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Introduction

Since its introduction, endovascular aneurysm repair (EVAR) 
has been inextricably dependent on intraoperative fluoro-
scopic imaging. Technical innovations in the past decade have 
led to the replacement of the mobile fluoroscopic C-arm with 
modern high-tech hybrid operating rooms. With the increased 
imaging capabilities of the contemporary hybrid operating 
room, large numbers of fluoroscopy images and digital sub-
traction angiography (DSA) images are generated during and 
after the EVAR procedure. Intraoperative clinical decision-
making has been predominantly based on visual inspection of 
images by the operating team, with the exception of computed 
tomography-fluoroscopy image fusion for navigational pur-
poses.1,2 However, while hundreds of images are acquired 
during a typical intervention, the vast majority of these go 
unused, while they may have significant value to add informa-
tion to the procedure or improve procedural outcomes.

The interest in artificial intelligence techniques, and par-
ticularly deep learning, has exploded in the past years, 
driven by an increase in computational power, the utiliza-
tion of large data sets, and image-guided surgery.3 We pro-
pose that these techniques can be used to fully exploit all 
acquired intraoperative images at no additional burden to 
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Abstract 
Purpose: Modern endovascular hybrid operating rooms generate large amounts of medical images during a procedure, 
which are currently mostly assessed by eye. In this paper, we present fully automatic segmentation of the stent graft on 
the completion digital subtraction angiography during endovascular aneurysm repair, utilizing a deep learning network. 
Technique: Completion digital subtraction angiographies (cDSAs) of 47 patients treated for an infrarenal aortic aneurysm 
using EVAR were collected retrospectively. A two-dimensional convolutional neural network (CNN) with a U-Net 
architecture was trained for segmentation of the stent graft from the completion angiographies. The cross-validation 
resulted in an average Dice similarity score of 0.957 ± 0.041 and median of 0.968 (IQR: 0.950 – 0.976). The mean and median 
of the average surface distance are 1.266 ± 1.506 mm and 0.870 mm (IQR: 0.490 – 1.430), respectively.  Conclusion: 
We developed a fully automatic stent graft segmentation method based on the completion digital subtraction angiography 
during EVAR, utilizing a deep learning network. This can provide the platform for the development of intraoperative 
analytical applications in the endovascular hybrid operating room such as stent graft deployment accuracy, endoleak 
visualization, and image fusion correction.
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the operating team. A considerable advantage of using deep 
learning algorithms is the objective analysis of images ver-
sus the subjective visual inspection by the operating team. 
Moreover, because the number of examples that a deep 
learning algorithm is exposed to during training is only lim-
ited by the availability of data, its exposure could be higher 
than that of a single observer, potentially outperforming 
humans. In terms of clinical implementation, this has the 
potential of improving interobserver agreement during clin-
ical decision-making in the operating room.

Completion digital subtraction angiographies (cDSAs) 
performed at the end of the procedure after stent graft 
deployment contain information on the stent graft’s position, 
possible endoleaks, patency of arteries and stent-graft limbs, 
and blood flow dynamics. Currently, the cDSAs are assessed 
by the operating team during the procedure by eye. Since the 
aforementioned information can be subtle, this important 
information can be missed by the operating team such as a 
small endoleak. When this information is known during the 
procedure and the physician is alerted by the algorithm, 
extra steps can be performed intraoperatively to prevent 
reintervention. To fully exploit the possible hidden and valu-
able information in these images, we propose to analyze 
these images using deep learning. In this article, we present 
fully automatic segmentation of the stent graft on a cDSA, 
utilizing a deep learning network. We hypothesize that an 
automatic stent graft segmentation method can be developed 
which can be incorporated into intraoperative clinical appli-
cations such as stent graft deployment accuracy analysis 
during the procedure, endoleak visualization, and image 
fusion overlay correction, all performed by artificial intelli-
gence–based techniques.

additional ballooning, placement of a proximal cuff, use 
of endoanchors, and extension of EVAR limbs. We 
hypothesize that our fully automated stent graft segmen-
tation method can be incorporated into intraoperative 
analytical applications such as advanced stent graft 
deployment assessment during the procedure, endoleak 
visualization, and image fusion overlay correction, all 
performed fully automated by artificial intelligence–
based techniques.

