JID: EOR

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (XXXX) XXX

journal homepage: www.elsevier.com/locate/ejor

Contents lists available at ScienceDirect

European Journal of Operational Research

=

UROPEAN OURNAL OF
PERATIONAL ' ESEARCH

Innovative Applications of O.R.

Modeling soft unloading constraints in the multi-drop container

loading problem

Guillem Bonet Filella? Alessio Trivella®*, Francesco Corman?

A Institute for Transport Planning and Systems, ETH Ziirich, Ziirich 8092, Switzerland

b Industrial Engineering and Business Information Systems, University of Twente, AE Enschede 7500, the Netherlands

ARTICLE INFO ABSTRACT

Article history:

Received 24 September 2021
Accepted 19 October 2022
Available online xxx

Keywords:

Packing

Container loading
Multi-drop shipments
Mixed-integer programming
Improvement heuristic

The multi-drop container loading problem (MDCLP) requires loading a truck so that boxes can be un-
loaded at each drop-off point without rearranging other boxes to deliver later. However, modeling such
unloading constraints as hard constraints, as done in the literature, limits the flexibility to optimize the
packing and utilize the vehicle capacity. We instead propose a more general approach that considers soft
unloading constraints. Specifically, we penalize unnecessary relocations of boxes using penalty functions
that depend on the volume and weight of the boxes to move as well as the type of move. Our goal is
to maximize the value of the loaded cargo including penalties due to violations of the unloading con-
straints. We provide a mixed-integer linear programming formulation for the MDCLP with soft unloading
constraints, which can solve to optimality small-scale instances but is intractable for larger ones. We thus
propose a heuristic framework based on a randomized extreme-point constructive phase and a subse-
quent improvement phase. The latter phase iteratively destroys regions in the packing space where high
penalties originate, and reconstructs them. Extensive numerical experiments involving different instances
and penalties highlight the advantages of our method compared to a commercial optimization solver and
a heuristic from the literature developed for a related problem. They also show that our approach sig-
nificantly outperforms: (i) the hard unloading constraints approach, and (ii) a sequential heuristic that
neglects unloading constraints first and evaluates the penalties afterwards. Our findings underscore the

relevance of accounting for soft unloading constraints in the MDCLP.

© 2022 The Author(s). Published by Elsevier B.V.

This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

1. Introduction

The operations of logistics systems and the efficiency in deliver-
ing goods play a crucial role in a world where goods and services
must be quickly accessible. With the increasing worldwide trends
toward globalization, digitalization, and urbanization, the logistics
sector has been experiencing an unprecedented growth in recent
years. For example, the global logistics market was valued at 10.3
billion USD in 2017 and the compound annual growth rate from
2017 to 2023 was estimated at about 3.5%, resulting in an expected
market value of 12.9 billion USD by 2023 (Research & Markets,
2018). Nevertheless, this rapid growth is coupled with enormous
challenges and the need to improve and update methods and tech-
nologies used in logistics and transportation systems.

* Corresponding author.
E-mail address: a.trivella@utwente.nl (A. Trivella).

https://doi.org/10.1016/j.ejor.2022.10.033

Just the last year, the Covid-19 pandemic proved to be a ma-
jor challenge for logistics operators around the world. Whether
because of the growth in online retail and home delivery or the
global distribution of vaccines, many businesses within logistics
and delivery have been put under test. For instance, in April 2020,
the Swiss Post found itself overwhelmed by the increased demand
caused by the first lockdown and was forced to introduce daily
quotas on the number of parcels, which affected more than 100
corporate clients (Post, 2020b). Preventing a parcel collapse in the
following months required increasing delivery capacity as well as
introducing analytics to forecast demand and optimize operations
(Post, 2020a). This case exemplifies the need for logistics compa-
nies to increase their performance to cope with demand, which re-
gardless of Covid-19 is expected to increase substantially (see, e.g.,
Statista, 2020), and be prepared for future challenges in general.

While several problems arising in logistics have been tackled
and optimized using operations research techniques for decades,
such as the container loading problem (CLP; Pisinger, 2002) and

0377-2217/© 2022 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/)

Please cite this article as: G. Bonet Filella, A. Trivella and F. Corman, Modeling soft unloading constraints in the multi-drop container
loading problem, European Journal of Operational Research, https://doi.org/10.1016/j.ejor.2022.10.033

https://doi.org/10.1016/j.ejor.2022.10.033
http://www.ScienceDirect.com
http://www.elsevier.com/locate/ejor
http://creativecommons.org/licenses/by/4.0/
mailto:a.trivella@utwente.nl
https://doi.org/10.1016/j.ejor.2022.10.033
http://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1016/j.ejor.2022.10.033

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

the vehicle routing problem (VRP; Laporte, 2009), some practically-
relevant variants of these problems have been less studied and
still embed significant potential for improvement. In this paper, we
consider the multi-drop CLP (henceforth MDCLP), which includes
unloading constraints. Specifically, this problem deals with opti-
mally loading a vehicle for delivering cargo to multiple customers
while accounting for the undesired relocation of boxes during the
subsequent delivery process. Since the delivery order is assumed
fixed, the routing component is not relevant here. Unloading con-
straints have been studied when incorporating practical constraints
in the CLP (Nascimento, Queiroz, & Junqueira, 2021) and loading
constraints in the VRP (Pollaris, Braekers, Caris, Janssens, & Lim-
bourg, 2015). However, the vast majority of works in these areas
have either neglected such constraints, which in practice leads to
time consuming (i.e., costly) cargo relocations during unloading, or
completely forbidden relocations of items during the delivery pro-
cess, resulting in more constrained loading solutions that carry less
cargo volume or value.

This study takes an intermediate perspective that treats unload-
ing constraints in the MDCLP as soft constraints. We do this by
means of penalty functions that punish relocations in a flexible
manner based on properties of the items to move (e.g., weight and
size) as well as the type of relocation. We propose a mathematical
programming formulation that explicitly accounts for soft unload-
ing constraints and that reduces to a mixed-integer liner program
(MILP) under linear penalties. As this model is intractable for large
instances, we further propose a heuristic loading framework based
on construction and improvement phases. The latter phase identi-
fies promising regions in a packing solution where many conflicts
occur, and reconstructs them, also incorporating some randomiza-
tion.

We performed a numerical study involving a known set of
1500 instances (Bischoff, Janetz, & Ratcliff, 1995; Davies & Bischoff,
1999), 4 penalty function specifications, and 3 region reconstruc-
tion techniques. We found that considering soft unloading con-
straints in the MDCLP can lead to significantly higher objective val-
ues (i.e., cargo value minus penalties) compared to: (i) the hard
unloading constraints approach, by up to 12%, and (ii) a sequen-
tial approach that neglects the unloading constraints when loading
boxes and assesses penalties a posteriori, by up to 15%. This sig-
nificant value underscores the shortcoming of the common but in-
flexible models relying on hard constraints. We also show that our
new method is needed because: (i) an MDCLP heuristic from the
literature that simply counts the number of relocations but does
not minimize the penalties may be inefficient, and (ii) off-the-shelf
commercial optimization solvers can only solve to optimality tiny
instances. The optimization methods we develop and related find-
ings thus help meeting a real and unresolved need of logistics op-
erators to handle unloading constraints in a flexible and practical
manner (Gajda, Trivella, Mansini, & Pisinger, 2022).

The rest of this paper is organized as follows. Section 2 re-
views the related literature. Section 3 formally defines the MD-
CLP with soft unloading constraints and presents the mathematical
programming formulation with an illustrative example. The heuris-
tic method is described in Section 4 and tested in a detailed nu-
merical study in Section 5. We conclude in Section 6 and provide
future research directions.

2. Literature review

We review essential literature related to the CLP in
Section 2.1 and then focus on the unloading constraints in
Section 2.2. We summarize the contributions of our work in
Section 2.3.

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx
2.1. Container loading problem

Given a set of three-dimensional rectangular-shaped
items/boxes, each provided with a value, the CLP aims at se-
lecting a subset of these items and loading them into a larger
rectangular-shaped container so that the value of the loaded items
is maximized. The CLP is a well-studied problem in operations
research and is also known as the three-dimensional (single orthog-
onal) knapsack problem according to the typology of cutting and
packing problems by Waischer, Hauiner, & Schumann (2007).

To tackle the CLP, both exact and heuristic methods have been
developed, with the latter being significantly more popular as the
problem is very hard to solve to optimality even for a few dozen
items (Silva, Toffolo, & Wauters, 2019). Thus, exact methods are
still far from meeting the requirements of the modern logistics in-
dustry where large instances must be solved within seconds (Gajda
et al., 2022). In our paper, we propose both a mathematical pro-
gram that can solve small instances optimally, illustrating the use-
fulness of soft unloading constraints, and a heuristic able to deal
with large instances.

Heuristic approaches for the CLP have recently been classified
by Zhao, Bennell, Bektas, & Dowsland (2016), that distinguish be-
tween construction and improvement methods. While the former
methods build a packing solution from scratch by loading items
starting from an empty container, the latter are designed to im-
prove an existing solution. In our heuristic we use both construc-
tion and improvement methods.

Commonly used construction heuristics are based on wall-
building or layer-building schemes. The wall-building scheme, first
proposed by George & Robinson (1980), creates virtual walls in
the container and considers the detached spaces as smaller pack-
ing problems. Similar to the previous, the layer-building scheme
creates layers that must be completely filled by items of compa-
rable height before a new layer can be initiated (Bischoff et al.,
1995; Terno, Scheithauer, Sommerweif3, & Riehme, 2000). The de-
scribed approaches work well for weakly-heterogeneous instances
with only a few distinct item types, i.e., made of few groups of
identical items. Another set of algorithms use the maximal-space
strategy where the placement of items is guided by information on
the empty spaces in the container. First proposed by Lai, Xue, & Xu
(1998), this approach was further developed by Parrefio, Alvarez-
Valdés, Tamarit, & Oliveira (2008) combining it with a greedy ran-
domized adaptive search procedure (GRASP). Martello, Pisinger, &
Vigo (2000) established the concept of corner points, which are
promising locations for the sequential placement of items that are
updated after each insertion. The concept of corner points is fur-
ther extended by Crainic, Perboli, & Tadei (2008) by introducing
the extreme points, which also use projections to generate new
points. These “provide the means to exploit the free space de-
fined inside a packing by the shapes of the items already in the
container”. Our construction phase makes use of an extreme-point
heuristic. Finally, more complex tree-search based methods use a
decision tree of limited depth to evaluate each insertion and were
also proven effective (Araya, Guerrero, & & Nunez, 2017; Fanslau &
Bortfeldt, 2010).

Improvement techniques are diverse, of which we state a few.
GRASP algorithms for the CLP embed an improvement phase that
is often based on local search (lori, Locatelli, Moreira, & Silveira,
2020; Moura & Oliveira, 2005). Trivella & Pisinger (2016) use
the interval graph representation of multi-dimensional packing by
Fekete, Schepers, & Van der Veen (2007) to develop a local search
framework operating on graphs. Parrefio, Alvarez-Valdes, Oliveira,
& Tamarit (2010) consider five different improvement steps in a
variable neighborhood search (VNS) algorithm, such as the swap of
items or the re-packing of regions in the container. Our improve-
ment phase is also based on region reconstruction but employs

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

new criteria for the region selection and reconstruction, which are
designed to reduce penalties due to violations of the unloading
constraints.

The literature in which practical constraints such as load bal-
ancing and stability are incorporated in packing problems is vast
and we do not attempt to review it (e.g., Trivella & Pisinger, 2017,
Alonso, Alvarez-Valdes, lori, & Parreno, 2019, Gajda et al., 2022,
Nascimento et al., 2021). For a comprehensive review of such con-
straints see Bortfeldt & Wascher (2013). Since multi-drop situa-
tions are common in practice, considering the MDCLP and unload-
ing constraints is important and we discuss related works next.

2.2. Unloading constraints

The unloading constraints are relevant for multi-drop deliver-
ies, i.e., when a container or delivery vehicle carries items for mul-
tiple customers to serve at different locations. In these situations,
it is important to avoid relocating items during the sequential un-
loading operations as this can be time consuming and/or complex
to perform at a customer’s venue. In other words, the items for
the customer currently being served must be easily unloaded from
the vehicle without moving (e.g., unloading and reloading) items
of other customers to serve later.

The first paper considering multi-drop situations was Bischoff
et al. (1995), after which several works followed proposing a vari-
ety of techniques to tackle unloading constraints. These papers deal
both with the MDCLP and the capacitated VRP with D-dimensional
loading constraints (DL-CVRP), where D typically equals 2 or 3. We
discuss papers belonging to both streams below.

For the MDCLP, Pan, Chu, Han, & Huang (2009) propose a wall-
building loading heuristic while Christensen & Rousce (2009) de-
sign a tree-search based method that uses greedy insertion rules
and a dynamic breadth strategy. Liu, Yue, Dong, Maple, & Keech
(2011) introduce the concept of untakeout field, that is a space
in the container where violations of unloading constraints oc-
cur, and present a heuristic approach operating on regions to lo-
cate items called subvolumes. Junqueira, Morabito, & Yamashita
(2012b) and de Queiroz & Miyazawa (2013) develop MILP models
for special cases of the MDCLP. Martinez, Alvarez-Valdes, & Parrefio
(2015) and Iori et al. (2020) solve this problem using GRASP algo-
rithms. In a recent work by Nascimento et al. (2021), twelve prac-
tical constraints for the CLP are formulated mathematically, includ-
ing multi-drop situations and manual unloading constraints, which
are treated as hard constraints.

