
Chapter 4
Tides in Coastal Seas. Influence
of Topography and Bottom Friction

Pieter C. Roos and Huib E. de Swart

Abstract Tides are important in various ways, e.g., by affecting navigation and
coastal safety and by acting as a driver for sediment transport and seabed dynamics.
To explain spatial patterns of tidal phase and range, observed in coastal seas around
the world, we present an idealised process-based model. It solves the depth-averaged
linearised shallow water equations, including the Coriolis effect and bottom friction,
on schematised geometries with rectilinear coastlines and stepwise topographic vari-
ations. Based on an extended Klein-Gordon equation (accounting for bottom fric-
tion), Kelvin and Poincaré modes are identified as the fundamental wave solutions in
a channel of uniformwidth and depth.We analyse their spatial structures and dynamic
properties, addressing the roles of bottom friction and transverse topographic steps.
The solution for a semi-enclosed basin, including topographic steps, is then obtained
as a superposition of these wave modes, by applying a collocation technique. As an
example, we present solutions that grossly explain the amphidromic system of the
Gulf of California. Finally, we discuss the modelling approach and address the links
with morphodynamics and climate change.

4.1 Introduction

Tides are the periodic water oscillations driven by the gravitational attraction of the
moon and the sun. They constitute a fascinating phenomenon of both academic and
practical interest.

To clarify this, it is useful to distinguish between ‘vertical’ and ‘horizontal’ tides.
The vertical tide concerns the rise and fall of the free surface, with the difference
between high and low water known as tidal range H . Figure 4.1 shows an example
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Fig. 4.1 Tidal record at Dover, UK, showing observed surface elevation versus time for April
2017. Mean elevation over this period used as vertical datum. Data from British Oceanographic
Data Centre

of a tidal record at Dover, UK, with H ∼ 3 − 6 m. It is dominated by a semi-diurnal
cycle and further subject to other variations (spring-neap cycle, daily inequality) and
weather effects. Thesewater levels are important for coastal safety and for navigation,
with so-called tidal windows allowing ship access to channels and harbours.

The horizontal tide refers to the oscillatory currents that are dynamically coupled
to the vertical tide. In the North Sea, such currents are in the order of 0.1 − 1 m s−1

(Davies and Kwong 2000). Apart from directly affecting navigation, tidal currents
also have indirect implications. By eroding and transporting sand, they shape the
seabed, thereby creating bed forms such as tidal sandbanks (De Swart and Yuan
2019) and sand waves (Besio et al. 2008). Also, by transporting other matter (mud,
salt and nutrients), tidal currents affect turbidity, salt intrusion and the residence time
of nutrients, which is important for water quality and ecology.

Let us now turn to tidal observations in more detail, particularly their temporal
and spatial structure. Harmonic analysis enables decomposition of the tidal signal
into different constituents. For the free surface elevation η as a function of time t ,
we may thus write

η =
N∑

n=1

1
2Hcn cos(σcn t − ϕcn ), (4.1)

thereby distinguishing N constituents cn , each with an individual tidal range Hcn ,
angular frequency σcn and phase ϕcn . Similar expressions hold for the components
of the tidal current. The constituents include those directly following from celestial
mechanics and those indirectly resulting from their nonlinear interaction (Parker
1993). Instead of a detailed derivation involving the tidal potential (Platzman 1982;
Gerkema 2019), here we simply consider them as given (e.g., M2, S2, K1, O1; see
Table 4.1) and mostly focus on the dominant one.

Observations from coastal seas around the world reveal intriguing spatial varia-
tions in tidal range and phase, so

Hcn = Hcn (x, y), ϕcn = ϕcn (x, y), (4.2)
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Table 4.1 Overview of the tidal constituents addressed in this chapter

Name Description Period Angular frequency

cn T (h) σ (rad s−1) σ/σM2 (-)a

M2 Principal lunar
semi-diurnal
component

12.42 1.405×10−4 1

S2 Principal solar
semi-diurnal
component

12.00 1.454×10−4 1.035

K1 Luni-solar diurnal
component

23.93 7.293×10−5 0.519

O1 Principal lunar
diurnal component

25.82 6.759×10−5 0.481

aRelative to the angular frequency of the M2-tide

where we have introduced horizontal coordinates x and y. These patterns are visu-
alised in so–called amphidromic charts, showing co-range and co-phase lines for a
given constituent (Figs. 4.2 and 4.3). From the examples shown, we highlight the
following features.

• Behaviour as a progressive wave along the coast, with a wavelength in the order
of hundreds of kilometres. At the UK East Coast, for example, co-range lines are
roughly parallel and co-phase lines perpendicular to the coastline.

• Cross-shore decay of tidal range with a typical length scale of about hundred
kilometres in the North Sea.

• Cyclonic rotation1 around locations with vanishing tidal range, known as (eleva-
tion) amphidromic points. These points can be real (inside basin) or virtual (outside
basin, as in the Gulf of California).2

• In some cases, significant amplification of tidal range towards the shallow region
at the head of the basin, such as in the Gulf of California.

• Local flow structure showing ellipses near closed end and bidirectional flow further
away.

The goal of this chapter is to provide a generic process-based explanation of
the amphidromic patterns observed in coastal seas as presented above. To position
our work, we focus on barotropic tides3 in basins that, from a dynamical point of
view, can be termed both shallow and wide. These properties, to be quantified in the
subsequent analysis, have implications for wave speed (‘shallow’) and emphasize

1 Cyclonic means counterclockwise in the Northern Hemisphere and clockwise in the Southern
Hemisphere.
2 Next to these elevation amphidromic points, there are also current amphidromic points, i.e. loca-
tions where the tidal current ellipse reduces to a circle (Zongwan et al. 1995).
3 Barotropic tides are associated with motion that is driven by gradients in sea level only; they are
not affected by pressure gradient forces that result from density stratification. In the absence of
friction, barotropic motion has no vertical structure.
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Fig. 4.2 Amphidromic chart of the semi-diurnal lunar tide (M2) in the North Sea, showing co-
amplitude lines (half the tidal range) in m and co-phase lines in degrees. Colours in the background
indicate water depth (Reynaud and Dalrymple 2012, after Sinha and Pingree 1997). Reprinted
by permission from Springer: Springer, Principles of Tidal Sedimentology by R.A. Davis Jr. and
R.W. Dalrymple, copyright (2012). The white squares along the UK East Coast denote the two tide
stations Helmsdale (top) and Hunstanton (bottom) referred to in Sect. 4.3.2

the roles of bottom friction (‘shallow’) and the Coriolis effect (‘wide’). As a result,
we exclude narrow estuaries and tidal channels (or networks), for which lateral
uniformity permits a cross-sectionally averaged approach (Friedrichs 2010; Talke
and Jay 2020). Furthermore, as the basins are much smaller than the wavelength of
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Fig. 4.3 Examples of amphidromic patterns from coastal seas around the world. Left: M2-tide in
the Gulf of California, Mexico (Salas-de León et al. 2003), with co-phase in degrees (solid) and
co-range in cm (dashed). Reprinted with permission from theAmericanGeophysical Union.Middle
and right: M2 and K1/P1 tides in the Adriatic Sea, with phase in degrees and range in cm, according
to Polli (1960)

the directly forced tide (typically half the earth’s circumference), they effectively
co-oscillate with the tides in the adjacent larger oceans.

