
Reducing power peaks in railway traffic flow
subject to random effects

Alessio Trivellaa,*, Francesco Cormanb

bIndustrial Engineering and Business Information Systems, University of Twente, 7500 AE

Enschede, The Netherlands
aInstitute for Transport Planning and Systems, ETH Zürich, 8092 Zürich, Switzerland

Railway traffic flow in a corridor can be modeled by a string of consecutive trains,

each subject to random speed variations that are described by a stochastic process.

Despite analogies with car-follower models, railways include specific features and a

safety system that forces vehicles to decelerate towards a fixed lower speed if an ab-

solute safety distance with the vehicle ahead is not respected. We simulate such a

dynamic system under assumptions that model human drivers and automated train

operations (ATO), and compute performance measures focusing on energy consump-

tion and the power peaks arising when multiple trains accelerate simultaneously. We

investigate measures to smooth these peaks including the use of regenerative braking

energy, potentially coupled with an electric energy storage, and a rule that uses fixed

waiting times before re-accelerating. Our findings shed light on when and why these

measures can be effective at reducing energy consumption and/or shaving the peaks,

and show that employing a well-calibrated ATO controller improves energy perfor-

mance compared to a model of a human driven. Our results also expose a trade-off

between the energy performance and the regularity of the traffic, i.e., strategies to

reduce power peaks may slow rail traffic down, leading to a lower capacity utilization.

Keywords: Railway traffic dynamics; stochastic processes; traffic flow theory; power peaks;

automated train operations.

1. Introduction

Transport accounts for a large share of energy consumption and is responsible for about 16% of

greenhouse gas emissions globally (OWiD 2016). Since three quarters of this amount is attributed

to road transport, one key direction to promote sustainability and energy efficiency is to switch

to collective transport of larger vehicles, rather than using private vehicles or small shipments by

trucks. Railway is generally acknowledged to be an energy-efficient mode of transporting passenger

and freight. Nonetheless, efforts to reduce its energy footprint are pursued by many transport

operators and authorities (UIC 2017) to cope with skyrocketing energy prices and to meet ambitious

climate targets, e.g., set by the European Union for 2030 (EU 2021).

In fact, energy consumption accounts for a large portion of railway operations costs (Railenergy

2016). The amount of energy needed for moving a train depends on speed and resistances, and
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results in requirements for energy production. By carefully planning the acceleration and braking

processes of trains (i.e., the so-called train speed profiles) or optimizing the timetable, significant

energy can be saved (Hansen and Pachl 2014). In electrified railway systems, energy usage is

centralized, i.e., all vehicles draw energy at the same time from a distribution network. The total

energy required by the system is then the sum of all energies required by all vehicles. Nowadays,

many rail electric systems can exploit regenerative braking, i.e., the motor of a decelerating train

is turned to a generator that converts mechanical energy to electricity, which can be then used to

power nearby trains (Lu et al. 2014, Khodaparastan et al. 2019), potentially in conjunction with an

energy storage (González-Gil et al. 2013, De La Torre et al. 2014).

In addition to energy consumption, it is important to consider the peak value of the power

needed. Power peaks arise when multiple vehicles require large amount of power, for instance

during acceleration. Those peaks threaten grid stability and represent a big concern for operators

(Wang et al. 2022). A power distribution network designed for lower peaks might fail when the

power demand is very high, causing reduction of delivered energy or, in the worst cases, a blackout.

Traffic volume is growing, speed is increasing, vehicles are heavier, resulting in higher chances of

high power peaks, but redesigning or upgrading the power distribution requires large costs and long

time. Overdimensioning the power network at the design stage is also very costly. In addition to

grid stability, another issue with power peaks is that the energy bill paid by rail operators is usually

based on both total and maximum consumption (i.e., the highest peak) over the billing period

(Albrecht 2010). Smoothing power peaks has thus a direct impact on operational costs.

Controlling the total and maximum energy consumption of a railway system is challenging

because practical railway operations are unavoidably subject to uncertainties affecting running and

waiting times of trains. Even though accounting for energy consumption when designing the train

timetable is common (Yang et al. 2015), disturbances occurring in real time shift departure and

arrival times of trains and alter the planned timetable and synchronization of acceleration activities.

At a microscopic level, a train is subject to random speed variations that are linked with the driver

behaviors and changes in line voltage and track resistance, among others. Corman et al. (2021)

provides empirical evidence of this effect using data from the Swiss railway, and introduces stochastic

processes to model a system with two trains. The dynamic characteristics of a follower train are

studied given a trajectory of a leader, without looking at energy use.

In this paper, we study a stochastic model of railway traffic flow for a more generic string of N

consecutive trains. As opposed to car traffic, railway vehicles are subject to a strict safety system

and must keep a minimum safety distance. When two trains get too close, a yellow signal is triggered

and the follower must decelerate towards a fixed lower speed. This results in extra time lost, in

a braking, and a successive re-acceleration to a cruising speed. When multiple consecutive trains

are considered, a yellow signal may cause a cascade effect on downstream vehicles, forcing more

trains to decelerate and re-accelerate, possibly producing a power peak. We are thus particularly
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interested in examining this behavior for a string of trains, its implications, and possible strategies

to improve traffic regularity, energy usage, and peak values.