The first papers dealing the with DL-CVRP were Gendreau,
lori, Laporte, & Martello (2006) and lori, Salazar-Gonzalez, & Vigo
(2007). The former paper proposes a nested tabu search algo-
rithm, while the latter uses branch-and-cut and branch-and-bound
to minimize routing costs and check loading feasibility, respec-
tively. For the same problem, Zachariadis, Tarantilis, & Kiranoudis
(2009) develop a guided tabu search procedure, while Fuellerer,
Doerner, Hartl, & lori (2009, 2010) employ ant colony optimiza-
tion. Tabu search, guided tabu search, and ant colony optimization
metaheuristics for the DL-CVRP are compared in lori & Martello
(2010). Bortfeldt (2012) develops a hybrid algorithm that uses tabu
search for routing and tree search for loading. Exact approaches
based on branch-and-cut and MILP models are later presented in
Hokama, Miyazawa, & Xavier (2016) and Pollaris, Braekers, Caris,
Janssens, & Limbourg (2016), respectively. A branch-and-cut al-
gorithm is also recently used in Ferreira, de Queiroz, & Toledo
(2021) to solve a green variant of the DL-CVRP that aims at re-
ducing CO, emissions.

The unloading constraints are also referred to as sequential con-
straints, rear constraints, or last-in-first-out (LIFO) constraints in the
literature, but we simply use unloading constraints hereafter. Re-
gardless of the name, the specification of such constraints is not
unique but varies depending on the considered application. In par-

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

ticular, we identified four different specifications: (i) above con-
straints, (ii) visibility constraints, (iii) reachability constraints, and
(iv) separation constraints. The above constraints are violated if an
item of a later customer lies above (even partly) of an item of an
earlier customer, requiring the former item to be lifted and relo-
cated. The visibility constraints demand that an item is visible from
the container doors when it has to be unloaded, which is a con-
dition needed in practice to unload a box using a forklift. There-
fore, no item of a later customer can lie (even partly) between
the item to be unloaded and the container doors. The reachability
constraints model the ability of a worker to reach an item given a
partial packing solution, which may not be possible for a box that
is visible. Lastly, the separation constraints force the placement of
items belonging to different customers into dedicated regions in
the container that are separated by virtual walls.

Most papers that include unloading constraints account for the
above and visibility constraints, although not always using these
names (Christensen & Rousce, 2009; Ferreira et al., 2021; Fuellerer,
Doerner, Hartl, & lori, 2010; Gendreau et al., 2006; Hokama et al.,
2016; lori et al., 2020; lori & Martello, 2010; lori et al., 2007;
Nascimento et al., 2021; Pan et al, 2009; Pollaris et al., 2016;
de Queiroz & Miyazawa, 2013), whereas it is less common to ac-
count for reachability constraints (Junqueira, Morabito, & Sato Ya-
mashita, 2012a; Liu et al., 2011; Martinez et al., 2015) and separa-
tion constraints (Junqueira et al., 2012b; Martinez et al., 2015). We
will consider above, visibility, and reachability as soft unloading
constraints, and neglect separation constraints as these can only
be modeled as hard constraints and are hence not relevant to the
scope of our paper.

To the best of our knowledge, unloading constraints have al-
ways been treated as hard constraints in the literature (with few
exceptions discussed below), which means that no relocation of
boxes is allowed during delivery at all. This approach may be too
inflexible and result in vehicles carrying significant lower value.
Depending on the application, relocating items may be acceptable
in practice and thus preferable to reducing cargo value. This entails
a trade-off between the transported value and the indirect costs
incurred due to relocating items during delivery, which we inves-
tigate in this paper. Modeling soft unloading constraints thus adds
to the extant literature by providing a more general and flexible
definition of the MDCLP. Our penalty functions can be adjusted by
the operator depending on the needs, and hard constraints can be
used too by setting these penalties to infinity.

Liu et al. (2011) introduced an unloading cost for an item that
is proportional to the number of items to relocate in order to
unload it, i.e.,, the items located in their untakeout field, which
can be seen as a special case of the penalty functions we use.
However, the authors set all such costs equal to zero in their
algorithm and experiments, which in effect means enforcing again
hard unloading constraints. Lurkin & Schyns (2015) deal with load-
ing a cargo aircraft to serve multiple airports by minimizing the
number of handling operations. In this case, the aircraft has fixed
slots arranged into rows where to assign the so-called unit loading
devices. Thus, although this problem includes soft unloading con-
straints, it does not embed the same 3D combinatorial complexity
as our MDCLP. Moreover, all handling operations count the same.
To the best of our knowledge, only Gajda et al. (2022) have not
treated the unloading constraints in an MDCLP as hard constraints,
but instead allowed for items to be relocated. Nonetheless, any
relocation is considered equivalent also in this paper regardless
of the volume or weight of the item to move, and the number of
moves in a packing solution is only counted a posteriori, i.e., the
solution approach does not explicitly minimize it. Therefore, our
use of penalty functions in the objective and the explicit consid-
eration of these penalties in our heuristic represents a substantial
generalization in terms of both modeling and methodology.

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

Worth mentioning are finally some works that analyze trade-
offs involving unloading constraints. Mdnnel & Bortfeldt (2016) and
a follow-up work by the same authors (Mdnnel & Bortfeldt, 2018)
provide an interesting perspective on box reloading effort in multi-
drop situations. They show that for the pickup and delivery prob-
lem, in contrast to the CVRP, a standard LIFO policy is not suffi-
cient to rule out any reloading effort. More constraints are needed
to do so, which gives rise to a spectrum of problem variants with
different behavior in terms of reloading effort. Junqueira et al.
(2012a) study reachability constraints when varying the parame-
ter representing the distance that can be reached, showing that
as these constraints become stricter, the packing often becomes
less efficient. While the aforementioned variants of unloading con-
straints affect the feasibility of the solutions, violations of unload-
ing constraints in our work affect the objective function by means
of penalties.

2.3. Summary of contributions

The main contributions of this work are the following:

1. We formally study the MDCLP with soft unloading con-
straints and provide a mathematical programming formu-
lation that accounts for both above and visibility soft con-
straints.

2. We propose a heuristic framework that includes construc-
tion and improvement phases based on a randomized
extreme-point heuristic and the reconstruction of packing
regions with high penalties, respectively. The heuristic is
able to solve large instances and accounts for all types of
penalty functions and soft unloading constraints (above, vis-
ibility, and reachability).

3. We execute an extensive computational study involving dif-
ferent instances, penalty functions, and region reconstruc-
tion methods. Our findings underscore the importance of ac-
counting for soft unloading constraints in the MDCLP and
can be relevant for logistics operators.

3. MDCLP with soft unloading constraints

We formally introduce the MDCLP with soft unloading con-
straints along with the used notation in Section 3.1, derive a math-
ematical programming formulation of this problem in Section 3.2,
and provide an example comparing MDCLP variants with hard, soft,
and no unloading constraints in Section 3.3.

3.1. Problem description

We are given a set B of items/boxes available for loading that
are rectangular-shaped, i.e., cuboids. Each item i€ B is associ-
ated with three dimensions: length, width, and height, denoted
(I, w;, h;) € R3, and hence a volume v; = ;- w; - h;. Moreover, item
i has a weight g; > 0, a value m; > 0, and belongs to a customer
¢; e{1,..., M}, where 1 is the first customer to serve and M is the
last. A single rectangular-shaped container is given with dimen-
sions (L,W,H) ¢]Ri. Boxes can only be loaded in the container or-
thogonally relative to the boundaries of the container, which is a
standard assumption. Each box is also associated with a set of fea-
sible orientations in which it can be rotated and that is a subset of
the six possible orthogonal orientations of a cuboid.

We introduce a three-dimensional Cartesian coordinate sys-
tem (x,y,z) with the origin (0,0, 0) coinciding with the bottom-
left-rear corner of the container. The x-axis is directed along
the long side of the container, the y-axis is perpendicular to it
on the container’s floor, and the z-axis completes the coordinate
system in the vertical direction. The four corner points of the

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

container’s door where unloading takes place have coordinates
(L,0,0), (L,W,0), (L,W,H) and (L, 0, H). Given such a coordinate
system, the loading position of an item i inside the container is
uniquely defined by the coordinates of its bottom-left-rear corner,
denoted by (x;,¥;,z;), coupled with a feasible orientation that has
the effect of altering the order of the elements in the size vector
(l;, w;, h;). Although both our mathematical programming formu-
lation and heuristic account for rotations, to ease exposition we
assume in the following that the orientation is fixed, i.e., rotations
are not allowed.

As discussed in Section 2.2, we consider above, visibility, and
reachability soft unloading constraints. To model them we intro-
duce an overlapping condition for two items i, j € B on the x-axis

OVERLAP(i, j,X) <= (X <Xj <X+ 1) v (x; <X <X + 1),

and use analogous conditions to define overlapping in the other
two coordinates. Violations of the unloading constraints for a pair
of packed boxes i, j € B arise under the following situations.

o Above violation: item i has to be unloaded before item j but
the latter item is placed above the former, even partially.
Mathematically, this means that boxes i and j overlap in
both x and y coordinates and j is placed at a higher z co-
ordinate than i (Nascimento et al., 2021), i.e.,

—_
0

i <¢j) A (zj = zi+ hi) A OVERLAP(, j, X) A OVERLAP(,], Y).
(1)

When condition (1) is true, we assign a cost/penalty
fa(qj.vj. zj) = 0 to the above violation that is a function of
weight, volume, and z coordinate of the item j to relocate.
Intuitively, this penalty should be non-decreasing in all three
features since the heavier, the bulkier, or the higher the item
was loaded, the harder or time consuming will be to reposi-
tion it.

Visibility violation: item i has to be unloaded before item j
but the latter is placed, even partially, between the unload-
ing side and item i thereby making i not (entirely) visible
from the entrance of the container. Mathematically, this hap-
pens when boxes i and j overlap in y and z directions and j
is placed at a larger x coordinate than i, i.e.,

(ci <) A (Xj = X +1)) A OVERLAP(i, j.y) A OVERLAP(, J. 2).
(2)

When condition (2) holds, i.e., visibility constraints are vio-
lated for item i, we assign a penalty f,(q;,v;,z;) =0 with
analogous structure to the penalty related to the above con-
straints.

Reachability violation: item i has to be unloaded but is un-
reachable by a human operator (or a machine/forklift) since
the distance between this item and the position the opera-
tor can reach is higher than a fixed quantity (Junqueira et al.,
2012a; Liu et al., 2011). Specifically, assume j is the first box
that prevents the operator from moving further ahead and
reaching box i. Then, i is unreachable if

(¢ < Cj) A ((Sij > min {Htouchable -z, Ltouchable})’ (3)

where §;; :=x;j 4+ — (x; + ;) is the distance between boxes
i and j seen from the unloading side, and Ly cpqpe and
Hiouchapie describe respectively the length of the worker’s
arm and the height the worker’s hands can reach. Condi-
tion (3) characterizes (un)reachability as a function of both
the distance §;; and the z coordinate of the item to pick. It
holds when §;; is larger than L;o,cpgpte, OF When this distance
plus Zi is larger than Hiouchable- Lrouchable and Houchapie are typ-
ically set to 60 and 200 cm, respectively. Under this choice,

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

the min function evaluates to 60 cm for z; € [0, 140] cm and
decreases linearly for values of z; > 140 cm, reaching zero
for z; = 200 cm. See also Martinez et al. (2015) for some il-
lustrations of these situations. When reachability is violated,
we assign a penalty function fr(q;, v}, z;, 6;;), which may de-
pend on the distance §;; in addition to the properties of the
box j to relocate.

The MDCLP with soft unloading constraints is defined as the
problem to select and orthogonally pack items from B inside the
container such that the total value of the loaded items discounted
by penalties due to violations of conditions (1)-(3) is maximized.
Notice that we do not include in our problem statement additional
practical constraints, since we want to isolate the effect of the
unloading constraints, and highlight the advantages of modeling
them as soft by means of penalty functions. Therefore, our solu-
tions do not ensure that items are, e.g., well supported and verti-
cally stable during the delivery process, or that weight is balanced
in the container. Practical implementations of our approach should
of course include the constraints needed for the specific applica-
tion.

3.2. Mathematical programming model

We provide next a mathematical programming formulation of
the MDCLP with soft unloading constraints covering the case of
above and visibility constraints. Although reachability constraints
are considered in our heuristic framework in Section 4, we found
it challenging to characterize the first item j blocking the path of
the operator to reach another item i in a mathematical program,
hence we neglect these constraints here. As we did in Section 3.1,
to simplify exposition we omit item orientations when describing
the model and relegate a full formulation including rotations to an
appendix.

For each box i € B, in addition to the continuous position vari-
ables (x;, y;, z;) we define a binary variable t; equal to 1 if item i
is loaded and 0 otherwise. Moreover, to ensure that item pairs do
not overlap, we introduce for i, j € B binary variables b;;, f;;, and
u;j equal to 1 if item i is fully behind, left, or under item j, respec-
tively, and O otherwise. At least one of these variables must be 1
when both i and j are loaded (i.e. t; = t; = 1), which translates to
the non-overlapping constraints (4).

bjj+bji+ﬂj+fji+llij+llﬁ+(]—tj)-i-(]—tj)zl
Vi,jeB, i<], (4a)

Xi-i-li fXj-i-L(] —b,'j) Vl,] e B, (4b)

yi+wi<y;+W(Q1-f) Vi, j e B, (4c)

zi+ h; ij-i-H(l —uij) Vi, jeB. (4d)

We further restrict the domain of the position variables x; €
[0,L—1L], yi e [0,W —w;], and z; €[0,H —h;] to guarantee that
loaded items do not exceed the boundaries of the container.

