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Abstract

We study a non-cooperative two-sided facility location game
in which facilities and clients behave strategically. This is in
contrast to many other facility location games in which clients
simply visit their closest facility. Facility agents select a loca-
tion on a graph to open a facility to attract as much purchasing
power as possible, while client agents choose which facili-
ties to patronize by strategically distributing their purchasing
power in order to minimize their total waiting time. Here, the
waiting time of a facility depends on its received total pur-
chasing power. We show that our client stage is an atomic
splittable congestion game, which implies existence, unique-
ness and efficient computation of a client equilibrium. There-
fore, facility agents can efficiently predict client behavior and
make strategic decisions accordingly. Despite that, we prove
that subgame perfect equilibria do not exist in all instances of
this game and that their existence is NP-hard to decide. On
the positive side, we provide a simple and efficient algorithm
to compute 3-approximate subgame perfect equilibria.

1 Introduction

Facility location problems are a classical and popular object
of study in AI, Operations Research, Economics, and Theo-
retical Computer Science. These problems encompass natu-
ral problems like placing facilities in a socially optimal way,
e.g., the placement of hospitals, fire stations, or schools, or
determining the locations of competing facilities, e.g., bars,
shops, or gas stations. While the former type of problems are
typically modeled as optimization problems and solved with
a rich toolbox of combinatorial graph algorithms, this can-
not be done for the latter problems, due to the strategic set-
ting. Instead, models and methods from (Algorithmic) Game
Theory are necessary to cope with facility location in com-
petitive environments. The focus of this paper will be one
such model that explicitly considers strategic behavior by
the facilities as well as by the clients that want to patron-
ize these facilities. Most importantly, we thereby consider a
very natural type of client behavior that has, to the best of
our knowledge, not yet been studied.

The study of strategic facility location models dates back
almost a century to the works of Hotelling (1929) who con-
sidered how to place two competing shops in a linear mar-
ket, called the “main street”. Later, this model was refined by
Downs (1957) and used for the placement of political can-

didates in a political left-right spectrum. In the Hotelling-
Downs model, competing but otherwise identical facilities
strategically select a placement in some underlying space,
e.g., on the line, to attract as many clients as possible. The
clients are modeled in a very simple way: clients are as-
sumed to patronize their nearest opened facility. However,
while such simplistic clients are still considered in a wide
range of models and recent works, such basic client agents
do not seem to convincingly capture the behavior of real-
world clients. Abstracting away from more complex aspects
like pricing, product quality, or social influences, realistic
clients would not only consider the distance to a facility but
also the incurred waiting time at the facility. Interestingly,
this waiting time depends on the number of other clients
that also patronize the same facility. Thus, in a more realistic
setting we have that not only the facilities act strategically,
but also the clients base their behavior on the behavior of
the other clients instead of myopically minimizing distances.
Such more realistic clients have first been considered in the
work of Kohlberg (1983), who studied clients that minimize
a convex combination of distance and waiting time. How-
ever, this enhanced realism comes at a cost: while for the
original Hotelling-Downs model equilibrium states always
exist, except for exactly 3 facilities, equilibria only exist for
extreme cases of Kohlberg’s model.

But, as demonstrated by Feldman, Fiat, and Obraztsova
(2016), these negative results can be circumvented by con-
sidering a natural and interesting variant of the Hotelling-
Downs model. In this model, instead of minimizing the dis-
tance, every client has a threshold of how far she would
travel to a facility and chooses to patronize a facility uni-
formly at random whose distance is below the threshold.
So essentially, the clients uniformly split their purchasing
power among all facilities that are close enough. Besides be-
ing more realistic than clients committing to a single facil-
ity, this model variant always has equilibrium facility place-
ments. However, it also has a downside: it considers simplis-
tic clients that do not take waiting times into consideration.
Very recently, this downside was removed in a model pro-
posed by Krogmann et al. (2021). In their two-stage facil-
ity location game, a given graph encodes which locations
can reach other locations. Clients with a certain purchas-
ing power occupy the nodes of this graph and facility agents
strategically select a node for opening their facilities. Given
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a facility placement, the clients then split their purchasing
power among the facilities they can reach to minimize their
maximum waiting time. Analogously to classical make-span
scheduling, these clients effectively try to distribute their
purchasing power to load-balance the reachable facilities.

In this paper, we set out to explore a similar setting as
Krogmann et al. (2021) but with a drastically different client
behavior. To stay in the analogy with scheduling, we con-
sider sum-of-completion-time scheduling instead of make-
span scheduling. I.e., we study facility location problems
with clients that distribute their purchasing power to mini-
mize their total waiting time.

Related Work: There is an abundance of models for
strategic facility location and we refer to the surveys by
Eiselt, Laporte, and Thisse (1993) and ReVelle and Eiselt
(2005) for an overview of the classical models. To the best
of our knowledge, our model has not yet been studied.

The model by Feldman, Fiat, and Obraztsova (2016)
with distance-minimizing clients on a line was generalized
by Shen and Wang (2017) to cope with different continu-
ous client distributions and by Cohen and Peleg (2019) to
random distance thresholds. Moreover, Fournier, Van der
Straeten, and Weibull (2020) study clients that choose the
nearest facility if they have multiple options. Also related
are Voronoi games (Ahn et al. 2004; Dürr and Thang 2007),
which can be understood as generalized Hotelling-Downs
models with distance-minimizing clients. For the version on
networks by Dürr and Thang (2007), the authors show that
equilibria may not exist and that existence is NP-hard to de-
cide. Also a variant on a cycle (Mavronicolas et al. 2008) and
in k-dimensional space (de Berg, Kisfaludi-Bak, and Mehr
2019; Ahn et al. 2004; Boppana et al. 2016) was studied.

For Kohlberg’s model, Peters, Schröder, and Vermeulen
(2018) prove the existence of equilibria for certain trade-offs
of distance and waiting time for small even numbers of fa-
cilities and they conjecture that equilibria exist for all cases
with an even number of facilities for client utility functions
that are heavily tilted towards minimizing waiting times.
Feldotto et al. (2019) showed that computing equilibria for
Kohlberg’s model can be done by solving a complex system
of equations and they investigated the existence of approxi-
mate equilibria. They find that under a technical assumption,
1.08-approximate equilibria always exist.