Clinical Relevance and 
Implementation

Completion digital subtraction angiographies (cDSAs) 
performed at the end of endovascular aneurysm repair 
(EVAR) contain important information of the stent graft 
position, patency of arteries and stent graft limbs, and 
possible endoleaks. All these clinical features are cur-
rently assessed by the operating team during the proce-
dure by eye. It  is possible that some of these clinical 
important features can be missed, as some endoleaks are 
subtle. Also, the position of the stent graft relative to the 
renal arteries is not assessed in millimeters during the 
procedure. An artificial intelligence–based algorithm can 
analyze the cDSA images on a pixel-detailed level, which 
can be a challenge for humans to see. When this informa-
tion is analyzed during the procedure, the physician can 
be alerted by the algorithm and extra steps can be per-
formed intraoperatively to prevent reintervention, such as 

Technique

Data Collection

Completion digital subtraction angiographies of 47 patients 
treated for an infrarenal aortic aneurysm using EVAR were 
collected retrospectively. Patients in the study cohort 
received a bifurcated stent graft, bifurcated stent graft with 
an iliac branch device, or a single-limb aortoiliac stent graft. 
The collection of cDSAs from the patients’ electronic medi-
cal records was performed with the approval of the local 
medical ethical review board. All cDSAs were acquired 
using a C-arm x-ray system in a Philips Azurion FlexMove 
7 C20 Hybrid Operating Room (Philips Healthcare, Best, 
the Netherlands) in the Amsterdam University Medical 
Centers, location VUmc, in the period from May 2017 to 
April 2020. Images were acquired with isotropic and aniso-
tropic dimensions ranging from 790 × 1024 to 1904 × 
1904 pixels with isotropic pixel sizes ranging from 0.154 × 
0.154 mm2 to 0.370 × 0.370 mm2. The cDSAs were 
acquired with a multiphase acquisition protocol; phase 1 for 
6 seconds at 3 frames per second (fps), phase 2 for 5 sec-
onds at 1 fps, and phase 3 at 0.5 fps indefinitely. Typically, 
a cDSA contained between 18 and 43 images per series. A 
purposely induced apnoea minimalized visceral and stent 
graft motion during the recording of all series.

Image Modification

We assumed that the stent graft did not move during a cDSA 
series and therefore posed our segmentation problem as a 
2-dimensional (2D) segmentation problem, in which one 
stent graft segmentation is obtained per cDSA series. To 
represent a cDSA series as a 2D image, a maximum inten-
sity projection (MaxIP) was obtained along its temporal 
axis. This resulted in one projection image per cDSA, in 
which the visibility of the injected contrast agent was mini-
mized, thereby maximizing the visibility of the stent graft. 
To train and evaluate the deep learning network, pixel-wise 
manual segmentation masks of the stent graft were created 
by an expert for all cDSA series to serve as the ground truth. 
Subsequently, all 2D projection images and corresponding 
ground truth masks were resampled to 0.4 × 0.4 mm2 
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isotropic pixel spacing using bilinear interpolation and 
nearest neighbor interpolation, respectively.

Neural Network Architecture and Training

A 2D convolutional neural network with a U-Net architecture 
was trained for segmentation of the stent graft on the 2D projec-
tion images, as illustrated in Figure 1.4 Training of the neural 
network was performed using randomly-extracted image 
patches with size 512 × 512 pixels from the projection images. 
Training patches were augmented to create additional synthetic 
data to increase the generalizability of the network. Data aug-
mentation consisted of horizontal flipping with a probability of 
0.5 and rotation around the image center with a maximum devi-
ation of ±14°. The network was trained by minimizing a Dice 
loss with an Adam optimizer algorithm using a learning rate of 
0.001, dropout of 0.2, and a batch size of 8. The training was 
performed for 2000 epochs with a reduction of the learning rate 
by a factor 10 after 1000 and 1500 epochs.

The network was implemented using the PyTorch-based 
framework Medical Open Network for AI (MONAI)5 and 
run on a workstation with a NVIDIA GeForce RTX 3090 
Graphics Card with 24 GB of memory.

Evaluation of the Network’s Performance

The performance of the network was evaluated based on a 
Dice similarity score, which measures the overlap between the 
predicted segmentation by the model and the ground truth 
mask. Moreover, we computed the average surface distance 
between the ground truth and predicted stent graft segmenta-
tions. This is the average distance (in millimeters) from all 
points on the boundary of the predicted segmentation to the 
closest point on the boundary of the ground truth mask.

We performed a 9-fold cross-validation on the full data 
set. Automatic stent graft segmentations with a high Dice 
similarity score on unseen test images are shown in Figure 
2. The results show that the network is capable of 

Figure 1.  Overview of deep learning-based segmentation method with the maximum intensity projection and ground truth label as 
input and the corresponding output. The output image has a Dice score of 0.979. DSA, digital subtraction angiography.