Constraints (4) are common in packing problems (Chen, Lee,
& Shen, 1995). Due to (4b), b;j =1 = x; +1; < x;, hence the two
items do not overlap as i is fully behind j on the x coordinate (sim-
ilarly for the other coordinates). These constraints alone however
do not allow tracking the situations when two items do overlap,
which is needed to model the unloading constraints. To this end,
we introduce a second set of constraints (5) that enforce the re-
verse implications, e.g., bjj = 0= x; < x; +1;.

Xj <Xi+ i+ Lbjj Vi, jeB, ¢ #cj, (5a)

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

yjfyl"i‘Wi-i-Wf,'j Vi,jGB, Ci # Cj, (5b)

ijZi-‘r-hi-i-Huij Vi, j e B, Ci # Cj. (5¢)

Constraints ~ (4), (5) jointly —model b;;+bji=0
OVERLAP(i, j,X), and similarly f;; + fj; = 0 <= OVERLAP(i, j, y),
and u;; +uj; = 0 < OVERLAP(i, j, z). Notice that generating con-
straints (5) is not necessary for item pairs belonging to the same
customer (i.e., ¢; = ¢;).

To track joint overlap in two dimensions in above and visi-
bility constraints (1), (2), we introduce support binary variables
ajj. dij € {0, 1} so that a;; = 1 <= OVERLAP(i, j, x) A OVERLAP(i, j, y)
and d;; = 1 <= OVERLAP(i, j, ¥) A OVERLAP(i, j, z). This can be done
by imposing

bij+bji+ fij+ fii=1—ay; Vi, jeB, ¢ <cj, (6a)

bij+bﬁ+f,-j+fj,'§2(1—aij) Vi,jGB, G < (Cj, (6b)

fij + fii +wij+ui =1 —dj Vi, jeB, ¢ <cj (6¢c)

fij + fii+wij +uj < 2(1 = dy) Vi,jeB, ¢ < (6d)

Moreover, detecting above and visibility violations requires cou-
pling the described overlapping conditions in two directions with
another condition for the third coordinate, which is done by

Pij+1 za,-j+u,-j Vi,jEB, G < (j, (7&1)

r,‘j-‘rl Zdij+bij Vi,jeB, ¢ < (j, (7b)
where p;; and r;; are additional binary variables that are activated
(i.e., set to 1) when above and visibility constraints are violated, re-
spectively. Thus, the MDCLP with soft unloading constraints obeys
(4)-(7) and has an objective function

max Y miti— Y Y [Py a5 2) + 13- fu(@5.v5.2)]

ieB ieB jeB:ci<c;
(8)

In general, (4)—(8) is a mixed-integer nonlinear program, where
nonlinearities only appear in the objective function. If both f, and
fv are linear functions of box parameters like weight q; and vol-
ume v;, and of the loading coordinate z;, then this model becomes
an MILP that can be solved using off-the-shelf commercial opti-
mization solvers. Examples of such linear penalties are

fa(@j.vj.2)) := g + BaVj + ¥YaZj + Na. (9a)

fv(@j,vj.z5) == avqj + BuVj + Wzj + v, (9b)

with (cta, Ba, ¥a, a, @, Bv, Vv, v) € RE. We report the MILP in-
cluding rotations in an appendix.

Notice that a formulation of the MDCLP with hard
above/visibility unloading constraints can be obtained as a
special case of (4)-(8) by fixing all penalty activation variables p;;
and rj; to zero. This implies that a;; +u;; <1 and d;; +b;; <1 in
(7), i.e., violations are infeasible.

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 1
Parameters defining the MDCLP instance.
Length Width Height Volume Weight Value Customer
Demand (l;, cm) (w; cm) (h, cm) (v, m®) (g, ton) (7;) (ci)
2 95 50 35 0.166 0.22 0.22 1
2 90 55 45 0.223 0.24 0.24 2
2 90 60 40 0.216 0.26 0.26 3
2 105 65 40 0.273 0.28 0.28 4
Table 2
Results from the MILP formulations.
Cargo Penalty
Strategy Objective ~ Value # items Amount # violations Runtime (s)
MDCLP-B 74.2 88.0 7 13.8 5 0.8
MDCLP-H 76.0 76.0 6 0.0 0 8.6
MDCLP-S 80.9 86.0 7 5.1 2 22.1

3.3. Illustrative example

In this section, we use the model formulation introduced in
Section 3.2 to compare three strategies to tackle the MDCLP: (i)
solve the basic CLP without unloading constraints and assess the
penalties a posteriori (denoted MDCLP-B strategy), (ii) solve the
MDCLP with hard unloading constraints (MDCLP-H), and (iii) solve
directly the MDCLP with soft unloading constraints (MDCLP-S).
Notice that also the first two strategies provide a feasible solution
to the MDCLP with soft unloading constraints.

To illustrate this comparison, we define in Table 1 a small in-
stance with 8 items and 4 customers, where up to 2 identical
items need to be delivered to each customer. The container size is
(L,W,H) = (160, 120, 100) cm and all six orientations of the items
are permissible.

We consider model (4)-(8) or simplifications thereof us-
ing penalties (9) for above and visibility constraints with coef-
ficients (o, Bas ¥a, Na, &, Bv, Y, nv) = (0.1,0.1,0,0,0.1,0.1, 0, 0),
i.e., penalties are linear functions of weight and volume of the
boxes to move and include no dependency on the z coordinate
(na = nv =0) and no constants (ys = yv = 0). Penalties in this ex-
ample are defined in a simplistic manner as the focus here is on
comparing the three strategies. In practice, however, defining the
functional form of the penalties and their coefficients plays a big-
ger roles because, depending on the unloading system (e.g., hu-
man worker or forklift) or even the specific product, weight can
be a strong constraint, or volume can be, or both. We solve the
corresponding MILPs to optimality using Gurobi 9.1 and show the
results in Table 2 and Fig. 1. To ease intuition, columns in this ta-
ble related to the objective function value and its two components
(cargo value and penalty amount) are normalized to 100% of the
total value of the 8 items, that is, a solution including all items
and with zero penalty would have an objective of 100.

Interestingly, the three packing solutions are different under
each approach in terms of both cargo composition and loading co-
ordinates of the chosen boxes. While MDCLP-B achieves the high-
est cargo value of 88.0 (which is expected as this strategy indeed
maximizes this objective alone), it violates 5 times the above and
visibility constraints incurring a high penalty of 13.8. The opposite
can be said for MDCLP-H, which does not violate any of the un-
loading constraints but results in the lowest cargo value of 76.0,
with only 6 boxes loaded instead of 7 as under the other strate-
gies. Finally, MDCLP-S achieves a cargo value of 86.0 and violates
2 unloading constraints for a total penalty of 5.1, hence reaching
the best objective function value of 80.9. Therefore, by accounting
for soft unloading constraints, MDCLP-S manages the trade-off be-
tween cargo value and penalties more efficiently and its objective

value is 9.0% and 6.4% higher than that of MDCLP-B and MDCLP-H,
respectively.

The running time varies considerably across formulations.
Whilst MDCLP-B needs less than one second, MDCLP-H and
MDCLP-S take roughly 9 and 22 seconds respectively, which is
substantial given that this small instance only includes eight items.
The reason behind this variation is that modeling soft unloading
constraints requires a significant number of additional binary vari-
ables and big-M constraints compared to the standard CLP (which
is already challenging as discussed in Section 2), namely variables
a;j, dij, pij, and rj; appearing in constraints (5)-(7). The formu-
lation with hard unloading constraints lies somehow in between,
since g;; and d;; are needed, but not p;; and r;;. Additional experi-
ments show that solving times are highly instance-dependent and
vary depending on both the dimensions of the boxes and the co-
efficients of the penalties (as also discussed later in Section 5.4).
Nonetheless, the observed running times clearly indicate a con-
sistent ranking of the three strategies MDCLP-B, MDCLP-H, and
MDCLP-S as mentioned above, and that it is not viable to solve
the MDCLP with hard or soft unloading constraints optimally for
larger instances, e.g., comprised of 50 or more items. Moreover,
the presented formulation does not include reachability constraints
and would be even harder to tackle under nonlinear penalties. For
these reasons, we develop next a heuristic framework that sacri-
fices optimality but is very fast and can deal with large instances
as well as more general penalties. Despite our focus is on the un-
loading constraints, this heuristic could be extended to incorporate
other practical constraints (e.g., vertical stability and load bearing).

4. Heuristic algorithm

At a high level, our heuristic algorithm applies in sequence con-
struction and improvement methods that iteratively perform ran-
domized loading operations to build or improve a solution. Con-
struction and improvement phases of our heuristic are described
in Sections 4.1 and 4.2, respectively.

4.1. Construction phase

Our construction algorithm is based on the concept of the ex-
treme points (EPs) from Crainic et al. (2008). The idea underlying
the approach is simple and consists in inserting boxes sequentially
in the container one after the other, starting from the empty con-
tainer, and using the EPs as the set of candidate locations for new
insertions. Since constructing a solution in this manner is quick,
we can iterate the procedure NC times to generate different pack-
ing solutions, then pick the one with the highest objective value.
Constructing one packing solution requires defining: (i) how to sort

JID: EOR

G. Bonet Filella, A. Trivella and F. Corman

100

height (z)

o

50

100 - 100
9]
length () 150 width (y)
(a) MDCLP-B.
100 |
&
=50
iy
[
<

oo

50
100
length (z)

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

100 50 100
length (z) 150 ¢ owidth (v)

(b) MDCLP-H.

100

50
width (y)

(c) MDCLP-S.

Fig. 1. Illustration of the three loading solutions (see web version for interpretation of colors).

the items, (ii) how to randomize the sorted list, (iii) how to select
the best point from a set of EPs, and (iv) how to update the set
of EPs after each insertion. We explain our choices in this regard
next.

Since the solution of a constructive method depends on the
order in which items are considered, we initially sort them ac-
cording to a criterion that facilitates the subsequent loading, e.g.,
by placing first those items that are larger and hence harder to
pack later when space is limited. Specifically, we sort by non-
increasing values one of the following six attributes: volume (v;),
height (h;), area (; - w;), customer-volume (c;, then v;), customer-
height (c;, then h;), and customer-area (c;, then [; - w;). In the lat-
ter three cases, items are sorted first according to the primary at-
tribute ¢;; items with equal ¢; are then sorted by a secondary at-
tribute. We randomly pick one out of these six sorting criteria for
each solution we construct, i.e., each iteration n = 1, ..., NC. While
the first three criteria based on box size are standard (Crainic et al.,
2008), sorting by customer number in the other three cases favors
the placement of boxes with higher and lower customer numbers
deeper in the container and closer to its doors, respectively. Thus,
these criteria implicitly favor generating solutions with fewer vio-
lations of the unloading constraints (Gajda et al., 2022).

Once the items are sorted, we randomize the sequence to in-
troduce diversification during loading and produce each iteration a
different solution. We do this by swapping the position of items
that are “similar” according to the attribute 6 used for sorting.
Specifically, following Trivella & Pisinger (2016), we define the
probability of swapping two consecutive items i and i+ 1 in the
sequence by

if 9,’+1/9,’ > 09,

o ._]5(6i11/6; - 0.9),
Prioi+1):= {0, otherwise.
This formula states that two items with identical sorting attribute,

i.e. such that 6; = 0;, 1, are swapped position with 50% probability.

As the ratio 0;,1/6; decreases (ie., the items become more differ-
ent), the probability Pr (i <~ i + 1) decreases too, until it reaches 0%
for 6;,1/6; = 0.9. In case of combined attributes, 6; equals the sec-
ondary attribute. Furthermore, we randomly rotate the items by
picking one of their feasible orientations with equal probability.
This randomization is not carried out separately for each item but
in a block-wise fashion, that is, the same rotation is applied to all
items with identical dimensions, thereby easing the formation of
compact blocks with no holes and hence better utilizing the space
in the container (Gajda et al., 2022).

Once sorting and randomization have been executed, the items
are loaded into the container one by one. For each insertion, one
EP from the available set has to be selected and the box placed so
that its bottom-left-rear corner coincides with that EP. Initially, the
list of EPs is made of just the bottom-left-rear corner of the con-
tainer with coordinates (0,0,0). When a box is loaded, the set of
available EPs is updated by removing the chosen point while gen-
erating up to six new EPs using the algorithm described in Crainic
et al. (2008), which exploits projections of the corners of the newly
inserted box onto the walls of the container or other items already
loaded. To select the EP where to place an item, we adopt a first-
fit decreasing approach that considers the EP with the lowest x-
coordinate, then the lowest y-coordinate in case of ties on x, and
finally the lowest z-coordinate in case of ties on both x and y. Us-
ing such a first-fit decreasing strategy, we pick the first EP which is
feasible for placing the current box, that is, the box must be fully
contained in the container and must not overlap with the boxes
already loaded up to that point.

If an item i cannot be placed in any of the EPs available when
i is considered, (i.e., all EPs are infeasible for inserting i), then this
item is temporarily stored in a retry list. After attempting to load
all items in the container, a second round is performed with the
retry list. Thus, the goal of such a list is to reattempt loading when
new EPs have been generated. Since the number of items in the

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

retry list is typically much smaller than |B], to increase the chances
of loading we adopt an enhanced first-fit decreasing variant that
checks feasibility not only for the predefined (randomized) orienta-
tion, but for all feasible orientations. Boxes that fail insertion again
are discarded from the constructive solution but may be reconsid-
ered during the improvement phase presented next.

