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ABSTRACT

A Bayesian multivariate model with a structured covariance matrix for multi-way nested data is pro-
posed. This flexible modeling framework allows for positive and for negative associations among
clustered observations, and generalizes the well-known dependence structure implied by random
effects. A conjugate shifted-inverse gamma prior is proposed for the covariance parameters which
ensures that the covariance matrix remains positive definite under posterior analysis. A numerically
efficient Gibbs sampling procedure is defined for balanced nested designs, and is validated using
two simulation studies. For a top-layer unbalanced nested design, the procedure requires an ad-
ditional data augmentation step. The proposed data augmentation procedure facilitates sampling
latent variables from (truncated) univariate normal distributions, and avoids numerical computation
of the inverse of the structured covariance matrix. The Bayesian multivariate (linear transformation)
model is applied to two-way nested interval-censored event times to analyze differences in adverse
events between three groups of patients, who were randomly allocated to treatment with different
stents (BIO-RESORT). The parameters of the structured covariance matrix represent unobserved
heterogeneity in treatment effects and are examined to detect differential treatment effects.

Keywords Bayesian probit model · Covariance structure model · interval-censored times · multi-way nested design ·
shifted-inverse gamma distribution

1 Introduction

Multilevel or hierarchical structured outcomes occur frequently in various research disciplines. For instance, these
structures can be found in studies of the development of physical symptoms, genetic disease among family members,
studies with multi-arm multi-stage designs, multi-centre trials and in experiments with multiple endpoint measure-
ments. Measurements of patients can be considered to be clustered, where clustered observations are correlated since
they share some homogeneous features (e.g., they are obtained from the same patient or from patients receiving the
same treatment). The analysis of multi-way nested measurements can be complicated, since they are often measured
on a discrete scale (e.g., event time, binary, ordered categorical). Before discussing the merits of our Bayesian multi-
variate modeling approach for multi-way nested data, the deficiencies of multilevel approaches are discussed.

Failure of multilevel approaches

Traditionally, the modeling of multi-way nested data is done using latent variables, also referred to as random effects,
where the dependence among clustered observations is modeled by the sharing of a random effect. This approach has
been popularized in many ways, for instance, through factor analysis models, multilevel models, and frailty survival
models. However, this popular approach has several disadvantages.
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First, random effects can only describe positive within-cluster correlation, since it is based on shared/pooled informa-
tion. The pooling of information across clusters is operated through random effects, and clustered observations are
positively correlated by the sharing of a random effect. On top of that, there are only a few statistical approaches to
model negative within-cluster correlation, which are limited to small clusters [1, 2, 3].

Second, the random effect variance has a natural lower-bound of zero. When the random effect variance approaches
this lower bound, estimation methods behave poorly and often fail to converge, since the covariance matrix of the
random effects becomes singular [4, 5, 6, 7]. The likelihood function becomes intractable when the covariance matrix
is singular. Because a random effect variance of zero represents a singularity, a spike-and-slab prior has been proposed
to include this point in the parameter space under the model [8]. One component represents zero variance (the spike)
and the second component (the slab) represents non-zero random effect variance. However, this two-component
mixture prior makes Bayesian inference more difficult, it increases the computational burden, and its performance is
sensitive to hyper-parameter settings.

Third, the significance of a random effect variance is often of specific interest. However, this point is on the boundary
of the parameter space, and commonly used tests, such as the likelihood ratio, Wald and score tests, do not have the
traditional chi-squared distribution [9, 10, 11]. Furthermore, the sampling distribution of variance estimates is strongly
asymmetric, which makes the standard error a poor characterization of the uncertainty. When testing the significance of
a random effect variance with a likelihood ratio test, the P-value is conservative and approximately twice as large as it
should be [12]. Currently, there is no widely accepted (parametric) test procedure to test the significance of a random
effect variance [13]. Developed methods are computationally intensive and provide approximate results [14, 15].
Permutation tests have been proposed as a nonparametric method to test variance components [16], but they may
not be transferable to more complex nested data structures with crossed random effects and are also computationally
intensive.

Fourth, the number of model parameters increases with the number of clusters. Therefore, the complexity of the model
increases when collecting more data, which makes the modeling approach not suitable for high-dimensional large data
[17].

Fifth, the computational burden is high for multi-way nested discrete data, since it requires integrating over a high-
dimensional truncated parameter space. For instance, the multivariate analysis of discrete response data through
multiple latent variables, representing a confirmatory factor analysis model, has become very popular and different
estimation methods have been proposed (see e.g., [18, 19, 20]). Although models of this type are very flexible,
parameter estimation can be highly computationally intensive, when more than a few latent variables are included
[21, 22, 23].

Bayesian modeling of covariance structures

In order to overcome these disadvantages, an integrated likelihood approach is followed [24]. The random effects are
considered nuisance parameters and are integrated out. As a result, the dependence structure, which is implied by the
random effects, is directly modeled with a multivariate linear model and a structured covariance matrix. Our Bayesian
multivariate model with a structured covariance matrix is referred to as a Bayesian covariance structure model (BCSM),
in which associations among multi-way nested data are efficiently represented by covariance parameters.

Early work on covariance structure analysis considered a multivariate normal distribution for the observed data with a
parametric form for the covariance matrix [25, 26, 27]. The parametric form for the covariance matrix represents the
dependence structure of a linear factor analytic model with normally distributed random effects (referred to as latent
factors or latent variables). The objective was to obtain maximum likelihood estimates for the variance components as-
sociated with the random effects, and to assess effects of hypothesized/experimental random dimensions to cluster the
observed data. The covariance structure model comprehends a large class of models with for instance the confirmatory
factor model, the structural equation model, and the mixed effects model as special cases [26].

Advantages

There are numerous advantages of modeling multi-way nested data with a structured covariance matrix in contrast to
using random effect parameters. The structured covariance matrix can represent negative as well as positive within-
cluster dependencies. This is a novel and important extension, since negative within-cluster differences can represent
differences between clustered units. For instance, negative (positive) associations among clustered units can represent
heterogeneity (homogeneity) in treatment effects between those receiving the same treatment.

Furthermore, the point of no association – a zero covariance represents a random effect variance of zero – is not a
singularity under the BCSM. The covariance parameters can be negative, zero or positive, taking into account the
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positive-definiteness constraints on the covariance parameters. Thus, the BCSM does not require for instance mixture
priors to include the singularities of the mixed effects model. This has the advantage that the covariance structure
modeling approach does not have estimation and/or test issues when the covariance parameter approaches zero. This
enables statistical testing of the significance of covariance parameters. For instance, testing the significance of the
covariance between event times in the same treatment group represents testing overall non-inferiority between treat-
ments. Furthermore, each type of clustering is associated with a single covariance parameter, and the number of
covariance parameters does not depend on the number of clusters. This makes the approach much more suitable for
high-dimensional nested data in comparison to models that use a random effect for each type of clustering.

Contributions

Our BCSM for multi-way nested (categorical) data requires several technical innovations. First, expressions for the
determinant and inverse of the structured covariance matrix are readily available from [28], [29], and [30]. When
the covariance parameters are positive, the structured covariance matrix is diagonally dominant and therefore positive
definite. However, for negative covariance parameters this is not necessarily true. For balanced and some unbalanced
designs, the necessary and sufficient conditions for a balanced design, and sufficient conditions for an unbalanced
design for the covariance parameters are derived for which the structured covariance matrix is positive definite.

Second, conjugate shifted-inverse gamma prior distributions [31] are proposed for the covariance parameters, which
includes the positive-definite restrictions. It is shown that with novel Helmert matrix transformations the structured
covariance matrix can be diagonalized. This procedure is used to derive the analytical expressions for the posterior
distributions of the covariance parameters. This result facilitates a Gibbs sampling algorithm, and efficient sampling
of covariance parameter values is demonstrated.

Third, for multi-way nested categorical data, a novel data augmentation (DA) algorithm is given. Expressions are
given for the distribution of the latent (missing) data for any number of (nested) clusters and cluster sizes. The DA
algorithm is computationally efficient, even when increasing the cluster size, since the inverse is explicitly known
and each conditional covariance matrix is invariant across cluster members and clusters. This does not hold for an
unrestricted covariance matrix, where the partitioning of the covariance matrix for each augmented latent variable
leads to unique distributional components and requires computing the inverse of conditional covariance matrices. This
leads to a significant increase in the computational burden of Markov chain Monte Carlo (MCMC) algorithms, when
increasing the cluster size. Given the computational burden, MCMC-based algorithms for the multinomial probit
model [32, 33, 34, 35] and the multivariate probit model [36] are limited to (relatively) small cluster sizes.

Fourth, the BCSM is represented as a multivariate extension of the linear transformation model. This BCSM linear
transformation model generalizes the normal frailty probit model for single-nested event times [37], and extends
normal frailty (probit) survival models, and the multivariate linear transformation model of [38], by also allowing
negative event time associations. Furthermore, the performance of the BCSM linear transformation model and the
Gibbs sampler is shown on multi-nested event time data under type-II interval censoring, where the dimension of the
covariance matrix is high (a block diagonal matrix of around 10,000 with main diagonal block sizes of around 3,300
observations). The study design represents a real-world scenario where the number of patients in each treatment group
determines the dimension of the covariance matrix, which grows at the same rate as the cluster size.

This paper is organized as follows: Section 2 presents the BCSM for multi-way nested designs. Furthermore, the
conditions are derived under which a multi-way nested covariance matrix is positive definite. In Section 3, the posterior
distributions are derived for the latent variables and covariance parameters under the BCSM. Section 4 introduces the
BCSM linear transformation model for multi-way nested survival data and presents a Gibbs sampling algorithm. The
performance of the Gibbs sampler is shown in a simulation study for two different nested designs in Section 5. In
Section 6 our real-data application is presented in which the BCSM is used to analyze interval-censored clustered
event time data from a three-armed multi-centre randomized clinical trial. Finally, Section 7 is the conclusion with a
discussion of the BCSM for nested designs.

2 The BCSM for Nested Designs

Following [18] and [19], the dependence structure of multiple quantal variables can be described by Q underlying
factor variables (i.e., latent variables, random effects). In the nested design, the factor variables are independently
normally distributed and nested within each other, where factor variable q is nested within q+1 for q = 1, . . . , Q− 1.
A convenient representation of the BCSM is through underlying latent variables, denoted as Z, also referred to as latent
data, which are manifested through a threshold specification [36]. The latent data specification is only necessary when
the Z cannot be directly observed. Otherwise the Z is considered to be the observed outcome data. For the BCSM,
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given the factor variables, the implied dependence structure is limited to positive intra-cluster correlations, since the
random effect variances are restricted to be positive.