Figure 2.  Successful automatic stent graft segmentation results (purple) and corresponding ground truth labels (red). Note that 
the first three stent grafts have suprarenal fixation and the prediction is based on the stent graft struts and not the fabric. The Dice  
similarity scores for the shown predictions are 0.985, 0.976, 0.983, and 0.976.
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segmenting bifurcated stent grafts, aorto-uni-iliac stent 
grafts, and bifurcated stent grafts with iliac branch devices, 
irrespective of the device manufacturer. Moreover, 

the network is able to correctly annotate stent grafts with 
infrarenal and suprarenal fixation. Figure 3 shows the 
result of the largest outlier in Figure 4, together with 

Figure 3.  Two patients with suboptimal segmentation of the stent graft. The upper green arrows indicate an area predicted outside 
the ground truth label (over-segmentation). The lower green arrows indicate under-segmentation. The left prediction has a Dice 
score of 0.719 and the right prediction has a Dice score of 0.930.

Figure 4.  Box plots demonstrating the quantitative results (Dice similarity score and average surface distance) of the cross-validation 
on the full data set. DSA, digital subtraction angiography.
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another suboptimal segmentation as a result of over-seg-
mentation and under-segmentation.

Quantitative results are shown in Figure 4. A Shapiro-
Wilk test and Q-Q plots show that both the Dice similarity 
scores and average surface distances are non-normally dis-
tributed. The cross-validation resulted in an average Dice 
similarity score of 0.957 ± 0.041 and median of 0.968 
(interquartile range [IQR]: 0.950-0.976). The mean and 
median of the average surface distance are 1.266 ± 1.506 
mm and 0.870 mm (IQR: 0.490-1.430), respectively. The 
time to perform the segmentation of a stent graft per patient 
was on average 1.5 seconds.

Discussion

The results of our study demonstrate that a deep learning–
based method can fully automatically segment the stent 
graft on cDSA images in 1.5 seconds. The proposed method 
can provide the basis for further development of clinical 
analytic applications in the modern endovascular hybrid 
operating room. This includes objective assessment of stent 
graft deployment, presence of endoleaks, patency of arter-
ies and stent graft limbs, and blood flow dynamics.

Inspection of the results shows that our proposed method is 
capable of segmenting different configurations of stent grafts, 
i.e., bifurcated stent grafts with and without iliac branch 
devices and aorto-uni-iliac stent grafts. The different strut 
structures and suprarenal and infrarenal fixation did not seem 
to influence the performance of the deep learning network.

Several previous studies have reported automatic feature 
extraction of angiographic images during EVAR. These 
studies mainly focus on characterization and quantification 
of arterial deformations after insertion of stiff guide wires, 
intraoperative correction of image fusion, and automatic 
segmentation of guidewires.6–11 Closest to our work is the 
study of Breininger et al,12 who also proposed a fully auto-
matic deep learning–based method for stent graft segmenta-
tion in single 2D fluoroscopic images. Note that in contrast 
to their method, we perform automatic segmentation on a 
2D projection obtained from the entire 2D + time cDSA  
series. This leads to results that appear to be slightly more 
accurate than those reported by Breininger et  al,12 who 
obtained an average Dice coefficient score of 0.943 ± 
0.043, whereas the average of our Dice coefficient was 
0.957 ± 0.041.

The study was limited by the number of available cDSAs. 
Data augmentation was used to partially compensate for the 
limited number of available imaging. However, expansion 
of the data set would likely further improve the performance 
and robustness of the deep learning network. Despite the 
high Dice similarity scores of our experiment, one major 
outlier as a result of under-segmentation can be observed in 
Figure 4 of which the result is visualized in Figure 3. Limited 
visibility and contrast of the stent graft limbs on the 2D pro-
jection may be the underlying cause. Over-segmentation, 

shown in Figure 3 as well, may be due to substantial back-
ground artifacts due to existing contrast agent in the intes-
tines. Additional input channels to the network comprising 
different 2D projections of the cDSA may help reduce over-
segmentation and under-segmentation.

Our proposed method for fully automatic stent graft seg-
mentation lays the foundation for further development of 
clinical analytical applications for cDSAs to fully exploit 
possible valuable information. Future work can focus on the 
development of deep learning networks for segmentation of 
anatomical structures and analysis of flow parameters. The 
merging of separate models can lead to the development of 
fully automatic analytical applications to assist the surgeon 
in more objective clinical decision-making in the hybrid 
operation room.

Conclusion

We developed a fully automatic stent graft segmentation 
method based on the cDSA during EVAR, using a deep 
learning network. This can provide the platform for the 
development of intraoperative analytical applications in the 
endovascular hybrid operating room such as stent graft 
deployment accuracy assessment, endoleak visualization, 
and image fusion correction.
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