4.2. Improvement phase

The unloading constraints are not taken into account explicitly
during construction, but only implicitly by including the customer
¢; as a sorting criterion. Our improvement phase is instead de-
signed to explicitly reduce the penalties due to violations of the
unloading constraints. Indeed the algorithm iteratively defines a
region in the container with high improvement potential, empties
it, and refills it with the goal of increasing the objective function
value. Region reconstruction is one of the five possible improve-
ment moves in the VNS presented by Parrefio et al. (2010). In our
context, specifying promising regions is guided by indicators that
quantify the amount of penalties in the region and/or the propor-
tion of empty spaces. Thus, rebuilding these regions has the po-
tential to reduce penalties and/or pack more items in the available
space. The reconstructed solution is then compressed to a gapless
packing and the gained space is used to load additional items. The
structure of our approach is outlined in Algorithm 1. Given a pack-

Algorithm 1: Improvement algorithm.

Input: Packing solution §; maximum number of iterations N!
for iteration n =1 to N' do

Step 1. Compute matrices of conflicts (C), penalty density
(D) and empty spaces (E)

Step 2. Select item pair i, j € S delimiting the region using
criterion M-1, M-2, or M-3

Step 3. Define S° obtained by removing all items
intersecting cuboid B(i, j) from S

Step 4. Refill S° using best-fit decreasing and items in
B\ 89, obtaining &’

Step 5. Compress S’ and refill it with best-fit decreasing
and items in B\ &', getting S”

Step 6. Set S as the solution with highest objective value
among {8, 8%, &', 8"}

Output: Improved packing solution S

ing solution S, this algorithm attempts to improve it by recon-
structing regions iteratively for up to N! iterations (alternatively,
until a given running time is reached)'. In the following we ex-
plain in detail the steps underlying each iteration.

Step 1 computes three matrices to support identifying a promis-
ing region: the conflict matrix C, the density matrix D and the empty
space matrix E, each with size |S| x |S|. Matrix C evaluates conflicts
arising between item pairs. Specifically, given i, j e S with ¢; <
¢j, we define Gj:= fu(q;,v}.2;) + fa(q;. v}, 2j) + fr(q;. v}, 2}, 8jj),
which equals zero if above, visibility, and reachability constraints
are respected between i and j, and the incurred penalty otherwise.
Matrix D is more sophisticated and encodes information about the
density of penalties inside a given volume. For each i, j e S, we

T A packing solution S is given by the set of loaded items, their placement coor-
dinates, and their orientation. To ease exposition, when it is clear from the context,
we abuse notation and refer to S € B as just the loaded item set.

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

compute the smallest orthogonal cuboid that entirely includes both
boxes, which we denote by (i, j). Then, for each item k € S which
overlaps with 93(i, j), we calculate the unloading cost generated by
this item by summing up the k-th column of matrix C, and multi-
ply it by the proportion of box k’s volume that falls inside (i, j).
We define D;; as the sum over k of these penalties divided by the
volume of 93(i, j). Finally, matrix E describes the amount of empty
space in regions of the container. For i, j € S, E;; is defined as the
proportion of volume of (i, j) that is not occupied by boxes. Note
that matrices D and E are symmetric while C is not.

Step 2 uses these matrices to select the region to reconstruct,
which involves choosing two items i, j € S and computing the as-
sociated cuboid (i, j). We define three approaches to select i and
j. The first approach, denoted M-1, just uses the conflict matrix C.
It computes unloading costs originating from each item by sum-
ming up the columns of C, and randomly picks one of the & items
with highest unloading cost. For this item j, a second item i is
chosen randomly among those in conflict with j, i.e., such that
Gij > 0. The second approach M-2 uses the density matrix D by
randomly selecting one of the & item pairs (i, j) with highest D;;
value. Finally, the last approach M-3 generalizes the former one
by exploiting both penalty and empty space information. This ap-
proach randomly picks one of the & item pairs (i, j) with highest
¢PD;; + ¢EE;; value, where ¢P and ¢E are trade-off parameters. In
all three methods, & governs the level of randomization and the
volume of (i, j) is constrained not to exceed half of the con-
tainer’s volume.

Step 3 removes from S all items that even partially overlap with
%B(i, j), obtaining a new solution S°. Although the latter carries
lower cargo value, it may also have fewer penalties.

Step 4 refills the emptied region by applying an extreme-point
heuristic. First, some EPs are (re)generated at the bottom-left-rear
corners of the removed items. Then, all EPs are ranked in a first-fit
fashion based on coordinates as described in Section 4.1 and are
considered sequentially for placing items. For each insertion, we
evaluate all items i € B\ S° and all feasible orientations o € R; us-
ing a best-fit strategy with a merit function m;, := m; — {Z(Cjo i+
Cjo) 1 j SO}. where Cp; denotes the penalty between item i with
orientation o and the already loaded item j, i.e., it coincides with
the conflict matrix element G; once item i is given orientation o
(analogous for Cjp). The item-orientation pair (i, 0) with highest
merit value is selected for loading. The procedure ends when all
items are loaded or when all EPs are considered, giving a new so-
lution &'.

Step 5 transforms S’ into a so-called gapless packing where no
box can be moved to lower x, y, or z coordinates, i.e., all boxes
are shifted as much as possible towards the corner (0,0,0). This is
important to reduce empty spaces since the refilling process often
leads to gaps between items. To produce such a gapless packing,
we use the interval graphs resulting from the projection of boxes
onto the Cartesian axes (Fekete et al., 2007), which allows to easily
identify the sequence in which boxes must be shifted (Trivella &
Pisinger, 2016). To illustrate, consider the interval graph related
to coordinate x. Each node in this graph is a box and an edge
connects two nodes if the corresponding boxes overlap in x. Each
edge is also assigned a direction, with the arrow pointing towards
the box with highest x coordinates. We can use this graph to
perform a shift by reassigning coordinates using two rules. First,
a box i without incoming edges is given a coordinate of x; =0
and is marked as processed. Second, a box with only incoming
edges from processed boxes is assigned coordinate x; equal to the
maximum of x; +[; over the connected processed boxes je &'
Using these rules, we can iteratively process all nodes. The same
procedure is applied to the y and z directions. As the described
compression method may free up some space in the container, we

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

apply again the extreme-point best-fit strategy to attempt filling
this space. We call the resulting solution S”.

Step 6 picks the best solution among {S, S, &', 8"}, i.e., the
one with highest objective function value. Conceptually, it is not
possible to rank these four solutions a priori. For example, we
know that the cargo value under S” is at least as high as the one
under &', but the former solution may incur higher penalties be-
cause more items are loaded, hence more easily some of the un-
loading constraints are violated. Finally, the entire process (Steps
1-6) is iterated by selecting and refilling a new region, which will
be different than the previous one due to the embedded random-
ization.

5. Numerical study

This section presents an extensive computational study based
on the heuristic algorithm of Section 4. In Section 5.1, we introduce
the instances and computational setup. In Section 5.2, we compare
MDCLP variants with soft, hard, and no unloading constraints. In
Section 5.3, we study in detail the effectiveness of the improve-
ment phase. In Sections 5.4 and 5.5 we compare the performance
of our method with that of a commercial optimization solver and
a heuristic algorithm from the literature, respectively. Finally, we
analyze in Section 5.6 the region reconstruction methods used in
the improvement phase.

5.1. Instances and study design

Our experiments are based on the well-known BR instances
from Bischoff et al. (1995) and Davies & Bischoff (1999), compris-
ing 1500 CLP instances divided into 15 classes of 100 instances
each. The 15 classes differ by the level of heterogeneity in the item
set, which ranges from weakly heterogeneous (BR1 has T = 3 item
types) to highly heterogeneous (BR15 has T =100 item types),
where an item type describes a set of items with identical features,
i.e., dimensions and set of permissible orientations. These instances
include 178.5 items on average with a maximum of 1961.

A BR instance specifies a container size (which s
587 x233x220 cm in all instances corresponding roughly to
a 20-foot container) and a set of T item types each provided with
a demand, i.e., the number of identical items. The BR instances
are traditionally used to maximize the loaded volume and no data
on item value and weight is given, which is instead needed here.
Thus, we associate each item type with a value and a weight by
multiplying its volume by a random number drawn uniformly
from [0.7,1.3] and [1,3], respectively. This randomization is used
to create more realistic instances, as not every item has equal
density and value while it is reasonable to assume that volume
is correlated with both value and weight. We then generate
customer numbers by randomly picking a number of customers
M e {2,...,min{8,T}} and associating all items of the same type
with a random customer in {1,..., M}, also ensuring that each
customer is assigned at least one item type.

We solved all 1500 instances using the three strategies al-
ready introduced in Section 3.3, namely MDCLP-B, MDCLP-H,
and MDCLP-S, with small adaptations to the heuristic framework.
Specifically:

o MDCLP-B (Sequential approach). This strategy runs the con-
struction phase only of the heuristic for 30 seconds per in-
stance (see Section 4.1). It only accounts for unloading im-
plicitly through sorting. The penalties are evaluated a pos-
teriori for all generated solutions, and the one with high-
est objective (total cargo value minus penalties) is selected.
Under very high penalties this evaluation may be negative;
we choose zero in this case, which corresponds to an empty
shipment.

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 3

Specification of penalty function parameters.
Set Penalty level o B 1%
P-1 low 2.5.10°3 5.0 1073 45.1073
P-2 medium 7.5.1073 15.0 - 103 45.10°3
P-3 high 1251073 25.0 - 1073 45.1073
P-4 very high 17.5 - 1073 35.0- 1073 45.10°3

MDCLP-H (Hard unloading constraints): This approach relies
on an adaptation of the construction phase that enforces
hard unloading constraints by only allowing placements of
items into EPs when no unloading constraint is violated. As
penalties are always zero by definition, the constructed so-
lution with the highest cargo value after a 30-second execu-
tion is chosen.

MDCLP-S (Soft unloading constraints): This strategy employs
the same construction phase as MDCLP-B followed by an
improvement phase (see Section 4.2). For improvement, we
apply Algorithm 1 to the five best solutions returned by the
construction phase for 20 seconds each, totaling 100 sec-
onds. We then choose the best among the five improved
solutions and the MDCLP-H solution, which we recall is al-
ways feasible. This means that MDCLP-S runs in 160 sec-
onds as it requires the construction solutions from the other
two strategies in addition to the improvement phase.

The penalties for violating the unloading constraints are defined
as follows (see also Section 3.1).

fa(q;.vj.z5) = 1+ yzj) - (aq; + Bv)), (10a)
f(q;.v5.2) = 1+ yz)) - (aq; + Bv;), (10b)
fr(qj. v, 8;) = A+ y) - (g + Bvj), (10c)

which depend on the three parameters «, 8, and y. We consider
four different sets of parameters ranging from low to very high
penalties and that we report in Table 3.

To elaborate, we set the coefficient 8 =2« because items’
weights are generated by multiplying their volume by a uniform
random variable ¢y 3, which has a mean of 2. Thus, we try to at-
tribute equal importance to weight and volume when calculating
the penalties. When moving from P-1 to P-4, the coefficients o
and B increase linearly and by up to seven times, which based on
experimentation appear to cover a reasonable spectrum of values.
Regarding y, this parameter is set in all cases equal to the mul-
tiplicative inverse of the height H of the container. This implies
that an obstructing item placed close to the top of the container
will generate roughly double the penalty compared to the same
item placed at the bottom. Consider for example a typical item of
value 100, volume 100, and weight 200, neglecting units. Based on
Table 3, a single violation of the above constraints (10a) caused
by this item would result in a penalty ranging from 0.5-1.0% of
its value under P-1, to 3.5-7.0% of its value under P-4, depend-
ing on the height at which this box is loaded. Of course, an item
may be simultaneously subject to more penalties arising from con-
flicts with multiple items. In contrast to the illustrative example
in Section 3.3, notice that (4)-(8) would be a nonlinear program
under penalties (10).

The heuristic algorithm was implemented in Python and run on
a server equipped with a quad-core Intel Xeon E3-1585L v5 pro-
cessor, with memory usage never exceeding 500 MB. On average
across all instances, running the construction phase for 30 seconds
allows to perform 420 iterations (i.e., packing solutions generated).
Due to the large number of randomized iterations we can execute

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 4
Comparison of MDCLP-H and MDCLP-S strategies.
MDCLP-H MDCLP-S ASH (%)

Class P-* P-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4
BR1 77.1 841 814 804 799 90 55 42 36
BR2 76.2 834 806 794 787 94 58 42 33
BR3 72.8 809 770 753 745 112 58 35 24
BR4 724 804 765 750 744 1.0 56 36 26
BR5 72.1 796 756 740 732 104 48 27 16
BR6 70.7 790 746 728 720 117 55 30 1.8
BR7 70.0 781 737 723 711 116 53 33 17
BRS 69.4 777 734 714 704 120 59 30 16
BR9 69.4 770 727 709 700 11.0 47 22 10
BR10 68.9 765 722 704 694 1.0 48 21 0.8
BR11 693 764 724 704 69.8 104 45 17 07
BR12 684 761 714 696 688 112 44 16 06
BR13 689 763 720 700 69.2 107 44 16 04
BR14 68.3 758 714 694 686 111 45 16 04
BR15 68.7 759 714 696 689 105 40 13 03
Mean 70.8 785 744 727 719 108 50 26 15

in 30 seconds, increasing further the time limit does not bring sig- 250 -

nificant extra benefit to the construction phase. Instead, about 20 - [

region reconstruction iterations can be executed when improving g p

a solution for 20 seconds. An improvement iteration is therefore 2 150§

more costly than a construction iteration, which is expected since 35

Algorithm 1 employs more sophisticated operations than construc- g 100§

tion. Both construction and improvement iterations could be par- g “

allelized to drastically reduce the runtime, which we did not do - 7

here. In Sections 5.2-5.5, we use the region definition M-1 with 0

& =5 (see Step 2 of Algorithm 1), and compare it with the other B 2 4 g BMB 1(‘;/) I

o (]

variants M-2 and M-3 later in Section 5.6.
5.2. Sequential approach, hard, and soft unloading constraints

We start by comparing the objective function value under
MDCLP-H and MDCLP-S for all penalties in Table 4. The reported
values are averages across 100 instances of each BR class, except
for the last row where the average is over both instances and
classes. The MDCLP-H strategy is not affected by the choice of the
penalty and its objective is independent from the penalty. The last
four columns labeled ASH (%) contain the average improvement
achieved by MDCLP-S over MDCLP-H as percentage.