A concept related to our model are utility systems, as in-
troduced by Vetta (2002). There, agents gain utility by se-
lecting a set of acts, which they choose from a collection of
subsets of a groundset. Utility is assigned by a function that
takes the selected acts of all agents as input. Also covering
games (Gairing 2009) are related since they correspond to a
one-sided version of our model, where clients distribute their
purchasing power uniformly among all facilities in reach. In
both settings, utility systems and covering games, pure NE
exist and the Price of Anarchy is upper bounded by 2. More
general versions are investigated by Goemans et al. (2006)
and Brethouwer et al. (2018) in the form of market sharing
games. In these models, k agents choose to serve a subset
of n markets. Each market then equally distributes its utility
among all agents serving it. Schmand, Schröder, and Skopa-

lik (2019) introduced a model which considers an inherent
load balancing problem, however, each facility agent can
create and choose multiple facilities and each client agent
chooses multiple facilities. An empirical investigation of a
two-sided facility location problem was conducted by Schön
and Saini (2018), in which a single facility agent opens facil-
ities for strategic clients. The facility agent sets service lev-
els while the client agents determine their strategies based
on these levels, but also travel distance and congestion.

Closest to our work is the above-mentioned work
by Krogmann et al. (2021), where clients that minimize
their maximum waiting time are considered. For this version
equilibria always exist due to a potential function argument.
Moreover, the authors present a polynomial time algorithm
for computing the unique client equilibrium, given a facility
placement. In terms of quality of the equilibria, the authors
prove an essentially tight bound of 2 on the Price of Anar-
chy by establishing that this model is a valid utility system.
These results on quality apply to a general class of games
which also includes the game we study in this paper.

Facility location problems were also studied recently with
Mechanism Design, e.g., Procaccia and Tennenholtz (2013);
Feldman, Fiat, and Golomb (2016); Aziz et al. (2020); Chan
et al. (2021); Harrenstein et al. (2021); Fotakis and Patsili-
nakos (2021); Deligkas, Eiben, and Goldsmith (2022).

Our Contribution: In this paper, we introduce a two-
sided facility location game with clients that minimize their
total incurred waiting time. In the first stage, each facility
agent individually selects a location on a graph to open a fa-
cility, while in the second stage client agents choose which
facilities to patronize. Thereby, clients may freely distribute
their purchasing power among all opened facilities within
their shopping range. In contrast to a similar game by Krog-
mann et al. (2021), our clients minimize their total expected
waiting time instead of their maximum expected waiting
time. To the best of our knowledge, we are the first to study
this natural behavior in a facility location game.

The client behavior on its own is well studied in the form
of atomic splittable congestion games and we reduce our
client stage to variants of these games to show existence,
uniqueness and polynomial time computation of client equi-
libria. This means that facilities can efficiently predict client
behavior to inform their strategic location decisions.

However, on the negative side, we show that for our com-
plete game consisting of both the facility stage and the client
stage, subgame perfect equilibria (SPE) are not guaranteed
to exist for all instances. This is in surprising contrast to the
similar game studied by Krogmann et al. (2021), which is
actually a potential game with guaranteed equilibrium exis-
tence. In fact, we prove that it is even NP-hard to decide the
existence of an SPE for a given instance. This shows that the
specific client behavior has a severe impact on the obtained
game-theoretic properties.

But, on the positive side, we prove the existence of 3-
approximate SPEs and show that they can be computed effi-
ciently by using another facility location game as a proxy.



2 Model and Preliminaries

We consider a game-theoretic model for non-cooperative fa-
cility location, called the Two-Sided Facility Location Game
(2-FLG)1, where two types of agents, k facilities and n
clients, strategically interact on a given vertex-weighted di-
rected2 host graph H = (V,E,w), with V = {v1, . . . , vn},
where w : V → Q+ denotes the vertex weight. Every vertex
vi ∈ V corresponds to a client with weight w(vi), which
can be understood as her purchasing power, and at the same
time, each vertex is a possible location for setting up a fa-
cility for any of the k facility agents F = {f1, . . . , fk}.
Any client vi ∈ V considers patronizing a facility in her
shopping range N(vi), i.e., her direct closed neighborhood
N(vi) = {vi} ∪ {z | (vi, z) ∈ E}. Moreover, let w(X) =
∑

vi∈X w(vi), for any X ⊆ V , denote the total purchasing
power of the client subset X .

In our setting, the strategic behaviors of the facility and
the client agents influence each other. Facility agents select
a location to attract as much client weight, i.e., purchasing
power, as possible, whereas clients strategically decide how
to distribute their purchasing power among the facilities in
their respective shopping ranges. More precisely, each facil-
ity agent fj ∈ F selects a single location vertex sj ∈ V
for setting up her facility, i.e., the strategy space of any fa-
cility agent fj ∈ F is V . Let s = (s1, . . . , sk) denote the

facility placement profile. And let S = V k denote the set of
all possible facility placement profiles. We will sometimes
use the notation s = (sj , s−j), where s−j is the vector of
strategies of all facilities agents except fj . Given profile s,
we define the attraction range for a facility fj on location
sj ∈ V as As(fj) = {sj} ∪ {vi | (vi, sj) ∈ E}. We ex-
tend this to sets of facilities F ⊆ F in the natural way, i.e.,
As(F ) = {sj | fj ∈ F} ∪ {vi | (vi, sj) ∈ E, fj ∈ F}.
Moreover, let ws(F) =

∑

vi∈As(F) w(vi).

We assume that all facilities provide the same service for
the same price and arbitrarily many facilities may be co-
located at the same location. Each client vi ∈ V strategi-
cally decides how to distribute her spending capacity w(vi)
among the opened facilities in her shopping range N(vi).
For this, let Ns(vi) = {fj | sj ∈ N(vi)} denote the set of
facilities in the shopping range of client vi under s.

Let σ : S × V → Rk
+ denote the client weight distri-

bution function, where σ(s, vi) is the weight distribution of
client vi and σ(s, vi)j is the weight distributed by vi to fa-
cility fj . We say that function σ is feasible for profile s,
if all clients having at least one facility within their shop-
ping range distribute all their weight to the respective facil-
ities and all other clients distribute nothing. Formally, func-
tion σ is feasible for profile s, if for all vi ∈ V we have
∑

fj∈Ns

σ(s, vi)j = w(vi), if Ns(vi) 6= ∅, and σ(s, vi)j =

0, for all 1 ≤ j ≤ k, if Ns(vi) = ∅. We use the notation
σ = (σi, σ−i) and (σ′

i, σ−i) to denote the changed client
weight distribution function that is identical to σ except for
client vi, which plays σ′(s, vi) instead of σ(s, vi).