We consider three models to describe railway traffic dynamics, namely a deterministic base-

line and two stochastic models describing, respectively, a human driver and an automated train

operations (ATO) controller. We also consider different strategies to reduce the peaks based on

technological assumptions and/or train control. One strategy implements fixed waiting rules for

trains that have triggered a yellow signal. Another measure assumes that the electric railway sys-

tem can use regenerative braking energy, possibly combined with an electric energy storage. We

use simulation for each model and strategy to quantify the emerging properties of the system, with

focus on energy consumption and power peaks. Our simulation program is coded in Matlab and is

made available online1.

The key takeaways from our work are the following:

� The model describing an ATO controller is more efficient than that of a human driver in terms

of traffic regularity, consumes less energy, and results in fewer power peaks.

� The considered strategies can shave the power peaks quite effectively. Under the human driver

model, for instance, accounting for regenerative braking lowers the overall energy consumption

by 3.3%, while coupling this with a storage reduces the peak height by 10%. Combining all

strategies further decreases consumption and peaks.

� There is a trade-off between traffic regularity (measured, e.g., as the throughput, i.e., the

hourly number of vehicles crossing the corridor) and energy performance (intended as energy

consumption and power peaks). Strategies to improve energy performance must be designed

and tuned carefully to avoid significant losses in capacity utilization.

In the following, we review relevant literature in Section 2, introduce the methodology in Sec-

tion 3, present and discuss numerical results in Section 4, and conclude in Section 5.

2. Novelty and related work

We review three main streams of literature connected with our research: improving energy efficiency

in railway operations (Section 2.1), dealing with stochasticity in railway models (Section 2.2), and

traffic flow theory (Section 2.3). We then summarize the contributions of our study (Section 2.4).

2.1 Energy efficiency in railways operations

There is a considerable body of literature dealing with the energy efficiency of railway systems

(De Martinis and Corman 2018). Two prominent ways to cut energy consumption at the operational

level (i.e., without costly investments in new vehicles or electric systems) involve optimizing the train

speed profiles and the timetable.

1https://alessiotrivella.altervista.org/research.htm
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Computing an energy-efficient speed profile for a train running between two stations is commonly

known as the train trajectory optimization problem or the energy-efficient train control problem.

Here, a speed profile describes the speed of a train as a function of time or distance covered.

Determining such a profile means choosing the driving regimes (acceleration, cruising, coasting,

and deceleration) and the switching points between them (Howlett 2000). The goal is finding the

profile associated with the lowest energy use, while ensuring a punctual arrival and respecting speed

limits and time windows. It is well known that optimizing train control can lead to large energy

savings, also above 10% (Hansen and Pachl 2014). Methods to tackle this problem include the

Pontryagin’s maximum principle (Albrecht et al. 2016), mathematical programming (Ye and Liu

2017), and dynamic programming (Trivella et al. 2021). Since we consider a stochastic dynamic

system comprised of multiple trains, our problem deviates from the train trajectory optimization

problem, although both problems deal with speed variations and train control at a microscopic

scale.

The timetabling problem aims at determining departure and arrival times of trains at stations

subject to headway and track capacity constraints (Caprara et al. 2002). The traditional objectives

are to minimize operational costs (e.g., number of required vehicles), maximize passenger satisfaction

(e.g., by reducing travel time), and minimize deviations from the original timetable in case of a

disruption (Binder et al. 2017). Recently, emphasis has been put on the energy use associated with

a timetable. Bärmann et al. (2017) discusses how minimal changes in the planned timetables can

impact energy and power of the entire system. Regueiro Sánchez (2021) adopts a similar approach,

also limiting the maximum traction power available between stations. Wang et al. (2022) tunes a

timetable using a mixed-integer linear program combined with a local search algorithm, with the

goal of reducing energy consumption and smoothing power peaks.

We refer to the review by Scheepmaker et al. (2017) for further literature on both the energy-

efficient train control and the energy-efficient train timetabling. Some works attempted to combine

these two problems by embedding train control between pairs of stations as a subproblem into a

timetable optimization framework (Yang et al. 2015, Ran et al. 2020). Although our work also

considers a system of interacting trains, the problem we tackle is quite different than timetabling

as we focus on a string of trains running in a corridor; hence, we are not concerned with setting

departure and arrival times.

Finally, in addition to designing the timetable, real-time train rescheduling models are used

to modify the planned timetable and avoid conflicts when disturbances or disruptions occur. The

related literature prioritizes recovering the delays over reducing energy use. An exception is Yin

et al. (2016) that includes energy considerations when rescheduling a metro system.
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2.2 Stochasticity in railway models

The majority of the aforementioned works assume that the future is known with certainty at the

planning stage. However, railway operations are characterized by uncontrollable stochastic factors

that only realize in real time. Those include variable passenger demand, boarding/alighting times,

running times, technical failures, and weather to name a few (Trivella and Corman 2019).

Some recent literature has acknowledged that accounting for uncertainty and counteracting it is

critical. Thus, uncertainty has been incorporated into train control, timetabling, and rescheduling

models (Yin et al. 2016, Yang et al. 2016, Wang et al. 2020, Cacchiani and Toth 2018, Jusup et al.