When integrating out the random effects, the BCSM has a covariance matrix representing dependencies implied by
the random effects. Then, the latent variables in level i of highest-level factor Q are multivariate normally distributed
– without specifying a many-to-one mapping of the latent variables to the discrete observations – according to

Zi ∼ N (Xiβ,Σ) ,

Σ = τ0I+

Q
∑

q=1

τqNqN
⊤
q , (1)

where τq (q ≥ 1) represents the intra-cluster correlation of factor q, and Nq is an incidence matrix representing the
clustering of observations according to factor variable q. In the above, I denotes the identity matrix, where we will
often denote its dimension with a subscript in the remainder. For categorical observed data, without loss of generality,
the covariance of factor 0 of the latent variables Zi can be restricted τ0 = 1. The covariance matrix represents the
nested structure and within-cluster dependencies are allowed to be negative through the covariance parameters. The
covariance matrix Σi represents the dependence structure of the latent variables in level i of highest-level factor Q,
and we omit the index i when only considering the latent variables of a single level of factor Q, as seen in Equation
(1).

2.1 Nested Design Notation

In an analysis of variance, the nested covariance matrix of an unbalanced Q-way (random) nested design has a
certain structure. The matrix Σ represents the covariance matrix of the observations in level i ∈ {1, . . . , nQ} of factor
Q. For q < Q, let mq denote the number of unique levels of factor q in a level of factor Q, and mQ = 1. Let nqj

denote the number of levels of factor q nested in level j of factor q + 1. Due to the nested design, it follows that
mq =

∑

j nqj . Let sqj represent the number of observations (factor 0) in level j of factor q, and s1j = n0j . Then, the
covariance matrix Σ is given by (see Remark 1)

Σ = τ0Im0 +

Q
∑

q=1

τq
(
Imq

⊗ {Jsqj }j
)
, (2)

where each Jsqj is a square matrix of length sqj with all elements equal to one. Furthermore, the operator I⊗ {Aj}j
denotes the matrix direct sum for a sequence of matrices {Aj}j . The covariance matrix in Equation (2) is referred to
as a nested unbalanced covariance matrix. The covariance parameters τ can be identified when each factor contains a
level with at least two lower levels nested in it. For 1sqj , the all-ones vector in R

sqj , we have that (2) equals (1) with
Nq = Imq

⊗ {1sqj}j .

For the balanced Q-way nested design, we have nqj = nq for all q i.e., the number of unique levels, nq, of each
factor variable q (q = 0, . . . , Q− 1), is equal across levels of higher factor variable q + 1. The nesting information is
represented by n ∈ N

Q, which is referred to as the nesting vector. The number of observations in each unique level of
factor q is denoted sq, which is the cumulative product of n up to q − 1, sq =

∏q−1
r=0 nr, where s0 = 1. For a level of

the highest factor Q, in the balanced design the number of nested levels of factor q can be expressed as mq = sQ/sq,
where sQ represents the total number of observations in each level of factor Q. Then, for the balanced nested design,
the covariance matrix is represented by

Σ = τ0IsQ +

Q
∑

q=1

τq(Imq
⊗ Jsq ), (3)

where ⊗ denotes the Kronecker product. A matrix of the form of Equation (3) is referred to as a nested balanced
covariance matrix.
Remark 1 (Construction of the multi-way nested covariance matrix). The covariance matrix Σ in Equation (2) can

be recursively constructed according to [29]. To this end, let the design matrix Ñq denote membership of factor q in

a level of factor q + 1. Using the notation of Equation (2), the design matrix Ñq is given by

Ñq = Imq
⊗ {1nqj

}j .
Let Σ̃Q = τQ, and let Σ̃q represent the nested dependence structure induced by the factors Q up to and including q.

Then, Σ = Σ̃0, where for all q < Q

Σ̃q = τqImq
+ ÑqΣ̃q+1Ñ

⊤
q .

Furthermore, Σ equals the covariance matrix in (1) for Nq = Imq
⊗ {1sqj}j .
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2.2 Parameter Restrictions for the Nested Covariance Matrix

The inverse of the nested covariance matrix in Equations (2) and (3) plays a crucial role when estimating parameters
and computing the covariance matrix of estimators for mixed effect models. In our Bayesian approach, the inverse and
the positive-definiteness constraints are important to specify the posterior distributions for the covariance parameters
and the distributions of the latent variables. Therefore, the inverse has been studied extensively.

Formulas for the eigenvalues, determinant and the inverse under a balanced design are given by [28]. [29] defined
recursive procedures for the determinant and the inverse for any nested unbalanced classification. Explicit expressions
for the inverse for unbalanced nested designs are given by [39]. [40] presents the spectral decomposition of a balanced
covariance matrix to obtain the eigenvalues and inverse in a straightforward way. The coefficients of the expression
for the (balanced) inverse of [28] are explicitly given by [41] and to a broader extent by [30].

Positive-definite constraints for the covariance parameters are only relevant when the covariance parameters are not
restricted to be positive. Traditionally, each covariance parameter represents a (positive) random effect variance, which
is restricted to be positive. This makes the covariance matrix diagonally dominant and hence automatically positive
definite. In our setup for the BCSM, the covariance parameters are not restricted to be positive, hence the positive
definite property of the covariance matrix does not necessarily hold and conditions for positive definiteness must be
derived.

The following theorem gives a necessary and sufficient condition under which a nested balanced covariance matrix is
positive definite, with covariance parameters allowed to be negative.

Theorem 1. The nested balanced covariance matrix in Equation (3) is positive definite if and only if τ0 > 0 and

τq >
−
(

τ0 +
∑q−1

r=1 srτr

)

sq
∀q ∈ {1, . . . , Q}. (4)

Proof. The unique eigenvalues of a nested balanced covariance design matrix are given by (see e.g., Eq. 3.10 in [28])

τ0 +

q
∑

r=1

srτr ∀q ∈ {0, . . . , Q}. (5)

The eigenvalues of Σ can also be determined recursively by observing that

Σ = τ0IsQ +

Q−1
∑

q=1

τq(Imq
⊗ Jsq )

︸ ︷︷ ︸

ΣQ−1

+τQ1sQ1
⊤
sQ . (6)

The vector 1⊤
sQ is a left-eigenvector of ΣQ−1 with eigenvalue τ0 +

∑Q−1
q=1 sqτq . Following [42], the eigenvalues of Σ

are the eigenvalues of ΣQ−1 but with one of the eigenvalues equal to τ0 +
∑Q−1

q=1 τqsq replaced by τ0 +
∑Q

q=1 τqsq .
The result now follows by induction and the fact that a matrix is positive definite if and only if all the eigenvalues are
positive.

No general results are known for the spectral decomposition of an unbalanced nested covariance matrix [43]. How-
ever, the nested unbalanced covariance matrix defined in Equation (2) can be regarded as a principal submatrix of a
(maximum) nested balanced covariance matrix. Let n̄q = maxj nqj denote the maximum number of unique levels
of factor q across levels j of factor q + 1, and also across levels i of factor Q to balance the covariance matrix for
all components Zi. Then, s̄q =

∏q−1
r=0 n̄r represents the (balanced) number of observations in each level of factor q

and m̄q = s̄Q/s̄q the number of nested levels in layer q for this maximum balanced matrix. It follows that each Nq

is a (row) submatrix of Im̄q
⊗ 1n̄q

and hence Σ from Equation (2) is a principal submatrix of the maximum nested
balanced covariance matrix:

Σb = τ0Is̄Q +

Q
∑

q=1

τq(Im̄q
⊗ Js̄q ). (7)

It holds that each Σ is positive definite if Σb is positive definite, since each Σ is a principal submatrix of Σb.

Alternatively, consider the minimum balanced principal submatrix of the nested unbalanced covariance matrix in
Equation (2), with for each factor q the number of nested levels in the balanced case equal to the minimum number of
nested levels in the unbalanced case. Let s

¯q
represent the (balanced) number of observations in each level of factor q
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based on the minimum number of unique levels of factor q across levels j and i of factor q + 1 and Q, respectively.
When Σ is positive definite, any principal submatrix must be positive definite which includes the minimum balanced
principal submatrix.

From the above discussion, it is seen that the following necessary condition and sufficient condition can be given for
the covariance parameters to ensure that the nested unbalanced covariance matrix is positive definite.
Corollary 2. The nested unbalanced covariance matrix Σ is positive definite if τ0 > 0 and

τq >
−
(

τ0 +
∑q−1

r=1 s̄rτr

)

s̄q
∀q. (8)

Furthermore, Σ is positive definite only if τ0 > 0 and

τq >
−
(

τ0 +
∑q−1

r=1 s¯ rτr

)

s
¯
q

∀q. (9)

A special case occurs when the parameter space for τ remains the same under the (extended) balanced version Σb.
This occurs, for instance, when only the number of levels of factor Q − 1 varies across levels of highest-level factor
Q, a top-layer unbalanced nested design. Then, the constraint in Equation (8) also becomes a necessary condition.
Let sQi represent the number of observations in level i of the highest-level factor Q and let sq represent the number
of observations in each level of layer q < Q for the balanced part of the covariance structure. Then, according to
Theorem 1, it holds that each Σi is positive definite if and only if τ0 > 0 and

τq >
−
(

τ0 +
∑q−1

r=1 srτr

)

sq
∀q < Q, (10)

τQ >
−
(

τ0 +
∑Q−1

r=1 srτr

)

sQi
∀i =⇒ τQ >

−
(

τ0 +
∑Q−1

r=1 srτr

)

s̄Q
. (11)

Hence, the parameter space of τ does not change when replacing each Σi by Σb. This occurs in our real data
example, where only the number of patients (first-level factor), each with three event types, varies across treatment
groups (second-level factor). A sampling procedure is developed in which each main-diagonal block Σi of the nested
unbalanced covariance matrix is artificially augmented to a nested balanced covariance matrix Σb. This procedure
transforms the posterior analysis of the covariance vector τ to a balanced situation, which greatly simplifies the
analysis.

Relation to ML Estimation

Corollary 2 represents a sufficient condition (Equation (8)) for a positive definite nested unbalanced covariance matrix.
Hence, in the unbalanced design it is possible that certain covariance vectors τ are allowed for whichΣb is non-positive
definite. When constraints on the negative part of the parameter space are less restrictive under the unbalanced design
than under the (extended) balanced design, constraints are too restrictive – when estimating under the (extended)
balanced design – resulting in biased estimates. Note that the parameter space defined in Corollary 2 includes the
non-negative constraints on the (co)variance components and therefore still extends the usually considered parameter
space under maximum likelihood (ML) estimation. In general, for ML estimation in variance component models, the
likelihood function is maximized over the positive space of the variance components to obtain the ML estimators of
variance components [44]. [6] discussed procedures that constrain algorithmic iterates to non-negative values. For
instance, Henderson’s iterative algorithm for computing ML and REML estimates of variance components ensure
non-negative values for the variance components at any point when the algorithm starts with strictly positive values.
Under the constraint in Equation (8) of Corollary 2, it is still possible to explore negative correlation among clustered
observations, which is not possible under most regular ML estimation methods. Furthermore, the point zero is not a
boundary value of the parameter space, which facilitates statistical testing whether a covariance is positive, zero, or
negative. Classical test approaches for testing the hypothesis of homogeneity (zero random effect variance) against
heterogeneity (positive random effect variance) break down, since under the null hypothesis the variance parameter is
at the boundary of the parameter space [14, 45].