Varying the penalty coefficients («,) considerably affects the
MDCLP-S objective, which decreases with increasing coefficients.
This is expected since the set of feasible packing solutions and
their cargo value is the same regardless of the soft unloading con-
straints but the penalty component is an increasing function of «o
and B. As a consequence, the improvement over MDCLP-H (which
is independent of the penalty) varies too and ranges from 9-12%
under P-1 to 0.3-3.6% under P-4. Further investigation shows
that in several instances, under high and especially very high
penalties, the MDCLP-S improvement phase could not outper-
form MDCLP-H, hence the latter solution was chosen by MDCLP-S
(counting as a zero improvement). This means that exploiting the
flexibility introduced by soft unloading constraints is challenging
under very high penalties, and suggests that planning based on
hard constraints may suffice when the operator weighs heavily
the indirect cost of relocating items during delivery. Nevertheless,
the statistics in the table support the explicit consideration of soft
unloading constraints in general, as they can lead to solutions of
much higher objective values compared to directly enforcing hard
unloading constraints. Finally, we notice that the improvement is
slightly larger for the more homogeneous BR classes, especially un-
der P-3 and P-4.

Table 5 compares MDCLP-B and MDCLP-S. It shows the objec-
tive function value of the two strategies under all penalties and BR

10

Fig. 2. Distribution of improvements of MDCLP-S over MDCLP-B for medium
penalties (P-2).

classes (the results for MDCLP-S are analogous to those in Table 4)
and the average improvement by MDCLP-S over MDCLP-B ex-
pressed as percentage, denoted ASB (%).

For all BR classes, the amount of improvement (i.e.,, ASB) in-
creases with the coefficients («, 8) of the penalty function. On av-
erage, this improvement varies between 2.4% with P-1 to 10.5%
with P-4, reaching a maximum of about 15% for BR5 under P-4.
The reason behind this behavior is that MDCLP-S is aware of
the penalty when optimizing the trade-off between cargo value
and unloading cost in the improvement phase, while MDCLP-B
is passively subject to increasing penalties. In other terms, the
loading solutions by MDCLP-B are generated during the construc-
tion phase independently of the penalty, maximizing the cargo
value, hence indirectly the filling degree of the container. These
solutions typically present many unloading constraints violations,
whose cost can be marginal under low penalties such as P-1 but
is substantial under higher penalties like P-3 or P-4. Overall,
the numbers in Table 5 reveal that neglecting the unloading con-
straints during the packing phase leads to poor solutions with a
potentially high cargo value but that are very expensive to unload.
Overcoming this issue requires applying an improvement phase
that accounts for the unloading costs.

Next, we investigate more in depth the benefit of the improve-
ment phase of our heuristic, and provide more insights on the de-
composition of the objective function into cargo value and penal-
ties.

5.3. Analysis of improvement

In Fig. 2, we show the distribution over all 1500 instances of the
improvement ASB under penalty P-2, which was only reported as

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 5
Comparison of MDCLP-B and MDCLP-S strategies.
MDCLP-B MDCLP-S ASB (%)
Class p-1 P-2 P-3 P-4 p-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4
BR1 820 771 741 715 84.1 814 804 799 25 5.6 8.4 11.7
BR2 819 777 745 716 834 806 794 787 1.8 3.7 6.7 9.9
BR3 796 738 696 658 809 770 753 745 1.7 43 8.1 13.2
BR4 787 734 698 66.6 804 765 75.0 744 2.1 4.2 7.4 11.7
BR5 782 720 677 638 796 756 740 732 1.8 5.0 9.4 14.9
BR6 773 718 679 642 79.0 746 728 720 2.2 39 7.4 12.2
BR7 76.3 711 67.1 63.5 78.1 73.7 72.3 711 23 3.7 7.6 12.0
BR8 757 707 673 64.2 777 734 714 704 2.7 338 6.1 9.7
BR9 75.1 70.6 673 642 77.0 727 709 70.0 2.5 3.0 5.3 9.0
BR10 744 702 669 638 765 722 704 694 2.7 2.9 5.2 8.8
BR11 745 702 671 64.2 764 724 704 698 2.6 3.0 4.9 8.8
BR12 741 69.6 662 629 76.1 714 69.6 6838 2.7 2.6 5.1 9.3
BR13 744 704 673 643 763 720 700 69.2 2.6 2.3 4.1 7.6
BR14 740 696 66.1 628 758 714 694 68.6 24 2.6 5.0 9.2
BR15 738 695 660 628 759 714 696 689 2.8 2.8 53 9.8
Mean 767 718 683 65.1 785 744 727 719 2.4 35 6.4 10.5

72+
70+
o
= .
g 68
=
B
el
2 » e —=- Construction
‘=64 - p/ —x—Improvement 1
o 2 d -%: Improvement 2
62 o Improvement 3
—>-Improvement 4|
60% -o-Improvement 5
| | | | | T T I
0 10 20 30 40 50 60 70 80 90
Running time (seconds)

Fig. 3. Evolution of objective function value in 4th BR7 instance under penalty P-2.

an average in Table 5. To ease visualization, we collect around 220
instances with zero improvement (ASB = 0%) into a first bar de-
picted for range [—1, 0], and truncate the graph at AsB = 20%, dis-
carding about 20 instances with larger improvements.

The distribution is right skewed. Although the bulk of the im-
provement lies between 0 and 6%, with an average of 3.5%, there
are 158 instances (or 10.5%) with improvements of 6-10%, and fur-
ther 77 instances (or 5.1%) with improvements of more than 10%.
This suggests that there is a certain variability in the effective-
ness of our improvement heuristic with respect to different pack-
ing configurations. Nonetheless, applying this phase is critical to
avoid huge losses in a significant subset of instances. This is even
more emphasized under higher penalties such as P-3 and P-4
where the proportion of instances with improvements above 10%
is roughly 20% and 37%, respectively.

For a single instance, Fig. 3 shows how the objective function
value evolves during construction and improvement phases. For
this illustration, we extended the improvement phase to 60 sec-
onds per solution and display markers only for the first, last, and
improving iterations of both phases.

Construction and improvement iterations both play an essen-
tial role in this example as they increase the objective value from
about 60 to 66 and from 66 to 72, respectively. Let us denote by
S, ..., S5 the five best solutions obtained at the end of the con-
struction phase, in this order. In the instance considered in Fig. 3,
it is the second best solution S, (dotted green line) that results in
the overall best solution after experiencing an improvement of 6.5.
Instead, S; (continuous blue line) could only be improved by 4.4,
ranking third after improvement. Interestingly, S5 (dashed brown
line) could be improved by 9.2, ending up second after improve-

1

ment. This clearly shows that seemingly worse solutions from the
construction phase may embed more potential for improvement.

What we observe here is not an isolated case. We found indeed
that S; produced the best packing after the improvement phase
in about 40% of the instances (including those instances with zero
improvement), while the remaining 60% was provided by solutions
S, to Ss, each with at least a 10% share. This proves that improving
an array of different packing solutions is helpful whilst focusing
on just a single one may be inefficient. On the BR7 instances, for
example, the average improvements ASB shown in Table 5 would
be roughly halved when only improving S;. Given this analysis and
results, applying the improvement phase to an even larger number
of solutions may have the potential to bring some additional gain,
at the obvious expense of higher computing time.

We finally investigate whether the improvement observed in
Figs. 2, 3 stems from increasing the cargo value, from reducing the
unloading costs, or both, and show our results in Table 6. This ta-
ble contains the cargo value (labeled “Val.”), the incurred penalties
(“Pen.”), and their difference (“Dif.”), obtained after construction
and improvement phases under all BR classes and penalty sets.
Notice that for the construction phase, “Dif.” coincides with the
MDCLP-B objective, but for the improvement phase, “Dif.” differs
from the MDCLP-S objective as the latter is lower bounded for
each instance by the hard constrained solution. This means that
“Dif.” for the improvement phase is always less than or equal to
the objective of the MDCLP-S heuristic discussed in Section 5.2.
Green and red entries of the table highlight, respectively, improve-
ments and worsening in cargo value or penalties.

The results are mixed and depend on both penalty weights and
heterogeneity of instance. Under the intermediate penalties P-2
and P-3, the cargo value and the unloading costs often improve
simultaneously. Under low penalties (P-1), some extra unloading
cost is usually introduced with the goal of increasing the cargo
value by a larger extent. Under very high penalties (P-4), the op-
posite happens and some cargo value is sacrificed during improve-
ment to cut the unloading costs by a more significant amount.
Overall, this analysis shows that balancing the trade-off between
the two objective function components is crucial to ensure the
highest solution quality, but is not straightforward without an im-
provement phase as it depends on the instance’s features and on
the penalties.

5.4. Comparison with commercial solver

In this section, we compare the solutions of our heuristic strat-
egy MDCLP-S with those obtained when solving the MILP with a

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 6
Analysis of improvement: cargo value vs. unloading cost.
P-1 pP-2
Construction Improvement Construction Improvement
Class Val. Pen Dif. Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif.
BR1 854 34 82.0 86.7 3.0 83.7 826 55 77.1 838 4.1 79.8
BR2 85.0 3.1 81.9 86.1 29 83.2 830 53 71.7 83.7 4.0 79.7
BR3 836 4.0 79.6 850 4.1 80.9 808 7.0 73.8 81.7 5.6 76.1
BR4 826 39 78.7 845 42 80.3 79.7 63 73.4 813 59 75.4
BR5 828 46 78.2 842 46 79.6 792 72 72.0 809 63 74.6
BR6 813 4.0 77.3 834 44 79.0 782 64 71.8 804 6.2 74.2
BR7 804 4.1 76.3 826 45 78.1 774 63 71.1 79.1 6.1 73.0
BR8 79.8 4.1 75.7 82.2 4.5 77.7 76.2 5.5 70.7 78.7 5.7 73.1
BR9 788 3.7 75.1 816 4.6 77.0 757 5.1 70.6 782 5.7 72.5
BR10 784 4.0 74.4 81.1 46 76.5 753 5.1 70.2 778 5.7 72.1
BR11 786 4.1 74.5 808 44 76.4 752 5.0 70.2 780 59 72.1
BR12 782 4.1 74.1 808 4.7 76.1 750 54 69.6 776 63 71.3
BR13 776 3.2 74.4 80.7 44 76.3 755 5.1 70.4 775 5.8 71.8
BR14 779 39 74.0 805 4.6 75.8 750 54 69.6 773 6.2 71.2
BR15 777 39 73.8 805 4.6 75.9 750 55 69.5 772 6.1 71.2
Mean 80.6 3.9 76.7 827 43 78.4 775 5.7 71.8 795 5.7 73.9
P-3 P-4
Construction Improvement Construction Improvement
Class Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif.
BR1 818 7.7 74.1 82.1 3.9 78.2 80.5 9.0 715 806 3.0 77.6
BR2 820 75 74.5 81.6 4.1 77.5 815 99 71.6 799 4.0 75.9
BR3 793 9.7 69.6 796 6.6 73.0 786 128 658 772 63 71.0
BR4 78.1 8.3 69.8 78.7 6.1 72.6 779 113 66.6 768 5.9 70.9
BR5 77.8 10.1 67.7 77.7 6.1 71.7 77.2 13.4 63.8 75.1 5.4 69.7
BR6 774 95 67.9 780 6.6 714 769 127 642 75.7 6.5 69.3
BR7 765 9.4 67.1 770 6.7 70.4 76.1 126 635 748 7.2 67.6
BR8 754 8.1 67.3 76.7 6.5 70.2 749 107 642 745 6.7 67.8
BR9 75.1 7.8 67.3 764 6.5 69.9 748 106 642 743 6.7 67.6
BR10 748 79 66.9 758 6.7 69.1 744 106 63.8 738 71 66.7
BR11 745 74 67.1 757 6.7 69.1 744 102 642 739 72 66.7
BR12 745 83 66.2 75.7 7.6 68.1 741 112 629 734 79 65.5
BR13 748 75 67.3 75.7 6.7 69.0 745 102 643 738 74 66.4
BR14 745 8.4 66.1 755 74 68.0 742 114 628 732 8.1 65.1
BR15 744 84 66.0 753 73 68.0 74.1 113 628 729 7.8 65.1
Mean 767 84 68.3 774 64 71.1 763 112 65.1 753 65 68.9
Table 7
Comparison of MDCLP-S and Gurobi on BR4 and BR10 instances.
MDCLP-S Gurobi MDCLP-S Gurobi
BR4 Items 130s 130s 600s BR10 Items 130s 130s 600s
1 106 79.56 18.92 22.56 1 136 76.90 3.11 3.11
2 123 79.16 6.69 6.69 2 123 75.80 20.66 20.66
3 135 81.69 5.57 5.57 3 136 71.52 293 293
4 169 77.85 3.05 3.05 4 122 78.71 3.71 3.71
5 130 80.50 9.12 9.12 5 133 72.84 3.75 3.75
6 132 81.89 2.89 56.78 6 159 71.62 1.88 1.88
7 138 82.61 6.28 6.28 7 127 74.63 447 447
8 107 74.94 16.74 27.10 8 123 72.03 6.63 6.63
9 149 78.04 2.36 4.92 9 107 72.05 3.72 7.22
10 133 79.69 3.91 3.91 10 126 72.16 6.27 6.27
Mean 132 79.59 7.55 14.60 Mean 129 73.83 5.71 6.06

commercial optimization solver, namely Gurobi 9.1. We recall that
the complete MILP is reported in the appendix in (11). We per-
formed two sets of experiments: (i) using directly some of the BR
instances, to investigate the limits of the solver, and (ii) on smaller
instances that can be solved to optimality, so that we can compare
our results with optimal solutions.