2021). For instance, the goal of (Cacchiani and Toth 2018) is to compute train timetables that are

robust, i.e., that are expected to perform well under random disturbances. Wang et al. (2020) uses

approximate dynamic programming to tackle train control in the case of randomly varying speed

profiles due to uncertain resistance parameters. Yin et al. (2016) uses similar methods to reschedule

a metro network under uncertain passenger demands. Yang et al. (2016) proposes an integrated

stochastic model for optimizing speed profile and timetable in metro systems under uncertain train

mass.

In our paper, we consider random variations affecting train speed at the microscopic level.

While most approaches capture the uncertainty dynamics by simple independent and identically

distributed random variables, we model the uncertainty in train speed by a stochastic process. It

refers to a collection of random variables that are function of time, and where the outcome of the

process at a time t also depends on its value at time t�1. These are more sophisticated models that

were shown to describe well real-life situations (Corman et al. 2021). When considering a string of

trains, the complexity increases and it is not possible to derive closed-form expressions using the

stochastic differential equations governing the processes. Therefore, we can only rely on simulation

to study the system dynamics, and derive the relevant performance measures as sample averages

over a large number of Monte Carlo sampled trajectories.

2.3 Traffic flow theory

This work builds on the stochastic modeling of railway operations, which extends the vehicular

traffic flow theory to railway systems (Corman et al. 2021). Whilst Corman et al. (2021) focuses

on a system of two trains (on which only one subject to random effects) and on the regularity of

the traffic, we consider in this paper a system of N trains, and examine its behavior in terms of

energy consumption and power peaks. Apart from this reference, the literature on traffic flow theory

has almost exclusively tackled car traffic, which has similarities with our study but also important

differences.

In the case of private vehicles, there is no external safety system which constrains their speeds and

distances in-between, which is instead a key feature of railways. When vehicles can be individually

controlled, an interesting problem of traffic flow theory is to study under which conditions, a series of
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successive coordinated vehicles has impact towards traffic flow stability, i.e., studying string stability.

This has been mostly focusing on vehicles with homogeneous, simplified characteristics (Wang et al.

2017). A second difference is that power distribution in railway traffic is pooled and centralized;

hence, there exist issues with simultaneous high energy maneuvers of different vehicles. In contrast,

studies of vehicular traffic do not focus on power peaks because the energy consumption of all

vehicles draws from separated energy carriers (such as internal combustion engines, or battery-fed

electric motors), although this may change should electric highway systems become more popular

in the future. Nevertheless, there is interest in minimizing system properties such as emissions (Qin

et al. 2020, Zhang et al. 2020), which have some of their sources in speed and acceleration.

2.4 Summary of contribution

This work contributes to the literature by drawing a bridge between the three different active fields

of research previously reviewed. The main contribution of this paper is threefold:

� We extend existing two-train stochastic process models by simulating and studying the be-

havior of a string of multiple consecutive trains, with focus on energy use;

� We outline a technique for detecting the power peaks arising in the resulting dynamic sys-

tem, and propose three strategies to smooth such peaks based, e.g., on train control and/or

managing an energy storage;

� We provide insights on the impact of different processes (e.g., modeling a human driver vs

ATO) and different peak reduction strategies towards traffic regularity, energy use, power

peaks, and the trade-offs between these goals.

3. Methodology

We first present in 3.1 the two stochastic process models for a string of trains and the deterministic

benchmark. We then introduce the performance indicators of interest in 3.2, and how to obtain

them via simulation. We outline our method for detecting peaks in energy consumption in 3.3, and

finally describe different strategies to smooth these peaks in 4.4.

3.1 Stochastic models of railway traffic flow

Following the model for two trains in Corman et al. (2021), we define a general stochastic system of

N consecutive trains that are initially spaced at a safe distance one from another. Denote by vnptq

and snptq, respectively, the speed and distance covered by train n at time t ¥ 0. Also denote by

W ptq a standard Wiener process and by vcruise a reference cruising speed for all trains. The first

model we consider is based on the Ornstein-Uhlenbeck (OU) stochastic process, expressed for train

n as:

[OU]:

$&
%

dvnptq � βnpvcruise � vnptqqdt� σndW ptq,

dsnptq � vnptqdt.
(1)
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with boundary conditions vnp0q � vcruise and snp0q � 0, i.e., all trains are already running at time

0. The stochastic differential equation (1) describes the microscopic variations of speed and space

over time. Based on this equation, the train speed varies according to a deterministic component

that establishes the mean reverting behavior towards vcruise, and a stochastic component. At a

high level, this model can describe a human train driver that continuously adjusts the train speed

to keep it as close as possible to the target value. The parameters defining mean reversion (βn) and

volatility (σn) capture the reaction of the driver and of the speed control system.

A more sophisticated model is based on a doubly-mean-reverting (DMR) process, describing an

ATO system where trains are aware of the location of the traffic ahead. Under this model, train n

accelerates or decelerates to maintain both a target speed and a target headway with train n� 1:

[DMR]:

$''&
''%

dvnptq � rβnpvcruise � vnptqq�αnpsn�1ptq

�snptqqs dt� pσnpvnptqq dW ptq,

dsnptq � vnptqdt,

(2)

where pσnpvq :� σn
a
vpvmax � vq{rvcruisepvmax � vcruiseqs, vmax ¡ vcruise is an upper bound on

speed, and αn is a second mean reversion parameter that acts on the headway value. We assume

the same boundary conditions to model (1) apply. Let us take a closer look at the new term

αnpsn�1ptq � snptqq. Since snptq represents the distance covered by train n at time t, a positive

difference sn�1ptq�snptq ¡ 0 implies that the preceding train n�1 has covered a larger distance than

train n, hence the headway between the two vehicles has increased. In this case, αnpsn�1ptq�snptqq ¡

0 will push the speed vnptq up, i.e., the current train n accelerates to restore the initial headway.