To achieve our goal, we adopt a so-called idealised process-based modelling
approach, in which model geometry and the physical laws of water motion are both
schematised, enabling analytical solutions that provide maximum insight. Specifi-
cally, we shall consider the linearised depth-averaged shallow water equations on
the f plane, including bottom friction, in water bodies with rectilinear coastlines
and step-wise topographic variations. Co-oscillation implies that the tidal potential
can be neglected, so the system is forced only by elevations and/or currents at the
open boundaries. Mathematically speaking, nonhomogeneities appear in the (open)
boundary conditions rather than in the differential equations. In comparison to other
texts on this topic (Pedlosky 1987;Gerkema 2019), the combined inclusion of bottom
friction and topographic variations is the main innovation.

This chapter is organised as follows. Section 4.2 presents the model formulation,
including the underlying assumptions and geometry. Then, in Sect. 4.3, we derive
Kelvin and Poincaré modes as fundamental wave solutions in a channel section of
uniform width and depth. Section4.4 then demonstrates how superposition of these
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Fig. 4.4 Definition sketch of model geometry (top view), showing a semi-enclosed basin of length
� and width b. Along-basin and cross-basin topographic steps are denoted with dashed lines at
x = xs and y = ys, compartment depths with h j and h′

j . In this example, we thus identify a section
of uniform depth ( j = 1) and a section with a single cross-basin step ( j = 2). The open boundary
at x = � is represented by a dotted line

modes explains the amphidromic patterns occurring in large-scale basins with a
specific topography. Section 4.5 contains a discussion of physical processes, impli-
cations (morphodynamics, climate change) and the model approach. Finally, we
present our conclusions in Sect. 4.6.

4.2 Model Formulation

In our idealised process-based model, we consider a semi-enclosed rectangular basin
of uniform width b and length � (Fig. 4.4). Introducing along-basin and cross-basin
coordinates x and y, the closed boundaries are located at y = 0, b and x = 0. The
depth h is spatially uniform, except across topographic steps, which are allowed
parallel to either the x or y-direction.

Let us now turn to the description of the flow. We assume that the density ρ is
constant, which makes the free surface elevation η, defined with zero spatial average,
the primary variable of interest. As the horizontal scales of interest (tens to hundreds
of km) are much larger than the vertical ones (tens to hundreds of m), we assume
shallow water flow by which pressure gradients are proportional to gradients of the
free surface elevation. Furthermore, we will not consider the vertical structure of
the tide. We let u and v denote the depth-averaged velocity components in x and
y-direction, respectively.
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Next, we make the following assumptions about the relevant processes. First, to
account for the Coriolis effect, the f plane approximation is adopted, with a Coriolis
parameter that is set to a constant value

f = 2Ω sin θ. (4.3)

Here,Ω = 7.292 × 10−5 rad s−1 is the angular frequency of the earth’s rotation and
θ is latitude. Second, we consider linearised dynamics because the Froude number
Fr = U/(gh)1/2 is small (with velocity scale U and gravitational acceleration g =
9.81 m s−2). This implies that the nonlinear advective terms can be neglected, as
well as the contribution of the free surface displacement to the total water depth,
i.e. h + η ≈ h. Furthermore, we include bottom friction with the bed shear stress
parameterised in a linear way (Prandle 1982). Finally, co-oscillation implies that the
direct tidal forcing from the tidal potential is neglected.

With the above assumptions, the momentum and continuity equations are given
by

∂u

∂t
+ ru

h︸ ︷︷ ︸
Lu

− f v = −g
∂η

∂x
, (4.4a)

∂v

∂t
+ rv

h︸ ︷︷ ︸
Lv

+ f u = −g
∂η

∂y
, (4.4b)

∂η

∂t
+ h

(
∂u

∂x
+ ∂v

∂y

)
= 0. (4.4c)

Here, r is a linear friction coefficient (Prandle 1982), f the Coriolis parameter spec-
ified in Eq. (4.3) and g the gravitational acceleration. To facilitate the subsequent
analysis, we have introduced the differential operator L = ∂

∂t + r
h , which combines

inertial and frictional terms in the momentum equations.
At closed boundaries, the normal velocities must vanish. For the geometries under

consideration, this boils down to

v = 0 at y = 0, b, (4.5a)

u = 0 at x = 0. (4.5b)

Our model is forced at its open boundary. For a given constituent with angular
frequency σ , we prescribe the cross-basin profiles of tidal range H and phase ϕ:

η = 1
2H(y) cos (σ t − ϕ(y)) at x = �. (4.6)
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Across topographic steps, we require continuity of elevation and normal transport.
Depending on the type of step (longitudinal at x = xs or lateral at y = ys), this is
written as

lim
x↑xs

(η, hu) = lim
x↓xs

(η, hu), (4.7a)

lim
y↑ys

(η, hv) = lim
y↓ys

(η, hv). (4.7b)

Keeping the regular nature of tides in mind, we seek time-periodic solutions in
dynamic equilibrium with the boundary forcing in Eq. (4.6). This means that the
transient motion generated by starting from a certain initial condition has damped
out due to bottom friction.

4.3 Fundamental Wave Solutions

In this section, we seek wave solutions in a channel section of uniform width. Our
derivation, which involves the Klein-Gordon equation (Sect. 4.3.1), leads to the iden-
tification of the Kelvin wave (Sect. 4.3.2) and Poincaré waves (Sect. 4.3.3). The anal-
ysis is presented for a channel with uniform depth; the case with a single transverse
step is treated separately in Sect. 4.3.4 (Roos and Schuttelaars 2009). We closely
follow Pedlosky (1987), but extend it to account for bottom friction and a transverse
topographic step.

4.3.1 Derivation with Klein-Gordon Equation

Let φ = (η, u, v) symbolically denote the state of the system. For a given frequency
σ , we write

φ = Re
{
φ̃(y) exp(i[kx − σ t]

}
, (4.8)

with complex amplitudes φ̃(y) = (η̃(y), ũ(y), ṽ(y)) that are functions of the cross-
channel coordinate y, andRe{·}denoting the real part. Thewave number k = kr + iki,
also complex, is to be determined from the analysis below. The boundary conditions
are as in Eq. (4.5a); they imply ṽ(0) = ṽ(b) = 0.

Before proceeding, we first derive an important general result.
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We start by deriving the so-called polarisation equations, which relate the
individual velocity components to the free surface elevation:

(L2 + f 2
)
u = −gL∂η

∂x
− f g

∂η

∂y
, (4.9a)

(L2 + f 2
)
v = −gL∂η

∂y
+ f g

∂η

∂x
. (4.9b)

They follow from eliminating either v or u from the momentum equa-
tions (4.4a)–(4.4b).

