 300
total 4.62 MW 2.40 MVar
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TABLE IV
THE OPTIMAL SIZES OF THE PV AND SVC UNITS FOR THE 141-BUS

SYSTEM FOUND BY MPA ALGORITHM.

# LPV SPV [kW] LSV C SSV C [kVar]
1 45 830 9 40
2 46 1980 27 10
3 47 1960 31 10
4 48 2000 41 30
5 49 400 48 300
6 50 330 52 300
7 51 1360 62 300
8 52 270 63 300
9 77 300 79 300
10 82 1980 80 280
11 83 180 81 300
12 84 260 82 300
13 85 1290 85 300
14 86 990 86 300
15 87 420 87 210
16 101 160
17 105 10
18 114 70
19 130 10
20 141 300
total 14.55 MW 3.83 MVar

Voltage magnitude profiles of the 33 bus test system
are illustrated in Figures 4 and 5 for the base case and the
best MPA solution, respectively. Each color in the figures
corresponds to different simulation hours of the three
representative days. All the voltage magnitude violations
of the base case conditions are eliminated while increasing
the PVHC to 4.62 MW (477.5% increase compared to
stage-1 results). Fig. 6 shows the optimal strategy for the
SVCs to eliminate the voltage violation throughout the
simulation period. Note that the daytime overvoltages due
to increased PV power penetration and the nighttime un-
dervoltages due to the absence of PV power are eliminated
with the appropriate management of the SVC reactive
power injection.
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Fig. 4. The voltage profile for the base case in 33-bus system.

Voltage magnitude profiles of the 141 bus test system
are illustrated in Fig. 7 and 8 for the base case and the
best MPA solution, respectively. All the voltage magnitude
violations of the base case conditions are eliminated
while increasing the PVHC to 14.55 MW (870% increase
compared to stage-1 results). Fig. 9 shows the optimal
operating strategy for the SVCs, which eliminates the day-
time overvoltages due to increased PV power penetration
and the nighttime undervoltages due to the absence of PV
power.
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Fig. 5. The voltage profile for the best solution in 33-bus system.
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Fig. 6. The optimal strategy of SVCs for the best solution in 33-bus
system.

V. CONCLUSIONS

In this paper, a method for maximizing the hosting
capacity of PV systems in radial distribution networks
was proposed. The proposed two-stage model was solved
using an MPA-based heuristic approach. The first stage
aimed to determine the near-optimal locations of PV units
with a fixed size of 100 kW. The optimization problem
was formulated to minimize the voltage violations in
the networks. Then, in the second phase, the proposed
algorithm determined the maximum size of the PV units
by the SVC units. The new objective function for the
optimization process was developed to maximize the PV
penetration in the system while taking advantage of the
SVC units (which still have the voltage violation in the
times when the PV cannot generate electric power) to
improve the voltage profile of the system based on solving
all the voltage violation problems.

The results show that the PVHC of the 33-bus test
system and 141-bus test system is increased by 477.5%
and 870%, respectively, compared to corresponding stage-
1 results. In addition to PVHC increase, the solutions also
mitigate the network’s voltage violation problems.

We are planning to maximize the hosting capacity of
different RDG units in a future study where we will con-
sider several objectives in a multi-objective optimization
framework.
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Fig. 7. The voltage profile for the base case in 141-bus system.
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Fig. 8. The voltage profile for the best solution in 141-bus system.
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