3 Posterior Computation

An iterative procedure is derived to determine the full conditional distribution of the marginals of Zi in closed form
under a nested balanced design. Furthermore, a class of conjugate priors for the covariance parameters τ is determined.

6
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Both results facilitate a Gibbs sampling algorithm based on censored data, where observations consist of sets Ωi such
that Zi ∈ Ωi for all i. For an unbalanced nested design, a data augmentation procedure is proposed to create an
artificially balanced nested design (see Remark 2). Then, posterior distributions for the balanced design can also be
applied to unbalanced nested data.

3.1 Conditional Distribution of Latent Variables

A recursive procedure is given to derive the full conditional distribution of the marginals of Zi under a balanced nested
design. This requires an analytical expression for the inverse of the nested balanced covariance matrix:

Lemma 3. Let vq = τ0 +
∑q

r=1 srτr and

ρq =
−τq
vqvq−1

∀q ≥ 1. (12)

The inverse of Σ in Equation (3) is given by

Σ
−1 =

1

τ0
IsQ +

Q
∑

q=1

ρq(Imq
⊗ Jsq ). (13)

Proof. This result can be verified by observing that

1

τ0
+

q
∑

r=1

srρr =
1

vq
∀q (14)

which implies that ρ satisfies Eq. 4.7 in [28], noting that vq, τ0 are the eigenvalues of Σ.

For a matrix A this makes it relatively straightforward to evaluate the expression

A
⊤
Σ

−1
A =

1

τ0
A

⊤
A+

Q
∑

q=1

ρq A
⊤(Imq

⊗ Jsq )A. (15)

Evaluation of such an expression is required for the computation of the full conditional distribution of regression
parameters. This result will be used to efficiently perform posterior inference for the spline and regression parameters
under the BCSM introduced in Section 4. Furthermore, the computational demand of the Gibbs sampling algorithm is
reduced, since the (low-dimensional) matrix products A⊤(Imq

⊗ Jsq )A on the right-hand side of (15) stay fixed over
iterations and can hence be stored before running the algorithm.

Next, it is shown that the conditional distribution of the latent variables in a level of factor Q − 1 given all other
observations in a level of factorQ is again a multivariate normal distribution with a nested balanced covariance matrix,
but now with Q− 1 factors. The proof is given in Appendix A. This result can be recursively applied in order to derive
the marginal full conditional distribution of the latent variables, which is particularly useful when sampling under a
restricted support (e.g, when dealing with categorical or event time data).

Theorem 4. Let Zi ∼ N(µi,Σ) with Σ positive definite as defined in (3). Let Zij denote the observations in the j-th
cluster of factor Q − 1. Under full knowledge of µi and Σ, the Zij (with mean µij) given remaining observations
Zi(−j) (with mean µi(−j)) is multivariate normally distributed with a balanced nested covariance matrix

Zij | Zi(−j) ∼ N(θij , ΣQ−1)

where

θij = µij + cij1sQ−1 ,

ΣQ−1 = τ0IsQ−1 +

Q−1
∑

q=1

τq(Im′

q
⊗ Jsq ) + τQ(1− fQ)JsQ−1 ,

and, letting ν̄ denote the average over entries of a vector ν,

cij = fQ
(
Z̄i(−j) − µ̄i(−j)

)
, fQ =

uQτQ
vQ−1 + uQτQ

,

uQ = (mQ−1 − 1)sQ−1, vQ−1 = τ0 +

Q−1
∑

q=1

sqτq, m
′
q = mq/nQ−1.

7
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Remark 2 (Data Augmentation Procedure). For an unbalanced nested design, latent data vector Zi with an unbal-
anced nested covariance matrix (2) is augmented to a larger vector Z

tot
i which has a balanced nested covariance

matrix according to Equation (7) and a known mean vector agreeing with the one of Zi. If the covariance matrix
is positive definite given τ , each Z

tot
i can be sampled in a Gibbs sampling procedure according to Theorem 4, and

the stationary marginal distribution of the subvector Zi equals the posterior distribution of Zi. When dealing with
categorical or event time data, the procedure still works with the possible inclusion of a restriction on the support of
the latent vector Zi. Introducing additional latent variables can increase the autocorrelation of sampled values. Note
that for a top-layer unbalanced nested design, Theorem 4 can be applied to each independent block, and hence no
additional latent variables have to be sampled for this step in a Gibbs sampler.

3.2 Posterior Distribution of the Covariance Parameters

For the nested balanced covariance matrix (3), the posterior distribution of the (possibly negative) covariance param-
eters is derived. This leads to a novel Gibbs sampling procedure (see Appendix D). The posterior distributions are
based on a transformation of the latent variables, which are rescaled to have mean zero

Vi = Zi − µi,

Vi ∼ N (0, Σ) .

Given µi, the vectors Vi are independently distributed and contain the relevant data information about the covariance
parameters τ .

Under a balanced nested design, orthonormal Helmert transformation matrices (e.g., [46]), Hn in R
n×n, can be used

to diagonalize the covariance matrix. The Helmert transformations that diagonalize Σ are operated on the rescaled
latent variables Vi, to obtain sufficient statistics for each covariance parameter and to construct posterior distributions.

A product of Helmert matrices is defined that diagonalize Σ. The components of the covariance matrix in Equation
(3) can be represented as a Kronecker product of smaller all-ones (J-)matrices and identity matrices.
Letting

⊗n
i=1 Ai = A1 ⊗A2 ⊗ · · · ⊗An for a sequence of matrices (Ai)

n
i=1, it holds that

Imq
⊗ Jsq =





q
⊗

r=Q−1

Inr



 ⊗
(

0⊗

r=q−1

Jnr

)

. (16)

Subsequently, it is shown that both Inq
and Jnq

can be diagonalized by Hnq
.

When viewed as an operator on vectors, the Helmert matrix decomposes a vector in a term which is proportional to
its mean (first element) and terms that represent the deviations. For a constant vector, these deviations are zero, and
Hnq

1nq
=

√
nqu1nq

, with u1nq
the first unit vector in R

nq . Hence, when multiplying the J-matrix on the left and
right with the Helmert matrix, it can be seen that the result is a diagonal matrix

Hnq
Jnq

H
⊤
nq

= (Hnq
1nq

)(1⊤
nq
H

⊤
nq
) = nqu1nq

u
⊤
1nq

= nqKnq
(17)

whereKnq
∈ R

nq×nq represents the single-entry matrix with a one at position (1, 1) and all other elements zero. When
operating Hnq

on the identity matrix, the result is also a diagonal matrix, since the Helmert matrix is orthonormal such
that Hnq

Inq
H

⊤
nq

= Inq
.

It follows that for each q the Helmert matrix Hnq
diagonalizes Inq

and Jnq
. Therefore, by Equation (16), Σ can be

diagonalized with a Kronecker product of Helmert matrices

H =
0⊗

q=Q−1

Hnq
, (18)

taking into account that the nq levels of factor q are nested in each level of factor q + 1.

Theorem 5 below shows that for the balanced nested design, the shifted-inverse gamma distribution is a conjugate
prior for each covariance parameter, when conditioning the posterior distribution on Z,µ and the other covariance
parameters. The shift parameter depends on covariance parameters of the nested factors. The scale parameter is
constructed from an idempotent projection matrix operated on the multivariate normally distributed (latent) variables.
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As in [31], the conjugate shifted-inverse gamma prior for the covariance parameters has support (−σ,∞) where it is
defined as

shifted-IG(x; a, b, σ) = ba

Γ(a)
(x+ σ)−(a+1) exp(−b/(x+ σ)). (19)

This leads to the following result, for which the proof is given in Appendix B.
Theorem 5. Let Vi ∼ N(0, Σ), where Σ is a nested balanced covariance matrix (Equation (3)). Assume the
following shifted inverse-gamma priors for the covariance parameters,

τ0 ∼ IG(ατ0 , βτ0),

τq | τ<q ∼ shifted-IG
(

ατq , βτq ,

(

τ0 +

q−1
∑

r=1

srτr

)

/sq

)

, ∀q ∈ {1, . . . , Q},

where τ<q = [τ0, . . . , τq−1]. Then, each covariance parameter τq has a shifted inverse-gamma posterior distribution

τ0 | V ∼ IG
(

ατ0 + nQp0/2, βτ0 +

∑nQ

i=1 S
2
i0

2

)

,

τq | (V, τ<q) ∼ shifted-IG
(

ατq + nQpq/2, βτq +

∑nQ

i=1 S
2
iq

2
,

(

τ0 +

q−1
∑

r=1

srτr

)

/sq

)

,

for q ∈ {1, . . . , Q}. The scale parameter components are defined by the sum-of-squares

S2
iq = ‖MqHVi‖2/sq,

using the idempotent subspace projection matrices

Mq =
(
Imq

⊗Ksq

)
−
(
Imq+1 ⊗Ksq+1

)
, ∀q ∈ {0, . . . , Q− 1},

MQ = ImQ
⊗KsQ .

The shape parameters pq are represented by

pq = tr(Mq) =

{
mq −mq+1, if q < Q,

1, else.

Using equivalence of the inner product and the trace of the outer product, as well as invariance under cyclic permuta-
tions of the trace, we can write for q < Q

S2
iq =

∑

ℓq:∈Lq:

(V̄iℓq: − V̄iℓ(q+1):
)2, S2

iQ = V̄ 2
i ,

whereLq: contains vectors denoting nested levels from level q up to levelQ−1 and V̄iℓq: is the mean of the observations
in the level of factor q denoted by ℓq: = [ℓq, ℓq+1, . . . , ℓQ−1], where each ℓq ≤ nq . When multiplied with a factor sq ,
these sum of squares agree with the usual sum of squares seen in an analysis of variance of a random nested design
[47].
Remark 3 (Unbalanced Nested Design). For an unbalanced design, larger clusters contain more information about
the covariance parameters than smaller ones. Due to this imbalance in information, no convenient conjugate prior
distribution is available for the covariance parameters for unbalanced designs. However, for some unbalanced nested
designs the parameter space for τ remains the same under an artificially (maximum) balanced version (see Equation
(7)). In that case, the nested unbalanced covariance matrix is considered to be a principal submatrix of a maximum
balanced covariance matrix. A data augmentation step can be defined to artificially balance the data matrix such
that the covariance parameters can be sampled according to the posterior distributions defined in Theorem 5. The
augmentation procedure is valid as long as the marginal distribution of the covariance parameters remains the same,
and the joint distribution of the parameters and observed data can be obtained from the joint distribution of the
extended set. We will see in Section 4 that for a top-layer unbalanced nested design, it suffices to complete the sample
means to those under a balanced design. As this corresponds to (parallelized) univariate normal sampling, this can
be done very efficiently.

Constraints on the parameter space under an unbalanced design – this concerns the negative part of the parameter
space – can be less restrictive than under a balanced design. Then, the parameter space described by the posterior
distribution for the covariance parameters derived under an artificially (maximum) balanced design is incorrectly
constrained. Note that the artificial balancing procedure will always work when assuming a positive covariance
parameter.