Then, multiplying Eqs. (4.9) with h, taking their divergence and applying
the continuity equation (4.4c) leads to a single equation for η only. This is the
‘extended’ Klein-Gordon equation:

(L2 + f 2
) ∂η

∂t
− ghL

(
∂2η

∂x2
+ ∂2η

∂y2

)
= 0, (4.10)

here, unlike its classical formulation, accounting for bottom friction. It serves
as the governing equation for the wave solutions derived in this section.
To arrive at Eq. (4.10), it is essential that h and r are spatially uniform.
In the case without bottom friction (r = 0, so L = ∂

∂t ), time integration of
Eq. (4.10), while assuming wave-like solutions, recovers the regular Klein-
Gordon equation (Pedlosky 1987). If also the Coriolis effect were neglected
( f = 0), thiswould further reduce to the classical shallow-waterwave equation
∂2η

∂t2 − gh
(

∂2η

∂x2 + ∂2η

∂y2

)
= 0. As can be shown, also the flow velocity compo-

nents must satisfy the extended Klein-Gordon equation, so in Eq. (4.10) one
may freely replace η with either u or v.

The next step is to substitute our solution (4.8) into the extended Klein-Gordon
equation (4.10). Upon defining the complex frictional correction factor

γ = √1 + iμ, with μ = r

σh
, (4.11)

implying γ = 1 in the absence of friction, it follows that L = −iγ 2σ and we find

∂2η̃

∂y2
+ α2η̃ = 0, with α2 = γ 2σ 2 − γ −2 f 2

gh
− k2. (4.12)

The general solution to this differential equation reads

η̃(y) = A cosαy + B sin αy, (4.13)
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with constants A and B that follow from the boundary conditions in Eq. (4.5a). With
the aid of the polarisation equation (4.9b), these are written in matrix form according
to
[

f k αγ 2σ

f k cosαb − αγ 2σ sin αb αγ 2σ cosαb + f k sin αb

] [
A
B

]
=
[
0
0

]
. (4.14)

This system has non-trivial solutions only if the determinant of the coefficient matrix
vanishes.With the definition of the parameterα in Eq. (4.12), we obtain the following
condition:

([γ 2σ ]2 − f 2
) (

k2 − γ 2σ 2

gh

)
sin αb = 0. (4.15)

This equation contains three roots. The second and third are associated with Kelvin
and Poincaré waves, to be analysed in the following subsections. In doing so we will
adopt parameter values, inspired by the coastal seas of Sect. 4.1 and further aimed at
exposing the key properties (Table 4.2). The first only exists without bottom friction;
in that case it has been shown to add no information to the Kelvin wave (Pedlosky
1987).

4.3.2 Kelvin Wave

The second root in Eq. (4.15) corresponds to the so-called Kelvin wave. It permits
two values of the wave number, i.e.

k = k⊕
0 = +γ K , k = k�

0 = −γ K , with K = σ√
gh

, (4.16)

corresponding to a progressive wave travelling in either the positive or negative x-
direction. The wave number equals that of a shallow water wave (±K ), modified
by the frictional correction factor γ defined in Eq. (4.11). A subscript ‘0’ has been
added, because, as we shall see in Sect. 4.3.3, the Kelvin wave serves as the lowest
mode in a family of wave solutions.

Using Eq. (4.16), the coefficient in Eq. (4.12) reduces to α = ±iγ −1 f (gh)−1/2.
The elevation and velocity amplitudes, as defined in Eq. (4.8), are given by

φ̃⊕
0 = (

η̃⊕
0 , ũ⊕

0 , ṽ⊕
0

) = (Z ,U, 0) exp

( − f y

γ
√
gh

)
, with U = Z

γ

√
g

h
, (4.17a)

φ̃�
0 = (

η̃�
0 , ũ�

0 , ṽ�
0

) = (Z ,−U, 0) exp

(− f [b − y]
γ
√
gh

)
. (4.17b)
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Table 4.2 Overview of model parameters and values (as used in Figs. 4.5, 4.7, 4.8, 4.9 and 4.10)

Symbol Description Value Unit(s)

h Water depth∗ 20 m

θ Latitude 50 ◦N
σ Angular frequency 1.405 × 10−4 rad s−1

r Friction coefficient 5.0 × 10−4 m s−1

b Channel/basin width 300Fig. 4.5, 700Figs. 4.7,4.8,
200Figs. 4.9,4.10

km

� Basin lengthFig. 4.10 600 km

xs Position of along-basin
stepFig. 4.10

150 km

f Coriolis parameter,
Eq. (4.3)

1.12 × 10−4 rad s−1

μ Dimensionless friction
coefficient, Eq. (4.11)

0.18 −

K Shallow water wave
number, Eq. (4.16)

1.00 × 10−5 rad m−1

R Rossby deformation
radius, Eq. (4.18)

125 km

bcrit Critical channel width,
Eq. (4.23)

519 km

λ0 Kelvin wavelength 626†Figs. 4.5a,4.9a,
624Figs. 4.5b,4.9b

km

λ1 Wavelength of 1st Poincaré
mode†‡Fig. 4.7a

1584 km

L2 Decay length of 2nd
Poincaré mode†‡Fig. 4.7b

149 km

L3 Decay length of 3rd
Poincaré mode†‡

83 km

∗N.B.: in Fig. 4.10 we use a reference depth of h = 40 m and a shallow region of h = 20 m),
†Without bottom friction, ‡For channel width b = 700 km.

In these expressions, Z represents the coastal elevation amplitude4 at (x, y) = (0, 0)
and (0, b), respectively, and U is the coastal velocity amplitude.

Let us nowhighlight the key properties of theKelvinwave (Fig. 4.5, using parame-
ter values from Table 4.2), first for the case without bottom friction (r = 0, so γ = 1,
Fig. 4.5a):

• Nondispersive progressive shallow water wave with wave speed (gh)1/2 and the
along-channel velocity in phase with the free surface elevation.

• Exponential decay in the cross-channel direction with the so-called Rossby defor-
mation radius

4 For f > 0, Z is themaximum elevation amplitude of the Kelvin wave as it decreases whenmoving
to the other coast. Conversely, for f < 0, Z is the minimum coastal amplitude.
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blue = co-range
red = co-phase

a Kelvin wave (without friction)

blue = low tide
red = high tide

blue = co-range
red = co-phase

b Kelvin wave (with friction)

blue = low tide
red = high tide

Fig. 4.5 Visualisation of Kelvin wave in a channel section of uniform width and depth in the
Northern Hemisphere, propagating from right to left: a without friction, b with friction. The top
panels show a three-dimensional snapshot of the surface elevation (coloured contours, high tide in
red and low tide in blue). The middle panels show the corresponding instantaneous depth-averaged
velocity (grey arrows). The bottom panels show the co-range lines (blue) and co-phase lines (red).
Parameter values as in Table 4.2, with the frictional case chosen such that amplitude decay in the
direction of propagation is already visible over one wavelength

R =
√
gh

| f | (4.18)

as e-folding length scale. This enables us to quantify the ‘wide’ basins mentioned
in the Introduction as basins with b = O(R) (or larger). For b � R, the cross-
channel structures in Eq. (4.17) are nearly uniform, indicating that the Coriolis
effect only marginally affects the solution.

• Facing the direction of propagation, the Kelvin wave ‘hugs’ the coast on its right
(Northern Hemisphere, Fig. 4.5a) or on its left (Southern Hemisphere).

