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a b s t r a c t 

The multi-drop container loading problem (MDCLP) requires loading a truck so that boxes can be un- 

loaded at each drop-off point without rearranging other boxes to deliver later. However, modeling such 

unloading constraints as hard constraints, as done in the literature, limits the flexibility to optimize the 

packing and utilize the vehicle capacity. We instead propose a more general approach that considers soft 

unloading constraints. Specifically, we penalize unnecessary relocations of boxes using penalty functions 

that depend on the volume and weight of the boxes to move as well as the type of move. Our goal is 

to maximize the value of the loaded cargo including penalties due to violations of the unloading con- 

straints. We provide a mixed-integer linear programming formulation for the MDCLP with soft unloading 

constraints, which can solve to optimality small-scale instances but is intractable for larger ones. We thus 

propose a heuristic framework based on a randomized extreme-point constructive phase and a subse- 

quent improvement phase. The latter phase iteratively destroys regions in the packing space where high 

penalties originate, and reconstructs them. Extensive numerical experiments involving different instances 

and penalties highlight the advantages of our method compared to a commercial optimization solver and 

a heuristic from the literature developed for a related problem. They also show that our approach sig- 

nificantly outperforms: (i) the hard unloading constraints approach, and (ii) a sequential heuristic that 

neglects unloading constraints first and evaluates the penalties afterwards. Our findings underscore the 

relevance of accounting for soft unloading constraints in the MDCLP. 

© 2022 The Author(s). Published by Elsevier B.V. 
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. Introduction 

The operations of logistics systems and the efficiency in deliver- 

ng goods play a crucial role in a world where goods and services 

ust be quickly accessible. With the increasing worldwide trends 

oward globalization, digitalization, and urbanization, the logistics 

ector has been experiencing an unprecedented growth in recent 

ears. For example, the global logistics market was valued at 10.3 

illion USD in 2017 and the compound annual growth rate from 

017 to 2023 was estimated at about 3.5%, resulting in an expected 

arket value of 12.9 billion USD by 2023 ( Research & Markets, 

018 ). Nevertheless, this rapid growth is coupled with enormous 

hallenges and the need to improve and update methods and tech- 

ologies used in logistics and transportation systems. 
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loading problem, European Journal of Operational Research, https://doi
Just the last year, the Covid-19 pandemic proved to be a ma- 

or challenge for logistics operators around the world. Whether 

ecause of the growth in online retail and home delivery or the 

lobal distribution of vaccines, many businesses within logistics 

nd delivery have been put under test. For instance, in April 2020, 

he Swiss Post found itself overwhelmed by the increased demand 

aused by the first lockdown and was forced to introduce daily 

uotas on the number of parcels, which affected more than 100 

orporate clients ( Post, 2020b ). Preventing a parcel collapse in the 

ollowing months required increasing delivery capacity as well as 

ntroducing analytics to forecast demand and optimize operations 

 Post, 2020a ). This case exemplifies the need for logistics compa- 

ies to increase their performance to cope with demand, which re- 

ardless of Covid-19 is expected to increase substantially (see, e.g., 

tatista, 2020 ), and be prepared for future challenges in general. 

While several problems arising in logistics have been tackled 

nd optimized using operations research techniques for decades, 

uch as the container loading problem (CLP; Pisinger, 2002 ) and 
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he vehicle routing problem (VRP; Laporte, 2009 ), some practically- 

elevant variants of these problems have been less studied and 

till embed significant potential for improvement. In this paper, we 

onsider the multi-drop CLP (henceforth MDCLP), which includes 

nloading constraints . Specifically, this problem deals with opti- 

ally loading a vehicle for delivering cargo to multiple customers 

hile accounting for the undesired relocation of boxes during the 

ubsequent delivery process. Since the delivery order is assumed 

xed, the routing component is not relevant here. Unloading con- 

traints have been studied when incorporating practical constraints 

n the CLP ( Nascimento, Queiroz, & Junqueira, 2021 ) and loading 

onstraints in the VRP ( Pollaris, Braekers, Caris, Janssens, & Lim- 

ourg, 2015 ). However, the vast majority of works in these areas 

ave either neglected such constraints, which in practice leads to 

ime consuming (i.e., costly) cargo relocations during unloading, or 

ompletely forbidden relocations of items during the delivery pro- 

ess, resulting in more constrained loading solutions that carry less 

argo volume or value. 