9
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4 Application to Interval-Censored Nested Survival Data

This section builds upon the results of Section 3 to construct a Gibbs sampler for the BCSM linear transformation
model for multi-way nested event time data under type-II interval censoring. This BCSM (survival) model is a mul-
tivariate extension of the linear transformation model in which the normal cumulative distribution function is used to
describe clustered event times. The model extends normal frailty probit survival models by also allowing negative
event time associations.

The design of a real data study is followed [48], where patients were assigned to n2 treatment groups (factor q = 2).
Furthermore, n1i patients (factor q = 1) were assigned to treatment group i, and event times of n0 different event
types were observed per patient. The dependence structure is represented by a two-way nested unbalanced design. For
each event time, only the day at which the event time occurred is known, hence the event times are type-II interval
censored.

The event times ti of treatment group i are assumed to be described by the BCSM linear transformation model

hi(ti) = −Xiβ +Ei, (20)

Ei ∼ N(0,Σi),

Σi = In0n1i + τ1 (In1i ⊗ Jn0) + τ2Jn0n1i ,

where the structured covariance matrix represents the nesting of event times in patients, who are nested in treatment
group i. Notice that only the first factor (number of patients, factor Q − 1) is unbalanced in the nested unbalanced
covariance matrix. Furthermore, τ0 = 1 is enforced for identification purposes, notice that this does not change the
result of Theorem 5 as the posterior distributions of the other covariance parameters are given conditional on τ0.

The transformation hi is such that hijk is an increasing continuous function with hijk(0) = −∞ and hijk(∞) =
∞ for event time k of patient j in treatment group i. Next, for each event time tijk we only observe an interval
Ω̃ijk = [Lijk, Rijk) such that tijk ∈ Ω̃ijk , and it is allowed that Lijk = 0 or Rijk = ∞. We assume non-informative
censoring, meaning

P (ti ≤ s|Li = ℓi,Ri = ri,Xi) = P (ti ≤ s|ℓi ≤ ti < ri,Xi).

The baseline function hi is modeled using monotone regression splines [49], where the hijk are equal to the same
translated linear combination of integrated splines parametrized by a vector γ. The transformation applied to ti

resulting from a given vector γ is denoted by hi(· | γ).
Latent variables, Zi, are introduced for posterior computation, which are linked to the interval restrictions on the event
times, Li ≤ ti ≤ Ri, through a many-to-one mapping. Following the augmentation design of [49] for the univariate
probit model, let sijk equal Lijk if Lijk > 0, and equalRijk otherwise, and let Zi = hi(si)−hi(ti). Then, the latent
variables are multivariate normally distributed

Zi ∼ N (hi(si) +Xiβ, Σi) , (21)

with the interval restriction Zijk ∈ Ωijk

Ωijk =







(hijk(Lijk)− hijk(Rijk), 0] if Lijk > 0 and Rijk <∞,

(0,∞) if Lijk = 0,

(−∞, 0] if Rijk = ∞.

(22)

The sign of the covariance between clustered event times is equal to the sign of the covariance between the correspond-
ing latent variables, since the latent variables are defined as a nondecreasing, non-constant function h(.) of the event
times (for the proof see Appendix C).

Let I(·) denote the indicator function. From (21), it is seen that the augmented data likelihood becomes

L (γ,β, τ | Z,X,L,R) =

n2∏

i=1

φ (Zi | hi (si | γ) +Xiβ, Σi) I (Zi ∈ Ωi) . (23)

The (observed-data) likelihood cannot be factorized as a product of marginal components representing the likelihood
contributions of the left, right and interval censored event times, since the event times are not independently distributed.
Following the restrictions in Equations (10) and (11) for a nested design, the covariance matrix Σi is positive definite
for all i, under the following restrictions for the covariance parameters:

τ1 > −1/n0, (24)

τ2 >
−1− τ1n0

n0 maxi n1i
. (25)

For these restrictions, clustered event times can be negatively, positively or zero correlated, for each type of cluster.

10
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4.1 Data Augmentation Gibbs Sampler

Posterior computation is performed using a Gibbs sampling algorithm. The algorithm consists of four sampling steps:
sampling of latent variables, covariate effects, spline coefficients, and covariance parameters. The full conditional
distributions of covariate parameters β and spline parameters γ are relatively straightforward, and they are given in
Appendix D.

The sampling of the latent variables and covariance parameters require a specific approach, to avoid computing the
inverse of the nested covariance matrix, and to sample directly from the posterior distributions. The posterior distribu-
tions are derived using the results from Theorem 4 and Theorem 5.

Sampling Latent Variables.

The full conditional distribution is derived for the marginals of Zi defined in Equation (21). First, the full conditional
distribution is derived of the latent variables of patient j in treatment group i, Zij , given the latent variables of the
other patients in treatment group i, Zi(−j). Let µi = h̃(si) +Xiβ, it follows from Theorem 4 and the likelihood (23)
that given µi, Σi

Zij | Zi(−j) ∼ N (θij , Σij) I (Zij ∈ Ωij) , (26)

where

θij = µij + cij1n0 ,

Σij = In0 + τ1Jn0 + τ2(1− f2i)Jn0 ,

cij = f2i
(
Z̄i(−j) − µ̄i(−j)

)
,

f2i =
n0(n1i − 1)τ2

1 + n0τ1 + n0(n1i − 1)τ2
.

The Ωij represents the set of latent variables values which depends on the observed event times as defined in Equation
(22).

Second, again using Theorem 4, the conditional distribution of each latent variable Zijk of patient i given the other
latent variables Zi(−jk) is derived. Let τ̃1i = τ1 + τ2(1− f2i), it then follows that

Zijk | Zi(−jk) ∼ N(θ̃ijk , σ
2
ijk)I (Zijk ∈ Ωijk) , (27)

where

θ̃ijk = θijk + c̃ijk,

σ2
ijk = 1 + τ̃1i(1− f1i),

c̃ijk = f1i
(
Z̄ij(−k) − θ̄ij(−k)

)
,

f1i =
(n0 − 1)τ̃1i

1 + (n0 − 1)τ̃1i
.

This procedure supports the sampling of each latent variable from the joint multivariate distribution, by sequentially
sampling from truncated univariate normal distributions.

Sampling Covariance Parameters

The latent variables are re-scaled to have mean zero, Vi = Zi −hi(si)−Xiβ. Under the prior specification stated in
Theorem 5, the parameter τ1 has a shifted inverse-gamma posterior distribution given Vi:

τ1 | Vi ∼ shifted-IG
(
ατ1 + (n1i − 1)/2, βτ1 + S2

i1/2, 1/n0

)

where S2
i1 = ‖Mi1H

(i)
Vi‖2/n0, Mi1 = (In1i ⊗ Kn0) − Kn0n1i and H

(i) = Hn1i ⊗ Hn0 . The event times are
independently distributed across treatment groups i. Thus, the posterior distribution of τ1 given V is given by

τ1 | V ∼ shifted-IG
(

ατ1 +

∑n2

i=1(n1i − 1)

2
, βτ1 +

∑n2

i=1 S
2
i1

2
, 1/n0

)

. (28)

The design is unbalanced, since the treatment groups have a different number of patients. Hence, the balanced covari-
ance matrix Σb from (7) is considered, for which each covariance matrix Σi is a principal submatrix:

Σb = In0n̄1 + τ1(In̄1 ⊗ Jn0) + τ2Jn0n̄1 ,

11
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where n̄1 = maxi n1i. From Theorem 1, it follows that Σb is positive definite if-and-only-if (24) and (25) hold, hence
the parameter range for τ is the same under Σb and each Σi. The Vi are augmented with Ui to create a vector of
observations V

b
i which is normally distributed with mean zero and the balanced covariance matrix Σb. Following

Theorem 5, the posterior distribution of τ2 given τ1 and V
b is given by

τ2 | (Vb, τ1) ∼ shifted-IG
(

ατ2 + n2/2, βτ2 +

∑n2

i=1 S
2
i2

2
, (1 + n0τ1)/(n0n̄1)

)

, (29)

where S2
i2 = ‖M2HV

b
i‖2/(n0n̄1), M2 = Kn0n̄1 , and H = Hn̄1 ⊗Hn0 .

The structure of H and M2 reveals that the sum of squares S2
i2 equals the squared average outcome in each

treatment group:

S2
i2 =

(
V̄ b
i

)2
=

(
n1iV̄i + (n̄1 − n1i)Ūi

n̄1

)2

. (30)

Thus, the group means V̄i can be augmented with group means Ūi to obtain the balanced group means V̄ b
i . The Gibbs

sampler now makes use of the fact that the conditional distribution of Ūi given V̄i and τ is normal with respective
mean and variance

E
(
Ūi | V̄i, τ

)
=

n0n1iτ2
1 + n0τ1 + n0n1iτ2

V̄i,

V
(
Ūi | V̄i, τ

)
=

1 + n0τ1 + n0(n̄1 − n1i)τ2
n0(n̄1 − n1i)

− n0n1iτ
2
2

1 + n0τ1 + n0n1iτ2
.

The fact that τ2 and Ūi are sampled from their respective full conditionals given the complete model with balanced
covariance matrix Σb makes that this augmentation procedure is valid (see page 9).

5 Simulation Studies

The performance of our Bayesian inference method is evaluated on the data described in Section 4 using two simulation
studies. In the first study, the number of treatment groups is large (n2 = 100), the group sizes n1i are small (n1i ≤ 10)
and five events are recorded per patient (n0 = 5). The second study mimics the real-life data application introduced
in the next section, where three treatment groups are considered which consisted of 1172, 1169, and 1173 patients,
for which three events were recorded. Hence, in the second study, the number of treatment groups n2 is set to 3,
n1i ≥ 1169 and n0 = 3. For both studies, parameter recovery and coverage rate results are given in Appendix E.
Furthermore, for both studies, plots are shown that display the distribution of the parameter estimates (posterior mean
and median) and effective sample sizes over all simulations.

For the first study, on average the parameters are recovered quite well, and the coverage statements expressed by the
posterior distribution are close to the actual coverage values, averaged over simulations. This also holds for the second
simulation study, but to a lesser extend for the results for τ2. Due to the small number of treatment groups, the posterior
variance of τ2 is very large (small) when τ2 is far from (close to) zero. As a result, the coverage rate of a 95% coverage
interval is larger than expected (100%) when τ2 = 0, while it is smaller than expected (87%) for τ2 = 0.025. It is
concluded that in this situation, while being uncertain about its true value, the algorithm can still reliably determine
whether or not τ2 ≈ 0.

