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Abstract—Hip fractures in the elderly are a major health care
problem in the society. In the clinic, it is important for medical
specialists to identify high-risk patients to assist them in the
decision-making process in choosing the right treatment. In this
paper, we propose a multimodal machine learning model for
prediction of 30-days mortality of elderly hip fracture patients.
The paper addresses both the clinical problem of identifying
high-risk patients and the specific risks involved, as well as the
technical problem of how to fuse information from different
modalities as input to one predictive model. Our model uses
features from three modalities: hip X-ray images, chest X-ray
images and structured data and fuses them based on early
fusion and late fusion techniques for the prediction task. Our
model uses a convolutional neural network to extract features
from the chest and hip images before combining them with the
structured data. The fused features are further passed through
a fusion classifier for the final prediction. The proposed model
outperforms a replicated version of Almelo Hip Fracture Score
(AHFS-a) with an AUC score of 0.786 vs 0.717. Finally, by the
analysis of feature importance, we found that chest X-ray images
contain important signs to predict the 30-days mortality of elderly
hip fracture patients. We also found that structured and chest
X-ray modalities were more important in predicting high-risk
patients as compared to hip X-ray modality, though the final
results on the test set show that structured, hip and chest X-
ray modalities together are needed to get the best performance
for predicting 30-days mortality. Further, we achieved the best
performance using early fusion with random forest technique,
though late fusion achieved a competitive performance.

I. INTRODUCTION

With changing socio-economic conditions, the life ex-
pectancy of humans is increasing. Apart from other conse-
quences, this also results in a higher number of elderly with
an acute hip fracture. The estimated number of hip fractures in
1990 throughout the world was 1.26 million and this number
is expected to reach 2.6 million and 4.5 million in 2025 and
2050 respectively [1]. Due to the frailty and comorbidities of
these elderly hip fracture patients, there is a high risk on early
post-operative mortality for some patients. It has been reported
that the 30-days mortality rate of hip fracture patients can be
as high as 13.3% [2].

It is important for medical specialists to continuously im-
prove the quality of care, reduce the costs involved, and inform
patients and their relatives as accurately as possible about
their diagnosis, treatment options and possible complications
including mortality after hip fracture surgery. In the case of

hip fracture patients, it is important to identify the high-
risk patients to enable consideration of different treatment
pathways, preventive measures in order to guide them more
safely through the peri-operative process, and other surgical
decisions. A machine learning-based prediction model with
sufficient performance would be instrumental for this purpose
and of added value during the shared decision-making process.

Research has shown, however, that existing prediction mod-
els have not reached sufficient performance yet [3]–[8]. We
believe that the problem lies in the limited information that is
available to the model, typically only images or only a limited
set of structured variables are used in these models. A model
capable of harnessing the hidden indications in all available
data of the patient may have a better chance of predicting
30-days mortality with sufficient performance. This, however,
poses a technical challenge: multimodal machine learning, i.e.,
the ability of using data of different data types (modalities)
such as structured variables, images, and text, as combined
input for one prediction model.

In this paper, we report on a first step towards these goals
leading to the following contributions;

• Designs and experimental comparison for alternative
machine learning architectures for combining structured
and image data as input for a multimodal model. The
experiments are in the context of the 30-days mortality
prediction task for hip fracture patients showing increased
performance when combining multimodal inputs.

• Local and global post-hoc interpretation of our multi-
modal model.

The paper is structured as follows. Section 2 summarizes the
related work, Section 3 describes the dataset used, Section 4
explains the methodology, followed with experimental setup in
Section 5. Section 6 shows the results and Section 7 discusses
the results. Finally, Section 8 concludes the paper.

II. RELATED WORK

A. 30-day mortality of hip fracture patients

Several research groups have studied the mortality of hip
fracture patients after surgery. Nijmeijer et al. [3] developed
the Almelo Hip Fracture Score (AHFS) to predict the early
mortality risk factor of hip fracture patients after surgery.
They trained and validated a logistic regression model on 850
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patients from Hospital Group Twente (ZGT) using features re-
lated to patient characteristics and comorbidities and achieved
an AUC of 0.82. Karres et al. [4] used logistic regression to
develop the Hip fracture Estimator of Mortality Amsterdam
(HEMA). The established model achieved an AUC of 0.81
and 0.79 in the development cohort and validation cohort
respectively. Van de Ree et al. [5] developed the Brabant Hip
Fracture Score (BHFS-30) using manual backward multivari-
able logistic regression on 925 patients, achieving an AUC
0.71 and found the significant factors of early mortality were
patient characteristics and comorbidities.