In the first experiment, we consider 20 BR instances from
classes BR4 and BR10 (to include different degrees of heterogene-
ity) and solve them with penalty P-3, excluding the reachabil-
ity constraints (10c) which are not modeled in the MILP. Table 7
shows the objective function value achieved by MDCLP-S running
130 seconds (of which 30 for construction and 100 to improve 5

12

solutions) and from Gurobi with the same time budget as well as
an increased budget of 600 seconds.

It is evident from the table that the solver struggles to find
good feasible solutions to instances with over 100 items. In most
cases, the solver does not retrieve any improving solution when
moving from 130 to 600 seconds, and the values are often so low
that the best solutions found are essentially useless. This strength-
ens the discussion in Section 3.3 about the need for developing a
heuristic method.

We verified that moderate-sized instances of 40-60 items are
also intractable. Thus, we need to scale down the instance size
considerably in order to compare our results with optimal solu-

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 8
Comparison of MDCLP-S and Gurobi on reduced BR4 instances.
Gurobi MDCLP-S

BR4 Val. Pen. Obj. Items Time Val. Pen. Obj. Items Gap (%)
1 89.99 000 8999 11 244.8 87.61 297 84.65 10 5.9
2 8433 038 8395 11 9.5 7395 152 7243 10 13.7
3 92.31 1.08 9122 10 922.5 8738 0.82 86.56 10 5.1
4 85.59 0.73 8486 11 9.4 7452 284 7168 10 15.5
5 92.05 122 90.83 10 689.2 88.56 0.87 87.69 9 35
6 8521 077 8444 10 >7200.0 8572 531 80.41 10 4.8
7 89.12 052 8860 11 40.5 8147 298 7849 10 114
8 90.52 050 90.02 11 28.7 86.40 179 84.61 10 6.0
9 8555 177 83.78 10 318.2 7629 215 7414 10 115
10 82,57 0.00 8257 10 5.1 7897 0.00 7897 9 4.4
Mean 8772 0.70 87.03 105 946.8 82.09 212 7996 98 8.1

tions. In the following, we consider 10 instances of 12 items con-
structed from the BR4 instances previously used in Table 7. More
specifically, we choose the 12 items so that the proportion of de-
mands across item types is respected as much as possible (e.g.,
an instance with 100 and 50 items of type 1 and 2, respectively,
would be turned into a 12-item instance with 8 and 4 items of
type 1 and 2, respectively). Moreover, the dimensions of all boxes
are scaled up so that the joint volume of the 12 boxes becomes
100% the volume of the container. For these instances, the results
in Table 8 show the objective function value obtained by MDCLP-S
and Gurobi, its breakdown into cargo value and penalty, the num-
ber of loaded items, and the runtime of the solver capped at 2
hours.

Our heuristic solutions are on average 8% away from the opti-
mal. The number of loaded items suggests that a reason for this
gap is the ability of the solver to better fill the volume of the
container by loading one more box on average (or loading larger
boxes), which in small instances translates to a significant propor-
tion of cargo value. Although the penalties in the optimal solutions
improve too compared to our heuristic, their contribution to the
gap is only about 1.5%. The computational time required by the
solver fluctuates significantly, which is impractical. Whilst some in-
stances were solved in ten seconds, others needed several hundred
seconds, and one was not solved to optimality in 2 hours. Thus, al-
though there may be a benefit in using off-the-shelf commercial
optimization software, this benefit is limited to problems that are
extremely limited in size.

5.5. Comparison with methods from the literature

The approach in the literature that is closest to ours is Gajda
et al. (2022), where penalties are item-independent, and each box
violating the unloading constraints counts as one (see Section 2).
The solution method developed in Gajda et al. (2022) is a ran-
domized constructive heuristic called RCH. Here, we compare RCH
with our MDCLP-S heuristic to investigate whether considering
the number of boxes to relocate may be a sufficient approach for
the MDCLP with soft unloading constraints.

Since RCH accounts for a variety of practical constraints that
we do not consider (e.g., vertical stability, loading priorities, and
weight distribution), a direct comparison would be unfair for RCH.
Thus, we implemented a simplified version of RCH that neglects
such additional practical constraints, and tested it for all 1500 BR
instances and penalties P-1, P-2, P-3, and P-4. Table 9 reports
the averaged RCH results and their percentage difference with re-
spect to MDCLP-S (see Table 6). Both methods have a time limit
of 130 seconds. Unlike MDCLP-S, notice that RCH does not have
an improvement phase; hence, the time budget available is used
entirely for the construction phase.

13

When looking at the cargo value alone, RCH slightly outper-
forms MDCLP-S, especially for the more heterogeneous instances,
and by 1.2% on average across all BR classes and penalties. In con-
trast, RCH incurs penalties that are substantially higher and up to
three times those incurred by MDCLP-S. On average across all BR
classes, the penalized value achieved by RCH is 0.5%, 4%, 7.8%, and
12% worse than MDCLP-S under penalty P-1, P-2, P-3, and P-4,
respectively. These statistics reveal that if penalties are very small
(e.g., P-1), then putting more emphasis on maximizing cargo value
may be a good strategy, whereas incorporating advanced tech-
niques to reduce penalties such as region reconstruction leads to
limited gains. For example, RCH uses a preprocessing phase during
construction to combine items into blocks, which possibly explains
the slight improvement in cargo value. Nevertheless, if penalties
are more significant (e.g., P-2 to P-4) and item-specific, then sim-
ply targeting a reduction in the number of item relocations is in-
efficient as shown by the large performance gap.

Besides considering the objective function used in this paper,
to improve fairness we also compare the performance of RCH and
MDCLP-S on the trade-off between cargo value and the number of
items to relocate, managing which is a goal in Gajda et al. (2022).
To this end, we show in Fig. 4 the randomized RCH and MDCLP-S
iterations and their implied Pareto frontiers on three BR instances.
To improve visualization, we have truncated some less interesting
portions of the solution space.

As we can see, results are mixed and no method dominates the
other, with the two Pareto frontiers often crossing each other. In
conclusion, our approach to tackle soft unloading constraints im-
plicitly reduces the number of items to relocate as effectively as
RCH, in addition to dominating this method considerably when it
comes to minimizing the penalties.

5.6. Region reconstruction methods

Finally, we compare the three methods introduced in
Section 4.2 to define the region to reconstruct during the im-
provement phase, namely M-1, M-2, and M-3 (see Step 2 of
Algorithm 1). Our setting involves £ =5 in all methods and trade-
off parameters ¢P =0.7 and ¢F=0.3 in M-3, which we picked
based on preliminary experiments. In Table 10, we report the aver-
age objective value obtained when employing these three methods
for each BR class and parameter set. To ensure consistency, for
each instance we improve the same five constructive solutions
when applying M-1, M-2, and M-3.

It is evident that approach M-1 based on the conflict matrix
outperforms the others in most instances, except for the more ho-
mogeneous classes BR1-5 under penalty P-1 where instead M-2
and M-3 produce slightly better results. Typically, the performance
difference between M-1 and the best among M-2 and M-3 is
marginal but can also reach up to 1-2% in some instances. Recall

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 9
RCH results on the BR instances and comparison with MDCLP-S.
P-1 P-2 P-3 P-4
Class Val. Pen. Obj. Val. Pen. Obj. Val. Pen. Obj. Val. Pen. Obj.
BR1 84.0 2.8 81.2 82.0 5.0 77.0 80.4 6.3 74.2 79.0 7.1 72.0
-3.1% -6.3% -3.0% -2.2% +21% -3.5% -2.1% + 60% -5.2% -1.9% +136% -7.3%
BR2 83.1 3.8 79.3 80.6 6.5 74.1 78.5 8.2 70.3 77.9 10.8 67.2
-3.5% +31% -4.7% -3.7% +62% -7.1% -3.8% + 100% -9.3% -2.5% +169% -11.5%
BR3 83.3 53 78.1 78.9 8.0 70.9 773 10.9 66.4 76.2 14.0 62.2
-2.0% +28% -3.5% -3.5% +42% -6.8% -2.9% + 65% -9.1% -1.3% +122% -12.4%
BR4 83.6 5.7 77.8 79.0 8.6 70.4 76.1 10.8 65.3 753 14.1 61.1
-1.1% +36% -3.1% -2.9% +46% -6.7% -3.3% + 76% -10.0% -2.0% +139% -13.8%
BR5 83.2 5.1 78.1 79.7 8.8 71.0 783 12.7 65.6 77.3 16.6 60.7
-1.2% +12% -1.9% -1.4% +39% -4.9% +08% +107% -8.5% +29% +207% -12.9%
BR6 83.2 6.0 77.1 78.4 8.9 69.6 773 133 64.0 76.2 17.3 58.9
-0.3% +37% -2.4% -2.4% +43% -6.3% -0.9% +102% -10.4% +0.6% +165% -15.0%
BR7 83.1 5.6 77.6 78.9 8.7 70.2 77.8 13.1 64.7 773 17.7 59.6
+0.6% +24% -0.7% -0.2% +43% -3.9% +1.1% +95% -8.0% +3.3% +146% -11.8%
BR8 83.7 5.4 783 80.2 9.6 70.6 79.3 14.9 64.4 78.1 19.5 58.7
+1.8% +21% +0.7% +19% +69% -3.4% +34% +129% -8.2% +49% +191% -13.5%
BR9 84.1 6.2 77.9 79.2 9.1 70.1 77.8 13.4 64.4 77.2 18.0 59.2
+3.0% +35% +1.1% +12% +60% -3.4% +1.8% +106% -7.8% +3.8% +168% -12.5%
BR10 84.0 5.9 78.1 79.4 8.8 70.7 78.6 13.5 65.1 77.4 17.6 59.9
+3.6% +28% +21% +21% +54% -2.0% +3.6% +101% -5.8% +4.9% 4+ 147% -10.2%
BR11 84.5 6.0 78.4 80.0 9.1 70.9 78.7 13.5 65.2 78.5 18.7 59.9
+45% +37% +2.7% +26% +54% -1.6% +4.0% +102% -5.6% +62% +159% -10.3%
BR12 84.2 6.5 77.8 79.6 10.0 69.6 78.8 15.6 63.2 77.9 20.8 571
+42% +38% +2.2% +26% +58% -2.4% +41% +105% -7.2% +6.1% +163% -12.8%
BR13 83.8 6.1 77.7 79.3 8.8 70.4 78.8 14.1 64.7 78.2 19.0 59.2
+3.8% +38% + 1.8% +23% +52% -1.9% +41% +110% -6.2% +6.0% +157% -10.8%
BR14 83.0 6.7 76.3 78.2 9.6 68.6 774 15.0 62.4 76.5 20.0 56.5
+3.0% +45% + 0.6% +1.1% +54% -3.7% +25% +103% -8.2% +4.5% +146% -13.2%
BR15 83.0 6.4 76.6 78.2 9.2 69.0 77.5 14.5 63.1 77.0 19.6 57.4
+31% +38% +09% +13% +51% -3.1% +29% +98% -7.3% +5.6% +151% -11.8%
Mean 83.6 5.6 78.0 79.4 8.6 70.9 78.2 12.6 65.5 77.3 16.7 60.6
+1.1% +29% -0.5% -0.1% +50% -4.0% +1.0% +97% -7.8% +27% +158% -12.0%
857 8571 84r
82+ °
. o
® x
80 80+ 58 x t P X x
o¥ X
o <) [0} s M z Fxxxx §
E| | | Theet M1
< @ T 787 $XalpxuX
o 75" o 80" o TS L
o o o x 3 x 3 x
2 2 D76+] T Xk ¥ x
@ 5 @ $oxx Nxy
®) O O x R x %y
| ® RCH iterations ® RCH iterxations 74+ ® RCH iterations
70 —RCH Pareto front ——RCH Pareto front —RCH Pareto front
® x MDCLP-S (construction) * MDCLP-S (construction) 70| * MDCLP-S (construction)
¢ MDCLP-S (improvement) ¢ MDCLP-S (improvement) ¢ MDCLP-S (improvement)
——MDCLP-S Pareto front ——MDGCLP-S Pareto front ——MDCLP-S Pareto front
65 ‘ ‘ ‘ 75 ¢ 70 ‘ : ‘
20 40 60 60 65 70 75 80 85 40 45 50 55 60

Number of items to move
(a) BR4 instance 3.