• Vanishing cross-channel velocity, i.e. v = 0, in the entire domain. This implies
that the presence of the opposite coastline is not essential: the Kelvin wave in
Eq. (4.17a) also exists as a wave solution in a semi-infinite water domain bounded
by a single straight coastline at y = 0.

• Shore-parallel co-range lines, along which η̃(y) is constant, and shore-normal
co-phase lines, along which exp(ikx) is constant (bottom panel of Fig. 4.5a).

• Dynamics of a progressive shallow water wave in the along-coast direction and
geostrophy in the shore-normal direction. The latter implies a balance between the
cross-shore pressure-gradient acceleration −g ∂η

∂y and the Coriolis acceleration f u
of the alongshore flow (see Eq. (4.4b) and recall that v = 0).

Bottom friction (r > 0, so γ = 1) distorts the above picture (Fig. 4.5b). The along-
channel velocity has a phase lead with respect to the surface elevation. The wave
number k = kr + iki is complex, implying exponential amplitude decay in the direc-
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tion of propagation as well as a reduced wave speed

c = σ

kr
= ±√gh

[
1

2
+ 1

2

√
1 +

( r

σh

)2
]−1/2

, (4.19)

and, hence, a shorter wavelength λ = 2π/kr. The dependency of wave speed on tidal
frequency demonstrates that bottom friction makes the wave dispersive. Also cross-
channel decay is affected, but the absence of cross-channel flow (v = 0) continues to
hold in the entire domain. The above is reflected in the co-range and co-phase lines,
which become skewed and no longer perpendicular (bottom panel of Fig. 4.5a).

To illustrate these Kelvin wave properties in a more quantitative sense, let
us turn to the UK East Coast. The shore-parallel co-range lines and shore-
normal co-phase lines in Fig. 4.2 suggest a near-perfect Kelvin wave propagat-
ing southward.Herewe shall combine coastal data from theUKAdmiraltyTide
Tables (Admiralty 2009)withKelvinwave theory to estimate tidal wavelength,
water depth, Rossby deformation radius and coastal velocity amplitudes.

From the tidal phases as observed at coastal tide stations between Helms-
dale and Hunstanton (Fig. 4.6) and using k = dϕ

dx with phase ϕ as introduced
in Eq. (4.2), we thus find a wavelength estimate of λM2 = 1.05 × 103 km.
Assuming a frictionless Kelvin wave speed of c = λ/T = (gh)1/2, this corre-
sponds to an ‘effective’ water depth of 57 m. In turn, with θ ∼ 55◦N as typical
latitude, we obtain a Rossby deformation radius of R ∼ 197 km. This suggests
that the tidal range is halved roughly at a distance of R ln 2 ≈ 137 km from
the coast. As shown by Table 4.3, redoing this for the other constituents (S2,
K1, O1) leads to roughly similar values of h and R.

As an alternative (not carried out here), one may also estimate the Rossby
deformation radius directly from the co-range lines in Fig. 4.2 and use this
to compute the ‘effective’ water depth. Finally, using U = Z(g/h)1/2, the
observed coastal tidal range of HM2 ∼ 1.66 m corresponds to a coastal velocity
amplitude of UM2 ∼ 0.35 m s−1. The results for the other constituents are
shown in Table4.3.
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Table 4.3 Parameters used in Kelvin wave fit of UK East Coast (Fig. 4.6)

Symbol Description Value Unit(s)

M2 S2 K1 O1

k Wave
number

0.60 0.63 0.35 0.30 ×10−5 rad m−1

λ Wavelength 1.05 1.00 1.80 2.12 ×103 km

h ‘Effective’
water depth

57 54 44 53 m

R Rossby
deformation
radius

197 193 175 191 km

H Coastal
tidal range

1.66 0.55 0.12 0.14 m

U Coastal
velocity
amplitude

0.35 0.12 0.03 0.03 m s−1

0 100 200 300 400 500 600
0

0.5

1

1.5

2

2.5
a tidal range

0 100 200 300 400 500 600

0

90

180

270

360
b tidal phase

Fig. 4.6 Observations of M2 (blue circles), S2 (red), K1 (green) and O1 (grey) for coastal tide
stations between Helmsdale and Hunstanton (UK, see Fig. 4.2): a tidal range H , b tidal phase ϕ.
Data plotted as a function of the distance x on the straight line Helmsdale-Hunstanton, upon which
each tide station’s location has been projected (x = 0 corresponding to Helmsdale). The straight
solid lines represent the fits of mean tidal range (left) and dϕ

dx (right). Data from UK Admiralty
(Admiralty 2009)
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4.3.3 Poincaré Waves

The third root of Eq. (4.15) corresponds to the set of infinitely many wave solutions
known as Poincaré waves. As implied by the condition sin αb = 0, these modes are
characterised by transverse wave numbers

αn = nπ

b
, for n = 1, 2, 3, . . . . (4.20)

Substitution of Eq. (4.20) into Eq. (4.12) leads to expressions for the wave number:

k⊕
n =

√
γ 2K 2 − γ −2R−2 − α2

n, k�
n = −k⊕

n , (4.21)

which is the dispersion relationship for Poincaré waves. Here, γ , K and R are as
defined in Eqs. (4.11), (4.16) and (4.18).

On the basis of Eq. (4.21), we thus identify two sets of countably infinite modes,
labeled n = 1, 2, 3, . . . and characterised by wave numbers, the real and imaginary
parts of which are either positive (k⊕

n ) or negative (k
�
n ).

With the aid of the polarisation equations (4.9), the cross-channel structures of
the surface elevation and flow field are found to be

φ̃⊕
n =

⎛

⎝
η̃⊕
n

ũ⊕
n

ṽ⊕
n

⎞

⎠ =
⎛

⎝
Z

k⊕
n

γ K U
0

⎞

⎠ cosαn y +

⎛

⎜⎜⎝

− f k⊕
n

αnγ 2σ
Z

− f K
αnγ σ

U
iγ K
αn

[
1 − k⊕2

n
γ 2K 2

]
U

⎞

⎟⎟⎠ sin αn y. (4.22)

For the other family, replace ⊕ with �. As degree of freedom, we have chosen to
specify the elevation amplitude Z at (x, y) = (0, 0). The velocity scale U is as
defined in Eq. (4.17a).

Let us nowhighlight the key properties of Poincaréwaves, first for the casewithout
bottom friction (r = 0, so γ = 1, Figs. 4.7 and 4.8).

• Unlike frictionless Kelvin waves, Poincaré waves are dispersive. This is reflected
in the curved lines of σ versus k (Figs. 4.8a, c, d).

• Governed by the sinusoidal structure for the cross-channel flowvelocity amplitude,
the structures of elevation are also harmonic. The phase lag of 90◦ between u and
v implies that the end point of the depth-averaged velocity vector describes an
elliptical path during a tidal cycle.

• In the absence of bottom friction, Poincaré waves are either free (characterised
by a real wave number kn = kn,r) or evanescent (purely imaginary wave number
kn = ikn,i). This is seen from the filled dots in Figs. 4.8a, b. For evanescent waves,
the amplitude decays exponentially in the positive or negative x-direction with an
e-folding decay length that is given by Ln = |kn,i|−1.