Jiang et al. [6] aimed to define the factors affecting in-
hospital and 1-year mortality after hip fracture. Using a
multivariable backward selection procedure for logistic regres-
sion on 3981 patients, they also found patient characteristics
and comorbidities to be most important. Predictions for in-
hospital mortality achieved AUC of 0.82 on the validation set.
Maxwell et al. [7] developed the Nottingham Hip Fracture
Score (NHFS) using logistic regression. The study on 4967
patients, achieved an AUC score of 0.719 in the validation
set. Marufu et al. [8] recalibrated the Nottingham Hip Fracture
Score (NHFS) and the Surgical Outcome Risk Tool (SORT) by
using a national dataset of 9017 patients and NHFS achieved
an AUC of 0.71 for NHFS and 0.70 for SORT.

Our work differs from the above studies in multiple ways.
Firstly, we are using a much higher number of features
including image modality which has not been used in other
studies. As a consequence, we are not only employing logistic
regression but also different machine learning algorithms in-
cluding deep learning. Most of these algorithms have built-in
feature selection capabilities and therefore, we do not follow
any pre-feature selection process in our methodology.

B. Multimodal Machine Learning

A modality implies how something happened, and a re-
search problem is identified as multimodal when it consists
of more than one modality in its nature [9]. The multimodal
machine learning concept has the goal to develop models that
can process and associate information from different modali-
ties. Baltrusaitis et al. [9] categorizes multimodal fusion into
early, late and hybrid fusion. In the early fusion, modalities are
fused after the feature extraction whereas late fusion combines
modalities after there is a decision by each modality. So, late
fusion combines output of unimodal predictors. Lastly, hybrid
fusion incorporates both early fusion and late fusion outputs.

Suk et al. [10] diagnosed Alzheimer’s disease with a multi-
modal approach using deep learning. The fusion of multimodal
information from Magnetic Resonance Imaging (MRI) and
Positron Emission Tomography (PET) data was done using
multimodal Deep Boltzmann Machines (DBM) and outper-
formed baseline methods. They further investigated the trained
model visually and found that their method can hierarchically
expose the latent patterns in MRI and PET.

Kenneth et al. [11] fused ECG, blood pressure, saturated
oxygen content and respiratory data in order to improve clini-
cal diagnosis of patients in cardiac care units. They concluded

that better results can be achieved with the fusion system
which can be modeled as a multi-dimensional process. More-
over, Bramon et al. [12] proposed an information-theoretic
approach for multimodal data fusion, and showed promising
results on medical datasets. Nunes et al. [13] aimed to optimize
the efficiency of indexing radiology exams. They developed
a multimodal approach that integrates a convolutional neural
network (CNN) for processing images with a bidirectional
Recurrent Neural Network (RNN) for processing text and
showed promising results for the multimodal processing of
radiology data. Results showed improvement when the fusion
model is pre-trained with large datasets and the accuracy
increased from 84% to 98% [13].

In our work, we define modality as a different type & source
of the data: structured modality, chest X-ray modality and
hip X-ray modality. We extract features using CNN and fuse
features from different modalities using early and late fusion
techniques [9] and provide a comparison of the methods.

III. DATASET: MULTIMODAL DATA OF HIP FRACTURE
PATIENTS

The dataset used in this work was collected from Hospi-
tal Group Twente (ZGT), Netherlands checked for quality,
and anonymized by the innovation manager of the hospital.
Furthermore, all the experiments and explorations have been
performed through remote access to a research compute cluster
inside the hospital to protect the patient information. The study
period used in this dataset is between 01-04-2008 and 31-
01-2020. All patients who are 70 years or older and were
admitted to the Emergency Room (ER) with an acute hip
fracture were included in the dataset. The selection is based on
diagnostic treatment code (DBC) for hip fracture which is ‘218
Femur, proximal (+collum)’. Patients with a femur fracture,
periprosthetic fracture, or pathological fracture were excluded.
Patients who had total hip arthroplasty or deceased before the
surgery were excluded. Furthermore, patients without thorax
or hip/pelvis X-rays were also excluded. With all inclusion
and exclusion filters, the complete dataset ended up with
2404 patients. In total, the dataset includes 2211 patients who
have survived and 193 patients who have deceased within
the 30-days period after the operation, hence the 30-days
postoperative mortality rate (positive sample rate) is 8%.

Our 3 modalities are as follows. The structured modality
(S) contains tabular data with each row corresponding to
a patient and each column containing data like physical
examination, recording of vital signals, electrocardiography,
nutrition, mobility, activities of daily living, cognitive prob-
lems, comorbidities and living situations resulting in a total of
99 columns. The hip X-ray image modality (H) contains the
X-ray image of the Anterior-Posterior (AP) view of the hip
(pelvis) and the chest X-rays image modality (C) contains
the X-ray image of the AP view of the chest. Our dataset
contains one image for hip X-ray and one image for chest X-
ray per patient. All images were resized for the deep learning
architectures, i.e., 299x299 for chest images and 224x224 for
hip. Images were augmented using rotation 20, width shift
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0.2, height shift 0.2, shear 0.2, zoom 0.2, channel shift 10 and
flipped randomly on both horizontal and vertical axis.