Conversely, with negative distance sn�1ptq � snptq   0, indicating that the headway is shrinking,

the stochastic process will steer train n to slow down to restore the headway.

The complete system dynamics couple either (1) or (2) with a deterministic deceleration phase

(at a rate adet) that is triggered when the distance between two trains decreases below a minimum

safety distance dmin, until an approach speed vapproach   vcruise is reached. We assume that at

t � 0 all trains have a regular headway d0 ¡ dmin from the immediate follower. Notice that the way

in which trains interact is a key difference between models (1) and (2). In the former model, the

stochastic processes governing each train are independent from each other (trains are only linked

by the triggering of yellow signals), whereas in the latter model, the evolution of the state variables

for one train (speed, space) also depends on the state variables of the train ahead.

We finally consider a deterministic benchmark that does not account for stochasticity, which is

defined by:

[DET]:

$&
%

dvnptq � 0dt,

dsnptq � vnptqdt.
(3)

If the deterministic initial speeds are v̄n � vnp0q � vcruise for all vehicles n � 1 . . . , N , then the
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system is in an ideal but unrealistic state in which all train pairs will indefinitely preserve the

initial headway. Instead, if the speeds are different and v̄n ¡ v̄n�1 for some n, a yellow signal will

be triggered at some time t ¡ 0 causing train n to decelerate. Once the approach speed is met,

this train will then re-accelerate, reaching again v̄n ¡ v̄n�1, trigger a second yellow signal, hence

decelerate, and keep cycling over these states. When multiple trains have different initial speeds,

the deterministic system will produce much more complex yet cyclic patterns.

3.2 Performance indicators and their estimation

We compute key performance indicators (KPIs) of the system related to traffic regularity and

energy usage by drawing scenarios (i.e., sample paths) from the stochastic processes in Monte Carlo

simulation. We consider an horizon r0, T s, discretize it into steps T � t0, 1, . . . , T u that are equally

spaced by ∆t, and apply a standard forward Euler scheme to (1) or (2) to obtain speed and space

trajectories, i.e., functions describing the evolution of speed and space of all trains over time.

To derive train acceleration at, traction force ft, and energy consumption ent at all discrete time

steps T , we employ the common dynamic equations for the motion or a railway vehicle2. Specifically,

the traction force is ft � at �m � ρ� rγ1� γ2vt� γ3v
2
t s,where at � pvt� vt�1q{∆t is the acceleration,

γi are the train resistance parameters, m the mass, and ρ the rotating mass factor. The energy

consumed at time t (with no regenerative braking) is then ent � maxtft, 0u � pst � st�∆tq. We refer

to Hansen and Pachl (2014) for more details on train dynamics.

Using the described simulation procedure, we estimate the six KPIs listed below related to

traffic regularity (items 1–3) and energy consumption (items 4–6). Hereafter an energy profile

E :� tet : t P T , et �
°N

n�1 e
n
t u indicates the joint energy consumption of all trains as a function of

time, measured over regular time intervals (e.g., of 30 seconds) during r0, T s.

K1. Percentage of scenarios with a triggered yellow signal.

K2. Average first time to yellow (FTTY), which records the first time (s) in which a train triggers

a yellow signal (scenarios without signals count as T in the average).

K3. Throughput of the corridor (vehicles/hour) measured as the train speed over headway, where

speed and headway are averaged across trains, time steps, and scenarios.

K4. Total energy consumption (kWh) of all N trains over the horizon r0, T s, averaged across

scenarios.

K5. Maximum value of the energy profile (kWh/30s) over the horizon r0, T s, averaged across

scenarios.

2To ease reading, we drop the dependency on the train index n from at, ft, vt, and st, and only keep index n for
the energy consumption ent .
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K6. Percentage of energy profiles with a power peak, where a power peak is defined as the energy

(kWh) consumed during a relatively short period of time that considerably exceeds average

consumption levels of the system. The average consumption level refers to the situation where

all trains run at cruising speed without disturbances.

Notice that deriving the aforementioned KPIs in closed form using the stochastic differential

equations (1)–(2) is not viable for our system. Previous research had already highlighted this

challenge: even for the simplest stochastic process and a single train subject to random speed

variations, only one KPI (the FTTY) could be computed analytically (Corman et al. 2021).

3.3 Power peak detection

Since thousands of simulations are needed to obtain statistically relevant averages, hence reliable

KPIs, a method to detect power peaks in a simulated energy profile is needed. Peaks are relative

to the railway system considered, e.g., number of trains in the system, their cruising speed, etc.

Therefore, we propose to identify them based on a non-parametric procedure that requires no

assumptions on the input data and energy profiles.