• For any channel system, there is always a finite number n� of free modes (possibly
zero, 1 ≤ n ≤ n�) and an infinite number of evanescent modes (n > n�). For the
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blue = co-range
red = co-phase

a 1st Poincaré mode (free)

blue = low tide
red = high tide

blue = co-range
red = co-phase

b 2nd Poincaré mode (evanescent)

blue = low tide
red = high tide

Fig. 4.7 Visualisation of Poincaré waves, in a channel section of uniform width and depth in the
Northern Hemisphere (without bottom friction): a example of free mode propagating from right
to left (n = 1), b example of evanescent mode exponentially decaying from right to left (n = 2).
Analogous to Fig. 4.5, the sketch contains snapshots of surface elevation (top, with high tide in red
and low tide in blue) and depth-averaged velocity (middle), as well as co-range and co-phase lines
(blue and red in bottom panel, resp.). Parameter values as in Table 4.2, with channel width chosen
such that the first mode is free and the second evanescent

example in Fig. 4.8, it follows that n� = 1. For these evanescent modes, the decay
length Ln decreases with increasing n. In other words, the evanescent mode with
the lowest index has the largest decay length, namely Ln�+1.

• In particular, provided that σ > | f |, there is a critical channel width bcrit , given by

bcrit = π

√
gh

σ 2 − f 2
, (4.23)

such that all Poincarémodes are evanescent if b < bcrit . Conversely, a finite number
of free modes exist if b > bcrit . This follows from requiring the square root in
Eq. (4.21) to have a vanishing argument for n = 1. Equivalently, one may derive a
critical depth hcrit such that all Poincaré modes are evanescent if h > hcrit . Finally,
for σ ≤ | f |, all Poincaré modes are evanescent regardless width or depth.

Analogous to the Kelvin wave, the inclusion of bottom friction distorts the above
picture. The wave numbers experience a shift in the complex plane: the free modes
attain a nonzero imaginary part and the evanescent modes a nonzero real part (open
dots in Figs. 4.8a, b). Also, changes in phase of velocity with respect to elevation
take place.
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a dispersion relationships in
wave vector vs frequency-space

b,c,d 2D-sections
of 3D-plot on the left
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Fig. 4.8 Dispersion relationships (4.16) and (4.21) of Kelvin and Poincaré modes presented in
dimensionless form. Plotted is the dimensionless frequency σ/ f versus the real and imaginary
parts (krR, kiR) of the dimensionless wave number (with Rossby deformation radius R): a Three-
dimensional visualisation in (krR, kiR, σ/ f )-space (without bottom friction). The filled dots on the
light-blue plane show the modes obtained for σ/ f = 1.25, with free modes along the real axis and
evanescentmodes along the imaginary axis. The indices at the bottom show theKelvinmode (n = 0)
and Poincaré modes (n = 1, 2, 3, . . . ). b Two-dimensional plot of these modes (σ/ f = 1.25) in the
complex (krR, kiR)-plane, with n = 0 denoting the Kelvin modes. The open dots in a,b show
how the modes shift when bottom friction is included (μ = r

σh = 0.18). c,d 2D-sections showing
σ/ f versus real part krR (blue, whenever kR is real) and imaginary part kiR (red, whenever
kR is imaginary). Parameter values in Table 4.2, corresponding to a dimensionless channel width
b/R = 5.6

4.3.4 Wave Solutions with a Transverse Topographic Step

Wave solutions in a channel section with a single cross-channel topographic step
(at y = ys, see Sect. 4.2 in Fig. 4.4) consist of a solution in the lower compartment
and one in the upper compartment (Roos and Schuttelaars 2009). We thus extend
Eq. (4.8) to

φ =
⎧
⎨

⎩
Re
{
φ̃(y) exp(i[kx − σ t]

}
for 0 ≤ y ≤ ys (‘lower’),

Re
{
φ̃′(y) exp(i[kx − σ t]

}
for ys ≤ y ≤ b (‘upper’),

(4.24)

with wave number k and cross-channel structures φ̃(y) = (η̃, ũ, ṽ) and φ̃′(y) =
(η̃′, ũ′, ṽ′). Quantities in the upper compartment are denoted with a prime, those
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in the lower compartment without a prime. Apart from different depths h = h′, we
also allow different friction coefficients r = r ′.

Sinceφ must be a solution to themodel equations (4.4), each componentmust also
satisfy the extended Klein-Gordon equation (4.10). Additionally, the solution must
satisfy the closed boundary condition (4.5a) and the matching conditions across the
topographic step in Eq. (4.7b). In fact, the latter force the wave number k in Eq. (4.24)
to be identical in both compartments.

For a given wave number k (to be determined below), the cross-channel structure
of the cross-channel velocity is written as

ṽ(y) = C sin αy

h sin αys
, ṽ′(y) = C sin α′y′

h′ sin α′y′
s

, with y′ = y − b, (4.25)

in which we have introduced the coefficients

α =
√

γ 2 K 2 − γ −2R2 − k2, α′ =
√

γ ′2 K ′2 − γ ′−2R′2 − k2. (4.26)

The solution in Eq. (4.25) has been constructed such that it automatically satisfies all
of the above conditions, except continuity of elevation across the topographic step,
i.e. except η̃(ys) = η̃′(ys). This last requirement serves as solvability condition for
the existence of non-trivial wave solutions. A numerical search routine, minimising
|ζ̃ (ys) − ζ̃ ′(ys)|, is then used to identify the wave numbers k, thus fixing the values of
the coefficients α and α′ according to Eq. (4.26). Expressions for the cross-channel
structures of surface elevation η̃ and η̃′ as well as along-channel velocity ũ and ũ′
are given in the Appendix.

The procedure outlined above identifies modified versions of each Kelvin and
Poincaré mode in the two families, characterised by a shift in wave number and a
deformed cross-channel structure. The presence of the two closed channel boundaries
prevents newmodes from arising here, e.g. the so-called doubleKelvinwave thatmay
propagate along a depth discontinuity in an infinite water domain (Longuet-Higgins
1968).

4.4 Amphidromic Patterns in Semi-enclosed Basins

In this section, we demonstrate how superpositions of the wave solutions derived in
Sect. 4.3 explain amphidromic patterns in semi-enclosed basins. As an important first
result, it is shown analytically that two Kelvin waves in a channel already produce an
amphidromic system (Sect. 4.4.1). Then, Taylor’s problem of Kelvin wave reflection
in a semi-enclosed basin is addressed, presenting the solution method (Sect. 4.4.2)
and properties of the solution (Sect. 4.4.3), the latter including application to the
Gulf of California. In fact, an extended version of Taylor’s problem is considered
here, as we include bottom friction (Rienecker and Teubner 1980) and topographic
steps (Roos and Schuttelaars 2009) (as well as a finite basin length). The Gulf of
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California serves as a typical example with an important role for both bottom friction
and topographic variations.