IV. METHODOLOGY

In this section, we discuss our model architecture, how it
handles each data modality and how we fuse the information
learnt from each modality to predict 30-days mortality of
hip fracture patients. Fig. 1 illustrates our unimodal and
multimodal designs. We define 30-days mortality prediction
as a binary classification problem, where each patient is to
be classified into the survive or deceased class based on their
chest X-ray images, hip X-ray images and structured data.

Structured 
Modality (99)

Hip X-ray 
Modality

Chest X-ray 
Modality

Traditional ML 
classifier (4)

Mortality 
Prediction (1)

Pre-trained DL 
Classifier (8)

Mortality 
Prediction (1)

Pre-trained DL 
Classifier (8)

Mortality 
Prediction (1)

Structured Hip Chest

Fusion 
Classifier 

(RF/NN/LR)

UML-S UML-H UML-C

Extracted
Features
(99/4/1)

Extracted
Features

(8/1)

Extracted
Features

(8/1)

Mortality 
Prediction (1)

Concatenated Features (115/20/3)

EF-RF + +

EF-NN + +

LF-LR + +

Unimodal 
Learning

Early 
Fusion/
Late 
Fusion

Multimodal 
Learning

Concatenated Features

Fig. 1: Unimodal and multimodal learning architectures: 3 sep-
arate pipelines specific to each modality for unimodal learning
- UML-S, UML-H, UML-C. The feature representation from
the unimodal learning used for EF and LF are shown with
dashed lines and their variants, EF-RF, EF-NN and LF-LR are
summarized in the bottom left. Each variant has 3 dashed lines
with a ‘+’ showing horizontal concatenation of 3 modalities
S, H and C, respectively. The type of dashed line indicates the
feature representation used for the concatenation. The feature
dimensions resulting from each block are shown in brack-
ets, e.g. 8 for pre-trained deep learning classifier. Extracted
features shows the corresponding dimensions depending on
the feature representation being used. Concatenated features
shows the dimensions for EF-RF (99+8+8), EF-NN (4+8+8)
and LF-LR (1+1+1) respectively.

A. Unimodal Learning (UML)

In this subsection, we describe how we perform the training
of our model on each data modality.

1) Structured Modality Learning (UML-S): We trained 5
traditional machine learning algorithms - Random Forest (RF),
Logistic Regression (LR), XGBoost (XGB), Linear SVM,
AdaBoost, on the structured data without doing prior feature
selection. The goal was to find the best classifier to be used
in the later stages of multimodal learning experiments.

2) Hip X-Ray (UML-H) and Chest X-Ray (UML-C) Image
Modality Learning: We employed deep learning with the help
of transfer learning for extracting features from the image
modality and then use the extracted features to predict 30-
days mortality. Training at this stage was done with 30-
days mortality labels. CNN models that were trained on
ImageNet [14] were selected and fine-tuned with chest and hip
X-ray images separately resulting in a chest X-ray modality
model and a hip X-ray modality model, respectively.

B. Multimodal Learning (MML)

We use the unimodal models trained above to fuse multiple
modalities using early & late fusion techniques (F-tech).

1) Early Fusion (EF): We design an early fusion architec-
ture by horizontally concatenating the features of all modalities
as input for the final fusion classifier (F-clf). We use the
following F-clf to train the multimodal models - i) Neural
Network variant (EF-NN), where F-clf is a Neural Network
(NN). Training is done simultaneously, which means that back-
propagation from the loss function was done throughout the
full network such that consequently all modalities are trained
at the same time, ii) Traditional Machine Learning variant
(EF-RF), where the F-clf is RF. Image models were trained
separately as two independent networks (unlike EF-NN).

For H & C modality, feature vector from the layer preceding
the output layer is taken for concatenation. For S modality,
no feature extraction is performed for EF-RF, but for EF-NN
variant, we used the feature vector from a small NN. We hor-
izontally concatenate the image feature vector with structured
modality features and feed that to the fusion classifier.

2) Late Fusion (LF): In this ensemble-like approach, we
combine decision outputs of the unimodal models and train
a classifier, Logistic Regression (LF-LR), by using the final
decision from different modalities as features. We use logistic
regression to learn the importance of the three modalities
instead of just taking an average as the latter would assume
all the three modalities have equal importance.

C. Explainability of Machine Learning

In health care, the purpose of applying machine learning
is not just to obtain predictive models, but often also to gain
insight into the predictive influence of the various features.
The prediction model that we attempt to explain in our paper
is the multimodal EF-RF.

• Global Explanation: A global explanation method at-
tempts to explain the reasoning of the whole model. We
determine the globally most important features driving
the 30-days mortality prediction of hip fracture patients
by calculating the contribution of each feature in the
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reduction of impurity with respect to the Gini criterion
in the RF model.