6 Real-life Data Application

Interval-censored clustered event time data from a three-armed randomized clinical trial was analyzed, where patients
required a drug-eluting stent during a coronary intervention [48]. The experimental arms in this trial consisted of
patients obtaining a biodegradable polymer stent eluting either everolimus (n11 = 1172 patients) or sirolimus (n12 =
1169 patients). The third arm obtained a durable polymer zotarolimus-eluting stent (n13 = 1173 patients). The
outcome variables of interest were the event times of cardiac death, target vessel related myocardial infarction and
clinically indicated target vessel revascularization after 12 months (360 days) of follow up. In [48], log-rank tests were
conducted to examine differences in outcomes under the zotarolimus-eluting stent and the everolimus-eluting stent,
and between the zotarolimus-eluting stent and the sirolimus-eluting stent separately. They used a primary endpoint,
a composite of the three event times, thereby avoiding multiple testing due to dealing with multiple outcome types.
However, non-inferiority of the everolimus- and the sirolimus-eluting stents versus the zotarolimus-eluting stent were
tested simultaneously. No significant differences were found between the stents (using a significance level of 0.05)
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with respect to the primary endpoint under the log-rank test. Adjustments for covariates was not necessary, since
randomization was seen to have been achieved.

The registered event times were measured in days for 12 months (360 days). Therefore, right endpoints for survival
were set at the registered event times and the left endpoints were set at the right endpoints minus one day. Right-
censoring occurred when patients withdrew their consent to be monitored in the study, or when they were lost to
follow-up (which occurred rarely, 28/3514 ≈ 0.80%). After cardiac death, patients were not at risk for any of the
other events, which violates the non-informative censoring assumption. Therefore, events not observed before cardiac
death were both left and right censored and excluded in the sampling of the baseline and covariate effects. This
solution, applied to 27/3514 ≈ 0.77% of the patients, ensured that these patients were retrospectively treated as not
being at risk for any of the censored events after occurrence of cardiac death.

The (semi-parametric) BCSM (survival) model with a two-way nested covariance structure (Equation (20)) was used
to examine treatment differences. The covariance parameter τ1 represented the covariance between the observed times
of the n0 = 3 event types of each patient. The covariance between event times of patients in the same treatment
group was represented by τ2. The degree of the monotone splines was set to four, and the spline knots were set at
the 20 equidistant values in the interval [0.01, 362.6]. The Gibbs sampler was run with a burn-in of 3,000 iterations.
Gibbs sampler convergence was assessed with the Geweke diagnostic (sample size of 500). After convergence was
confirmed, the algorithm was applied until an effective posterior sample size of 600 was collected for each non-spline
parameter. Improper priors were used for all parameters except for the intra-treatment covariance (see Appendix
E). A shifted-inverse gamma prior was specified for τ2 with shape and scale parameter aτ2 = 0.001, bτ2 = 0.001,
respectively, which avoided the Gibbs sampler to visit very high values for τ2.

In Figure 1, a histogram is shown of the sampled covariance parameters τ . The median and 95% HPD intervals are
also shown. The median intra-patient covariance τ1 is around 0.73, and the estimated median correlation is around 0.42
with a 95% HPD interval of [0.29, 0.54]. Thus, around 42% of the total variance in observed event times is explained
by this moderate correlation among patient’s event times. Patients having an event are more likely to receive another
event than those not having an event after 12 months follow-up. In Figure 2, the median posterior marginal incidence
rate (univariate cdf) for any of the considered events is plotted, along with a point-wise 98% credible interval. The
(univariate) incidence rate is defined as the probabilityP (T ≤ t) = Φ (h(t)/(1 + τ1 + τ2)), using a common baseline
for the different event types. The plot shows the marginal probability of any event before each day within the 12 months
of follow-up. The marginal incidence rate after one year was very low and one of the challenging aspects. It can be
seen that the credible interval lies close to the median incidence rate. Furthermore, the median posterior incidence rate
is in agreement with the reported trend in composite incidence rates of cardiac death, myocardial infarction and target
vessel revascularization, which was computed with the Kaplan-Meier estimator (see [48] Fig. 2A).

intra subject covariance t 1 intra treatment covariance t 2
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Figure 1: Histogram of posterior samples of τ1 (left panel) and τ2 (right panel) under the event time observations in the
real-life (BIO-RESORT) dataset. The dashed line shows the median of τ1 = 0.73 (left panel) and of τ2 = −0.00075
(right panel). The 95% HPD intervals are represented by the dashed lines with dots.
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Figure 2: Posterior common marginal incidence rate (cumulative distribution) function for the event time observations
in the real-life (BIO-RESORT) dataset. The point-wise mean is plotted vs. the time after intervention, while the
shaded part represents a 98% posterior confidence interval.

6.1 Treatment Differences

Substantial evidence in favor of the hypothesis τ2 ≤ 0 corresponded to equivalence between the treatment arms (i.e.,
the three stent types performed similar). The hypothesis τ2 > 0 represented a difference in performance of the three
treatment arms (non-equivalence). The posterior distribution of τ2 included the hypothesis of negative, positive and
no within-cluster dependence. Therefore, highest posterior density (HPD) interval and posterior odds testing were
used to examine treatment differences for three treatment arms on three different endpoints. Our approach avoided
testing multiple null hypotheses by collecting data evidence from each treatment arm on each endpoint in favor of
the null hypothesis of equivalence (i.e., no risk differences) – otherwise this would be a multiple testing problem
–. Furthermore, composite endpoints were not required, which can lead to incorrect statistical inferences, and the
individual component endpoints can be expected to provide more data evidence about treatment effects.

The estimated median intra-treatment covariance is around −0.00075 with a 95% HPD interval of [−0.0018, 0.011].
The point zero is included, and it can be concluded that there is no clustering effect by treatment groups (i.e., equiv-
alence of stent groups). The posterior probability of a positive covariance (P (τ2 > 0 | L,R)) is around 0.23, which
shows the weak support in favor of treatment differences. The posterior probability of a non-positive correlation,
P (τ2 ≤ 0 | L,R) is around 0.77. Thus, there is more evidence for equal risk of the three stents with respect to the
three event types.

It follows that the Bayes factor of no risk differences (τ2 ≤ 0) against any risk differences (τ2 > 0) was around
0.77/0.23 ≈ 3.35, under equal prior probability for the two hypotheses. This result can be classified as substantial
evidence in favor of equivalence of risk for the three stents.

A log-rank (one-sided) P-value of 0.23 was computed for testing the non-inferiority hypothesis (with margin 0) of
the sirolimus-eluting stent versus the zotarolimus-eluting stent on the composite endpoint. The same P-value was
obtained for non-inferiority of the everolimus-eluting stent versus the zotarolimus-eluting stent. Following [50], it was
expected that the posterior probability of superiority of the zotarolimus-eluting stent over another stent was equal to
the one-sided P-value of the standard log-rank test. Then, under equal prior probability for the two hypotheses, the
corresponding Bayes factor in favor of non-inferiority of the sirolimus-eluting stent was around 0.77/0.23 ≈ 3.35,
and showed substantial evidence in favor of non-inferiority. The same result was obtained for testing non-inferiority
of the everolimus-eluting stent. Interestingly, this result was similar to the Bayes factor result of equivalence of risk
differences. However, note that the Bayes factor for non-inferiority represented a single test for the non-inferiority of a
specific stent, where the Bayes factor for equivalence of risk examined if at least one of the three stents had a different
risk.
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Furthermore, standard (two-sample) log-rank tests were performed to assess the null hypothesis of no difference in
survival between the sirolimus- versus zotarolimus-eluting (P-value 0.46) and everolimus- versus zotarolimus-eluting
(P-value 0.45) stents on the composite endpoint [48]. By representing the point null hypothesis as a combination
of two one-sided tests [51], the P-value for the two-sided hypothesis test was expected to be equal to two times the
posterior probability of superiority of the zotarolimus-eluting stent, and subsequently was also around 0.23. Thus,
similar to the one-sided log-rank tests, data evidence was found in favor of no difference.

The median lower bound for τ2, induced by the positive definiteness requirement of the covariance matrix, can be
estimated using posterior samples of τ1 using (25). This yielded an estimated lower bound of −0.00090 and shows
that the posterior distribution of τ2 was concentrated around this lower bound (see right-panel of Figure 1). A negative
correlation indicates that patients who received the same treatment showed (unobserved) heterogeneity in their event
times. Unobserved factors such as the heart surgeon or the medical centre could explain heterogeneity between patients
receiving the same treatment. Furthermore, within-treatment heterogeneity could relate to differences in patient-related
factors such as smoking, diabetes, and stent length. These factors did not affect between-treatment differences due to
the randomization of patients to treatments. However, ignoring a negative cluster correlation still leads to a deflation
of the Type-1 error and conservative behavior of a test for intra-treatment differences.

7 Discussion

A BCSM modeling framework for multi-way nested data is proposed. It includes a model for the structured covariance
matrix to describe associations among clustered observations. The structured covariance model can be integrated in
a multivariate linear transformation model, which enables a joint analysis of multivariate event times with a nested
classification structure. Directly modeling the dependence structure through a structured covariance matrix has several
advantages. When adding another nested factor to the model, the complexity of the model increases with only one
covariance parameter. This makes the model particularly useful for higher-order nested structures in which multiple
layers of dependencies are defined. Although clustered event times are often positively correlated, they can also
be negatively correlated (for example, see [52]). With the structured covariance matrix negatively and positively
correlated observations can be modelled. Furthermore, in the real-life data application it sufficed to assume a common
baseline survival function, but it is also possible to have different baselines across event types.

The use of random effect parameters for unobserved heterogeneity in the population has several disadvantages. The
inclusion of random effect parameters increases the model complexity rapidly, and leads to multidimensional integrals
in the likelihood. The random effect parameters induce sample size restrictions, since between and within-cluster vari-
ance components need to be estimated. The estimation of population-average regression effects is complicated, since
regression coefficients in the model are defined conditionally on the random effect parameters. Furthermore, shared
random effects will only induce positive correlation among clustered event times, which makes them not suitable for
modeling negatively correlated event times.

7.1 Testing the Structured Covariance Matrix

In a marginal modeling approach [53], marginal distributions of multivariate event times are formulated without speci-
fying the nature of dependence among clustered event times. In our BCSM modeling approach, associations modeled
by the structured covariance matrix are of specific interest. Associations between clustered event times at different
levels are described by covariance parameters. Hypotheses concerning restrictions on the covariance parameters are
of interest to examine for instance differences between treatment effects or in risks between groups. The flexible
shifted-inverse gamma prior for the covariance parameter supports testing hypotheses concerning negative, positive,
or no intra-cluster dependencies.

A positive covariance parameter represents between-cluster differences. Therefore, the problem of testing equivalence
of multiple cluster means can be reformulated to testing whether a single covariance parameter is zero. This approach
transforms the multiple testing problem (i.e., µi 6= µj) to a single testing problem (τq 6= 0). For multiple treatment
groups, the standard approach is to compare all groups against each other to assess the treatment effect. However,
this method has the well-known disadvantage that the P-value is inflated, and correction methods for a family of
hypotheses are complex and not optimal. Difficulties associated with multiple comparison procedures only increase in
the number of subgroups to analyze. Furthermore, for group-mean comparisons the statistical power is lowered due to
a smaller available sample size, while additional heterogeneity in the subgroup outcomes is often ignored. The BCSM
model can be extended to include non-nested (cross-classified) dependencies. An interesting application is to model
the covariance among event times of the same type, and to test for heterogeneity in risk across event types. This test
could be used to examine the support for event type specific baseline hazards.
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7.2 Multiple Endpoints

An important treatment effect cannot always be identified by evaluating a single endpoint, in particular when the
event type occurs with a low frequency. A composite endpoint can then be constructed from component endpoints to
increase the number of events and to achieve adequate statistical power for a study. A main advantage is that a single
hypothesis can be evaluated to show superiority of the treatment on the composite endpoint, where simultaneous tests
are required to show superiority on all endpoints. In our multivariate modeling approach, treatment effects can be
examined for multiple endpoints in a more straightforward manner by evaluating a single hypothesis, while allowing
a heterogeneous relationship between event times from the same subjects.