1We reuse notation by Krogmann et al. (2021).
2Our results also hold for undirected graphs. Also, our model

can be equivalently defined on an undirected bipartite graph.
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Figure 1: Two instances of the Min-2-FLG with their client
equilibria visualized for a given facility placement profile.
The clients on each node split their weight (above the nodes)
among the facilities in their shopping ranges to minimize
their cost. The facilities f1 and f2 are marked by dots in-
side the nodes and receive the loads below in the respective
unique client equilibria. On the left, the middle client v1 has
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Any state (s, σ) of the 2-FLG is determined by a facility
placement profile s and a feasible client weight distribution
function σ. A state (s, σ) then yields a facility load ℓj(s, σ),
with ℓj(s, σ) =

∑n

i=1 σ(s, vi)j for facility agent fj . Hence,
ℓj(s, σ) naturally models the total congestion for the service
offered by the facility of agent fj induced by σ. A facility
agent fj strategically selects a location sj to maximize her
induced facility load ℓj(s, σ). We assume that the service
quality of facilities, e.g., the waiting time, deteriorates with
increasing congestion. Hence for a client, the facility load
corresponds to the waiting time at the respective facility.

There are many ways how clients could distribute their
spending capacity. We investigate the Min-2-FLG with wait-
ing time minimizing clients, i.e., a natural strategic behavior
where client vi strategically selects σ(s, vi) to minimize her
total waiting time. More precisely, the cost of client i is

Li(s, σ) =

k
∑

j=1

σ(s, vi)jℓj(s, σ).

Another version of the 2-FLG we use in this paper is the
Uniform-2-FLG, in which clients distribute their weight
equally among all facilities in their range. Formally, for each
pair of client vi and facility fj , with fj ∈ Ns(vi), the

client’s weight is σ(s, vi)j = w(vi)
Ns(vi)

. Another such model

is the load balancing 2-FLG introduced by Krogmann et al.
(2021), which we do not consider in this paper.

We say that σ∗ is a client equilibrium weight distribution,
or simply a client equilibrium, if for all vi ∈ V we have that
Li(s, (σ

∗
i , σ−i)) ≤ Li(s, (σ

′
i, σ−i)) for all feasible weight

distributions σ′(s, vi) of client vi. See Figure 1 for an illus-
tration of the client behavior in the Min-2-FLG.

We define the stable states of the 2-FLG as subgame per-
fect equilibria (SPE), since we inherently have a two-stage
game. First, the facility agents select locations for their facil-
ities and then, given this facility placement, the clients strate-
gically distribute their purchasing power among the facilities
in their shopping range. A state (s, σ) is in SPE, or stable, if

(1) ∀fj ∈ F , ∀s′j ∈ V : ℓj(s, σ) ≥ ℓj((s
′
j , s−j), σ) and

(2) ∀s ∈ S, ∀vi ∈ V : Li(s, σ) ≤ Li(s, (σ
′
i, σ−i)) for all

feasible weight distributions σ′(s, vi) of client vi.



As we will show, SPE do not always exist. Hence, we re-
lax the first condition as follows and obtain the notion of
α-approximate subgame perfect equilibria (α-SPE):

(1’) ∀fj ∈ F , ∀s′j ∈ V : ℓj(s, σ) ≥ αℓj((s
′
j , s−j), σ)

We study dynamic properties of the 2-FLG. Let an im-
proving move by some (facility or client) agent be a strategy
change that improves the agent’s utility. A game has the fi-
nite improvement property (FIP) if all sequences of improv-
ing moves are finite. The FIP is equivalent to the existence of
an ordinal potential function (Monderer and Shapley 1996),
which implies equilibrium existence.

3 Client Equilibria

The existence of client equilibria is implied by Kakutani’s
fixed-point theorem (Kakutani 1941).3 A reduction of our
game to atomic splittable routing games by Bhaskar et al.
(2015) obtains uniqueness of client equilibria.4 Note that for
the reduction to their model to work, we require the exten-
sion defined by the authors where each player may have her
own individual delay function for each edge.

Theorem 1. For a given facility placement profile s the
client equilibrium in the Min-2-FLG is unique.

Client equilibria can be computed in polynomial time
with an algorithm given by Harks and Timmermans (2021).5

Theorem 2. For a given facility placement profile s the
client equilibrium in the Min-2-FLG can be computed in
polynomial time.

Notably, the most involved step to compute a client equi-
librium is to determine the pairs of clients and facilities with
non-zero weight. This information then yields a set of linear
equations solvable by Gaussian elimination.

We now show how the loads of two facilities with a shared
client relate to each other in a client equilibrium.

Lemma 1. Let fp and fq be two facilities that share a client
vi in a given facility placement profile s. In a client equilib-
rium σ, if σ(s, vi)p > 0, then

ℓp(s, σ) + σ(s, vi)p ≤ ℓq(s, σ) + σ(s, vi)q .

Proof. If vi transfers weight from fp to fq it only affects the
terms σ(s, vi)pℓp(s, σ) and σ(s, vi)qℓq(s, σ) in her cost and
not the other terms of the sum. Let Li,j = σ(s, vi)jℓj(s, σ),
for all vi ∈ V and fj ∈ F . Since σ is the unique client
equilibrium, we know that for a transfer of weight of ǫ with
0 < ǫ ≤ σ(s, vi)p we have Li,p + Li,q < (σ(s, vi)p −
ǫ)(ℓp(s, σ)− ǫ) + (σ(s, vi)q + ǫ)(ℓq(s, σ) + ǫ). This yields
ℓp(s, σ)+σ(s, vi)p < 2ǫ+ ℓq(s, σ)+σ(s, vi)q . Since ǫ may
be arbitrarily small, but not zero, this finishes the proof.

Lemma 1 also implies equality of the two terms, i.e.,
ℓp(s, σ) + σ(s, vi)p = ℓq(s, σ) + σ(s, vi)q , if a client vi
has non-zero weight on both fp and fq.

3See Appendix A in the Supplementary Material for this proof.
4See Appendix B in the Supplementary Material for this reduc-

tion to atomic splittable routing games.
5This requires a reduction to atomic splittable singleton conges-

tion games given in Appendix C in the Supplementary Material.
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Figure 2: Best responses (dashed) to game states for the in-
stance G∗ of the Min-2-FLG without SPE. The utilities of
the facilities before and after the move are given on the right.

4 Subgame Perfect Equilibria

Unlike other versions of the 2-FLG, the Min-2-FLG does
not admit subgame perfect equilibria in all instances. In fact,
the counterexample only needs two facility agents with the
host graph H being a path of size 4. Therefore, it may be
complicated to find non-trivial subclasses of the Min-2-FLG
which always admit SPE.

Theorem 3. There are instances of the Min-2-FLG for
which a subgame perfect equilibrium does not exist.