• Case Specific Explanation: Although a global explanation
gives an idea about importance of variables, it does not
suffice to understand the why of a certain outcome for
an individual patient. Therefore, we also employ the
case-specific explanation method Tree Interpreter [15]
which calculates the contribution of variables in the
decision path for the prediction of a particular class:
the contribution of a variable at a decision node is the
change in probability of the instance for the class. For
each variable, the average of its contributions is taken
over all trees of the random forest.

• Grad-CAM: We additionally attempt to explain the ex-
tracted features from the image modalities. We use
Gradient weighted - Class Activation Mapping (Grad-
CAM) [16] to understand the most important features
from the CNN models. Grad-CAM uses the gradients of
any target class with respect to the final convolutional
layer to highlight the important regions responsible for
the prediction. We customized the Grad-CAM implemen-
tation1 to get a neuron-specific explanation of the layer
preceding the output layer instead of the output layer.

V. EXPERIMENTAL SETUP

In this section, we describe the experimental setup of the
following models: (i) the unimodal models, (ii) the multimodal
model for finding the contribution of different modalities,
(iii) various multimodal models for finding the best design
for multimodal fusion, (iv) the baseline model, and (v) the
explainability experiments to extract the importance of features
from our structured and image modalities. We used python,
sklearn packages and tensorflow/keras for implementation.
The code can be found in the github repository.2

The hyperparameter values of the deep learning models
were set as follows. The maximum number of training epochs
were set as 100, with a patience of 10 epochs for early
stopping. We trained with the adam optimizer with an adaptive
learning rate, starting at 0.001 and then reducing by a factor
of 0.05 with a patience epoch of 5. Our model minimized the
binary cross entropy loss between the predicted and the true
label. We used a batch size of 10 for training.

A. Experimental Setup Unimodal Learning (UML)

1) Structured Modality Experiments: As a significant
amount of missing values existed in the structured modality,
we applied the missing value imputation method, Iterative
Imputation with a KNeighbors Regressor.3 We validated these
classifiers by 5-fold stratified cross-validation. We did hyper-
parameter optimization on the best classifier (random forest)
with a cross-validated grid-search. We call this model, opti-
mized random forest (O-RF). The optimal hyperparameters for
the random forest classifier were: number of trees 50, bootstrap

1https://www.pyimagesearch.com/2020/03/09/grad-cam-visualize-class-activation-maps-with-keras-tensorflow-and-deep-learning/
2https://github.com/byenidogan/30 days mortality hip fracture
3https://scikit-learn.org/stable/modules/generated/sklearn.neighbors.KNeighborRegressor.html

true, minimum sample split 40, split criterion as gini impurity,
maximum depth 5 and maximum leaf nodes 100.

2) Image Modality Experiments: We wanted to compare
transfer learning methods to investigate the transferability of
the features of a pre-trained model to the medical images. The
motivation being deep learning models learn generic features
like edges, corners in the early layers and task specific features
in the deeper layers [17]. This can be employed to identify
generic features from medical images in the early layers. We
experimented with partial and full training. Full training refers
to fine-tuning all the weights of a neural network whereas
partial training refers to freezing some of the early layers and
fine-tuning the remaining (deeper) layers of the model. The
selected pre-trained models that fit the best are also used in
the remaining experiments for multimodal learning.

To find the best architecture for our task, 4 pre-trained CNN
networks are fine-tuned: Xception, DenseNet169, ResNet152,
InceptionV3. The default adjustment made for each model was
the removal of the final fully connected layer for classifying
imagenet objects. We added 2 fully connected layers (we
call them Dense 0 and Dense 1) having 256 and 8 neurons
respectively, with ReLU activation function and 1 neuron
output layer with sigmoid activation function. The number
of neurons in the fully connected layers have been selected
after experimenting with some values. For each model, there
is a different freeze point for the partial training experiments.
The layer numbers 116, 369, 483 and 249 were respectively
used as the freeze point for models Xception, DenseNet169,
ResNet152 and InceptionV3.

B. Multimodal Learning: Contribution of Different Modalities
The aim of this experiment was to find contributions of

different combinations of the modalities: (i) structured and
hip (S+H); (ii) structured and chest (S+C); (iii) chest and
hip (C+H); and (iv) structured, chest, and hip (S+C+H). The
architectures for these combinations are illustrated in Fig. 1. To
keep the comparison fair, we used the same fusion technique
(EF-NN) in all models when combining multiple modalities.
For both the image modalities, the features are extracted from
a pre-trained CNN model. For structured modality, the feature
vector is extracted from the last fully connected (FC) layer
of a NN, consisting of 3 FC layers with 16, 8, 4 neurons,
respectively, with all layers having ReLU activation functions.
Extracted features are concatenated horizontally and passed to
F-clf, NN, with 1 FC layer of 4 neurons with ReLU and 1
output layer with sigmoid activation function.