Algorithm 1: Peak detection

Input: Energy profile E � tet : t P T u; Parameters (w, θ1, λ1, θ2, λ2), with θ1 ¥ θ2 and
λ1 ¥ λ2; Set of peak points P ÐH; Variable FullPeakFoundÐ FALSE

Step 1. Apply Gaussian filter to E with window w to get a smoothed energy profilepE � tpet : t P T u
Step 2. Compute mean (z) and standard deviation (g) of pE
Step 3. Initialize peak points PÐtt P T : pet ¥ θ1z � λ1gu

while FullPeakFound = FALSE do

Step 4. Try to extend peak points set:
PN Ð tt P T zP : pet ¥ θ2z � λ2g ^ ppet�1 P P _ pet�1 P P qu

if PN � H then
FullPeakFoundÐ TRUE

else
P Ð P Y PN

Output: Peak points P � T

The method we propose is outlined in Algorithm 1. In a nutshell, we initially define as peaks

the points marked as outliers according to a metric based on mean and standard deviation of the

overall profile (Steps 2–3). Doing this requires applying first a Gaussian-weighted moving average

filter (Step 1) to obtain a smoothed profile, so that we can exclude points with high value due to

the background stochastic speed fluctuations. In other words, the effect of this filtering step is to

smooth the fluctuations resulting from the stochastic process, while preserving the major peaks

that arise when multiple trains accelerate. Finally, we reconstruct the entire peak by iteratively
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incorporating neighboring peak points that fulfill a relaxed outlier condition (Step 4).

We show examples of our peak detection procedure for a six-train OU process in Figure 1. We

verified that our method is accurate as the identified peaks correspond indeed, in almost all cases,

to multiple trains accelerating after a yellow signal.

Figure 1: Examples of simulated energy profiles and detected peaks.

3.4 Power peak reduction

We study three measures to mitigate the impact of yellow signal propagation: (i) regenerative

braking, (ii) managing regenerative energy by means of a storage, and (iii) adopting waiting policies

for trains that have triggered a yellow signal. We describe these measures starting with regenerative

braking.

Recall that the traction force is computed as ft � at �m � ρ� rγ1 � γ2vt � γ3v
2
t s. When a train

brakes, at   0, which may result in ft   0. Without regenerative braking, a negative traction force

does not contribute to energy use. Regenerative braking allows to convert a portion η P r0, 1s of

kinetic energy to electric energy. Mathematically, this means computing

ent � maxtft, �ηftu � pst � st�∆tq. (4)

Thus, the energy recuperated by train n is rnt � |mintent , 0u|, and a positive energy rnt ¡ 0 can only

be used by other trains n1 �� n at the current time step t. The total regenerative energy produced

by all trains is rt �
°N

n�1 r
n
t .

Suppose now that a track-based electric energy storage is available to collect energy from regener-

ative braking and re-distribute it to the vehicles in subsequent time steps t1 ¡ t. Managing a storage
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asset requires defining an operating policy to charge/discharge it. Although storage operating poli-

cies are usually defined as a function of electricity prices to maximize profit, our goal is to smooth

power peaks. We present our policy in Algorithm 2, where e0 :� pγ1�γ2vcruise�γ3v
2
cruiseq�vcruise∆t

denotes the baseline energy consumption (kWh) of a train running at constant cruising speed during

a time interval.

Algorithm 2: Storage operation

Input: Energy consumption ent for t P T and n � 1, . . . , N from (4); Storage level LÐ 0;
Baseline energy e0; µ ¥ 0

for t � 1, . . . , T do

Compute regenerative energy rt �
°N

n�1 |mintent , 0u|

Charge storage LÐ L� rt

for n � 1, . . . , N do

if L ¡ 0 ^ etn ¡ µe0 then

Update consumption et,�n Ð maxtµe0, e
t
n � Lu

Discharge storage LÐ L� petn � et,�q

Output: New consumption en,�t for t P T , n � 1, . . . , N

The intuition behind Algorithm 2 is that at least some trains will consume more energy than

e0 during a power peak. Thus, the available regenerative energy, tracked by L, compensates for

the excess of energy with respect to a quantity µe0. Regenerative energy not used in the current

period charges the storage. The parameter µ encodes how conservative the policy is. Setting high

values of µ results in the storage providing energy only during high peaks, and increases the chance

of not using some regenerative energy before the end of the simulation horizon T . Vice versa, with

low µ values the storage more easily supplies electricity, at the risk that this electricity does not go

towards shaving the peak points. Although for simplicity we assume here the storage has perfect

efficiency and enough capacity to store all energy produced by braking, note that Algorithm 2 can be

easily tweaked to account for any round-trip efficiency value and a maximum storage capacity (see

De La Torre et al. 2014 for a study on optimal sizing of energy storage in railways). Onboard (i.e.,

moving) storage systems may also be considered, but in this case a policy to allocate regenerative

energy across multiple onboard storage units needs to be defined as well.

We eventually consider a train control measure that does not rely on assumptions on the electric

rail system technology. To better spread over time the re-acceleration periods of different trains

after a yellow signal is triggered, we consider a fixed waiting time rule. More precisely, after a

vehicle decelerates and reaches the given approach speed vapproach, it must wait for a predetermined

amount of time (δ seconds) before being allowed to re-accelerate. Due to the safety system, more

downstream trains may have to reach speeds lower than vapproach, or even stop, to respect the
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headway constraints. In this case, the fixed waiting time applies to the lowest speed reached.

