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Abstract—This paper proposes an optimal coordination
strategy for electric vehicles and energy storage devices in
distribution grids besides the optimal allocation problem of
renewable distributed generation (RDGs) and energy storage
devices (ESDs). By finding the optimal number, size, and site
of the RDGs and ESDs, together with the operation strategy
of the ESDs and smart charging of a large number of EVs,
the performance of the distribution grids will be improved.
An advanced grey wolf optimization (AGWO) algorithm
is used to minimize energy losses and voltage violations
simultaneously in the test systems. Simulations are tested on
IEEE 33 and 69 bus networks to find near-optimal solutions
for the optimization problem. Based on the simulation results,
the proposed optimization framework reduced the systems’
losses while minimizing the voltage violations by finding the
optimal control parameters of the devices.

Index Terms—Distributed generation, storage systems,
Heuristics, electric vehicle charging management, Real power
losses

I. INTRODUCTION

Renewable energy sources and electric vehicles (EVs)
are the leading network modernization factors to decrease
transportation and power generation carbon emissions [1].
The high penetration of renewable distributed generation
(RDGs), energy storage devices (ESDs), and electric ve-
hicles (EVs) in distribution networks (DNs) can cause
technical and operational problems. Discontinuous energy
generation in renewable energy sources such as wind
turbine (WT) and photovoltaic (PV) units and extra loads
raised by the EV charging may result in voltage deviations
and increased losses in the DNs. Coordination is required
between EVs charging strategy and RDGs and ESDs
operation to guarantee the secure and reliable operation
of the DNs.

While EVs may account for a small percentage of cars
on the market today, growth in the number of EVs is being
accelerated. Already, the total number of EVs will reach
35 million worldwide [2]. The prediction for 2024 is the
increase in the number of EV sales by 2.4 million in the

United States [3], and the total number of EVs will reach
approximately 130 million worldwide in 2030 [4]. Having
more EVs on the roads needs a vast electrical energy
requirement and has inverse impacts on the energy sector.
An uncoordinated EV charging strategy can create higher
demand during peak hours and a severe issue for utility
services [5].

Some recent publications have studied the integration
of EVs and ESDs for demand-side management in smart
grids to enhance the system load profile and exchange
the energy between off and on peak load hours [6]–
[8]. Authors in [9] evaluated electric vehicle coordination
impacts on a grid using a scenario-based methodology.
The authors also suggested optimal smart coordination
for EVs to minimize load variance and operating costs
of the grid. In [10], the significant effects of plug-in
EVs on the low voltage DNs without considering the
electric vehicle uncertainties in the state of charge and
different technological charging powers. A probabilistic
smart charging strategy for charging schedule of EVs
was proposed based on Monte-Carlo simulation in [11]
to optimize the effect of slow or fast charging of EVs on
the load profile of the system.

Besides the optimal smart charging strategies for the
EVs in the DNs, the optimal sizing of the RDGs and
ESDs and optimal coordination for the charging and dis-
charging powers of the ESDs have been studied previously.
The effect of optimal control for ESDs to maximize the
energy exchange generated by EDGs to the high peak
load hours was studied in [12]. Smart grid management
using ESDs was formulated and optimized by convex
optimization problem and it sought the solution through
different methods such as Lagrange–Newton [13], Interior
Point Technique [14], Lagrangian Algorithm [15], and
Lyapunov Method [16]. Adding the smart control strategy
for ESDs to the smart charging problem of the EVs creates
a complex mixed integer nonlinear programming (MINLP)
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problem. Solving the problem using the aforementioned
classical optimization algorithms is affected by scalability
and convergence issues due to the non-convex nature of
the problem. Therefore, the computational burden and the
complexity of solving ESD and EV allocation problems
and coordinating their charging and discharging process
increases with the increasing penetration rate of those de-
vices and the size of the system. For this purpose, heuristic
techniques are more convenient than analytical methods,
especially for optimal utilization of EVs and ESDs under
different scenarios using real data while considering the
different goals for the optimization process.