C. Multimodal Learning: Comparing Fusion Techniques
The aim of this experiment is to find the best design for

multimodal fusion. For early fusion, we experimented with
a fully connected neural network (EF-NN) and a random
forest (EF-RF) as fusion classifier, and late fusion with logistic
regression (LF-LR) on the modality combination of S+C and
S+H+C. The explanation of designs are based on Fig. 1:

1) EF-NN: These are the same experiments from Sec-
tion V-B, and are used here for the comparison with other
designs.
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2) EF-RF: Chest and hip X-rays’ features are extracted via
pre-trained deep learning. The output of Dense 1 layers of the
CNN were taken as the extracted features, then horizontally
concatenated to structured modality, and fed into the RF
classifier. We further optimized this RF by considering the
additional input coming from features extracted from chest
and hip modalities. This optimization was done with cross-
validated grid-search as when normal validation is done during
RF hyperparameter search, it is very likely to overfit the
validation data. Due to training and validation of the image
modality in a normal way (not cross-validation), the data
points used in the training set for the deep learning model, will
also be present in the validation set of some folds of the cross
validation. We believe there is no concern for a fair comparison
due to a leak of information, because the final model is not
selected based on the cross validation results, rather only
the hyperparameters are selected. New hyperparameter values
are as follows: number of trees 30, minimum sample leaf 2,
minimum sample split 50 & maximum depth 12.

3) LF-LR: Final outputs of each unimodal classifier are
concatenated and fed into a LR model. Unimodal classifier
of structured modality is the O-RF whereas for the images,
they are the best performing pre-trained CNN (cf. Table Ib).
The same training set of the unimodal classifiers was used
for training the LF-LR. No hyperparameter optimization was
performed for the fusion classifier. The validation was done
by aggregating the result of 5 models that was trained with a
different seed value.

D. Baseline Model

We used the Almelo Hip Fracture Score (AHFS) [3] ad-
dressing the same prediction goal as baseline model. Due
to the lack of some variables used in AHFS, we adjusted
it to the variables of our dataset; we call this adjusted ver-
sion AHFS-a. Used variables are: age, gender, CCI score,
prone to delirium, memory problems, KATZ ADL score,
ASA score, pre-fracture living situation, pre-fracture mobility,
cancer, hematocrit, prone to under-nutrition, unintentional loss
of weight, decreased appetite, drink or tube feeding, and
SNAQ score. The classifier used in AHFS-a is the Logistic
regression method from sklearn library with solver “sag” and
without any penalty for regularization.

E. Evaluation

Since our data exhibits class imbalance, the evaluation
of the models are based on the Area Under the Receiver
Operating Characteristic Curve (AUC). For the deep learn-
ing experiments, we split the dataset into 50% train, 25%
validation and 25% test set. Moreover, we repeat the same
experiment 5 times, in which we change the seed value to
add randomization and then report the mean and standard
deviation of AUC of these 5 experiments. When evaluating
the traditional machine learning classifiers, we apply 5-fold
stratified cross-validation, although the 25% test split remains
unseen during these experiments.

TABLE I: Unimodal learning results

(a) Structured modality

Classifier Val AUC

O-RF 0.775±0.039
RF 0.750±0.038
LR 0.731±0.037
XGB 0.727±0.050
SVM 0.721±0.018
AdaBoost 0.552±0.026

(b) Chest (C) & Hip (H) X-ray modality

Model Training C Val AUC H Val AUC

Xception full 0.694±0.043 0.572±0.039
DenseNet169 full 0.618±0.042 0.533±0.025
ResNet152 full 0.605±0.023 0.575±0.029
ResNet152 partial 0.605±0.060 0.594±0.029
InceptionV3 full 0.534±0.038 0.539±0.025
InceptionV3 partial 0.503±0.007 0.500±0.000
Xception partial 0.500±0.000 0.517±0.025
DenseNet169 partial 0.474±0.081 0.517±0.036

For the final model, EF-RF, we also provide other per-
formance evaluation metrics on the test set. True positive
(TP), false positive (FP), true negative (TN), false negative
(FN), precision (Pr), recall (Re) or sensitivity, specificity (Sp),
negative predictive value (NPV) & accuracy (Acc) based on
different decision thresholds can be found in Table IV, where
our positive class is ‘deceased’.

Pr =
TP

TP + FP
, Re =

TP

TP + FN
, F1 = 2 ∗ Pr ∗ Re

Pr + Re

Sp =
TN

TN + FP
, NPV =

TN

TN + FN
, Acc =

TP + TN

N

VI. MULTIMODAL MODEL & EXPLAINABILITY RESULTS

In Table Ia, we show the results of 30-days mortality
prediction by using only structured modality (S). We report
the mean AUC and the standard deviation of AUC on the
validation set. We can see that random forest performs the
best with a mean AUC of 0.750. Further optimization of the
hyperparameters of this model increased it to 0.775 (O-RF).