Number of items to move
(b) BR10 instance 5.

Number of items to move
(c) BR10 instance 7.

Fig. 4. Trade-off between cargo value and item relocations under RCH and MDCLP-S.

that M-2 chooses the region based on its penalty density, which
encodes information on conflicts like M-1 as well as additional in-
formation on the volume where conflicts occur. Thus, the superior
performance of M-1 over M-2 was unexpected, but we attribute
it to the latter approach favoring the selection of smaller regions
that are more likely to exhibit a high penalty density. Considering
such small regions may be less efficient as they provide less flex-
ibility for reconstruction. Also surprising is the contrast between
M-2 and M-3 since the latter method exploits extra information on
empty spaces but performs better in less than half of the instances
(mostly those with high penalties). Therefore, our results suggest

14

that empty spaces and penalty densities do not convey critical in-
formation to select the region to reconstruct, while letting conflicts
guiding the search seems sufficient.

Finally, Table 11 shows the number of “wins” each region
definition method achieves over the 100 instances of each class,
and complements the former table that only reports average
performance. In case of ties among two or three methods, we
attribute one point to each of them, meaning that the total score
may add up to more than 100. The results from this table are
consistent with the previous discussion since M-1 obtains the
highest score in most configurations of BR classes and penalties,

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

Table 10
Comparison of region reconstruction methods: objective function value.
P-1 P-2 P-3 P-4

Class M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
BR1 837 836 838 798 793 799 782 762 781 776 744 776
BR2 832 832 832 79.7 792 789 775 761 772 759 734 753
BR3 809 81.0 809 761 756 75.7 73.0 714 724 710 68.0 70.2
BR4 80.3 804 80.2 754 751 750 726 716 725 709 683 704
BR5 796 797 79.6 746 737 736 717 698 70.8 69.7 664 688
BR6 79.0 788 787 742 735 736 714 698 70.5 69.3 673 684
BR7 781 780 777 73.0 727 724 704 690 694 67.6 655 66.9
BR8 777 775 771 731 725 719 702 693 69.0 67.8 662 66.7
BR9 770 769 764 725 722 716 699 689 6838 67.6 66.1 66.3
BR10 765 762 757 721 717 710 69.1 684 682 66.7 653 65.7
BR11 764 763 758 721 716 713 69.1 685 683 66.7 658 65.7
BR12 761 759 755 713 709 704 68.1 676 67.2 65.5 645 64.6
BR13 76.3 76.1 75.5 718 717 711 69.0 684 68.1 664 654 65.6
BR14 758 757 752 71.2 708 70.2 68.0 673 66.8 65.1 644 640
BR15 759 755 748 712 708 70.1 680 673 66.8 65.1 642 645
Mean 784 783 78.0 739 734 731 711 700 703 689 670 68.0

Table 11

Comparison of region reconstruction methods: number of wins.

P-1 P-2 P-3 P-4

Class M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3
BR1 30 46 39 39 49 52 49 58 56 53 57 58
BR2 35 34 34 41 50 29 47 47 41 61 44 51
BR3 24 46 34 41 43 35 54 44 36 61 38 41
BR4 32 40 34 40 41 33 45 32 39 56 30 36
BR5 27 42 31 53 28 25 49 34 31 56 37 35
BR6 45 40 23 51 29 28 59 28 31 56 28 32
BR7 44 36 25 40 44 26 53 30 25 55 27 36
BR8 48 31 21 61 33 20 61 32 24 59 31 33
BR9 46 34 22 57 38 21 69 29 19 66 31 26
BR10 47 41 12 63 38 11 62 30 24 66 25 29
BR11 48 38 16 61 27 22 52 30 26 60 33 25
BR12 48 40 14 56 36 22 57 44 21 63 26 28
BR13 43 39 18 44 42 24 58 38 20 61 30 35
BR14 42 42 20 54 38 17 60 28 22 60 35 19
BR15 53 37 13 55 35 18 65 34 19 58 29 33
Mean 408 39.1 237 504 381 255 56.0 359 289 594 334 345

emerging as the most robust method to select a region. However,
M-1 rarely exceeds a score of 55 or 60, implying that M-2 and
M-3 still win in a significant subset of instances. E.g., M-2 is
comparable to M-1 for low penalties and weakly-heterogeneous
instances. This hints that extending our algorithm by randomizing
the region reconstruction method (i.e., picking a different method
at each improvement iteration) may have some potential to further
improve a packing solution.

6. Conclusion

The aim of this study was to model and solve a variant of the
MDCLP in which the unloading constraints are not enforced as
hard constraints, as commonly done in the literature, but are in-
stead treated as soft constraints, which is relevant in practice for
logistics operators (see, e.g., the discussion in Gajda et al., 2022). To
this end, we introduced penalty functions that are activated when
above, visibility, and reachability unloading constraints are violated
between item pairs belonging to different customers. The defini-
tion of these penalties is flexible and allows an operator to model
the indirect cost/time of moving items during delivery (emphasiz-
ing, e.g., heavy or bulky items) and consequently account for the
trade-off between this cost and the value of the transported cargo.

After presenting a mixed-integer programming formulation able
to tackle small instances under specific penalties, we proposed a
more general heuristic framework made of fast construction and
improvement phases, and tested it on a large set of instances from

15

the literature. Our computational study provides a set of algorith-
mic insights (e.g., on the role of construction vs. improvement, on
the region reconstruction techniques, and on the limited usefulness
of commercial optimization solvers) as well as managerial insights.
In particular, it shows that a loading strategy incorporating soft un-
loading constraints may be significantly more efficient than a se-
quential approach that only evaluates penalties a posteriori, a hard
unloading constraint approach, and a heuristic from the literature
that counts the number of box relocations without directly mini-
mizing the penalties. Only under high penalties, planning based on
hard unloading constraints may be enough.

Future research may be targeted at improving the heuristic
algorithm by: (i) adding movements to the improvement phase
from those presented in the VNS of Parrefio et al. (2010), e.g.,
layer reduction, column insertion, and swapping of items or
groups of items, (ii) trying alternative merit functions in Step 4
of Algorithm 1, or (iii) using the graph representation of Fekete
et al. (2007) not only to shift boxes and obtain gapless solutions,
but also to modify the relative position of items by varying the
transitive orientations of the interval graphs as done in Trivella &
Pisinger (2016).

The problem we consider is static and all penalties are com-
puted based on the initial packing configuration. In practice, the
multi-drop process may also allow at each delivery point to repo-
sition a portion of the cargo inside the container, potentially elim-
inating some violations of the unloading constraints for later cus-
tomers or creating new ones. Accounting for the extra decisions

JID: EOR

G. Bonet Filella, A. Trivella and E Corman

to where to relocate items during the multi-delivery phase con-
stitutes an additional layer of flexibility that would be interesting
to investigate in a dynamic (and certainly more complex) MDCLP
extension.

Declaration of Competing Interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to
influence the work reported in this paper.

Acknowledgments

This work is partly supported by the Swiss National Science
Foundation under Project 1481210/DADA.

Appendix

In this appendix, we present an MILP formulation for the MD-
CLP with soft unloading constraints and that includes rotations.
Model (11) relies on the same notation as Section 3, and in addi-
tion, employs binary variables 0;1, ..., 0;5 € {0, 1} for i € B to model
the six different orthogonal orientations of a cuboid. Constraints
(11i) ensure that only one such orientation is selected for each
item i € B.

max ZJT,T,‘—Z Z [p,‘j ((XAQj+ﬂAUj+VAZj+nA)

ieB ieB jeB:ci<cj
+1i5 (o + Bovy + zj + 1) | (11a)
s.t.: fl-j+fﬁ+b,-j+bﬁ+u,-j+uﬁ+(1 —-t)+(Q —tj) >1
VijeB. i<j (11b)
X + li(0i1 + 02) + Wi (053 + 0i4) + hi(0;5 + 0;6)
—X]' < L(l — b,‘j) Vl,] € B, (11c)
Yi+ (03 + 0i5) + w;(0i1 + 0j6) + h;(0j2 + 0i4)
-y <WQa-fij) Vi, j e B, (11d)
Z;i 4 1;(014 + 0i6) + W;(0i2 + 0j5) + h;(0;1 + 0;3)
—Zj SH(] fu,»j) Vi,jEB, (116)
X + 1;(0;1 + 02) + W;(0;3 + 0ia) + hi(0i5 + 05) <L Vi, jeB,
(116)

Vi +1i(0i3 + 0i5) + Wi (01 +0i6) + hi(0 +04) <W Vi, jeB,
(11g)

Zi + 1;(0i4 + 0ig) + W;(0i2 + 0;5) + hi(05 +03) <H Vi, jeB,

(11h)

0i1 + 0y + 03 + 0i4 + 0j5 + 055 = 1 Vi, jeB, (11i)
Xj < X+ 1;(0;1 +0i2) +w;(03 + 0j4)

+hi(0i5s +0i6) +Lbi; Vi, jeB, ¢ #cj, (11j)

¥ <¥i+1i(o3 +0i5) + w;(0i1 + 0i6)

16

[m5G;November 12, 2022;23:55]

European Journal of Operational Research xxx (xXxx) Xxx

+hi(0; + 0i) + W fj; Vi, jeB, ¢ #cj, (11k)
Zj < zi + 1;(0i4 + 0j5) + W; (012 + 0j5)

+hi(0i1 + 0;3) + Huj Vi, jeB, ¢ #cj, (111)
bij+bji+ fij+ fii=1—a Vi, jeB, ¢ <cj, (11m)
bij + bji+ fij + fii = 2(1 — a;j) Vi, jeB, ¢ <cj, (11n)
fij + fii +wij +uji > 1 —dj; Vi, jeB, ¢ <cj, (110)
fij + fii +wij +uji < 2(1 —dyj) Vi, jeB, ¢ <cj, (11p)
pij+ 1> a5+ u; Vi,jeB, ¢ <cj, (11q)
rij+1>dij+ by Vi,jeB, ¢ <cj, (11r)
var. : by, fii, wj, @, dij, pij, rij€{0,1} VijeB, (11s)
ti, 01, Oip, Oj3, Oig, Oj5, 0j5 € {0, 1} Vie B, (11¢t)
Xi, Yi, zi>0 VieB. (11u)
References

Alonso, M., Alvarez-Valdes, R., lori, M., & Parreno, F. (2019). Mathematical models for
multi-container loading problems with practical constraints. Computers & Indus-
trial Engineering, 127, 722-733. https://doi.org/10.1016/j.cie.2018.11.012.

Araya, I, Guerrero, K., & & Nunez, E. (2017). VCS: A new heuristic function for
selecting boxes in the single container loading problem. Computers & Operations
Research, 82, 27-35. https://doi.org/10.1016/j.cor.2017.01.002.

Bischoff, E. E., Janetz, F, & Ratcliff, M. (1995). Loading pallets with non-identical
items. European Journal of Operational Research, 84(3), 681-692. https://doi.org/
10.1016/0377-2217(95)00031-K.

Bortfeldt, A. (2012). A hybrid algorithm for the capacitated vehicle routing problem
with three-dimensional loading constraints. Computers & Operations Research,
39(9), 2248-2257. https://doi.org/10.1016/j.cor.2011.11.008.

Bortfeldt, A., & Wadscher, G. (2013). Constraints in container loading-a state-of-the-
art review. European jJournal of Operational Research, 229(1), 1-20. https://doi.
org/10.1016/j.ejor.2012.12.006.

Chen, C. S, Lee, S.-M., & Shen, Q. S. (1995). An analytical model for the container
loading problem. European Journal of Operational Research, 80(1), 68-76. https:
//doi.org/10.1016/0377-2217(94)00002-T.

Christensen, S. G., & Rousce, D. M. (2009). Container loading with multi-drop con-
straints. International Transactions in Operational Research, 16(6), 727-743. https:
//doi.org/10.1111/j.1475-3995.2009.00714.x.

Crainic, T. G., Perboli, G., & Tadei, R. (2008). Extreme point-based heuristics for
three-dimensional bin packing. INFORMS Journal on Computing, 20(3), 368-384.
https://doi.org/10.1287/ijoc.1070.0250.

Davies, A. P, & Bischoff, E. E. (1999). Weight distribution considerations in container
loading. European Journal of Operational Research, 114(3), 509-527. https://doi.
0rg/10.1016/S0377-2217(98)00139-8.

Fanslau, T., & Bortfeldt, A. (2010). A tree search algorithm for solving the con-
tainer loading problem. INFORMS Journal on Computing, 22(2), 222-235. https:
//doi.org/10.1287/ijoc.1090.0338.

Fekete, S. P, Schepers,], & Van der Veen,]J. C. (2007). An exact algorithm for
higher-dimensional orthogonal packing. Operations Research, 55(3), 569-587.
https://doi.org/10.1287/opre.1060.0369.

Ferreira, K. M., de Queiroz, T. A., & Toledo, F. M. B. (2021). An exact approach for the
green vehicle routing problem with two-dimensional loading constraints and
split delivery. Computers & Operations Research, 105452. https://doi.org/10.1016/
j.cor.2021.105452.