Proof. Let G∗ = (V ∗, E∗) with V ∗ = {v1, v2, v3, v4} and
E∗ = {(v1, v2), (v2, v3), (v3, v4)}. Let the client weights be
w(v1) = 3, w(v2) = 2, w(v3) = 7, and w(v4) = 1. For
two facility agents, this instance does not admit an SPE. In
Figure 2 we show the best responses for states that cannot
trivially be excluded as SPE.

Additionally, determining whether an instance admits an
SPE is computationally intractable.

Theorem 4. Deciding if an instance of the Min-2-FLG ad-
mits an SPE is NP-hard.

Proof. We reduce from INDEPENDENTSET (IS): Given a
graph G = (V,E) and an integer k ≤ |V |, decide whether
there exists a subset I ⊆ V with |I| = k such that no
two vertices in I share an edge. This problem is NP-hard,
even for graphs with maximum degree 3 (Garey and Johnson
1990). In the following, we assume that G has a maximum
degree of at most 3.

To prove the theorem, we construct an instance of the
Min-2-FLG on a host graph H = (V ′, E′, w) with k′ = 2k
facilities such that there is an SPE in H if and only if G con-
tains an independent set of size k. We obtain H from G by
replacing every edge e = {u, v} by a new vertex xe and two
new edges (xe, u) and (xe, v). For every vertex v of degree
1 (or 2) add two (or one) vertices yv (and zv) and the edge
(yv, v) (and (zv, v)). The newly added x-, y- and z-vertices
have weight 1.75, vertices that originally belonged to V have
weight 0. Hence, we now have in H exactly |V | many ver-
tices that all have weight 0 with exactly 3 neighbors that
have weight 1.75 each. All other vertices have weight 1.75
and one or two neighbors with weight 0. To complete the



construction of H , we add k copies of the graph G∗ that we
used in Theorem 3 (see Figure 2).

Now, if G contains an independent set I of size k, then
there is an equilibrium in which k facilities are placed on the
vertices of I and one facility each is placed on the second
vertex from the right in each of the k copies of G∗. The
first k facilities each have a payoff of 5.25 and, hence, play
their best response. In particular, it is not an improvement to
choose any vertex in any of the copies of G∗ as this yields
at most 4.75. Each of the k players in the copies of G∗ has a
payoff of 9 and, hence, is clearly playing the best response.

If there is no independent set of size k in G, then there
cannot be more than k − 1 players with a payoff of more
than 4.375 on vertices outside of the copies of G∗. Note that
a higher payoff is only possible on nodes of degree 3 with no
other facility within distance 2. However, in an equilibrium
no facility would choose a location with a payoff of at most
4.375 as there is at least one of the copies of G∗ with at most
one other facility on it. Switching to the best vertex in that
copy of G∗ guarantees a payoff of at least 4.5. Finally, we
observe that there is no equilibrium with two players on host
graph G∗ in Figure 2, hence the is no equilibrium in H .

5 Approximation of SPE

In this section, we show that an SPE in the Uniform-2-FLG
is a 3-approximate SPE in the Min-2-FLG. We first give an
example instance, where in an SPE in the Uniform-2-FLG
a facility can improve by a factor of 2 when treating it as
a state of the Min-2-FLG. This instance serves as a lower
bound of the approximation quality using the Uniform-2-
FLG and is also shown in Figure 3.

Example 1. Let t > 0 be a natural number. Let G =
(V,E), with V = {vb, va} ∪

⋃t
i=1 Vi, with Vi = {xi} ∪

{yi,1, . . . , yi,t} and E =
⋃t

i=1 Ei, with Ei = {(va, xi)} ∪
{(xi, yi,1), . . . , (xi, yi,t)}. Let the client weights be w(vb) =
1, w(va) = 0, w(xi) = 1, for all i and w(yi,j) =

2t−2
t

, for

all i, j. Let the number of facilities be n = t2 + 1.

For this example in a client equilibrium of the Uniform-
2-FLG, facilities are located at vb and all of the nodes yi,j ,
with 1 ≤ i, j ≤ t, while for the Min-2-FLG the facility agent
on vb can improve by a factor of 2 by moving to location va.

Theorem 5. Let s be an SPE for an instance of the Uniform-
2-FLG. When transferred to the Min-2-FLG, it is possible
for profile sUniform to be a 2-approximate SPE.

Proof. For the Uniform-2-FLG, the facility placement pro-
file s = (vb, y1,1, . . . y1,t, . . . , yt,1, . . . yt,t) is an SPE for

Example 1, since the facility on vb receives 2t−2
2t + 1

t+1 < 1

by switching to any yi,j , receives 1
t+1 < 1 by switching to

any xi, and receives 1
t+1 by switching to va. Clearly, the

other facilities lose more utility by switching strategies.
We transfer s to the Min-2-FLG, after which the facil-

ity fj on vb still receives a utility of 1. We consider a
switch by fj to va resulting in the facility placement pro-
file s

′. Since there is only one client equilibrium, by sym-
metry all clients x1, . . . , xt have the same cost and all fa-
cilities except fj have the same utility, so we fix some arbi-

. . .

. . . . . .

vb
1

va
0

x1

1

y1,t
2t−2

t

y1,1
2t−2

t

xt

1

yt,1
2t−2

t

yt,t
2t−2

t

Figure 3: An instance of the 2-FLG for which an SPE in the
Uniform-2-FLG is a 2-approximate SPE in the Min-2-FLG.
The improving facility improves by moving from vb to va.

trary client vi ∈ x1, . . . , xt and some facility fp 6= fj with
fp ∈ Ns(xi).

The cost of vi is Li(s
′, σ) = σ(s′, vi)jℓj(s

′, σ) +
σ(s′, vi)pℓp(s

′, σ)t = σ(s′, vi)j(σ(s
′, vi)j + z) +

1−σ(s′,vi)j
t

(

1−σ(s′,vi)j
t

+ 2t−2
t

)

t, where z is the sum of

the weight that fj receives from all clients except vi. Be-
cause the cost is minimal, we know that for the deriva-
tive d

dσ(s′,vi)j)
Li(s

′, σ) = 0 if and only if the minimum of

Li(s
′, σ) has σ(s′, vi)j ∈ [0, wi]. Thus, we get 2σ(s′, vi)j +

z − 2 + 2
σ(s′,vi)j

t
= 0. We substitute z = (t − 1)σ(s′, vi)j

because of symmetry6 and then get σ(s′, vi)j = 2t
t2+t+2 ,

which is within [0, w(vi)]. Thus, Lj(s
′, σ) = 2t2

t2+t+2 , with

limt→∞ Lj(s
′, σ) = 2.