In Table Ib, we present the results of 30-days mortality
prediction by using chest modality (C). It is clear that
Xception model with full training mode performs best on this
task. For the hip modality (H), the best performing model is
ResNet152 with partial training mode (cf. Table Ib). However,
overall performance on chest modality is significantly higher
than hip modality. This suggests that chest X-rays carry more
relevant information than the hip modality regarding the 30-
days mortality of the patients. On comparing Tables Ia and Ib,
we conclude that structured modality model (AUC: 0.775)
performs best among all unimodal models.

Table IIa shows the contribution of various modalities
through multimodal learning experiments on different
modality combinations (MML-Modality) - structured (S),
chest (C) and hip (H) modalities. The best performing can-
didate of this part is the combination of structured and chest
modality. However, it is observed that when we include more
than 1 image modality (H+C or S+C+H) in EF-NN, there
is a significant drop in the performance compared to one
image modality models (S+C and S+H). This performance
drop suggests that multiple image modalities do not work well
together with the neural network fusion for this prediction task.

Table IIb compares different ways of multimodal fusion
(MML-Fusion). Although the winner of the previous stage
was the combination with structured and chest modalities, we
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TABLE II: Multimodal learning results

(a) Modality contribu-
tion (MML-Modality)

Modalities Val AUC

S+C 0.714±0.028
S+H 0.643±0.052
H+C 0.568±0.011
S+C+H 0.551±0.063

(b) Fusion techniques (MML-Fusion)

F-tech F-clf Modalities Val AUC

LF LR S+C+H 0.784±0.005
LF LR S+C 0.783±0.005
EF RF S+C 0.768±0.006
EF RF S+C+H 0.764±0.007
EF NN S+C 0.714±0.028
EF NN S+C+H 0.551±0.063

TABLE III: Performance of the competitive models from
unimodal and multimodal learning on the test set

Phase of
experiments Technique Modalities Test AUC

MML-Fusion EF-RF S+C+H 0.786
MML-Fusion EF-RF S+C 0.774
MML-Fusion LF-LR S+C+H 0.780
MML-Fusion LF-LR S+C 0.771

UML-S O-RF S 0.732
Baseline AHFS-a S 0.717
UML-C Xception (Full) C 0.700
UML-H ResNet152 (Partial) H 0.670

MML-Modality EF-NN S+C 0.653

should not ignore the combination of all modalities in Table IIb
as the reason of poor performance may be a design issue. This
can be supported by the observation that on changing F-clf,
the performance of S+C+H (0.784 using LF-LR) is similar to
S+C (0.783 using LF-LR). It can also be observed that hip
modality does not offer a significant contribution. The most
important finding at this stage is that late fusion is better than
early fusion, but the performance is very close to EF-RF.

In Table III, we present the final results of the com-
petitive candidates from Tables Ia, Ib, IIa, and IIb on the
same test set, which is unseen data from all aspects. By
competitive candidates, we mean the best performing models
and models which are close in performance to them. It is
clear that both the EF-RF and LF-LR outperform our baseline
model, AHFS-a [3]. On the test set, EF-RF outperformed
LF-LR unlike the observation on the validation set. Further,
S+C+H outperformed the S+C on the test set. Combining the
observation from the validation set (cf. Table IIb) and the test
set (cf. Table III), we cannot say for certain that hip X-ray
modality does not add any extra information. However, it can
be observed that structured and chest X-ray modality both
contain enough important information for prediction of 30-
days mortality as their performance is close to S+C+H.

We evaluated our final model EF-RF using some addi-
tional metrics on the test set. In Fig. 2, the ROC curve is
presented where the AUC is 0.786. In Table IV, performance
metrics based on different decision thresholds are reported to
analyze how the model could be used in the clinic. Further
discussion on this table will take place in Section VII.

Although the LF-LR was slightly better than EF-RF during
the validation, we based the explanation methods on the EF-
RF technique for the sake of convenience when it comes to

Fig. 2: ROC curve of the EF-RF model on the test set

TABLE IV: Performance metrics for different decision thresh-
olds for EF-RF model