This study takes an intermediate perspective that treats unload- 

ng constraints in the MDCLP as soft constraints. We do this by 

eans of penalty functions that punish relocations in a flexible 

anner based on properties of the items to move (e.g., weight and 

ize) as well as the type of relocation. We propose a mathematical 

rogramming formulation that explicitly accounts for soft unload- 

ng constraints and that reduces to a mixed-integer liner program 

MILP) under linear penalties. As this model is intractable for large 

nstances, we further propose a heuristic loading framework based 

n construction and improvement phases. The latter phase identi- 

es promising regions in a packing solution where many conflicts 

ccur, and reconstructs them, also incorporating some randomiza- 

ion. 

We performed a numerical study involving a known set of 

500 instances ( Bischoff, Janetz, & Ratcliff, 1995; Davies & Bischoff, 

999 ), 4 penalty function specifications, and 3 region reconstruc- 

ion techniques. We found that considering soft unloading con- 

traints in the MDCLP can lead to significantly higher objective val- 

es (i.e., cargo value minus penalties) compared to: (i) the hard 

nloading constraints approach, by up to 12%, and (ii) a sequen- 

ial approach that neglects the unloading constraints when loading 

oxes and assesses penalties a posteriori, by up to 15%. This sig- 

ificant value underscores the shortcoming of the common but in- 

exible models relying on hard constraints. We also show that our 

ew method is needed because: (i) an MDCLP heuristic from the 

iterature that simply counts the number of relocations but does 

ot minimize the penalties may be inefficient, and (ii) off-the-shelf 

ommercial optimization solvers can only solve to optimality tiny 

nstances. The optimization methods we develop and related find- 

ngs thus help meeting a real and unresolved need of logistics op- 

rators to handle unloading constraints in a flexible and practical 

anner ( Gajda, Trivella, Mansini, & Pisinger, 2022 ). 

The rest of this paper is organized as follows. Section 2 re- 

iews the related literature. Section 3 formally defines the MD- 

LP with soft unloading constraints and presents the mathematical 

rogramming formulation with an illustrative example. The heuris- 

ic method is described in Section 4 and tested in a detailed nu- 

erical study in Section 5 . We conclude in Section 6 and provide 

uture research directions. 

. Literature review 

We review essential literature related to the CLP in 

ection 2.1 and then focus on the unloading constraints in 

ection 2.2 . We summarize the contributions of our work in 

ection 2.3 . 
2 
.1. Container loading problem 

Given a set of three-dimensional rectangular-shaped 

tems/boxes, each provided with a value, the CLP aims at se- 

ecting a subset of these items and loading them into a larger 

ectangular-shaped container so that the value of the loaded items 

s maximized. The CLP is a well-studied problem in operations 

esearch and is also known as the three-dimensional (single orthog- 

nal) knapsack problem according to the typology of cutting and 

acking problems by Wäscher, Haußner, & Schumann (2007) . 

To tackle the CLP, both exact and heuristic methods have been 

eveloped, with the latter being significantly more popular as the 

roblem is very hard to solve to optimality even for a few dozen 

tems ( Silva, Toffolo, & Wauters, 2019 ). Thus, exact methods are 

till far from meeting the requirements of the modern logistics in- 

ustry where large instances must be solved within seconds ( Gajda 

t al., 2022 ). In our paper, we propose both a mathematical pro- 

ram that can solve small instances optimally, illustrating the use- 

ulness of soft unloading constraints, and a heuristic able to deal 

ith large instances. 

Heuristic approaches for the CLP have recently been classified 

y Zhao, Bennell, Bekta ̧s , & Dowsland (2016) , that distinguish be- 

ween construction and improvement methods. While the former 

ethods build a packing solution from scratch by loading items 

tarting from an empty container, the latter are designed to im- 

rove an existing solution. In our heuristic we use both construc- 

ion and improvement methods. 