Next, we prove an upper bound on the approximation
quality: First, we show that of all facilities in range of a client
vi, in a client equilibrium for the Min-2-FLG, the one with
the lowest total load receives at least as much weight from
vi as any other facility.

Lemma 2. In the Min-2-FLG, given a facility placement
profile s and a client equilibrium σ, let fj be the facility in
the attraction range Ns(vi) of client vi with the lowest fa-
cility load. Then σ(s, vi)j ≥ σ(s, vi)x for any other facility
fx ∈ Ns(vi).

Similarly, for fp ∈ Ns(vi) with the highest facility load:
σ(s, vi)p ≤ σ(s, vi)x for any other facility fx.

Proof. Let fx ∈ Ns(vi) be an arbitrary facility with non-
zero weight σ(s, vi)x > 0 on vi. Using Lemma 1, we get

ℓj(s, σ) + σ(s, vi)j ≥ ℓx(s, σ) + σ(s, vi)x

ℓj(s, σ) + σ(s, vi)j ≥ ℓj(s, σ) + σ(s, vi)x

σ(s, vi)j ≥ σ(s, vi)x.

Thus, fj receives at least as much weight from vi as any
other facility in the attraction range of vi. The proof for fp ∈
Ns(vi) with the highest facility load works analogously.

With this, we prove that if we move a profile s from the
Min-2-FLG to the Uniform-2-FLG then the facility with the
lowest load in the client equilibrium of the Min-2-FLG has
an equal or lower load in the Uniform-2-FLG.

6Note that we cannot do this substitution earlier, because do-
ing it before applying the derivative would minimize the sum of
utilities of all clients in {v1, . . . , vt}, instead of just vi.



Lemma 3. In the Min-2-FLG, given a facility placement
profile s and a client equilibrium σ, let fj ∈ F be the facility
with the lowest load. Then ℓj(s, σ) ≥ ℓj(s, σUniform), where
σUniform is the client equilibrium for s in the Uniform-2-FLG.

Similarly, for the facility fp ∈ F with the highest load,
ℓp(s, σ) ≤ ℓp(s, σUniform).

Proof. For each client vi, fj is the facility with the lowest
load in Ns(vi). Thus by Lemma 2, fj receives as least as
much weight from vi as any other facility in the range of vi.
As only clients in Ns(vi) receive weight from vi, fj receives

a weight of at least σ(s, vi)j ≥
w(vi)

|Ns(vi)|
from each vi. Thus,

for each vi, it holds that σ(s, vi)j ≥ σUniform(s, vi)j and
therefore, ℓj(s, σ) ≥ ℓj(s, σUniform). The proof for fp ∈ V
with the highest facility load works analogously.

We need another lemma to show that removing a facil-
ity from an instance of the Min-2-FLG does not result in a
utility loss for any other facility.

Lemma 4. Let s be a facility placement profile and σ be a
client equilibrium in the Min-2-FLG. If we remove a facility
agent fj from the placement (and instance) resulting in s

′

with client equilibrium σ′, no facility fx 6= fj loses utility.

Proof. Let FL be the set of facilities that lose utility by
the removal of fj . We assume towards contradiction that
this set is non-empty. Since the sets of clients As(FL) and
As

′(FL) in the attraction range of FL are equal for both
facility placement profiles, there must be some client vi ∈
As(FL) which allocates more weight outside FL in σ′ than
in σ. Thus, there exists a winning facility fw /∈ FL, with
ℓw(s

′, σ′) ≥ ℓw(s, σ) and σ′(s′, vi)w > σ(s, vi)w, and
a losing facility fl ∈ FL, with ℓl(s

′, σ′) < ℓl(s, σ) and
σ′(s′, vi)l < σ(s, vi)l. Thus, we get the two statements

ℓw(s
′, σ′) + σ′(s′, vi)w > ℓw(s, σ) + σ(s, vi)w and

ℓl(s
′, σ′) + σ′(s′, vi)l < ℓl(s, σ) + σ(s, vi)l.

By Lemma 1, we also get

ℓw(s, σ) + σ(s, vi)w ≥ ℓl(s, σ) + σ(s, vi)l and

ℓw(s
′, σ′) + σ′(s′, vi)w ≤ ℓl(s

′, σ′) + σ′(s′, vi)l.

Therefore, we arrive at a contradiction.

We use the preceding lemmas to prove a 3-approximation:

Theorem 6. A (1 + ǫ)-approximate SPE in the Uniform-2-
FLG is a (3 + 2ǫ)-approximate SPE in the Min-2-FLG.

Proof. In an SPE (s, σUniform) in the Uniform-2-FLG, the
facility fl,Uniform with the lowest facility load and the facil-
ity fh,Uniform with the highest facility load are separated by
at most a factor of 2 + 2ǫ, as otherwise fl,Uniform could im-
prove by more than a factor of 1 + ǫ by deviating to the lo-
cation of fh,Uniform and thereby receive at least half her load.
When transferring s to the Min-2-FLG with the correspond-
ing client equilibrium σ, the factor between fl,Min with the
lowest facility load and fh,Min and with the highest facility
load is also at most 2 + 2ǫ, by Lemma 3.

Let an arbitrary facility fp make an improving move re-
garding the Min-2-FLG, changing the facility placement

Algorithm 1: Approximate Best Response Dynamics

1 s← arbitrary facility placement profile;
2 while ∃fj ∈ F , s′j ∈ V with

ℓj((s
′
j , s−j), σUniform)) ≥ (1 + ǫ)ℓj(s, σUniform) do

3 s← (s′j , s−j);

profile from s to s
′. Assume that fp has the highest utility

ℓp(s
′, σMin) of all facilities in (s′, σMin) or

ℓp(s
′, σMin) = max

fx∈F
ℓx(s

′, σMin). (1)

By Lemma 2, the facility fp receives at most a weight of

σMin(s
′, vi)p ≤

w(vi)
N

s
′(vi)

= σUniform(s
′, vi)p from each client

vi ∈ As
′(fj). Thus, ℓp(s

′, σMin) ≤ ℓp(s
′, σUniform) ≤ (2 +

2ǫ)ℓl,Uniform(s, σUniform) ≤ (2+2ǫ)ℓp(s, σMin), where the last
part holds by Lemma 3. This means that if Equation (1) is
true, the gain of facility fp is limited to a factor of (2 + 2ǫ).
Therefore, fp can only improve by a factor of more than
(2+2ǫ) if another facility fx exists for which ℓp(s

′, σMin) <
ℓx(s

′, σMin).
With the goal of finding an upper bound on ℓx(s

′, σMin),
we investigate the move of fp in two parts: First, the re-
moval of fp resulting in sr with the client equilibrium σr

in the Min-2-FLG, second the reinsertion of fp in her new
position. By Lemma 4, all facility utilities in (sr, σr) have
not decreased from the utilities in (s, σMin). Since the sum
of utilities among the non-removed facilities increases by at
most ℓp(s, σMin), the maximum utility gain of fx is at most

ℓx(sr, σr) ≤ ℓx(s, σMin) + ℓp(s, σMin).