4.4.1 Superposition of Two Kelvin Waves

Consider the situation with two Kelvin waves, simultaneously travelling in opposite
directions along opposite coastlines of a channel section of uniformwidth and depth.
Following Eqs. (4.8) and (4.17), the surface elevation of this superposition is written
as

η = Re
{
Z⊕
0 exp (−δy) exp(i[k⊕

0 x − σ t])
+ Z�

0 exp (−δ[b − y]) exp(i[k�
0 x − σ t])}, (4.27)

with coastal amplitudes Z⊕
0 = |Z⊕

0 | exp(iϕ⊕
0 ) and Z�

0 = |Z�
0 | exp(iϕ�

0 ), wave num-
bers k⊕

0 = −k�
0 = kr + iki and complex coefficient δ = δr + iδi = γ −1 f/(gh)−1/2.

Equation (4.27) can be rewritten into real notation according to

η = Z
[
exp (−ψ) cos(ξ − χ) + exp (ψ) cos(ξ + χ)

]
, (4.28)

where we have introduced the short-hand notation

Z = |Z⊕
0 | exp(−δr y�), with y� = 1

2
b + 1

2
δ−1
r log(|Z⊕

0 |/|Z�
0 |), (4.29a)

ψ = kix + δr(y − y�), (4.29b)

ξ = krx − δi(y − 1
2b) + 1

2 [ϕ⊕
0 − ϕ�

0 ], (4.29c)

χ = σ t + 1
2δib − 1

2 [ϕ⊕
0 + ϕ�

0 ]. (4.29d)

Using trigonometric identities, we may now rewrite Eq. (4.28) into the form of
Eqs. (4.1)–(4.2), i.e.

η(x, y, t) = H(x, y) cos (σ t − ϕ(x, y)) , (4.30)

with analytical expressions for tidal range H and phase ϕ:

H(x, y) = 4Z
(
cosh2 ψ cos2 ξ + sinh2 ψ sin2 ξ

)
, (4.31a)

tan ϕ(x, y) = tanhψ tan ξ. (4.31b)

This result reveals the existence of amphidromic points, characterised by zero tidal
range (Fig. 4.9). The requirement H = 0 implies (i) ψ = 0 and (ii) ξ = (p + 1

2 )π

with integer p. The former condition defines a line through (x, y) = (0, y�) that is
either coast-parallel (in the case without bottom friction; Fig. 4.9a) or tilted (with
bottom friction; Fig. 4.9b). The latter condition locates the actual amphidromes on
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a without bottom friction
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b with bottom friction

-600 -400 -200 0 200 400 600
0

100

200

Fig. 4.9 Amphidromic chart (red=co-phase, blue=co-range) of the superposition of two Kelvin
waves in a channel section of uniform width and depth according to the analytical solution in
Eq. (4.31). a Without bottom friction, the amphidromic points are found on a coast-parallel line,
here located slightly off the centerline (due to different coastal amplitudes). bWith bottom friction,
the amphidromes are located on a tilted line, leading to real and virtual amphidromes. In both
examples, the point (x, y) = (0, y�) in Eq. (4.29a), where both amplitudes are equal, is denoted
with a black cross (here, y� = 160 km). Parameter values as in Table4.2

this line, which may be inside or outside the channel (real or virtual). The presence
of a transverse topographic step (as in Sect. 4.2 in Fig. 4.4) would distort the above
amphidromic pattern, since the two Kelvin waves will then have slightly different
wavelengths.

We conclude that the interference pattern of two Kelvin waves, propagating in
opposite directions, produces an amphidromic system. The cross-channel positions
of the amphidromic points depend on the relative amplitudes, which in turn is also
affected by bottom friction. However, the case of a basin with a closed end (Fig. 4.4a,
b) is not solved by any superposition of two Kelvin waves, as they cannot satisfy
the closed boundary condition in Eq. (4.5b). How to overcome this difficulty, often
referred to as Taylor’s problem, is tackled in the next subsection.

4.4.2 Solution to Extended Taylor Problem

Let us now turn to the so-called Taylor problem (Taylor 1922) of tidal motion in a
semi-enclosed basin of uniformwidth, with a closed boundary at x = 0. The classical
version of this problem concerns an infinitely long basin of uniform depth, forced
by an incoming Kelvin wave from +∞, in the absence of bottom friction. Here we
consider a different version of the problem: as before, we include bottom friction,
allow for topographic steps, and further we consider a basin of finite length � with
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specified elevation amplitude and phase according to Eq. (4.2) as the open bound-
ary condition at x = � (Fig. 4.4). In our description below, we shall first ignore the
topographic steps; how to include those is explained further below.

Different from the form of the individual wave solutions of Eq. (4.8) in Sect. 4.3,
the solution φ = (η, u, v) is now more generally written as

φ = Re
{
φ̂(x, y) exp(−iσ t)

}
, (4.32)

with complex amplitudes φ̂(x, y) = (η̂(x, y), û(x, y), v̂(x, y)) that depend on both
horizontal coordinates x and y.

The solution is then written as a (truncated) superposition of Kelvin and Poincaré
modes according to

φ̂(x, y) =
N∑

n=0

a⊕
n φ̃⊕

n (y) exp(ik⊕
n x) +

N∑

n=0

a�
n φ̃�

n (y) exp(ik�
n [x − �]), (4.33)

with nonzero5 truncation number N and involving 2(N + 1) dimensionless complex
coefficients a⊕

n and a�
n . By construction, the solution presented here automatically

satisfies the model equations (4.4) and the closed boundary conditions at y = 0, b in
Eq. (4.5a).

To satisfy also the two remaining conditions, i.e. the closed boundary condition
at x = 0 in Eq. (4.5b) and the prescribed elevation amplitude and phase at x = � in
Eq. (4.6), we apply a so-called collocation method (Brown 1973). To this end, we
define N + 1 lateral points yn = bn/N and we require that

û(0, yn) = 0, ζ̂ (�, yn) = 1
2H(yn)Re {exp(iϕ(yn))} for n = 0, 1, . . . , N ,

(4.34)
with tidal range H and phase ϕ taken from Eq. (4.6). This set of 2(N + 1) conditions
leads to a linear system for the 2(N + 1) coefficients a⊕

n and a�
n , which can be solved

using standard techniques. It should be noted that the final solution in Eqs. (4.32) and
(4.33) is independent of the value chosen for the elevation scale Z of the individual
wave solutions in Eqs. (4.17) and (4.22).

Finally, some remarks on the solution method are in order.

• Generally, taking a truncation number of N = O(10) already produces a qual-
itatively correct picture of the solution (see Sect. 4.4.3). Further increasing N
improves the accuracy of the solution mainly in the vicinity of the collocation
points. While orthogonality conditions for Kelvin and Poincaré waves have been
derived (Ripa and Zavala-Garay 1999), whether they actually form a complete set
remains an open mathematical problem.

5 Choosing N = 0 would effectively bring us back to the superposition of two Kelvin waves only,
as already analysed in Sect. 4.4.1.
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• Theaboveprocedure canbe easily adjusted to cover the classical versionofTaylor’s
problem. Instead of the second condition in Eq. (4.34), one should then choose
a nonzero value of a�

0 , force a
�
n = 0 for all n = 1, 2, . . . , N and solve the set of

N + 1 remaining equations resulting from the first condition in Eq. (4.34).
• Alternatively, the presence of an along-basin topographic step, at some x = xs, is
incorporated by defining separate expressions as in Eq. (4.33) for each compart-
ment (Roos and Schuttelaars 2009). The increase in number of coefficients is then
exactly balanced by the additional matching conditions across the step: one should
require Eq. (4.7a) to be satisfied at all points (xs, yn) for n = 0, 1, . . . , N .