Commonly used construction heuristics are based on wall- 

uilding or layer-building schemes. The wall-building scheme, first 

roposed by George & Robinson (1980) , creates virtual walls in 

he container and considers the detached spaces as smaller pack- 

ng problems. Similar to the previous, the layer-building scheme 

reates layers that must be completely filled by items of compa- 

able height before a new layer can be initiated ( Bischoff et al., 

995; Terno, Scheithauer, Sommerweiß, & Riehme, 20 0 0 ). The de- 

cribed approaches work well for weakly-heterogeneous instances 

ith only a few distinct item types, i.e., made of few groups of 

dentical items. Another set of algorithms use the maximal-space 

trategy where the placement of items is guided by information on 

he empty spaces in the container. First proposed by Lai, Xue, & Xu 

1998) , this approach was further developed by Parreño, Alvarez- 

aldés, Tamarit, & Oliveira (2008) combining it with a greedy ran- 

omized adaptive search procedure (GRASP). Martello, Pisinger, & 

igo (20 0 0) established the concept of corner points , which are 

romising locations for the sequential placement of items that are 

pdated after each insertion. The concept of corner points is fur- 

her extended by Crainic, Perboli, & Tadei (2008) by introducing 

he extreme points , which also use projections to generate new 

oints. These “provide the means to exploit the free space de- 

ned inside a packing by the shapes of the items already in the 

ontainer”. Our construction phase makes use of an extreme-point 

euristic. Finally, more complex tree-search based methods use a 

ecision tree of limited depth to evaluate each insertion and were 

lso proven effective ( Araya, Guerrero, & &. Nunez, 2017; Fanslau & 

ortfeldt, 2010 ). 

Improvement techniques are diverse, of which we state a few. 

RASP algorithms for the CLP embed an improvement phase that 

s often based on local search ( Iori, Locatelli, Moreira, & Silveira, 

020; Moura & Oliveira, 2005 ). Trivella & Pisinger (2016) use 

he interval graph representation of multi-dimensional packing by 

ekete, Schepers, & Van der Veen (2007) to develop a local search 

ramework operating on graphs. Parreño, Alvarez-Valdes, Oliveira, 

 Tamarit (2010) consider five different improvement steps in a 

ariable neighborhood search (VNS) algorithm, such as the swap of 

tems or the re-packing of regions in the container. Our improve- 

ent phase is also based on region reconstruction but employs 
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ew criteria for the region selection and reconstruction, which are 

esigned to reduce penalties due to violations of the unloading 

onstraints. 

The literature in which practical constraints such as load bal- 

ncing and stability are incorporated in packing problems is vast 

nd we do not attempt to review it (e.g., Trivella & Pisinger, 2017, 

lonso, Alvarez-Valdes, Iori, & Parreno, 2019, Gajda et al., 2022, 

ascimento et al., 2021 ). For a comprehensive review of such con- 

traints see Bortfeldt & Wäscher (2013) . Since multi-drop situa- 

ions are common in practice, considering the MDCLP and unload- 

ng constraints is important and we discuss related works next. 

.2. Unloading constraints 

The unloading constraints are relevant for multi-drop deliver- 

es, i.e., when a container or delivery vehicle carries items for mul- 

iple customers to serve at different locations. In these situations, 

t is important to avoid relocating items during the sequential un- 

oading operations as this can be time consuming and/or complex 

o perform at a customer’s venue. In other words, the items for 

he customer currently being served must be easily unloaded from 

he vehicle without moving (e.g., unloading and reloading) items 

f other customers to serve later. 

The first paper considering multi-drop situations was Bischoff

t al. (1995) , after which several works followed proposing a vari- 

ty of techniques to tackle unloading constraints. These papers deal 

oth with the MDCLP and the capacitated VRP with D-dimensional 

oading constraints (DL-CVRP), where D typically equals 2 or 3. We 

iscuss papers belonging to both streams below. 