The BCSM model for multiple endpoints can be generalized by allowing treatment differences across endpoints, which
corresponds to modeling event type specific covariance parameters and to test for a treatment effect for each endpoint.
Following the approach of [54], who evaluate the equality of means between regimens, a prior on the hypotheses can
be included to address their correlation.

Under the derived Bayesian inference procedure, it is possible to conduct Bayesian covariance tests using Bayes factors
[55, 56]. Bayes factors have some advantages over frequentist hypothesis tests [57]. First, the compared hypotheses
are clearly defined. Next, in Bayes factor testing no pre-specified significance level has to be set, as compared to
frequentist tests. Instead, one can just report the observed evidence for each of the hypotheses. Data collection
procedures can be altered intermediately due to the fact that Bayesian inference is insensitive to the data collection
procedure.
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A Conditional Distribution of Latent Variables

The proof of Theorem 4 is given.

Proof. Without loss of generality, the covariance matrix is partitioned

Σ =

[
Σ

(j)
Σ

(j(−j))

Σ
((−j)j)

Σ
(−j)

]

where Σ
(j) is the covariance matrix of Zij . Using a well-known property of the normal distribution, the conditional

distribution of Zij given Zi(−j) is multivariate normal with mean and covariance:

θij = µij +Σ
(j(−j))

[

Σ
(−j)

]−1 (
Zi(−j) − µi(−j)

)

ΣQ−1 = Σ
(j) −Σ

(j(−j))
[

Σ
(−j)

]−1

Σ
((−j)j),

respectively. The expressions are rewritten to obtain the specified mean and covariance.
Using Lemma 3 on Σ

(−j), it holds that

Σ
(j(−j)) = τQ(1

⊤
mQ−1−1 ⊗ JsQ−1)

[

Σ
(−j)

]−1

=
1

τ0
IuQ

+

Q−1
∑

q=1

ρq(Im̃q
⊗ Jsq )−

fQ
vQ−1uQ

JuQ
,

where m̃q = mq(nQ−1 − 1)/nQ−1 and ρq are defined in (12). Hence,

Σ
j(−j)

[

Σ
(−j)

]−1

=
τQ
τ0

(1⊤
mQ−1−1 ⊗ JsQ−1 ) + τQ

Q
∑

q=1

ρq(1
⊤
mQ−1−1 ⊗ JsQ−1)(Im̃q

⊗ Jsq )

− fQτQ
vQ−1uQ

(1⊤
mQ−1−1 ⊗ JsQ−1)JuQ

=
τQ
τ0

(1⊤
mQ−1−1 ⊗ JsQ−1 ) + τQ

Q
∑

q=1

ρq(1
⊤
mQ−1−1 ⊗ JsQ−1/sq ⊗ Jsq )(Im̃q

⊗ Jsq )

−fQτQ
vQ−1

(1⊤
mQ−1−1 ⊗ JsQ−1)

=
τQ
τ0

(1⊤
mQ−1−1 ⊗ JsQ−1 ) + τQ

Q−1
∑

q=1

sqρq(1
⊤
mQ−1−1 ⊗ JsQ−1)

−fQτQ
vQ−1

(1⊤
mQ−1−1 ⊗ JsQ−1)

= τQ

(

1

τ0
+

Q−1
∑

q=1

sqρq −
fQ
vQ−1

)

(1⊤
mQ−1−1 ⊗ JsQ−1) =

fQ
uQ

(1⊤
mQ−1−1 ⊗ JsQ−1).

The last equation follows by plugging in 1/vQ−1 = 1/τ0 +
∑Q−1

q=1 sqρq and using that uQτQ(1 − fQ) = vQ−1fQ. It
follows that the conditional mean is given by

θij = µij +
fQ
uQ

(1⊤
mQ−1−1 ⊗ JsQ−1 )(Zi(−j) − µ(i(−j))) = µij + cij1sQ−1 ,

and the conditional covariance matrix can be obtained from,

Σ
(j(−j))

[

Σ
(−j)

]−1

Σ
((−j)j) = τQfQJsQ−1

=⇒ ΣQ−1 = τ0IsQ−1 +

Q−1
∑

q=1

τq(Im′

q
⊗ Jsq ) + τQ (1− fQ)JsQ−1 .
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B Conditional Distribution of Covariance Parameters

The proof of Theorem 5 is given.

Proof. To derive the result, the covariance matrix of Wiq := MqHVi is derived. Therefore, consider the covariance
matrix of each HVi

HΣH
⊤ = τ0HH

⊤ +

Q
∑

q=1

τq





0⊗

r=Q−1

Hnr













q
⊗

r=Q−1

Inr



⊗
(

0⊗

r=q−1

Jnr

)







0⊗

r=Q−1

H
⊤
nr





= τ0IsQ +

Q
∑

q=1

τq





q
⊗

r=Q−1

Hnr
H

⊤
nr



⊗
(

0⊗

r=q−1

Hnr
Jnr

H
⊤
nr

)

= τ0IsQ +

Q
∑

q=1

τqImq
⊗
(

0⊗

r=q−1

nrKnr

)

= τ0IsQ +

Q
∑

q=1

τqsq
(
Imq

⊗Ksq

)
.

For all r, q, it holds that
(
Imq

⊗Ksq

)
(Imr

⊗Ksr ) = Imq∧mr
⊗Ksq∨sr ,

with mq ∧mr ≡ min(mq,mr) and sq ∨ sr ≡ max(sq, sr). From this, it follows that

Mq(Imr
⊗Ksr )M

⊤
q =

(
Imq∧mr

⊗Ksq∨sr

)
−
(
Imq+1∧mr

⊗Ksq+1∨sr

)
.

Hence, for q ∈ {0, 1, . . . , Q− 1}, letting the sum above run over r instead of q, the covariance matrix of Wiq is equal
to

MqHΣH
⊤
M

⊤
q = τ0Mq +

Q
∑

r=1

τrsr
((
Imq∧mr

⊗Ksq∨sr

)
−
(
Imq+1∧mr

⊗Ksq+1∨sr

))

= τ0Mq +
((
Imq

⊗Ksq

)
−
(
Imq+1 ⊗Ksq+1

))
q
∑

r=1

τrsr

=

(

τ0 +

q
∑

r=1

τrsr

)

Mq. (31)

Similarly

MQHΣH
⊤
M

⊤
Q =

(

τ0 +

Q
∑

r=1

τrsr

)

MQ. (32)

The only nonzero entries of the diagonal covariance matrix of Wiq are hence equal to

σ2
q := τ0 +

q
∑

r=1

τrsr.

The matrix H is invertible, hence the variables (HVi)
nQ

i=1 are sufficient for τ . Next, there is a one-to-one relation
between σ2 and τ . Hence, W is also sufficient for σ2. From the prior specification for τ , it can be seen that
σ2
0 , . . . , σ

2
Q are independent a priori with

σ2
q ∼ IG(ατq , βτq ).

The pq = tr(Mq) nonzero entries of each Wiq are normally distributed with mean zero and variance σ2
q . it follows

that – given the prior specification and the previous analysis –

σ2
q | V d

= σ2
q |W ∼ IG

(

ατq + nQpq/2, βτq +

nQ∑

i=1

‖Wiq‖2/2
)

,

where
d
= denotes equality in distribution. Finally, the posterior distribution of τ can be derived by transforming σ2

back to τ in the above posterior distribution.
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C Sign Preservation of Covariance Under Monotone Transformations

In Section 4 of the main paper, the latent vectors Zi are multivariate normally distributed and an affine function of the
transformed event times hi(ti). From this, it follows that ti is distributed as h(−1)

i applied to an affine function of Zi,

where h(−1)
i is the nondecreasing generalized inverse of hi defined as (3.1) in [58].

The statistical inference procedure is designed to estimate the covariance parameters τ of the covariance matrix Σi of
Zi. Intuïtively, it makes sense that due to the nondecreasing nature of h(−1)

i , the covariance between event times, ti,
has the same sign as the covariance (positive, zero or negative) between the respective latent variables Zi, conditional
on mean differences through explanatory variables. Vice versa, if the event times show a different behavior than
expected from the sign of the covariance of the latent variables, this can only be due to perturbation of this behavior
by the effects of explanatory variables. The following theorem shows that this consistency property of the sign of
the covariance indeed holds. Furthermore, due to exchangeability, clusters of latent variables that are equicorrelated
correspond to equicorrelated event times.

Theorem 6. Let [X,Y ]⊤ ∈ R
2 be a multivariate normally distributed vector, i.e. for some µx, µy, ρxy ∈ R and

σx, σy ∈ (0,∞) such that |ρxy| ≤ σxσy:
[
X
Y

]

∼ N

([
µx

µy

]

,

[
σ2
x ρxy

ρxy σ2
y

])

.

Let f and g be nondecreasing, non-constant functions such that the random variables f(X) and g(Y ) have a finite
second moment. Then, it holds that

sgn (Cov (f(X), g(Y ))) = sgn(ρxy).

Proof. For a random variable Z and two non-decreasing functions φ, ψ such that random variables φ(Z), ψ(Z) have
a finite second moment, it holds that Cov (φ(Z), ψ(Z)) ≥ 0 [59]. From the proof in [59], it can be seen that
Cov (φ(Z), ψ(Z)) = 0 if and only if either the random variable ψ(Z) or the random variable φ(Z) is determinis-
tic. The if-part follows directly from the Cauchy-Schwarz inequality and heuristically the only-if part follows from
the fact that φ(Z) has to “increase together" with ψ(Z) if both random variables are able to attain multiple values.

Now, by the law of total expectation:

Cov(f(X), g(Y )) = E[f(X)g(Y )]− E[f(X)] · E[g(Y )]

= E[f(X)E [g(Y )|X ]]− E [f(X)] ·E [E [g(Y )|X ]] .