Fuellerer, G., Doerner, K. F, Hartl, R. F,, & lori, M. (2009). Ant colony optimization for
the two-dimensional loading vehicle routing problem. Computers & Operations
Research, 36(3), 655-673. https://doi.org/10.1016/j.cor.2007.10.021.

https://doi.org/10.1016/j.cie.2018.11.012
https://doi.org/10.1016/j.cor.2017.01.002
https://doi.org/10.1016/0377-2217(95)00031-K
https://doi.org/10.1016/j.cor.2011.11.008
https://doi.org/10.1016/j.ejor.2012.12.006
https://doi.org/10.1016/0377-2217(94)00002-T
https://doi.org/10.1111/j.1475-3995.2009.00714.x
https://doi.org/10.1287/ijoc.1070.0250
https://doi.org/10.1016/S0377-2217(98)00139-8
https://doi.org/10.1287/ijoc.1090.0338
https://doi.org/10.1287/opre.1060.0369
https://doi.org/10.1016/j.cor.2021.105452
https://doi.org/10.1016/j.cor.2007.10.021

JID: EOR

G. Bonet Filella, A. Trivella and F. Corman

Fuellerer, G., Doerner, K. F, Hartl, R. F, & lori, M. (2010). Metaheuristics for vehi-
cle routing problems with three-dimensional loading constraints. European Jour-
nal of Operational Research, 201(3), 751-759. https://doi.org/10.1016/j.ejor.2009.
03.046.

Gajda, M., Trivella, A., Mansini, R., & Pisinger, D. (2022). An optimization approach
for a complex real-life container loading problem. Omega, 107, 102559. https:
//doi.org/10.1016/j.o0mega.2021.102559.

Gendreau, M., lori, M., Laporte, G., & Martello, S. (2006). A tabu search algorithm for
a routing and container loading problem. Transportation Science, 40(3), 342-350.
https://doi.org/10.1287/trsc.1050.0145.

George, J. A., & Robinson, D. F. (1980). A heuristic for packing boxes into a con-
tainer. Computers & Operations Research, 7(3), 147-156. https://doi.org/10.1016/
0305-0548(80)90001-5.

Hokama, P, Miyazawa, F. K., & Xavier, E. C. (2016). A branch-and-cut approach for
the vehicle routing problem with loading constraints. Expert Systems with Appli-
cations, 47, 1-13. https://doi.org/10.1016/j.eswa.2015.10.013.

lori, M., Locatelli, M., Moreira, M. C. O., & Silveira, T. (2020). Reactive GRASP-based
algorithm for pallet building problem with visibility and contiguity constraints.
In Proceedings of the international conference on computational logistics (pp. 651-
665). Springer. https://doi.org/10.1007/978-3-030-59747-4_42.

Iori, M., & Martello, S. (2010). Routing problems with loading constraints. Top, 18(1),
4-27. https://doi.org/10.1007/s11750-010-0144-x.

lori, M., Salazar-Gonzalez,].-]., & Vigo, D. (2007). An exact approach for the vehicle
routing problem with two-dimensional loading constraints. Transportation sci-
ence, 41(2), 253-264. https://doi.org/10.1287/trsc.1060.0165.

Junqueira, L., Morabito, R., & Sato Yamashita, D. (2012a). Mip-based approaches for
the container loading problem with multi-drop constraints. Annals of Operations
Research, 199(1), 51-75. https://doi.org/10.1007/s10479-011-0942-z.

Junqueira, L., Morabito, R., & Yamashita, D. S. (2012b). Three-dimensional container
loading models with cargo stability and load bearing constraints. Computers &
Operations Research, 39(1), 74-85. https://doi.org/10.1016/j.cor.2010.07.017.

Lai, K. K., Xue, J., & Xu, B. (1998). Container packing in a multi-customer delivering
operation. Computers & Industrial Engineering, 35(1-2), 323-326. https://doi.org/
10.1016/S0360-8352(98)00085-0.

Laporte, G. (2009). Fifty years of vehicle routing. Transportation Science, 43(4), 408-
416. https://doi.org/10.1287/trsc.1090.0301.

Liu, J., Yue, Y., Dong, Z, Maple, C, & Keech, M. (2011). On the three-
dimensional container packing problem under home delivery service. Asia-
Pacific Journal of Operational Research, 28(05), 601-621. https://doi.org/10.1142/
$0217595911003466.

Lurkin, V., & Schyns, M. (2015). The airline container loading problem with pickup
and delivery. European Journal of Operational Research, 244(3), 955-965. https:
/|doi.org/10.1016/j.ejor.2015.02.027.

Mannel, D., & Bortfeldt, A. (2016). A hybrid algorithm for the vehicle routing prob-
lem with pickup and delivery and three-dimensional loading constraints. Euro-
pean Journal of Operational Research, 254(3), 840-858. https://doi.org/10.1016/j.
€jor.2016.04.016.

Mannel, D., & Bortfeldt, A. (2018). Solving the pickup and delivery problem with
three-dimensional loading constraints and reloading ban. European Journal of
Operational Research, 264(1), 119-137. https://doi.org/10.1016/j.ejor.2017.05.034.

Martello, S., Pisinger, D., & Vigo, D. (2000). The three-dimensional bin packing prob-
lem. Operations Research, 48(2), 256-267. https://doi.org/10.1287/opre.48.2.256.
12386.

Martinez, D. A., Alvarez-Valdes, R., & Parrefio, F. (2015). A grasp algorithm for the
container loading problem with multi-drop constraints. Pesquisa Operacional,
35(1), 1-24. https://doi.org/10.1590/0101-7438.2015.035.01.0001.

Moura, A., & Oliveira, J. F. (2005). A GRASP approach to the container-loading prob-
lem. [EEE Intelligent Systems, 20(4), 50-57. https://doi.org/10.1109/MIS.2005.57.

Nascimento, O. X., Queiroz, T. A., & Junqueira, L. (2021). Practical constraints in the
container loading problem: Comprehensive formulations and exact algorithm.
Computers & Operations Research, 128, 105186. https://doi.org/10.1016/j.cor.2020.
105186.

17

[m5G;November 12, 2022;23:55]

European Journal of Operational Research Xxx (XXxx) Xxx

Pan, L, Chu, S. C. K, Han, G., & Huang, J. Z. (2009). A tree-based wall-building
algorithm for solving container loading problem with multi-drop constraints.
In Proceedings of the IEEE international conference on industrial engineering and
engineering management (pp. 538-542). IEEE. https://doi.org/10.1109/IEEM.2009.
5373282.

Parrefio, F,, Alvarez-Valdes, R., Oliveira,]. F, & Tamarit,]. M. (2010). Neighborhood
structures for the container loading problem: A VNS implementation. Journal of
Heuristics, 16(1), 1-22. https://doi.org/10.1007/s10732-008-9081-3.

Parrefio, F, Alvarez-Valdés, R., Tamarit, J. M., & Oliveira, J. F. (2008). A maximal-
space algorithm for the container loading problem. INFORMS Journal on Com-
puting, 20(3), 412-422. https://doi.org/10.1287/ijoc.1070.0254.

Pisinger, D. (2002). Heuristics for the container loading problem. European Journal
of Operational Research, 141(2), 382-392. https://doi.org/10.1016/S0377-2217(02)
00132-7.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2015). Vehicle
routing problems with loading constraints: state-of-the-art and future direc-
tions. OR Spectrum, 37, 297-330. https://doi.org/10.1007/s00291-014-0386-3.

Pollaris, H., Braekers, K., Caris, A., Janssens, G. K., & Limbourg, S. (2016). Capacitated
vehicle routing problem with sequence-based pallet loading and axle weight
constraints. EURO Journal on Transportation and Logistics, 5(2), 231-255. https:
//doi.org/10.1007/s13676-014-0064-2.

Post, S. (2020a). Swiss post expects a new all-time record in December. Ac-
cessed 30 July 2021 https://post-medien.ch/en/swiss-post-expects-a-new-all-
time-record-in-december/.

Post, T. Z. (2020b). Post Office almost drowning in the flood of parcels. Accessed
30 July 2021 https://www.zugdyou.ch/en/news/news-articles/a/post-office-almo
st-drowning-in-the-flood-of-parcels.

de Queiroz, T. A., & Miyazawa, F. K. (2013). Two-dimensional strip packing problem
with load balancing, load bearing and multi-drop constraints. International Jour-
nal of Production Economics, 145(2), 511-530. https://doi.org/10.1016/].ijpe.2013.
04.032.

Research, & Markets (2018). Global logistics market 2017-2018 & 2023
- market is estimated to grow to $12.6 bn. Accessed 30 July 2021
https://[www.prnewswire.com/news-releases/global-logistics-market-2017-
2018-2023—market-is-estimated-to-grow-to-12-6-bn-300708730.html.

Silva, E. F, Toffolo, T. A. M., & Wauters, T. (2019). Exact methods for three-
dimensional cutting and packing: A comparative study concerning single con-
tainer problems. Computers & Operations Research, 109, 12-27. https://doi.org/
10.1016/j.cor.2019.04.020.

Statista (2020). Global parcel shipping volume between 2013 and 2026. Accessed
30 July 2021 https://www.statista.com/statistics/1139910/parcel-shipping-
volume-worldwide/.

Terno, J., Scheithauer, G., SommerweiR, U, & Riehme, J. (2000). An efficient ap-
proach for the multi-pallet loading problem. European Journal of Operational Re-
search, 123(2), 372-381. https://doi.org/10.1016/S0377-2217(99)00263-5.

Trivella, A., & Pisinger, D. (2016). The load-balanced multi-dimensional bin-packing
problem. Computers & Operations Research, 74, 152-164. https://doi.org/10.1016/
j.c0r.2016.04.020.

Trivella, A., & Pisinger, D. (2017). Bin-packing problems with load balancing and sta-
bility constraints. INFORMS Transportation and Logistics Society Conference.

Wascher, G., HauRner, H., & Schumann, H. (2007). An improved typology of cutting
and packing problems. European Journal of Operational Research, 183(3), 1109-
1130. https://doi.org/10.1016/j.ejor.2005.12.047.

Zachariadis, E. E., Tarantilis, C. D., & Kiranoudis, C. T. (2009). A guided tabu search
for the vehicle routing problem with two-dimensional loading constraints. Eu-
ropean Journal of Operational Research, 195(3), 729-743. https://doi.org/10.1016/
j.6jor.2007.05.058.

Zhao, X., Bennell,]. A., Bektas, T., & Dowsland, K. (2016). A comparative review of 3d
container loading algorithms. International Transactions in Operational Research,
23(1-2), 287-320. https://doi.org/10.1111/itor.12094.

https://doi.org/10.1016/j.ejor.2009.03.046
https://doi.org/10.1016/j.omega.2021.102559
https://doi.org/10.1287/trsc.1050.0145
https://doi.org/10.1016/0305-0548(80)90001-5
https://doi.org/10.1016/j.eswa.2015.10.013
https://doi.org/10.1007/978-3-030-59747-4_42
https://doi.org/10.1007/s11750-010-0144-x
https://doi.org/10.1287/trsc.1060.0165
https://doi.org/10.1007/s10479-011-0942-z
https://doi.org/10.1016/j.cor.2010.07.017
https://doi.org/10.1016/S0360-8352(98)00085-0
https://doi.org/10.1287/trsc.1090.0301
https://doi.org/10.1142/S0217595911003466
https://doi.org/10.1016/j.ejor.2015.02.027
https://doi.org/10.1016/j.ejor.2016.04.016
https://doi.org/10.1016/j.ejor.2017.05.034
https://doi.org/10.1287/opre.48.2.256.12386
https://doi.org/10.1590/0101-7438.2015.035.01.0001
https://doi.org/10.1109/MIS.2005.57
https://doi.org/10.1016/j.cor.2020.105186
https://doi.org/10.1109/IEEM.2009.5373282
https://doi.org/10.1007/s10732-008-9081-3
https://doi.org/10.1287/ijoc.1070.0254
https://doi.org/10.1016/S0377-2217(02)00132-7
https://doi.org/10.1007/s00291-014-0386-3
https://doi.org/10.1007/s13676-014-0064-2
https://post-medien.ch/en/swiss-post-expects-a-new-all-time-record-in-december/
https://www.zug4you.ch/en/news/news-articles/a/post-office-almost-drowning-in-the-flood-of-parcels
https://doi.org/10.1016/j.ijpe.2013.04.032
https://doi.org/10.1016/j.cor.2019.04.020
https://www.statista.com/statistics/1139910/parcel-shipping-volume-worldwide/
https://doi.org/10.1016/S0377-2217(99)00263-5
https://doi.org/10.1016/j.cor.2016.04.020
http://refhub.elsevier.com/S0377-2217(22)00821-9/sbref0048
https://doi.org/10.1016/j.ejor.2005.12.047
https://doi.org/10.1016/j.ejor.2007.05.058
https://doi.org/10.1111/itor.12094

	Modeling soft unloading constraints in the multi-drop container loading problem
	1 Introduction
	2 Literature review
	2.1 Container loading problem
	2.2 Unloading constraints
	2.3 Summary of contributions

	3 MDCLP with soft unloading constraints
	3.1 Problem description
	3.2 Mathematical programming model
	3.3 Illustrative example

	4 Heuristic algorithm
	4.1 Construction phase
	4.2 Improvement phase

	5 Numerical study
	5.1 Instances and study design
	5.2 Sequential approach, hard, and soft unloading constraints
	5.3 Analysis of improvement
	5.4 Comparison with commercial solver
	5.5 Comparison with methods from the literature
	5.6 Region reconstruction methods

	6 Conclusion
	Declaration of Competing Interest
	Acknowledgments
	Appendix
	References