4. Results and discussion

4.1 Parameters and computational setup

We start by briefly introducing the computational setting. The simulation parameters employed are

summarized in Table 1 and largely follow Corman et al. (2021) for the stochastic process models and

Trivella et al. (2021) for the train parameters (e.g., resistance parameters). We consider a system

of N � 6 consecutive trains, which may occur in high capacity corridors. We assume trains are

identical, i.e., they are subject to the same dynamics. To estimate the KPIs described in Section 3.2,

we simulated 5000 trajectories of this system for a time horizon T � 2000s discretized with ∆t � 1s.

In this setting, the total computation time for the simulation was roughly 40 and 72 seconds for

the OU and DMR model, respectively, when using Matlab R2021b on a laptop with a processor

i7-10610U and 16 GB RAM.

Table 1: Parameters of trains and processes.

Name Value Unit Name Value Unit

m 500 t vcruise 35 m/s
ρ 1.06 - vmax 40 m/s
γ1 5.8 kN vapproach 20 m/s
γ2 0.072 kN s/m adet �0.55 m/s
γ3 0.013 kN (s/m)2 θ1 1.05 -
αn 2 � 10�5 - θ2 1 -
βn 0.02 - λ1 2 -
σn 0.05 - λ2 1 -
d0 3.2 km w 1 -
dmin 3.0 km η 0.7 -

We consider two specifications of the deterministic model, named DET0 and DET�, at varying

initial conditions. DET0 is such that v̄n � 35 m/s for all trains, whereas for DET� we set v̄1 � 35

m/s and v̄n � 36 m/s for n � 2, . . . , 6 (see the related discussion in Section 3.1). For these models,

the computational time to estimate the KPIs is negligible as one trajectory is sufficient to fully

characterize the system.

We present our results and insights next. Sections 4.2 and 4.3 do not make use of the peak

reduction strategies, whose effect is investigated later in Sections 4.4 and 4.5.

4.2 Analysis of a trigger event

In this section, we use the OU energy profile displayed in the middle panel of Figure 1 to better

illustrate the propagation of an individual yellow signal event. The peak in this profile is due to four

trains accelerating in a short time frame as shown in the time-speed profiles in Figure 2. Note that
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we varied the scale of the y-axis in the top and bottom panels to clearly distinguish the stochastic

speed variations (mostly occurring within a band of �0.5 m/s) from the yellow signal effect.

Figure 2: Time-speed profiles of six trains in one trajectory.

Train 3 is the first to trigger a yellow signal and decelerate, which causes train 4 to decelerate too,

followed by trains 5 and 6. Interestingly, whilst the first affected train decelerates to vapproach � 20

m/s before re-accelerating, the downstream vehicles may have to reach lower speeds, and potentially

even stop, before the headway is restored and they can accelerate again. This implies that the traffic

regularity is more sensitive to yellow signals when more consecutive trains are running.

To visualize the same effect from another angle, we show in Figure 3 the space lost by the

different trains compared to a baseline with constant speed vcruise. As before, downstream vehicles

are disproportionately affected by a triggered yellow signal. In this example, the span between first

Figure 3: Space lost with respect to a deterministic speed baseline.
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and last simulated vehicle increases by roughly 3 km during the event.

We also present a heatmap of train accelerations in Figure 4. The different shades of orange

correspond to the background variations due to the stochastic process, whereas deceleration and

acceleration phases caused by the triggering of a yellow signal are clearly visible by the darker and

lighter colors, respectively. By overlaying this heatmap with the trajectories in Figure 2, we notice

that the peak point occurs at 1700–1800 seconds, corresponding to the period in which most trains

are indeed accelerating, thus requiring a large joint traction force.

-0.5

0

0.5

Figure 4: Synchronization of acceleration and deceleration activities.

4.3 Analysis of key performance indicators

We analyze the aggregate performance of the system from a traffic regularity perspective in Tables 2–

3 for both stochastic models (OU, DMR) and deterministic models (DET0, DET�).

Table 2: Traffic regularity KPIs.

Train (1 is the leader)

KPI Model 1 2 3 4 5 6

OU 0 15.2 29.0 41.7 52.0 60.1
K1 (% DMR 0 2.8 4.7 6.0 7.6 8.7
triggers) DET0 0 0 0 0 0 0

DET� 0 100 100 100 100 100

OU - 1891 1795 1702 1625 1560
K2 DMR - 1981 1970 1961 1950 1944

(FTTY (s)) DET0 - ¡2000 ¡2000 ¡2000 ¡2000 ¡2000
DET� - 201 228 255 282 309

Table 3: Throughput of the corridor.

KPI OU DMR DET0 DET�

K3 (vehicles/hour) 35.4 38.9 39.4 27.0
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We observe the following important points:

� The OU model incurs many more triggers than the DMR model (see K1), and when this

happens, it is earlier for any of the followers as shown by the FTTY indicator K2. These

results suggest that an ATO model aware of the location of the traffic ahead leads to a higher

level of traffic regularity that enables to better exploit the capacity of the corridor. This is

confirmed by an almost 10% higher throughput in DMR compared to OU (see K3).

� The percentage of yellow signals increases substantially when moving from the first follower

(train 2) to the last (train 6). This implies that it is common for yellow signals to propagate

backwards, that is, a train n decelerating will very likely trigger train n � 1 to decelerate or

brake too. This is a major cause of peaks in energy consumption.

� Deterministic strategies showcase two extreme behaviors: DET0 is the unrealistic situation

of perfect operations, where no yellow signal occurs, whereas in DET� all followers triggers a

yellow signal due to their higher speed compared to the first leader (although by just 1 m/s).