This paper proposes a new approach to optimizing
allocation problem of RDGs and ESDs, the smart charging
of the EVs, and control strategy for the ESDs in DNs.
For this purpose, the optimal charging strategy for the
EVs, optimal control strategy of ESDs, and also number,
location, size, capacity, and powers of the RDGs and
ESDs are determined simultaneously using an advanced
Grey Wolf optimizer algorithm (AGWO) [17]. The goal
for the optimization problem is to minimize the impact of
additional EV loads on the DNs’ energy losses and voltage
violations. The algorithm is developed to find optimal
control parameters of the problem for IEEE 33 and 69 bus
systems. The optimality of the solution and convergence
speed of the AGWO [17] method are tested by comparing
the results obtained with the other well-known algorithms,
including particle swarm algorithm (PSO) [18], Grey Wolf
optimizer (GWO) [19], and advanced arithmetic optimiza-
tion (AAO) algorithm [20].

The main contributions of the paper are as follow:
• Extension of the traditional RDG and ESD allocation

and sizing problem with optimal charging scheduling
of the EVs.

• Investigation of near-optimal allocation and sizing of
RDG and ESD supports to the system performance
for increasing EV penetration rates.

• Finding the maximum limit of the EV penetration
for the system while minimizing the energy losses
and voltage violations.

• Investigation on the quality of the solution found by
AGWO method.

The rest of the paper is organized as follows. The
objective function formulations are discussed in Section
II. Section III briefly describes the optimization algorithms
and focuses on the implementation of the optimization
problem. Simulation results of test systems applications
are presented in Section IV. Final remarks and conclusions
are summarized in Section V.

II. PROBLEM FORMULATION

The single objective optimization model for the problem
can be given as follows.

minimize
w.r.t X

f(X), (1)

X = [
−→
NRDG,

−→
LRDG,

−→
S RDG,

−→
T RDG,

−→
NESD,

−→
LESD,

−→
EESD,

−→
P ESD,

−→
OESD,

−→
C EV ],

subject to :

{
gi(X) ≥ 0, i = 1, 2, ...,m

hi(X) = 0, i = 1, 2, ..., p

where the vectors
−→
N ,

−→
L ,

−→
L ,

−→
E ,

−→
P and

−→
O represent the

number, size, locations, capacity, maximum charge and
discharge power and operation strategy of the RDGs and
ESDs. The term

−→
T RDG represents the type of RDGs,−→

C EV denotes to the charging strategy of the EVs. The
terms gi(X) and hi(X) represent the ith inequality and
equality constraints. In Eq. (1), the terms of m and p de-
note the numbers of inequality and the equality constraints.
The objective function is the extension of the energy
losses of the system with a penalty function that aims
to minimize voltage violations. The resulting augmented
objective function is as follows:

f(X) =

NT∑
t=1

Nbr∑
k=1

RkI
2
tk + ζP (X) (2)

P (X) =

NT∑
t=1

Nbus∑
j=1


(vtj − 0.95)2, if vtj < 0.95

0, if 0.95 < vtj < 1.05

(vtj − 1.05)2, if vtj > 1.05
(3)

where k stands for the line number between two busses,
NT refers to simulation period of the study and R rep-
resent the line resistance, respectively. Itk denotes the
current passing through the kth line at time t. vtj shows
the voltage magnitude of the jth bus in the system and
ζ is a coefficient that forces the optimization algorithm
initially minimize the voltage violation in the system.

A. Constraints

The details the network inequality and equality con-
straints, including voltage magnitude limitations, nodal
power balance equations, constraints of PV units con-
straints, and ESDs are given in [8] and [12].

The boundaries for different variables of the X vector
are proposed as follows. The installation locations of the
RDGs and ESDs set to all the nodes in the system except
the first bus. The upper boundary for a RDG’s size and
ESD’s capacity and charge/discharge power is defined as
1000 kW, 1000 kWh and 1000 kW. The optimization
problem for charging of EVs considers a smart charging
scheduling for time intervals of the optimization process
that EV owners coming home from work (6 PM) until a
time interval that they want to go to work the next day (6
AM).

III. OPTIMIZATION METHOD

To determine the optimal solution for the problem
presented in (1), the framework uses different optimization
algorithms based on heuristic methods. The main focus of
the study is to optimize the frame work to find a better
quality solution using AGWO method.
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A. Advanced grey wolf optimizer

The AGWO algorithm proposed in 2022 [17] aims
to improve the disadvantages of GWO [19] using the
following ideas:

• Applying a dynamic method to evaluate the search
agent either in the exploitation or in the exploration
phases.