Decision
Threshold TP FP FN TN NPV Sp Re Pr F1 Acc

0.1 35 166 14 389 0.965 0.701 0.714 0.174 0.28 0.702
0.2 15 44 34 511 0.938 0.921 0.306 0.254 0.278 0.871
0.25 4 14 45 541 0.923 0.975 0.082 0.222 0.119 0.902
0.27 2 9 47 546 0.921 0.984 0.041 0.182 0.067 0.907
0.3 1 1 48 554 0.92 0.998 0.02 0.5 0.039 0.919
0.4 0 0 49 555 0.919 1 0 0 0 0.919
0.5 0 0 49 555 0.919 1 0 0 0 0.919

understanding in medical practice. Further, EF-RF was the
best performing model on the test set, leading us to choose
this model for explanation. In Fig. 3, we present an example
of the model output dashboard for local explanation of
one patient. Here, the prediction scores of involved models
(top), attention points of the neurons calculated with Grad-
CAM for chest X-ray (left) and hip X-ray (middle), and case
specific explanation of the RF with tree-interpreter (right) are
provided. The predicted probability of mortality in 30-days
for this patient by our EF-RF model is 3% (i.e. the predicted
probability of survival in 30-days is 97%). It is important to
note that to keep the image readable, we only show the features
that have an absolute contribution higher than 0.005.

In Fig. 4, we present the global explanation, showing the
overall feature importance of the EF-RF model. Since these
importance scores are calculated on the overall model, they
do not change for each case.

VII. DISCUSSION

When we look into the Table IV, we observe that the model
tends to lean towards the negative class. Even if we decrease
the decision threshold the model can only predict few cases as
positive. This is not very surprising as the positive class cases
happen very rarely. To address the class imbalance problem,
we experimented with various class imbalance handling meth-
ods such as oversampling, undersampling and adjusting class
weights for the loss function, in the early stages of the study.
However, it was found that these techniques do not have any
significant contribution to the performance and therefore put
them out of the scope of this paper. Moreover, we observed
that the model learns to predict the negative class in a better
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Fig. 3: Example of model output dashboard, case specific explanation of the model

Fig. 4: Global explanation of random forest model

way. For example, if we look at the decision threshold at 0.1,
we see that NPV is very high. This means that when the model
predicts a case as positive with less than 10% confidence or
negative with more than 90% confidence (essentially the same
thing), 96.5% of the time this patient will survive. Taking the
model’s decision support of 90% confidence of being negative
potentially can help daily practice to skip some steps which are
used to find out if the patient will survive or not. In return, this
might save some costs and accelerate the treatment process.

On the other hand, predicting the patients who are going to
decease with high precision and recall is a very challenging
task. It requires more samples of deceased patients to find out
patterns amongst these cases. A possible way to improve the
model in this direction is doing a study where the dataset is
collected from multiple hospitals. It should be noted that when
there are multiple hospitals providing data, the variables that

each data source can supply will highly differ. This will result
in missing values and incomplete dataset. Introducing more
strict standards to the data collection process of health care
industry would alleviate this problem.

Before we take a look at our explainability efforts, we
feel the urge to mention that due to the dissimilarity of our
methodology to the past studies in the literature with the same
prediction goal, it is difficult to compare the features that we
found as important, to the ones in the literature. The studies
in the literature [3]–[7] have first applied various statistical
analysis to find if a feature has significant effect on 30-days
mortality of the patient in order to select their variables that
they will include in their model. This kind of methodology
lead them to models with only few variables whereas our
model is fed with more than 100 variables. Furthermore, none
of these studies have included image modality in their models.
It is easily noticeable from Fig. 4, that the most important
global features for our EF-RF model are the ones extracted
from chest X-rays. Even though we cannot directly compare
this finding to other studies, in some of the past studies [4], [6],
radiological signs (visible in the chest X-ray) like pneumonia,
enlarged contour of the heart which might suggest congestive
heart failure are found to be a significant factors affecting
30-days mortality of the patient. The explanation results are
also shown to a trauma surgeon, and their comments were not
conclusive. Therefore, it could be that findings from chest X-
rays are important due to the fact that they might be showing
signs of pneumonia, but this would only be a speculation.
Most of the other studies found comorbidities such as renal
failure [4]–[6], diabetes [5] as important factors of 30-days
mortality, however, we did not find this in our study. This
could be due to incompleteness of comorbidity information in
our data.

Alongside the heart rate, KATZ ADL score, heart axis
orientation and age, there are also various lab tests in the
top 20 most important global features of the EF-RF model.
KATZ ADL score tells us about how independent a patient
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is in their daily activities. If the patient is dependent in
many activities, this shows sign of frailty. It should be noted
that unlike general usage, in our dataset we calculate KATZ
ADL in reverse, where a higher KATZ ADL score indicates
that the patient is dependent (normal calculation of KATZ
ADL, 6 = patient independent, 0 = patient very dependent).
Therefore, a low KATZ ADL score in Fig. 3 means the
patient is very independent, contributing to the negative class.
A higher age indicates that the patient might be frail and is
predictor for higher chance on early mortality (also found by
the studies [3]–[7]).