By the inverse of Lemma 4, adding fp in her new position
cannot result in a utility gain for fx and so ℓx(s

′, σMin) ≤
ℓx(sr, σr). Thus, we have

ℓx(s
′, σMin) ≤ ℓx(s, σMin) + ℓp(s, σMin)

ℓp(s
′, σMin) ≤ ℓx(s, σMin) + ℓp(s, σMin)

ℓp(s
′, σMin) ≤ (3 + 2ǫ)ℓp(s, σMin)

concluding the proof.

We will show that there exists a simple FPTAS to compute
a (1 + ǫ)-approximate equilibrium in the Uniform-2-FLG
which immediately yields the following theorem.

Theorem 7. A (3+2ǫ)-approximate SPE in the Min-2-FLG
can be computed in polynomial time.

As an algorithm to compute an (1+ǫ)- approximate equi-
librium in the Uniform-2-FLG, we employ approximate best
response dynamics (see Algorithm 1). Here we iteratively
let facilities switch locations if they improve the payoff by a
factor of at least 1 + ǫ.

Theorem 8. There is a FPTAS to compute a (1 + ǫ)-
approximate equilibrium in the Uniform-2-FLG.

Proof. By its stopping condition, Algorithm 1 clearly com-
putes a (1+ ǫ)-approximate equilibrium. As for the runtime,
each improvement step can be performed in polynomial time



iterating over all facilities and all their strategies. Note that
computing the cost of a player for each profile can also be
done in polynomial time (cf. Theorem 2). Using the follow-
ing lemma to bound the overall number of steps completes
the proof.

Lemma 5. Every sequence of (1 + ǫ)-best response
improvement steps in the Uniform-2-FLG converges in
O(1

ǫ
n2 logn) steps.

Proof. For the Uniform-2-FLG, we have that Φ(s) =
∑

v∈V

∑|Ns(v)|
j=1

w(v)
j

is an exact potential function that in-

creases with each improving move of a facility exactly by
the difference of the improvement (Rosenthal 1973). That
is, if a facility fj improves from s by changing from sj
to s′j with an improvement of ∆ := ℓj(s, σUniform) −
ℓj((s−j , s

′
j), σUniform), then Φ(s)− Φ(s−j , s

′
j) = ∆.

We now prove the lemma by bounding the number of ap-
proximate best response steps until we reach an approximate
equilibrium. To that end, let s∗ be the equilibrium that max-
imizes the exact potential function Φ(·).

Note that an agent could always choose the location of the
facility fp that covers the most client weight in s

∗. That is
p = argmax{1,...,k} w(As

∗(fj). By an averaging argument,

that weight is at least 1
n

-th of the total weight w(As
∗(F))

covered in s
∗. Hence, any best response of an agent yields a

payoff of at least 1
n

-th the weight covered by fp, which is 1
n

of the total load in s
∗. So, the payoff of a best response is at

least 1
n2w(As

∗(F).
On the other hand, Φ(s∗) is at most Hn times the total

covered weight, i.e., Φ(s∗) ≤ Hnw(As
∗(F)). Putting both

together yields that the payoff of a best response is at least
1

n2Hn
Φ(s∗).

As we are considering only improving moves that in-
crease a player’s payoff by a factor of 1 + ǫ, every step im-
proves the payoff (and, hence, the potential function) by at
least ǫ

1+ǫ
1

n2Hn
Φ(s∗).

Therefore, every sequence of (1 + ǫ)-best responses
reaches an approximate equilibrium after at most
O(1

ǫ
n2 logn) steps.

Notably the (1+ǫ)-factor is unavoidable, as computing an
exact equilibrium in the Uniform-2-FLG is PLS-complete.

Theorem 9. Computing an exact equilibrium in the
Uniform-2-FLG is PLS-complete.

Proof. The problem is in PLS since we can compute the po-
tential function value for each facility placement profile in
polynomial time and we can find a better solution in polyno-
mial time by iterating over all unilateral deviations.

To prove hardness, we reduce from LOCALMAXCUT,
the local search version of MAXCUT, which is PLS-
hard (Schäffer 1991; Elsässer and Tscheuschner 2011). That
is, given a graph G = (V,E) with edge weights we, find
a set C ⊆ V such that the value of the cut, i.e., v(C) :=
∑

u∈C

∑

v∈V \C w(u,v) cannot be improved by adding or re-

moving one vertex to or from C.
Given an instance of LOCALMAXCUT with a graph G =

(V,E) with edge weights we, we construct an instance of

the Uniform-2-FLG on a host graph H = (V ′, E′, w′) with
n = |V | facilities such that from an equilibrium in H we
can easily construct a local optimum of G. For ease of ex-
position, we let H be an undirected graph. One can easily
obtain an equivalent directed graph by duplicating edges.

For every vertex v ∈ V , there is a vertex gadget con-
sisting of the five nodes leftv, rightv, dummy1v, dummy2v,
and dummy3v. The three dummy vertices have weight M ,
the other two vertices have weight 0. There is an edge
from dummy1 to left, from dummy2 to right and edges from
dummy3 to both, left and right.

For every edge e = (u, v) ∈ E, there are two edge ver-
tices v1e and v2e each with weight we. There is an edge
from v1 to the right vertex of the vertex gadget for u and the
left vertex of the vertex gadget of v. There is an edge from
v2 to the right vertex of the vertex gadget for v and the left
vertex of the vertex gadget of u.

As we have exactly n = |V | facilities, it is easy to verify
that in every equilibrium there is exactly one facility on ei-
ther the left or the right vertex of each edge with a payoff of
at least 2M . Note that more than one player in a vertex gad-
get or choosing a dummy or edge vertex gives significantly
less payoff.

It remains to show that we can determine a local optimum
of the MAXCUT instance from any equilibrium in polyno-
mial time. We interpret an equilibrium profile as a LOCAL-
MAXCUT solution as follows: We define that every vertex
v ∈ V where a facility is on the left node of the correspond-
ing gadget is in C.

In an equilibrium, the payoff of a player on a vertex gad-
get u ∈ C is 2M +

∑

v∈δ(u)\C w(u,v). For every player on a

vertex gadget u 6∈ C, the payoff is 2M+
∑

v∈δ(u)∩C w(u,v),

where δ(u) is the set of neighboring nodes of u.