Next, we now focus on the energy properties of the six-train system and report in Table 4

the related KPIs. Recall that K4, K5, and K6 represent the average total consumption, average

maximum consumption, and percentage of energy profiles with a detected peak, respectively (see

Section 3.2 for details).

Table 4: Energy related KPIs.

KPI OU DMR DET0 DET�

K4 (kWh) 2876 2814 2800 3312
K5 (kWh/30s) 64.7 52.0 42.4 83.9
K6 (%) 59.1 9.3 0 100

What we observe from the table is the following:

� [K4]: The energy consumption under OU is 2.2% higher than DMR. Indeed trains under

DMR less frequently have to decelerate, brake, and accelerate following a yellow signal. This

difference translates to a substantial saving of energy and costs with an ATO-based system,

especially when considering the consumption of an entire railway network for a year. Com-

pared to the ideal situation represented by DET0, the total consumption with DMR is only

0.5% higher, while with OU is 2.7% higher. The consumption under DET� is very large

because this deterministic profile includes a yellow signal with certainty.

� [K5]: OU energy profiles exhibit a highest consumption point that is on average 25% higher

than that of DMR profiles, which is a significant difference. Notice that this KPI averages all
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profiles with and without detected peaks and that an individual peak can exceed 80 kWh/30s.

The two deterministic models display extreme behaviors: DET0 has a constant, low energy

consumption over the horizon, while DET� has a peak of about 84 kWh/30s.

� [K6]: Our method detected peaks in about 60% of the OU profiles, while the same number is

less than 10% for DMR. Naturally, the estimates of this KPI are quite related to those of K1

for the last follower.

The main implication from these results is that an ATO system (represented here by the DMR

process) has the potential to not only reduce the overall energy requirements but also to prevent

the occurrence of critical peaks in consumption.

What we discussed is also evident from Figure 5, showing the first 50 energy profiles for OU

(top panel) and DMR (middle panel). We plot the deterministic DET� profile too (bottom panel),

and the fixed baseline consumption of DET0.

Figure 5: Simulated energy profiles for model OU, DMR, and DET�.

While a considerable number of OU profiles include at least one peak (32/50), only a few DMR

profiles do (3/50). In our setting, the peaks often reach double the regular energy consumption

level (i.e., with no train affected by a yellow signal), and mostly appear in the second part of the

horizon as the initial state of the system fulfills the minimum safety distance. We investigate next

the usefulness of peak reduction strategies.
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4.4 Analysis of peak reduction strategies

We focus hereafter on the OU process, as this is the stochastic model that could benefit most from

fewer peaks and smaller peak size. In Figure 6, we illustrate the effect of peak reduction strategies

on the two energy profiles already shown in the middle and bottom panels of Figure 1. Specifically,

we consider the fixed waiting time rules at varying δ (labeled “Fixed”), and the use of regenerative

braking, with storage (“Reg+Stor”) and without it (“Reg”), assuming η � 0.7 (we tested different

values too but our key findings do not change). We use µ � 1 when managing the storage (see

Algorithm 2) and analyze different values of this parameters later in this section.

Figure 6: Energy profiles under different peak reduction strategies.

Each strategy has a different effect on the original profile (continuous line). Regenerative energy

alone reduces the overall consumption but does not smooth the peak in its highest point. When

storage is available, however, the resulting peak is much smaller. The effect of fixed waiting strategies

is different as the peak is both reduced in size and spread over time, while it is unclear if the total

consumption decreases in these cases.

To better understand the aforementioned changes, Figure 7 illustrates the speed trajectories of

the six trains associated with the energy profile in the top panel (which was the same example also

considered in Section 4.2). Recall that the use of regenerative braking, with and without storage,

does not alter the speed trajectories, whereas fixed waiting rules affect the train dynamics as well.

This is why we do not show the speed trajectories under regenerative energy: they coincide with

the baseline trajectories in the top panel of Figure 7 (δ � 0). From this figure, it is evident that

the higher is the waiting time δ, the more the trains are spread apart from each other after a yellow
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Figure 7: Speed trajectories during a trigger event at varying waiting time δ.

signal, and with that the acceleration activities. Moreover, the more downstream trains may have

to wait longer than δ before the headway is restored and they can re-accelerate. Thus, although

fixed waiting rules can help in shaving power peaks, they may also slow the traffic down and affect

the throughput of the system, as we examine next.

In Table 5, we report a subset of the KPIs for a system using regenerative braking, fixed waiting

rules, and a combination of them. The main findings from these results are the following:

� [K3]: The throughput decreases, approximately linearly, when the fixed waiting time δ in-

Table 5: KPIs of the system under different peak reduction strategies.

Fixed waiting time δ (s)

Technology KPI 0 10 20 30 40 50 60

K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
- K4 2876 2877 2870 2864 2856 2845 2837

K5 64.7 63.6 62.2 61.6 60.6 59.7 59.2

K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
Reg K4 2781 2773 2768 2761 2757 2753 2748

K5 64.4 63.3 62.0 61.4 60.5 59.6 59.2

Reg+Stor K3 35.4 34.0 33.0 31.7 30.6 30.1 29.3
(µ � 1) K4 2795 2788 2780 2775 2769 2765 2763

K5 59.3 59.5 59.1 58.6 58.1 57.7 57.4
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creases. In particular, this KPI goes from 35.4 to 29.3 vehicles/hour when δ varies from 0 to

60 seconds, which is a 17% reduction.