• Adding a new formulation for evaluating the search
agents in the exploitation phase.

• Checking the boundaries of the evaluated search
agent and bringing the variables back to allowed
ranges using a new method.

• Using new stopping criteria to be sure to find the
near-global optimum.

The algorithm shows a better performance in finding
a good quality solution for various type of optimization
problems compared to other well-known methods. The
algorithm shows that it can deal with MINLP problems
in smart grids and it is the main reason for choosing this
method for solving the problem presented in (1). Note
that the optimization problem presented in this work is a
MINLP problem.

In (1), considering a random X, we can find an objective
value for the problem. The best three objective values
for Xα, Xβ , and Xδ at each iteration of the AGWO’s
optimization process will be used to update the other
solutions. The evaluation of each position of solutions
based on the exploration phase or exploitation phase is
mathematically formulated as:

rd : a random number within [0 1], (4)
∀ d ∈ 1, 2, ..., 7

Ad = 2.a.r1 − a, ∀ d ∈ 1, 2, 3 (5)

Bd = sin(2πr2), ∀ d ∈ 1, 2, 3 (6)

a = 2− 2× t

Maxt
(7)

Cd = 2.r3, ∀ d ∈ 1, 2, 3 (8)

ER = 1− 0.8× t

Maxt
(9)

X1 = Xα −A1.B1.|C1.Xα −X| (10)

X2 = Xβ −A2.B2.|C2.Xβ −X| (11)

X3 = Xδ −A3.B3.|C3.Xδ −X| (12)

X4 = X +A4 × sin(2πr4).|C4.Xα −X| (13)

X5 = X +A5 × cos(2πr5).|C5.Xα −X| (14)

7 AM Noon 6 PM Nidnight 6 AM

Time
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load curve PV output WT output

Fig. 1. Estimated scaled RDG output and load characteristic.

Xt+1 =


X1+X2+X3

3 r6 ≥ ER

{
X4 r7 < 0.5

X5 r7 ≥ 0.5
r6 < ER

(15)

where t and Maxt are the current iteration number and
maximum number of iterations required in the process.

B. Optimization framework for the problem

The implementation of the proposed AGWO and the
other methods (GWO, AAO, and PSO) to solve the
optimization model comprises of the following steps:

1) Provide optimization algorithm parameters and the
problems inputs.

2) Initialize the first solutions randomly within the
boundaries of the variables.

3) Check if the variables are within the predefined
boundaries

4) Calculate the Forward Backward Sweep power flow
analysis based on each solution (X).

5) Calculate the f(X) value and save the best f values
and corresponding X parameters for the best solu-
tion(s).

6) Update the solutions using the solution evaluation
equations of the optimization algorithms.

7) Stop the optimization cycle if the tolerance condition
is satisfied or the maximum number of iterations is
reached. Otherwise, go to step 3.

IV. SIMULATION RESULT AND DISCUSSION

A. Load characteristics and the systems data

The mentioned formulations are applied to IEEE 33 and
69 bus radial DNs. The details of the line data, peak load
data, load behavior and the daily load curve taken from the
Turkish medium voltage distribution feeder can be found
in [8]. Note that the given load data does not include the
EV charging . The output of RDG units (WT and PV)
and the load characteristic for the simulations are shown
in Fig. 1.

B. EV modeling

The assumption for the state of charge (SOC) of the
EVs at beginning of the work day is 100%, means that it
is fully charged. EVs can charge with 11 kW chargers. The

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on December 09,2022 at 10:08:08 UTC from IEEE Xplore.  Restrictions apply. 



TABLE I
THE COMPARISON BETWEEN THE NEAR-OPTIMAL SOLUTIONS AND

THE BASE CASE SOLUTIONS.

f(X) EL RDG size ESD capacity
MWh MW MWh

BC-33bus 439.011 5.012
NGS-33bus 1.628 1.628 7.04 3.82
BC-69bus 342.794 5.794
NGS-69bus 1.523 1.523 9.93 4.24

EV charging models used in the simulations are developed
with respect to the average EV battery capacity taken
from [21], [22]. We modeled an EV with various battery
capacities with a fixed charging rate of 11 kW in the
simulations. We assumed that each bus has five EVs in
the test systems under some consideration for initial SOC.
The aim is to find optimal charging scheduling for the EVs
for the time that arrive at their homes after the work (6
PM) until they depart to work the next day (6 AM).