Since this is an equilibrium, deviating from the right to
the left node within a gadget is not an improvement. Hence,
the payoff for each player on a vertex gadget u ∈ C is 2M+
∑

v∈δ(u)\C w(u,v) ≥ 2M +
∑

v∈δ(u)∩C w(u,v).

Likewise, for each player on u 6∈ C the payoff is 2M +
∑

v∈δ(u)∩C w(u,v) ≥ 2M +
∑

v∈δ(u)\C w(u,v).

6 Conclusion

We have shown that in our model of two-sided facility lo-
cation subgame perfect equilibria are not always guaranteed
to exist. This is in stark contrast to the model of Krogmann
et al. (2021) in which clients exhibit a simpler behavior and
merely perform load balancing. To resolve non-existence we
studied approximate equilibria and showed the existence and
polynomial time computability of approximate equilibria.

A major open problem is whether the approximation fac-
tors can be improved. We conjecture that 2-approximate
equilibria exist and that our approximation algorithm com-
putes them. On the negative side, a close inspection of our
constructions in Theorems 3 and 4 shows already that there
do not exist α-approximate equilibria for a suitable small
constant α and that the corresponding decision problem is
intractable. It would be very interesting to obtain a matching
lower bound to the existence result.



References

Ahn, H.-K.; Cheng, S.-W.; Cheong, O.; Golin, M.; and van
Oostrum, R. 2004. Competitive Facility Location: The
Voronoi Game. TCS, 310(1): 457–467.

Aziz, H.; Chan, H.; Lee, B.; Li, B.; and Walsh, T. 2020.
Facility Location Problem with Capacity Constraints: Al-
gorithmic and Mechanism Design Perspectives. In AAAI,
1806–1813.

Bhaskar, U.; Fleischer, L.; Hoy, D.; and Huang, C.-C. 2015.
On the uniqueness of equilibrium in atomic splittable rout-
ing games. Mathematics of Operations Research, 40(3):
634–654.

Boppana, M.; Hod, R.; Mitzenmacher, M.; and Morgan, T.
2016. Voronoi Choice Games. In ICALP, 23:1–23:13.

Brethouwer, J.-T.; de Jong, J.; Uetz, M.; and Skopalik, A.
2018. Analysis of Equilibria for Generalized Market Sharing
Games. In WINE.

Chan, H.; Filos-Ratsikas, A.; Li, B.; Li, M.; and Wang, C.
2021. Mechanism Design for Facility Location Problems: A
Survey. In IJCAI, 4356–4365.

Cohen, A.; and Peleg, D. 2019. Hotelling Games with Ran-
dom Tolerance Intervals. In WINE, 114–128.

de Berg, M.; Kisfaludi-Bak, S.; and Mehr, M. 2019. On One-
Round Discrete Voronoi Games. In ISAAC, volume 149,
37:1–37:17.

Deligkas, A.; Eiben, E.; and Goldsmith, T. 2022. Parameter-
ized Complexity of Hotelling-Downs with Party Nominees.
In IJCAI, 244–250.

Downs, A. 1957. An Economic Theory of Political Action
in a Democracy. Journal of Political Economy, 65(2): 135–
150.
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Appendix

A Existence of Client Equilibria

We prove the existence of client equilibria with Kakutani’s
fixed-point theorem. For that, we first show that a client al-
ways has just one unique best response.

Lemma 6. A client vi has a unique best response for a given
client distribution σ.

Proof. Given a client distribution σ, let the two responses
p = ((p1, . . . , pk), σ−i) and q = ((q1, . . . , qk), σ−i)
of client vi have the same cost. Let the response r =
((r1, . . . , rk), σ−i), with ri = pi+qi

2 be the midpoint of p
and q. Since the strategy space of vi is a simplex, r is a valid
strategy. The cost of client vi in p (and analogously for q) is

Li(s, p) =

k
∑

j=1

p(s, vi)jℓj(s, p)

=
k
∑

j=1

p(s, vi)j(p(s, vi)j + ℓj(s, σ−i))

=

k
∑

j=1

(

p(s, vi)
2
j + p(s, vi)jℓj(s, σ−i)

)

.

For better readability we use pi,j = p(s, vi)j and qi,j =
q(s, vi)j for the rest of this proof. Now, we limit the cost of
client vi at the midpoint r to

Li(s, r) =

k
∑

j=1

(

r(s, vi)
2
j + r(s, vi)jℓj(s, σ−i)

)

=
k
∑

j=1

(

(pi,j + qi,j)
2

4
+

pi,j + qi,j
2

ℓj(s, σ−i)

)

<

k
∑

j=1

(

2p2i,j + 2q2i,j
4

+
pi,j + qi,j

2
ℓj(s, σ−i)

)

=
Li(s, p) + Li(s, q)

2
.

The second step is due to a2 + b2 > 2ab → 2a2 + 2b2 >
(a + b)2, for a 6= b, and since p and q differ in at least one
component. Thus, r has a lower cost than p and q for vi.
This means, that a client vi cannot have two distinct best
responses for a given σ−i, as the midpoint of these best re-
sponses would have lower cost.

Then, we prove the following statement with Kakutani’s
fixed-point theorem.

Theorem 10. A client equilibrium exists in all instances for
all facility placement profiles s.

Proof. The strategy space Si of a single client vi is an
|N(vi)|-simplex, where N(vi) is the the set of facilities
in her shopping range. Then the set S = S1 × · · · × Sn

is non-empty, compact and convex. We define the function
φ : S → 2S to be φ(x) = BR1(x−1) × · · · × BRn(x−n),

where BRi(x−i) is the set of best responses of client i, given
the facility placement profile x−i of all other clients. By
Lemma 6, |BRi(x−i)| = 1 for all possible input. There-
fore, it also holds that |φ(x)| = 1 for all x and thus, φ(x) is
always non-empty and convex. φ has a closed graph, since
it is continuous, as the best response of each player is the
minimum of a quadratic function. According to Kakutani’s
fixed-point theorem, φ must therefore have a fixed point z.
Since in z all clients play there best response, z is a client
equilibrium.