One of important lab tests is Thrombocytes which is re-
lated to the coagulation in the blood. If a patient uses anti-
coagulation medication they usually have a cardiac disease (ar-
trial fibriliation, myocardial infarction etc.) or a neurological
disease (TIA = Transient Ischemic Attack or CVA = Cerebro
Vascular Accident) which makes them more vulnerable. More-
over, high CRP (C-reactief proteı̈ne) or White Blood Cells
count (LEUC) might indicate some sort of an infection, high
eGFR (GFRM) or Creatinine (KREA) decreased function of
the kidneys. In general, when the result of these lab tests are
abnormal, this might indicate a disease. Our global feature
importance found these factors to be important (Fig. 4). Even
though our comorbidity data are not high quality in terms of
completeness, we might be partially compensating this through
various lab tests. They have much less missing values and can
also lead us to the signs of vulnerability of the patient.

In Fig. 3, when we look at the case specific important
features and their effects/contributions to the final prediction,
we can observe quite some similarities to what we have found
with the global feature importances from Fig. 4. Most of the
lab tests present themselves as important contributors to the
prediction of the EF-RF model for the particular patient. If we
take Haemoglobin (HB) as an example, a lower HB seems to
be a predictor for higher mortality which was also observed
in the study of AHFS [3]. In our example, the patient has
a high HB (7.7) and this may lower the chance on early
mortality. In line with that, it contributes to the prediction
of the negative class. A higher Charlson Comorbidity Index
(CCI) means more comorbidities, which may indicate a more
frail person and therefore may lead to an increased chance
on early mortality. Dementia which is a comorbidity that is
counted while calculating CCI also leads to higher probability
of mortality and therefore it is contributing to the prediction
of the positive class as this patient had Dementia. On the other
hand, a lower ASA score (in this case, 2) means a healthier
patient which contributes to the prediction of negative class. In
the case of KATZ ADL score, we also observe the questions
used in the assessment of KATZ ADL such as help to dress up,
help with selfcare, help with shower are also present in Fig. 3
individually and they suggest that patient is independent which
contributes to the prediction of negative class. Analyzing the
interpretation of Random Forest model makes sense in these
cases. We also see that hip findings and chest findings are
present amongst the important features that EF-RF used to
predict the outcome for this patient. In order to make these

points more transparent, we add the attention points of the
neurons calculated with Grad-CAM for the image modality, so
that medical specialists can relate to the chest and hip findings
and do not try to interpret the value of the neuron output as
this number do not make any sense for them.

A limitation of our dataset is the limited data quality of the
structured modality. It contains many missing values, includ-
ing missing comorbidities. Comorbidities were identified as
important features by other studies for predicting mortality, but
this was not observed in our study. For future work, we think
that it can be useful to include text modality in the research.
We intend to extract comorbidities and current medication
from emergency department reports of hip fracture patients
and include a complete list of comorbidities as features for
our multimodal model. We believe that this addition might
compensate to some of the information that is lacking in the
current setup.

VIII. CONCLUSION

We have created a multimodal model for predicting 30-days
post-operative mortality of elderly hip fracture patients. To the
best of our knowledge, this is the first multimodal model for
this purpose, harnessing the power of structured data, con-
taining patient characteristics, lab tests and comorbidities, and
chest and hip X-ray images. Overall, we achieved a best AUC
of 0.786 with early fusion with random forest multimodal
model and on data modality combination of structured, chest,
and hip X-rays. We outperformed our baseline (AUC: 0.717),
an adjusted version of AHFS model.

Among unimodal models, structured modality achieved the
best performance with an AUC of 0.732 using random for-
est model. Unimodal model on chest X-ray performs better
than hip X-ray modality showing that chest X-ray contains
more important information than hip X-ray to predict 30-
days mortality. Among multimodal learning models, the best
performance is achieved using all the three modalities, but our
experiments on validation set showed that structured and chest
X-ray modalities combined can already predict survival of a
patient quite well and hip X-ray modality does not contribute
much. To conclude, learning from multimodal data improves
performance over single modality for 30-days mortality pre-
diction. Our experiments on multimodality fusion techniques
showed that early fusion that uses a random forest as fusion
classifier achieved the best performance. However, late fusion
using logistic regression had similar performance to the best
performing early fusion model. From our explainability tech-
niques, it can be seen that the important features found by our
model are meaningful. Both case-based and global features
show that image modalities features, especially chest X-ray,
add significant value to predictions.

All in all, we believe that such a model can be of value
to the medical specialists. It can be used as an early warn-
ing system indicating the patients for whom extra attention
should be given, e.g., accurate monitoring of vital functions,
preventive medication before, during, and after surgery or
changes in treatment strategy. The model explanation could
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play an important role here, but advancement in explainable
machine learning is still definitely needed. For future work,
we furthermore intend to attempt to predict the various com-
plications that occur re-casting the problem into a multi-class
problem, while we also address the class imbalance problem
in a more focused way. The main takeaway message of this
paper is, however, clear: a multimodal machine learning model
can significantly exploit the additional information from other
modalities.
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