C. Test system results

The first simulations’ goal is to find the near-optimal
solution of (1) for a critical condition of charging the
empty (SoC=0%) batteries of EVs, where the battery
size of an EV is taken as 65.5 kWh. Simulation results
including objective function values, and the sizes of RDG
units and ESDs are tabulated in Table I for the two test
systems, where BC represents for base case operating
condition without and RDGs and ESDs and NGS stands
for near global solution. Note that the objective function
values for both systems are quite high for BC operating
solutions, as there are so many voltage violations in
the system. Moreover, operation without any RDGs and
ESDs (uncontrollable charging of EVs from 6 PM to
approximately midnight) gives quite high energy losses.

The optimal sizes of RDGs were found to be 7.04 MW
(PV: 2.17 MW and WT: 4.87 MW) and 9.93 MW (WT:
9.93 MW) for NGS-33bus and NGS-69 bus optimal solu-
tions, respectively. The optimal sizes of ESDs were found
to be 3.82 MWh and 4.24 MWh for the two test systems.
Those optimal RDG and ESD sizing and allocation was
found to reduce the energy losses by 68% and 73% for
the 33-bus and 69-bus test systems, respectively. Besides,
the results also show that all the voltage violations that
existed in BC operating conditions were eliminated.

The improvements in the system losses for the test sys-
tems are shown in Fig. 2 and Fig. 3. Based on the optimal
charging scheduling of the EVs in the NGS-33bus and
NSG-69bus solutions, the system’s energy consumption
become flatter over time compared to the BC operating
conditions. The differences between system loads for the
near optimal solutions and base case operating conditions
are shown in Fig. 4 and Fig. 5. The minimum and maxi-
mum voltage magnitudes for the IEEE 33-bus system are
found as 0.951 p.u and 1.016 p.u., respectively. Similarly,
the minimum and maximum voltage magnitudes for the
69-bus system are calculated as 0.953 and 1.006 p.u.,
respectively.
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Fig. 2. Comparison of the losses for NGS-33bus and BC-33bus solutions.
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Fig. 3. Comparison of the losses for NGS-69bus and BC-69bus solutions.

The second simulation’s aim is to find optimal
−→
OESD

and
−→
C EV control parameters for more EV (parameters

are given in [22]) penetration at each bus. Moreover, the
travel distance of the users during the day and so does the
initial SOC values of the EVs at 6 p.m. [23] are considered
in the simulations. Based on the energy consumption of
the EVs [22] and the travel distance of the users [23]
the extra charging load is added to the system during the
simulation period from 6 pm to 6 am. The optimization
process tries to find the optimal charging scheduling for
the EVs and optimal operation of the ESDs based on the
size and location of the RDGs and ESDs found for (1) in
the first simulations.

The simulation results for the IEEE 33-bus system show
that up to 8.4 times more EV can penetrate into the system
without giving any voltage violations, for the optimal
siting and sizing parameters of the first simulations. The
energy losses for the simulation were found as 1.91 MW
and the minimum voltage magnitude was calculated as
0.95 p.u. for the 33-bus system.

When compared with the first simulations, optimal
charging of the EVs and operation strategy of ESDs can
provide 14 times more EV penetration to the IEEE 69-bus
tests system without voltage violations. Moreover, total en-
ergy losses are reduced to 1.94 MWh (66% improvement
over the BC-69bus). The voltage profile of the systems
are shown in Fig. 6 and Fig. 7. Note that each color in
the figures represent a time step of the simulation and the
dashed curves correspond to the voltage profiles of base
case scenarios. Based on the formulation for the penalty
function in (2), the optimization process tries to keep the
voltage magnitude of the busses in between 0.95 and 1.05
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TABLE III
COMPARISON OF THE OBJECTIVE FUNCTION VALUES AND CONVERGENCE SPEED FOR DIFFERENT ALGORITHM.