B Uniqueness of Client Equilibria

To prove the uniqueness of Nash equilibria in our client
stage, we reduce it to an atomic splittable routing game.
However, we use the definition by Bhaskar et al. (2015) in-
cluding the extension that the authors define in Section 5 of
their paper, that each player may have her own individual de-
lay function for each edge. In that way, we can prohibit the
use of edges that correspond to facilities not in the shopping
range of a client by setting sufficiently bad delay functions.
For the reduction, we first give a definition of the atomic
splittable routing game:

Definition 1 (Atomic Splittable Routing Game (Bhaskar
et al. 2015)). Given a graphG = (V,E), let there be k play-
ers with each player i defined by (wi, si, ti). Each player i
routes wi units of flow from si ∈ V to ti ∈ V which she can
split arbitrarily among all si-ti-paths. Let f be the total flow
in the graph, fe the amount of flow through an edge e and f i

e

the amount of flow that player i sends through edge e. For
each combination of player i and edge e, there is a delay
function lie(fe). The cost of player i is

∑

e∈E f i
el

i
e(fe).

Now we prove that the Min-2-FLG is isomorphic to a
game that fulfills the conditions that are necessary to prove
uniqueness of client equilibria.

Lemma 7. For a given facility placement profile s the client
stage of the Min-2-FLG is isomorphic to an atomic split-
table routing game with a generalized nearly parallel graph
and nonnegative, nondecreasing, differentiable, and convex
delay functions.

Proof. We assume that all clients have at least one facility
within their shopping range, as otherwise we can remove
such clients without affecting the rest of the game. We de-
fine G′ = (V ′, E′) with V ′ = {s, t} ∪ {F} and have two
edges (s, fj) and (fj , t), for each facility fj ∈ F . For each
client vi we add a flow from s to t with weight w(vi), as
(wi, si, ti) = (w(vi), s, t). For each pair of a client vi and
a facility fj with fj ∈ Ns(vi), we set the delay function of

edge (s, fj) to li(s,fj)(x) = x. For each client vi ∈ V and

each facility fj ∈ F we set li(fj ,t)(x) = 0. Otherwise, we

set lie(x) = x + 3ws(F). All functions lie are nonnegative,
nondecreasing, differentiable, and convex and the graph G′

is generalized nearly parallel.
Next, we assume towards contradiction that a client vi

puts a weight of ǫ on path (s, fj , t) with fj /∈ Ns(vi).
Let (s, fp, t) be a path, with fp ∈ Ns(vi). Since the
second edge of each path has a delay of 0, the cost of



vi for these two paths are C = f i
(s,fj)

li(s,fj)(f(s,fj)) +

f i
(s,fp)

li(s,fp)(f(s,fp)) = ǫ(3ws(F)+f(s,fj))+f i
(s,fp)

f(s,fp).

By moving this weight of ǫ to (s, fp, t), her costs are C′ =
0 · li(s,fj)(f(s,fj) − ǫ) + (ǫ + f i

(s,fp)
)li(s,fp)(f(s,fp) + ǫ) =

(ǫ + f i
(s,fp)

)(f(s,fp) + ǫ) = ǫ(ǫ + f i
(s,fp)

+ f(s,fp)) +

f i
(s,fp)

f(s,fp) < ǫ(3ws(F)) + f i
(s,fp)

f(s,fp) ≤ C. Thus, a

client can always decrease her cost by not using a path cor-
responding to a facility not in her shopping range. There-
fore, the clients have isomorphic strategy spaces. The cost
functions in both games are also isomorphic since the sec-
ond edge of each path has no delay and thus, the games are
isomorphic.

Now, we apply a theorem by Bhaskar et al. (2015). Note
that L refers to the class of functions that are nonnegative,
nondecreasing, differentiable, and convex.

Theorem 11 (Theorem 6 by Bhaskar et al. (2015)).
Let (G, {(v1, s1, t1), (v1, s1, t1), . . . , (v1, s1, t1)}, l) be an
atomic splittable routing game, where lie ∈ L ∀e ∈ E. If
graph G is a generalized nearly parallel graph, then there is
a unique equilibrium.

With that, we get the uniqueness of our client stage.

Theorem 1. For a given facility placement profile s the
client equilibrium in the Min-2-FLG is unique.

C Computation of Client Equilibria

To compute client equilibria for a given facility placement
profile s, we reduce to atomic splittable singleton congestion
games by Harks and Timmermans (2021).

Definition 2 (Atomic Splittable Singleton Con-
gestion Game (Harks and Timmermans 2021)).
An atomic splittable congestion game is a tuple
G = (N,E, (di)i∈N , (Ei)i∈N , (ci,e)i∈N,e∈Ei

), with a
set of players N = {1, . . . , n} and a set of resources
E = {e1, . . . , em}. Each player i ∈ N has a weight
di ∈ Q≥0 and a set of allowable resources Ei ⊆ E.
A strategy for a player i ∈ N is a distribution of the
weight di over her allowable resources Ei, with xi,e

being the weight of player i on resource e. The load
xe =

∑

i ∈ Nxi,e of a resource e ∈ E is the sum
of weights of the players on that resource. The cost
of player i ∈ N is πi(x) =

∑

e∈Ei
ci,e(xe)xi,e, with

ci,e(xe) = ai,exe + bi,e being a player-specific affine cost
function, where ai,e ∈ Q>0 and bi,e ∈ Q≥0.

For the reduction, we use the facilities as resources in
the atomic splittable singleton congestion game and connect
them with the players according to their shopping ranges.

Lemma 8. The client stage of the Min-2-FLG is isomorphic
to an atomic splittable singleton congestion game (Harks
and Timmermans 2021).

Proof. Let N = V , let E = F , and for each vi ∈ V , let
Ei = Ns(vi) and di = w(vi). Furthermore, we set ai,e = 1
and bi,e = 0, for each vi ∈ V, e ∈ F , such that the cost of

a player is πi(x) = xexi,e. Since for these sets of parame-
ters, the set of players (clients), the set of resources (facili-
ties), the cost functions and the strategy spaces are exactly
the same, both games are isomorphic to each other.

Since our client game is isomorphic to the atomic split-
table singleton congestion game, the algorithm by Harks and
Timmermans (2021) to compute an equilibrium applies to
our game as well. Note that δ is an upper bound on the max-
imum weight of the players and k0 is the packet size for a
discretized version of their game, for which the support sets
(i.e., the pairs of clients vi and facilities fj with non-zero
weight σ(s, vi)j in a client equilibrium σ) are equal to the
original game. Most importantly, log(δ/k0) is polynomial in
the input size. Additionally, in their model n is the number
of clients and m is the number of resources, i.e., facilities in
our model.

Theorem 12 (Theorem 8 by Harks and Timmer-
mans (2021)). Given game G, we can compute an
atomic splittable equilibrium for G in running time:
O
(

(nm)3 + n2m14 log(δ/k0)
)

.

With the same algorithm we may compute client equilib-
ria in our game.

Theorem 2. For a given facility placement profile s the
client equilibrium in the Min-2-FLG can be computed in
polynomial time.