• The presence of a cross-basin topographic step, at some y = ys poses no com-
plications either. One can readily take the modified wave solutions as derived in
Sect. 4.3.4. One should choose the truncation number N such that the transverse
position ys of the step does not coincide with any of the collocation points, since
the longitudinal velocity is not uniquely defined there.

4.4.3 Application to Basins Around the World

Athree-dimensional sketchof the solution to theTaylor problem is shown inFig. 4.10.
It shows a snapshot of the surface elevation (top) and the corresponding instantaneous
flow field (bottom). For simplicity, this pertains to the classical Taylor problem, i.e.
excluding bottom friction and imposing an incoming Kelvin wave rather than a
prescribed elevation profile at the open boundary.

As it turns out, near the basin’s closed end the depth-averaged flow velocity
vector describes ellipses (also shown in the bottom panel of Fig. 4.10). Physically,
this is due to the Coriolis effect: it effectively turns the reflection of the tidal wave
at the basin’s head into a cyclonic rotation of a Kelvin wave. Mathematically, this
is seen in the Poincaré modes generated to satisfy the closed boundary condition at
the basin’s head (x = 0). In this subcritical case (b < bcrit) all Poincaré modes are
evanescent, implying that further away the solution is effectively the superposition
of the incoming and reflected Kelvin waves, for which the flow aligns with the along-
basin direction. This alignment is actually visible because the decay length of the
first Poincaré mode is smaller than the basin length.

Next, the four examples in Fig. 4.11 show the solution to the extended Taylor
problem, restricting to the amphidromic charts. They particularly illustrate the (sep-
arate and combined) effects of including bottom friction and a shallow region near
the basin’s head. For this example with a subcritical basin width (b < bcrit , so all
Poincaré modes are evanescent6), we highlight the following properties.

6 As pointed in Sect. 4.3.3, this definition applies to the frictionless case.
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Fig. 4.10 Example of Taylor’s solution, showing snapshot of the surface elevation (top, high tide
in red, low tide in blue), as well as the corresponding depth-averaged flow vector (bottom), which
describes ellipses during the tidal cycle. The basin’s closed end is on the left-hand side, the open
boundary on the right-hand side

• Without bottom friction, the reflected Kelvin wave has the same amplitude as the
incoming Kelvin wave. As a result, amphidromic points are on the centerline of
the basin.7

• Bottom friction distorts the picture in a similar fashion as in the plain superposition
of two Kelvin waves (see Sect. 4.4.1 and Fig. 4.9). However, now the two Kelvin
waves are connected by the reflection process at the closed end, which involves
evanescent Poincaré modes bound to x = 0. As a result, amphidromic points shift
toward the lower coastline (y = 0).

• Including a shallow region near the basin’s head may lead to tidal amplification,
and thus to higher values of the tidal range.

• The combined effect of bottom friction and the shallow part may enhance the
shift of amphidromes away from the centerline (also see application to the Gulf
of California below).

7 For supercritical basins, i.e. basins with b > bcrit , this is not true since tidal wave energy is also
reflected in a free Poincaré mode. This leads to a more complex amphidromic pattern resulting from
the interference of these modes.
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a uniform depth (without friction)
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Fig. 4.11 Four examples of amphidromic charts (red=co-phase, blue=co-range) showing the solu-
tion to the extended Taylor problem. a Reference case with uniform depth of 40 m, no bottom
friction. b Including a shallow zone near the basin’s head (20 m deep, grey shade), no friction.
c Uniform depth, now including friction. d Including both shallow zone and friction. Parameter
values as in Table 4.2. All solutions are forced by anM2-tide with a uniform tidal range of H = 1 m
at the open boundary (on the right). Contours are shown every 0.5 m

To apply and test our model, let us consider the Gulf of California (Hender-
shott and Speranza 1971; Carbajal and Backhaus 1998; Marinone 2000). This
elongated basin is characterised by mixed semi-diurnal tides and a large tidal
range in the northern part (spring tidal range close to 10m). Typical is the
virtual amphidromic point occurring for the semi-diurnal tides (Fig. 4.3).

Our procedure consists of the following four steps (Roos and Schuttelaars
2009).
1. We define a rectangular model geometry PQRS that provides a good fit

of the coastline. It has length � = 1223 km, width b = 166 km and an
orientation/positioning as shown in Fig. 4.12a.

2. We perform orthogonal projections of the available tide stations on the
model boundary (Fig. 4.12a). This enables us to plot observed ranges and
phases (Carbajal and Backhaus 1998) as a function of a single coordinate:
the distance along the perimeter PQRS.

3. Based on bathymetry (Fig. 4.12), we choose a division in two compart-
ments, separated by a single longitudinal topographic step at xs = 350 km:
a shallow compartment with h1 = 100 m near the basin’s head and a deep
compartment with h2 = 1200 m.

4. Using a representative latitude θ = 27.5◦N, we performmodel simulations
varying both amplitude and phase of the incoming Kelvin wave. Note that
this implies a different open boundary condition than in Eq. (4.2).



4 Tides in Coastal Seas. Influence of Topography and Bottom Friction 97

Results for the M2, S2, K1 and O1-tides are shown in Figs. 4.12c-f. In par-
ticular, the non-monotonous curve of the semi-diurnal phases ϕM2 and ϕS2

along the basin perimeter indicates the presence of a virtual amphidromic
point (see Sect. 4.1 and Fig. 4.3). Such a pattern occurs when the amplitude
of the reflected Kelvin wave is much weaker than that of the incoming Kelvin
wave. Physically, this is caused by the enhanced dissipation due to bottom fric-
tion of the (locally amplified) tide in the shallow zone near the basin’s head.
This mechanism is also illustrated by the example in Fig. 4.10, although in that
example the dissipation is too weak for the amphidrome to become virtual.

We conclude that our extended Taylor model, in spite of its strong schema-
tisations, can adequately reproduce the patterns of tidal range and phase, as
observed along the Gulf of California’s coastline.

In other examples, the amphidromic patterns in basins with other length, widths,
water depth and tidal ranges can be notably different. For example, the Adriatic
Sea also has a shallow zone near the head, but tides and hence tidal dissipation are
relatively weak, such that the amphidromes are still real and not virtual (Hendershott
and Speranza 1971; Roos and Schuttelaars 2009). Alternatively, the asymmetric
depth profile in the Persian Gulf leads to different Kelvin wavelengths on either side
of the basin of the incoming and reflected Kelvin waves. Finally, basins characterised
by (stepwise) variations in basin width are touched upon in Sect. 4.5.