As E[g(Y )|X ] is a function of X , say g̃(X), it holds by the above that:

Cov(f(X), g(Y )) = Cov(f(X), g̃(X)). (33)

As g(Y ) has a finite second moment, g̃(X) has a finite second moment too due to Jensen’s inequality for conditional
expectation. By the well-known formula for conditional normal distributions, it now holds that

Y |X ∼ N(m(X), σ2)

where m(X) = µy +
ρxy

σ2
x
(X − µx), and σ =

√

σ2
y −

ρ2
xy

σ2
x

. Hence,

g̃(X) = E [g(Y )|X ] =

∫

R

g(y)
1√
2πσ

e−
(y−m(X))2

2σ2 dy

=

∫

R

g (z +m(X))
1√
2πσ

e−
z2

2σ2 dz

= E[g(Z +m(X))],

where Z ∼ N(0, σ2) independent of X . It follows that g̃(x) is nondecreasing and non-constant when ρxy > 0,
constant when ρxy = 0 and nonincreasing and non-constant when ρxy < 0. This is because the slope of the linear
functionm(x) has the same sign as ρxy, and g(Z+ y) is nondecreasing in y almost surely. For ρxy ≥ 0, the statement
of the theorem follows from Equation (33) and the first paragraph of the proof. This is because the support of X is R
and hence the random variable g̃(X) is deterministic if and only if g is a constant function on R, which we assumed
not to be the case. For ρxy < 0, one can use the previous results to establish

Cov(f(X), g(Y )) = Cov(f(X), g̃(X)) = −Cov(f(X),−g̃(X)) < 0.
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D Gibbs Sampler

For the model in Equation (20), the full conditionals for all parameters are combined to form a Gibbs sampler.

We first define some terminology related to the baseline specification, which is modelled as a linear combination of
monotone splines, in accordance with [49]. IntegersK and d are introduced to specify monotone spline basis functions
of degree d and a knots vector κ ∈ R

K+d with κ1 = κ2 = · · · = κd, κK+1 = κK+2 = · · · = κK+d and κl < κl+1

for l ∈ {d, d+ 1, . . . ,K}.

Each monotone spline basis function, denoted as Bd,κ
l , is then a d− 1 continuously differentiable function that has the

form of a nonnegative, nondecreasing degree d polynomial on the interval [κl, κl+d]. A coefficient vector γ ∈ R
K+1

is defined such that γ1 ∈ R and γ(−1) ∈ R
K
+ to specify the baseline as,

hijk(t| γ) = γ1 +

K+1∑

l=2

γlB
d,κ
l−1(t) ∀t ∈ (0,∞). (34)

Note that due to the range of γ, the baseline is a non-decreasing function. Let γ(−ℓ) denote the vector of spline
coefficients with the ℓ-th entry removed.

Let Bijk = [1, Bd,κ
1 (sijk), . . . , B

d,κ
K (sijk)] and let Bi be the matrix with rows Bijk such that Biγ = hi(si). Let

B be the vertical concatenation of Bi and bℓ be its ℓ-th column, denote with B(−ℓ) the matrix B with column ℓ
removed. Let the matrices Z, X be the concatenation of Zi, Xi (resp) and Σ be a block diagonal matrix with blocks

Σi concatenated in the same order as used in the construction of B. Let R̃ijk =
[

1, Bd,κ
1 (Rijk) , . . . , B

d,κ
K (Rijk)

]

such that R̃ijkγ = h (Rijk) and let L̃ijk be defined similarly.

Convergence is sped up by initializing the covariate effects β and spline coefficients γ on their maximum likelihood
estimates, where the covariance parameters are fixed to zero. The likelihood of the data under this assumption of “zero
covariance" is given by:

f(β,γ) :=

n2∏

i=1

n1i∏

j=1

n0∏

k=1

(

Φ
(

R̃ijkγ + x
⊤
ijkβ

)

− Φ
(

L̃ijkγ + x
⊤
ijkβ

))

. (35)

This likelihood is maximized with respect to (β,γ) with a constrained nonlinear optimization algorithm to initialize
the parameters β,γ.

The Gibbs sampler for sampling (β,γ, τ ) is given in Algorithm 1. The full conditionals of β,γ and a hierarchical
parameter η are described in separate steps. For ease of notation, it is made implicit below that every random variable is
sampled according to its full conditional distribution, using the most recent version of the parameters in every iteration
of the Gibbs sampler.
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Algorithm 1 Gibbs sampler for posterior inference under the model in (20) under type-II interval censored survival

data.
1: Inputs:

Observed data (L,R,X), number of iterations M

Prior parameters (β0,Λ0, v0,m0, αη, βη, ατ1 , βτ1 , ατ2 , βτ2)

Spline knots κ, spline degree d;

2: Initialize:

Set β(0) = β̂ and γ(0) = γ̂, where (β̂, γ̂) are the numerical maximizers of f in (35);

Set τ (0)1 = 0, τ (0)2 = 0, η(0) = 1;

Sample Zijk ∼ N(X⊤
ijkβ

(0) +Bijkγ
(0), 1)I(Zijk ∈ Ωijk) for all i, j, k;

3: for m ∈ {1, . . . ,M} do

4: for all i, j, k do

5: Sample Zijk according to (27);

6: end for

7: Sample β(m) using β0 and Λ0 (explained below);

8: for ℓ ∈ {1, . . . ,K + 1} do

9: Sample γ(m)
ℓ using m0, v0, η

(m) (explained below);

10: end for

11: Sample η(m) using αη, βη (explained below);

12: Sample τ (m)
1 according to (28);

13: Sample Ūi Gaussian with mean, variance from Subsection 4.1;

14: Calculate S2
i2 using (30);

15: Sample τ (m)
2 according to (29);

16: end for

17: Outputs:

18:
(

β(1),γ(1), τ (1), ρ(1)
)

, . . . ,
(

β(M),γ(M), τ (M), ρ(M)
)

.

• Sampling Covariate Effects β
From the likelihood (23), it can be seen that when Vi := Σ

−1/2
i (Zi − hi (si| γ)), that (V,X) are sufficient

statistics for β. Furthermore, Vi follows a linear regression model with regression parameters β:

Vi =
(

Σ
−1/2
i Xi

)

β +Ei, Ei ∼ N
(
0, IsQ

)
.

Assume a N(β0,Λ
−1
0 ) prior on β, where Λ0 is a precision matrix. From this prior specification, it now

follows that posterior distribution is multivariate normal, and one can sample β from the full conditional
distribution as follows:

β|(L,R,X,Z,γ, τ ) d
= β|(V,X) ∼ N

(
µβ, Σβ

)
(36)

where

Σβ =

(

Λ0 +
∑

i

X
⊤
i Σ

−1
i Xi

)−1

,

µβ = Σβ

(

Λ0β0 −
∑

i

X
⊤
i Σ

−1
i (Zi − hi (si| γ))

)

.

• Sampling Spline Coefficients γ
From the likelihood (23), it can be seen that γℓ can be sampled from the full conditional distribution in a man-
ner similar to the one in Lin and Wang (2010), with a few alterations. Assume that the prior distribution for
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γ1 is a normal distribution with mean m0 and variance 1/v0. Furthermore, assume an exponential prior with
a hierarchical parameter η for all γ1, . . . , γK . To regularize the sampled baseline parameters γ, a Γ(αη, βη)
prior is assumed for η. In this setup – this is also done in Lin and Wang (2010) – η is sampled from the full
conditional distribution:

η|γ ∼ Γ

(

αη +K , βη +

K+1∑

ℓ=2

γℓ

)

. (37)

The spline parameters γ are now sampled univariately as in Algorithm 2.

Algorithm 2 Algorithm for sampling spline coefficients marginally from their full posteriors
1: Inputs:

Spline coefficient index ℓ

L, R, X, Z, B, γ(−ℓ), Σ, β, κ, d, v0,m0, η;
2: if ℓ = 1 then

3: Set σ2 := (v0 + b
⊤
1 Σ

−1
b1)

−1;

4: Set µ := σ2
(

m0v0 + b
⊤
1 Σ

−1
(

Z−Xβ −B(−1)γ(−1)

))

;

5: Sample γ1 ∼ N(µ, σ2);

6: else

7: if b⊤
ℓ Σ

−1
bℓ > 0 then

8: Set σ2 :=
(
b
⊤
ℓ Σ

−1
bℓ

)−1
;

9: Set µ := σ2
(

b
⊤
ℓ Σ

−1
(

Z−Xβ −B(−ℓ)γ(−ℓ)

)

− η
)

;

10: Set

χ := max
{(i,j,k) : Rijk,Lijk ∈ (0,∞)}




−Zijk −∑ℓ′ /∈{ℓ,1} γℓ′

(

Bd,κ
ℓ′−1 (Rijk)−Bd,κ

ℓ′−1 (Lijk)
)

Bd,κ
ℓ−1 (Rijk)−Bd,κ

ℓ−1 (Lijk)





+

;

11: Sample γℓ ∼ N(µ, σ2)I(γℓ > χ);

12: else

13: Sample γℓ ∼ Exp(η);

14: end if

15: end if

16: Outputs:

17: γℓ.

E Gibbs sampler Output Analysis

This section describes the setup and outcomes of both simulation studies. For both simulation studies and the real
data application, all prior parameters except those for τ2 were set to zero, leading to improper uniform priors for
(β, γ1), the prior p(η) ∝ 1/η for η and improper inverse gamma prior p(τ1) ∝ 1/(τ1 + 1/n0) for the intra subject
covariance. For the first simulation study ατ2 = βτ2 = 0 was used, leading to the conditional prior p(τ2|τ1) ∝
1/(τ2 + τ1/n̄1 + 1/(n0n̄1)), for the second simulation study and real-life data application ατ2 = βτ2 = 0.001 was
taken.

E.1 Many Treatment Groups

The performance of the Gibbs sampling algorithm (Appendix D) was evaluated, to fit the semi-parametric multivariate
probit model with a two-way nested covariance structure (Equation (20)), for a large number of treatment groups
(n2 = 100). The number of event types was set to n0 = 5. An unbalanced design was defined, where group sizes n1i

were sampled from a truncated Poisson distribution with mean 5 (min = 2, max = m̄ = 10). Five covariates were
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included and covariate effects β were sampled uniformly from the interval [−1, 1]. The first three covariates were
sampled from a standard normal distribution, and the last two covariates were sampled from a Bernoulli distribution
with success probability 0.5. Covariates were sampled uniquely on a subject level, and are hence equal for events
from the same subject. Interval endpoints were taken with steps 0.1 on the interval [0, 30]. Additionally, at random
1% of the measurements were left- or right-censored. The true baseline hijk was sampled as a linear combination
of monotone splines with a degree of four, and the baseline function ranged from −6 to 9. For each value of τ2 =
−0.2,−0.1,−0.05, 0, 0.05, 0.1, 0.2, . . . , 0.5 a total of 1, 000 data replications were made. Given τ2, covariance
parameter τ1 was sampled uniformly from the interval [τ1L, τ1L + 0.5], where

τ1L = −1/n0 +max(0,−max
i
n1iτ2), (38)

which ensured that constraints (24) and (25) were satisfied.

The burn-in period was set to 3, 000 iterations. After that, the MCMC algorithm was halted after both obtaining
6, 000 MCMC draws and an effective sample size of 100 for all non-spline parameters. The effective sample size was
computed using the R package coda [60] (function effectiveSize). For an additional summary of the outcomes of
the first simulation study, see Figure 3 below.