� [K4]: The total energy consumption is reduced only marginally by variations of δ. However,

exploiting regenerative braking brings savings of 3.3% on average.

� [K5]: The highest consumption point decreases by 8.5% on average when δ increases from

0 to 60 seconds. When restricting to energy profiles with detected peaks, this improvement

exceeds 10%, which is substantial. Regenerative braking alone does not help much in shaving

the peak, while it is very effective when it is coupled with an electricity storage, with an

improvement of 8.5%.

Beside δ, another important tunable parameters is µ, which defines the storage operating policy.

Thus, we examine how the KPIs change when using regenerative braking with storage at varying

µ. Figure 8 shows an energy profile under values of µ from 0.6 to 2.2. Increasing µ is beneficial to

smooth the peak and, for instance, the highest point in this profile decreases from 71 to 50 kWh

when µ goes from 0.6 to 1.8. However, increasing µ from 1.8 to 2.2 results in a higher peak of 54.5

kWh, and a higher energy consumption too as it can be seen from the area under the profiles. In

fact, µ represents a threshold for the storage to be discharged and setting too high values of it may

result in very conservative policies.

Figure 8: Energy profile with regenerative braking and storage at varying µ.

Table 6 reports estimates of the energy KPIs for operating strategies at varying µ (notice that

the traffic KPIs K1–K3 do not change with µ; hence, they are not included in this table). The

energy consumption (K4) indeed increases with µ but only marginally. However, the percentage

of trajectories with a peak (K6) varies from 31.6% to 51.4% when µ is increased from 1.6 to 2.2,

which is a substantial increase indicating that the behavior of K6 is not monotone in µ. The same

holds for K5 (average peak), which shows a small increment after µ � 2. Overall, the value µ � 1.6

achieves the best trade-off for the considered experimental setup.
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Table 6: Policy performance at varying storage threshold multiplier µ.

KPI 0.6 0.8 1.0 1.2 1.4 1.6 1.8 2.0 2.2

K4 2784 2790 2796 2799 2800 2802 2806 2813 2819
K5 62.5 61.2 59.3 57.1 55.2 53 52.1 52.7 53.4
K6 52.2 51.1 49.4 45.5 39.9 31.6 36.3 46.4 51.4

4.5 Trade-offs between objectives

The findings in Sections 4.3–4.4 have underscored several conflicts that exist among different objec-

tives, especially between the traffic-related and the energy-related KPIs. Therefore, we investigate

more systematically some of the trade-offs that arise under different peak reduction strategies.

Figure 9 illustrates 4 trade-offs under 4 strategies. Recall that “Reg”, “Stor”, and “Fixed” in the

name denote, respectively, the use of regenerative energy, storage, and fixed waiting rules. Strategies

with “Fixed” are studied for varying δ P r0, 60s, while “Reg�Stor” for varying µ P r0.6, 2.2s.

“Fixed�Reg�Stor” uses µ � 1.6. To help identifying the best solutions, in each subplot we have

Figure 9: Trade-off between KPIs under different peak reduction measures.
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marked with a star the improving direction of the trade-off. In other words, we prefer solutions

that are as close as possible to the marked corner.

Drawing conclusions about these results is non-trivial as no strategy dominates the others in

managing all KPIs. Fixed waiting rules behave quite differently depending on whether regenerative

braking and storage are used. In general, coupling regenerative braking and a well tuned storage

operating policy, i.e., with µ � 1.6, seems to work well in most cases. However, deviating from

this value of µ always worsens at least one KPI. Similarly, the effect of varying δ in the other

strategies is mixed and never improves all KPIs jointly. The main takeaway from this analysis

is that practical approaches to reduce power peaks in busy railway corridors should be designed

carefully and tested across multiple dimensions, limiting the risk that improving one KPI negatively

affects several others.

5. Conclusion

This work is the first to analyze a stochastic railway traffic flow model for a string of leader-

follower trains. By simulating different stochastic processes, we observed that the propagation of

yellow signals in such a system and the consequent synchronized acceleration of trains may generate

significant peaks in energy use, which is a main concern in the modern railway industry due to high

energy prices and environmental concerns.

We thus proposed peak reduction measures that rely on technological assumptions (regenerative

braking, energy storage) and/or train control (fixed waiting rules). In an extensive numerical study,

we examined the performance of the dynamic system in terms of traffic regularity and energy

consumption. We provided insights on the potential benefits of ATO for both smoothing peaks

and improving regularity, and on the effectiveness of different peak reduction measures, potentially

combined. We finally quantified and discussed the trade-offs that arise between KPIs (e.g., energy

vs traffic regularity).

Future research directions include developing alternative peak reduction strategies, for example,

based on mathematical programming models to coordinately control vehicles when a yellow signal

has been triggered. Embedding such strategies in our simulation framework may be computationally

challenging though. Another avenue would be calibrating the parameters of the stochastic processes

based on real data. At the time of writing, a comprehensive dataset to allow for such calibration

is not available to the authors, and these parameters are defined based on the railway literature

and simulation experiments. Finally, additional sensitivity analysis may be conducted on other

parameters, such as the initial headway between trains, examining how this relates to the common

target of achieving a 80% of capacity utilization (see UIC Code, Norm 406).
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