4.5 Discussion

The model approach described in this chapter has been introduced as idealised
process-based (Sect. 4.1), in other texts also referred to as exploratory (Murray
2003). This choice is motivated by our goal to provide a generic explanation of
the amphidromic patterns starting from the physical processes. Here, the obtained
insights immediately stem from the structure of the solution, i.e. a superposition
of fundamental wave solutions. These wave solutions can be found analytically,
which greatly facilitates interpretation and understanding of the tidal dynamics. As
a specific example, we highlight the identification of the Rossby deformation radius
R = √

gh/| f | as typical length scale for cross-shore decay of a Kelvin wave.
One of the challenges in idealised process-basedmodelling is thus to seek schema-

tisations of model geometry and process formulations that allow for efficient and
insightful solution techniques, while still realistic for the problem at hand. Examples
in our extended Taylor model are the linearised bottom stress parameterisation, as
well as the use of rectilinear coastlines and stepwise topographic changes. Clearly, too
strong schematisation jeopardise model validity. For example, other studies allowed
stepwise width variations have been adopted, e.g., to model the Labrador Sea/Davis
Strait/Baffin Bay system (Godin 1965) and the North Sea (Roos et al. 2011).
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Fig. 4.12 Left: bathymetric chart of the Gulf of California with shallow region near closed end.
Also shown is the rectangular model basin PQRS with topographic step Q′R′ (dashed line) as
well as tide stations (black dots) and their projections onto the model basin boundary (open circles).
Right: comparison between model results (solid line) and observations (Carbajal and Backhaus
1998) (open circles). From top to bottom, this is done for the range and phase of M2, S2, K1 and
O1, plotted as a function of the perimeter coordinate along PQRS

This idealised modelling approach contrasts with complex simulation models,
which adopt state-of-the-art process formulation in numerical techniques aimed
at accurate solutions with a high level of detail. We argue that, ideally, the two
approaches are used in support of each other: complex models to reveal patterns,
idealised models to unravel the underlying physics of the patterns found.

The knowledge and insights on barotropic tides as presented in this chapter con-
stitute a basis for further studies that involve tides. For example, models have been
developed to investigate the dynamics of secondary, nonlinear tides that are gen-
erated by nonlinear terms in the equations of motion (Iannello 1977; Parker 1993;
Maas and Doelman 2002). Nonlinear tides include overtides, which are higher har-
monics of a principal tidal constituent (e.g., M4, M6 are overtides of M2) and tidal
residuals. Their manifestation implies that tidal records are asymmetrical, e.g. they
show different durations of flood and ebb periods and/or different peak flood currents
and ebb currents. Tides also nonlinearly interact with wind-driven flow (tide-surge
interactions), wind waves and river flow (tide-fluvial interactions). These aspects are
reviewed by Talke and Jay (2020).

Asymmetry of tidal currents is an important driver of net transport of matter, such
as salt, nutrients and pollutants. An interesting application in this regard concerns the
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demonstration of chaotic spreading of passive particles in a confined channel due to
a simple current field that consists of a spatially uniform M2 tide and an alternating
series of tidal residual eddies (Ridderinkhof and Zimmerman 1992). Furthermore,
in shallow seas tidal currents are often sufficiently strong to erode sediment from the
bottom and, when the currents are asymmetrical, they will also cause net transport of
that sediment. These processes lead to the formation of turbidity maxima in estuaries
(Burchard et al. 2018), and the emergence of bottom patterns: tidal sand ridges
(De Swart and Yuan 2019), sand waves (Besio et al. 2008), tidal flats and bars
(Seminara 2010), ebb-tidal deltas (De Swart and Zimmerman 2009), etcetera.

The theory of tides is further abundantly used to understand, reconstruct and pre-
dict alterations of tidal characteristics in seas and oceans. Nowadays, such alterations
typically result from a mixture of naturally and anthropogenically induced changes
in environmental conditions that occur on a wide spectrum of time scales. Examples
are fluctuations in wind and river discharge, geometrical changes due to changes in
mean sea level and shifts in positions of coastlines, as well as geometrical changes
caused by construction of dams and dikes, deepening of fairways. Specific examples
of studies that deal with changes in tides are given in the review by Talke and Jay
(2020).

Tides are also an important source of turbulence, both directly and indirectly. The
direct way is that turbulence is produced by the stress that tidal currents exert on a
rough bottom. A more indirect way is through internal tides, which are generated
by barotropic tides in stratified waters (density varies with depth) with an irregular
bottom topography (Gerkema 2019). These internal waves break at steep slopes,
such as those of underwater sea mountains and continental slopes, thereby creating
turbulence. These turbulent motions are essential for the maintenance of the large-
scale thermohaline circulation in the ocean and thus for the Earth’s climate (Munk
and Wunsch 1998).

4.6 Conclusions

Tides constitute a fascinating phenomenon of both theoretical and practical inter-
est. Using idealised process-based models, solving only the essential physics on
strongly schematised geometries, we have produced the gross features of tidal pat-
terns in coastal basins around the world. The structure of the presented solutions, i.e.
a superposition of fundamental wave solutions (Kelvin and Poincaré modes), leads
to the following insights.

• The Coriolis effect is responsible for the typical cross-shore decay of tidal range
away from the coast, a typical Kelvin wave property, and thus for the cyclonic
wave propagation around amphidromic points in (sufficiently wide) semi-enclosed
basins. Near the basin’s closed end, tidal currents are elliptical, which is associated
with the excitation of Poincaré waves.
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• Dissipation due to bottom friction mainly causes a decay of tidal range in the
direction of tidal wave propagation, implying a shift in the amphidromic points.

• Topographic effects, e.g. due to abrupt changes in depth, control tidal wave speed,
which may lead to tidal amplification in shallow regions. In turn, this may enhance
dissipation due to bottom friction, thus further affecting the amphidromic pattern.

Despite the strong schematisations, the idealised modelling approach is capable of
grossly reproducing tidal patterns as observed in, e.g., the Gulf of California. Tidal
patterns act as drivers in other studies of, e.g., morphodynamics, mixing and spread-
ing of particles. Finally, the obtained insights and modelling techniques can be used
to better understand the influence of large-scale changes due to climate change and
large-scale human intervention.

Acknowledgements The tide gauge data used in Fig. 4.1 have been provided by theBritishOceano-
graphic Data Centre.

Appendix

Wave Solutions in Channel with Topographic Step

The cross-channel structures of elevation and along-channel velocity of the wave
solutions in an infinite channel with a single transverse topographic step (Sect. 4.3.4)
are given by

η̃(y) = iC[ f 2 − γ 4σ 2] [αγ 2σ cosαy − f k sin αy
]

gh[α2γ 4σ 2 + f 2k2] sin αys
, (4.35a)

ũ(y) =
iC[ f 2 − γ 4σ 2]

[
αk cosαy − f σ

gh sin αy
]

h[α2γ 4σ 2 + f 2k2] sin αys
. (4.35b)

These expressions follow from subsequently combining the cross-channel velocity
solution in Eq. (4.25) with the second polarisation equation (4.9b), and then substi-
tuting the result (4.35a) in the the first polarisation equation (4.9a). Expressions for
η̃′(y) and ũ′(y) valid in the upper compartment are readily obtained by replacing the
quantities (α, γ, h, y, ys) in the above with (α′, γ ′, h′, y′, y′

s).
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