Parameter Recovery Results

In Table 1, the parameter recovery results are shown. For the covariate effects β, the reported 95% coverage rate (CR,
using the 95% highest posterior density credible interval), (median) coefficient of variation (CV), and (median) relative
bias (RB), are the averaged values for all β parameters. The RB was computed as the bias (estimate - true) relative
to the absolute true value of the parameters. The posterior median of the CV and RB were reported. Furthermore, for
τ2, the posterior median and standard deviation were calculated (also computing the median across replications) under
the label median and SD, respectively.

The results show that the posterior samples describe the true parameters, under which the data was sampled, well.
This is observed from the point estimates for τ2, which are close to the true values. Furthermore, the RB and CB are
quite small and the CR are close to the 95% level (see Table 1). The parameter recovery results slightly decrease in
quality when τ2 is negative. This might be due to sampling relatively high values for τ1 due to the lower bound in
Equation (38). The higher covariance might have increased the autocorrelation between latent variables in different
Gibbs sampling iterations. Furthermore, the increase of τ1 could have increased the posterior variance estimate of β.

Table 1: Parameter recovery results for many treatment groups: Estimation results for different true values of τ2.

β̂ τ̂1 τ̂2
τ2 CP95 CV RB CP95 CV RB CP95 median SD
-0.2 0.928 0.280 0.007 0.907 0.083 −0.018 0.898 −0.197 0.024
-0.1 0.932 0.215 0.001 0.934 0.091 −0.013 0.911 −0.100 0.016
-0.05 0.934 0.167 0.001 0.929 0.105 −0.013 0.908 −0.050 0.012

0 0.948 0.124 0.004 0.922 0.135 −0.010 0.927 0.000 0.011
0.05 0.947 0.123 0.001 0.933 0.136 0.002 0.942 0.049 0.018
0.1 0.946 0.131 −0.002 0.945 0.137 0.003 0.956 0.098 0.026

0.2 0.943 0.129 −0.004 0.945 0.141 0.010 0.947 0.197 0.042
0.3 0.942 0.132 0.006 0.941 0.137 0.000 0.940 0.296 0.057
0.4 0.944 0.138 0.002 0.933 0.141 0.004 0.946 0.395 0.072

0.5 0.944 0.134 −0.002 0.951 0.139 0.006 0.941 0.501 0.087
CR: 95% empirical coverage rate, CV : median coefficient of variation,RB: median relative bias, SD: posterior

standard deviation.

In Table 2, for different levels of highest posterior credibility, the coverage rates are reported for the true values of
β, τ1, and τ2 under which the data was generated. The coverage rates are averaged across scenarios and the reported
coverage for β is the averaged coverage for all marginal covariate effects. It can be seen that the coverage rates lie
close to the specified levels. This shows that the posterior samples accurately describe the posterior distribution of the
parameters.

In Figure 3, Gibbs sampler output results are shown for all simulations in the first simulation study. In all figures
except the bottom right one, estimated posterior means are plotted vs. the true parameter values for all scenarios. For
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Table 2: Parameter recovery results for many treatment groups: Coverage rates forβ, τ1, and τ2 for different credibility
levels.

param 0.6 0.7 0.8 0.9 0.95 0.99
β 0.59 0.69 0.79 0.89 0.94 0.98
τ1 0.57 0.67 0.77 0.88 0.93 0.98
τ2 0.57 0.67 0.77 0.88 0.93 0.98

the covariate effects βi, the results are aggregated in the top left plot. The jump in the support of τ1 that is seen in the
top right figure is due to the large jump in the lower bound (38) when going from τ2 = −0.1 to τ2 = −0.2. In each plot
the Pearson correlation coefficient R is shown, which lies around 1 for all three datasets. The reported P-values are
based on the result stated on e.g. page 10 in Pitman (1939) that a transformation ofR follows a Student’s t-distribution
when assuming no correlation. It is seen that the estimated posterior means are centered around the true parameter
value for all three plots.
In the bottom right figure, the distribution of the effective sample sizes is shown for all MCMC outputs in the first
study. For any given scenario, the effective sample size is calculated as the minimum univariate effective sample
size estimated on the MCMC output for all non-spline parameters (β, τ1, τ2). The univariate effective sample size is
calculated using the effectiveSize function from the R-package coda. The mean absolute sample size was 6250
while the median effective sample size was 186.69.
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Figure 3: Summary of MCMC results in the first simulation study. R denotes Pearson’s correlation coefficient. The
excluded values in the support of τ1 are due to a larger jump in the lower bound of τ1 in (38) when going from
τ2 = −0.1 to τ2 = −0.2. The effective sample sizes are calculated using the function effectiveSize in the R-package
coda.

E.2 Few Treatment Groups

Conditions similar to our real-data application were considered to evaluate the performance of the Gibbs sampler and
the quality of inferences under the model (Equation (20)). Three event types were considered and three treatment
groups. The treatment group sizes were n11 = 1169, n12 = 1173, and n13 = 1172. The lower bound (25) is
approximately −6.3 · 10−4 and hence very close to zero. A total of 500 data replications was made for each value
of τ2 = {0, 0.025, 0.05, 0.075, 0.1, 0.2, 0.3}. The parameter τ1 was fixed to 0.4. The number of covariates was five
and the covariate effects were sampled uniformly on the interval [−1, 1]. The first three covariates were sampled
from a standard normal distribution and the last two covariates from a Bernoulli distribution with success probability
0.5. Covariates were sampled uniquely on a subject level, and are hence equal for events from the same subject. The
measurement times (support of L,R) were taken with steps 1 on the interval [0, 365]. Left- or right-censoring was not
applied in this study.

The baseline function was determined by performing spline regression on an estimate of h from the real data study.
The true baseline function was kept fixed across data replications. Under these specifications and for τ = 0, the
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cumulative distribution of the implied marginal incidence rate (for any event type) is shown in Figure 4. It can be seen
that a challenging aspect of the study was that the marginal incidence rate after one year was very low, and around
3.5%.
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Figure 4: Simulation study for a few treatment groups: Cumulative distribution function of occurrence of an event of
any type when τ1 = τ2 = 0.

The burn-in period was set to 3, 000 MCMC iterations. After that, the Gibbs sampler was ended after both 6, 000
iterations were collected and an effective sample size of 100 was obtained for all non-spline parameters. The degree of
the splines was set to four, while the spline knots were taken at 20 equidistant values between the lowest and highest
measured event time endpoints. The Gibbs sampling output was generated with the use of improper priors for all
parameters except for τ2, where shape and scale parameters were equal to 0.001. A proper prior was used for τ2 to
avoid sampling (very) high values for τ2, which could result in numerical issues. For an additional summary of the
outcomes of the second simulation study, see Figure 5 below.

Parameter Recovery Results

In Table 3, the estimated CR, CV, and RB are given for the covariance and covariate effect parameters, where the
average statistic values are reported for all covariate effects. For parameter τ2, the posterior median and trimmed
standard deviation were reported, and they are shown under the label median and SD, respectively. The trimmed
posterior standard deviation was computed as the posterior standard deviation of the posterior sample with values
removed outside the 99% empirical credible interval. It can be seen that the posterior samples describe the true
parameters β and τ1 quite well, as the RB and CV are quite small and the CR are close to 95% (see Table 3). When
comparing the results in Table 3 with those in Table 1, it can be seen that the results are similar for the considered
parameters. Hence, for the challenging condition with a few and large treatment groups and a (very) low incidence
rate, it was still possible to make valid inferences about covariate effects and the intra-subject covariance.

The posterior distribution for τ2 contained relatively little information, since there were only three treatment groups.
The median point estimator performed well, but the coverage rates differed slightly from the 95% level for small values
of τ2. For a relatively small amount of clusters and small true value for τ2, the posterior distribution of τ2 had most of
the probability mass in a small interval around zero. This led to small SDs for small τ2 values. However, for higher τ2
values, the SD quickly increased. As expected, the SDs for τ2 in Table 3 are much larger than those reported in Table
1.

In Table 4, for different confidence levels, the coverage rates are shown for the true values of β, τ1, and τ2. The
coverage rates were averaged over all replications and the reported coverage for β was the average coverage rate for
all covariate effects. It can be seen that the coverage rates lie close to the confidence levels for the parameters β and τ1.
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Table 3: Simulation study for a few treatment groups: Estimation results for different true values of τ2.

β̂ τ̂1 τ̂2
τ2 CP95 CV RB CP95 CV RB CP95 median SD
0 0.952 0.121 0.002 0.936 0.131 0.010 1.000 −0.001 0.005
0.025 0.945 0.109 −0.005 0.952 0.130 0.013 0.866 0.022 0.239
0.05 0.955 0.117 −0.001 0.950 0.127 0.014 0.904 0.048 0.458

0.075 0.947 0.119 −0.001 0.938 0.130 0.028 0.926 0.076 0.696
0.1 0.946 0.116 −0.001 0.940 0.131 0.020 0.948 0.106 0.959
0.2 0.949 0.119 0.001 0.948 0.131 0.020 0.944 0.206 1.825

0.3 0.939 0.114 0.004 0.944 0.129 0.022 0.934 0.295 2.789
CR: 95% empirical coverage rate, CV : median coefficient of variation, RB: median relative bias, SD: trimmed

posterior standard deviation.

Table 4: Simulation study for a few treatment groups: coverage rates for β, τ1, and τ2 for different confidence levels.

param 0.6 0.7 0.8 0.9 0.95 0.99
β 0.60 0.70 0.80 0.90 0.95 0.99
τ1 0.60 0.70 0.80 0.89 0.94 0.99
τ2 0.54 0.63 0.75 0.89 0.93 0.97

The posterior samples give a good description of the posterior distribution for these parameters. For small confidence
levels, the coverage rates for τ2 are lower than expected. Most of the discrepancy in coverage rates occurred when τ2
was close to zero.

In Figure 5, Gibbs sampler output results are shown for all simulations in the second simulation study. The top right
figure again shows the estimated posterior means of βi vs. their true value. Again, the correlation is close to 1. The
spread around the true value is smaller due to the larger number of subjects enrolled, leading to a larger number of
unique covariate values. In the top right figure, a histogram is given for the estimated posterior mean for τ1. The
median of these estimates (red dot) is seen to lie close to 0.4.
In the bottom left figure, the estimated posterior median for τ2 is shown vs. the true value of τ2. It is seen that
the posterior estimates of τ2 vary a lot over the scenarios. The median of medians is displayed by red dots, and the
dashed line goes through the true values of τ2. It is hence empirically seen that the estimated posterior means of τ2 lie
below/above the true value with probability approximately 50%. Something that also stands out from this plot is the
low spread in the posterior means when τ2 = 0.
In the bottom right figure, a histogram is again given of the effective sample sizes. The median absolute sample size
was again 6250 and the median effective sample size was 176.43. It is seen that the maximum obtained effective
sample size is lower in the second simulation study as compared to the first.
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Figure 5: Summary of MCMC results in the second simulation study. R denotes pearson’s correlation coefficient, the
dots in the top right and bottom left figure denote posterior sample medians in the second and third plot. The dashed
line in the third plot denotes a line through the true values of τ2. The effective sample sizes are calculated using the
function effectiveSize in the R-package coda.
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