AGWO AAO GWO PSO
mean std. best mean std. best mean std. best mean std. best

IEEE 33-bus
first simulations f(X) 1.80 1.2E-1 1.62 7.25 1.4E+3 1.62 2.89 6.5E0 1.63 2.42 4.8E0 1.62

execution time [s] 1820 214 1668 1831 125 1668 1949 170 1701 1963 131 1743

second simulations f(X) 1.92 1.4E-5 1.91 1.92 3.1E-5 1.91 1.92 2.0E-5 1.91 1.93 6.6E-3 1.91
execution time [s] 571 18.9 563 602 23.7 564 596 28.9 581 606 22.5 564

IEEE 69-bus
first simulations f(X) 1.56 2.6E-2 1.52 1.83 2.3E-1 1.52 1.82 1.9E-1 1.53 2.01 3.2E-1 1.52

execution time [s] 4370 36 4345 4381 16 4352 4374 22 4341 4413 40 4351

second simulations f(X) 2.01 4.8E-2 1.93 2.19 1.1E-1 1.94 2.11 1.1E-1 1.93 2.41 2.9E-1 1.97
execution time [s] 1189 66.1 1179 1237 32.5 1182 1210 20.2 1179 1274 44.3 1183
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Fig. 4. Comparison of the system loads for NGS-33bus and BC-33bus
solutions.
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Fig. 5. Comparison of the system loads for NGS-69bus and BC-69bus
solutions.

p.u.

5 10 15 20 25 30

Bus number

0.88

0.9

0.92

0.94

0.96

0.98

1

V
o

lt
ag

e 
(p

u
) 

BC-33bus

Fig. 6. The voltage profiles of IEEE 33-bus test system.

D. Quality of the near-optimal solutions

To check the quality of the near-optimal solutions deter-
mined by the AGWO method, the objective function values
of the solutions are compared to the solutions found by the
PSO, AOA, and GWO methods with the same condition of
the optimization process. Therefore, PSO parameters are
first optimized based on the grid search of the parameters
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V
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e 
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u
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BC-69bus

Fig. 7. The voltage profile of the IEEE 69-bus system.

and are illustrated in Table II. On the other hand, AGWO,
AAO, and GWO methods do not require any parameter
optimization.

TABLE II
PARAMETERS OF PSO.

Parameter Value
Personal Learning Coefficient (c1) 1.0
Global Learning Coefficient (c2) 1.0
Damping ratio 0.95

The statistics of 50 independent near-optimal solutions
for each simulation of the two tests systems are illustrated
in Table III. The performance of the heuristic methods are
compared with respect to corresponding average values
(mean), standard deviations (Std.), and the best objective
functions (best). Besides, the performance of the methods
are evaluated with respect to their computation speeds.

The results show that the best objective function values
for the first simulations are almost the same in all methods,
AGWO method gives the best mean values and the less
standard deviations. It means that the AGWO method pro-
vides the most reliable solutions for the first simulations.
However, its high performance in providing better mean
values and standard deviations is less remarkable for the
second simulation. That is, all four heuristic methods can
be assumed to show similar performances for the second
simulations. On the other hand, AGWO shows better
performance in terms of providing less mean computation
times for both simulations.

V. CONCLUSION

This study has presented a framework for finding opti-
mal parameters of RDGs, ESDs, and EVs in DNs. Optimal
size, site, type, and number of the RDGs are the main
parameters for RDG units for minimizing the energy losses
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of the systems. Besides, the aim is to find the optimal
locations, capacity, maximum charge/discharge power, and
operation strategy for the ESDs for maximizing the impact
of the generated power by RDGs by maximizing the
exchange energy between different hours of the simulation.
The optimal charging coordination of the EVs in the
system is investigated for the system to minimize the
voltage violation problems.

The framework used different optimization algorithms
but the main focus of the study is to use AGWO method
to find a better solutions for the problems. Based on
the results, the optimal control parameters suggested by
the framework, reduces the energy losses of the system
by 68% and 73% for IEEE 33-bus and 69-bus systems,
respectively. Also the solutions eliminated all the voltage
violations of the systems for the critical condition of the
initial state of charge for the EVs where the SOC was
set as zero. Based on the simulation results for the near-
optimal solutions and while increasing the EV penetration
in the system, still the solutions can decrease the energy
losses up to 66%. In addition, near-optimal solutions can
solve the voltage violation problem for up to 8.4 times
more EVs in 33-bus system and 14 times more EVs in
69-bus system.
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