For the MDCLP, Pan, Chu, Han, & Huang (2009) propose a wall- 

uilding loading heuristic while Christensen & Rousœ (2009) de- 

ign a tree-search based method that uses greedy insertion rules 

nd a dynamic breadth strategy. Liu, Yue, Dong, Maple, & Keech 

2011) introduce the concept of untakeout field , that is a space 

n the container where violations of unloading constraints oc- 

ur, and present a heuristic approach operating on regions to lo- 

ate items called subvolumes. Junqueira, Morabito, & Yamashita 

2012b) and de Queiroz & Miyazawa (2013) develop MILP models 

or special cases of the MDCLP. Martínez, Alvarez-Valdes, & Parreño 

2015) and Iori et al. (2020) solve this problem using GRASP algo- 

ithms. In a recent work by Nascimento et al. (2021) , twelve prac- 

ical constraints for the CLP are formulated mathematically, includ- 

ng multi-drop situations and manual unloading constraints, which 

re treated as hard constraints. 

The first papers dealing the with DL-CVRP were Gendreau, 

ori, Laporte, & Martello (2006) and Iori, Salazar-González, & Vigo 

2007) . The former paper proposes a nested tabu search algo- 

ithm, while the latter uses branch-and-cut and branch-and-bound 

o minimize routing costs and check loading feasibility, respec- 

ively. For the same problem, Zachariadis, Tarantilis, & Kiranoudis 

2009) develop a guided tabu search procedure, while Fuellerer, 

oerner, Hartl, & Iori (2009, 2010) employ ant colony optimiza- 

ion. Tabu search, guided tabu search, and ant colony optimization 

etaheuristics for the DL-CVRP are compared in Iori & Martello 

2010) . Bortfeldt (2012) develops a hybrid algorithm that uses tabu 

earch for routing and tree search for loading. Exact approaches 

ased on branch-and-cut and MILP models are later presented in 

okama, Miyazawa, & Xavier (2016) and Pollaris, Braekers, Caris, 

anssens, & Limbourg (2016) , respectively. A branch-and-cut al- 

orithm is also recently used in Ferreira, de Queiroz, & Toledo 

2021) to solve a green variant of the DL-CVRP that aims at re- 

ucing CO 2 emissions. 

The unloading constraints are also referred to as sequential con- 

traints , rear constraints , or last-in-first-out (LIFO) constraints in the 

iterature, but we simply use unloading constraints hereafter. Re- 

ardless of the name, the specification of such constraints is not 

nique but varies depending on the considered application. In par- 
3 
icular, we identified four different specifications: (i) above con- 

traints, (ii) visibility constraints, (iii) reachability constraints, and 

iv) separation constraints. The above constraints are violated if an 

tem of a later customer lies above (even partly) of an item of an 

arlier customer, requiring the former item to be lifted and relo- 

ated. The visibility constraints demand that an item is visible from 

he container doors when it has to be unloaded, which is a con- 

ition needed in practice to unload a box using a forklift. There- 

ore, no item of a later customer can lie (even partly) between 

he item to be unloaded and the container doors. The reachability 

onstraints model the ability of a worker to reach an item given a 

artial packing solution, which may not be possible for a box that 

s visible. Lastly, the separation constraints force the placement of 

tems belonging to different customers into dedicated regions in 

he container that are separated by virtual walls. 

Most papers that include unloading constraints account for the 

bove and visibility constraints, although not always using these 

ames ( Christensen & Rousœ, 2009; Ferreira et al., 2021; Fuellerer, 

oerner, Hartl, & Iori, 2010; Gendreau et al., 2006; Hokama et al., 

016; Iori et al., 2020; Iori & Martello, 2010; Iori et al., 2007; 

ascimento et al., 2021; Pan et al., 2009; Pollaris et al., 2016; 

e Queiroz & Miyazawa, 2013 ), whereas it is less common to ac- 

ount for reachability constraints ( Junqueira, Morabito, & Sato Ya- 

ashita, 2012a; Liu et al., 2011; Martínez et al., 2015 ) and separa- 

ion constraints ( Junqueira et al., 2012b; Martínez et al., 2015 ). We 

ill consider above, visibility, and reachability as soft unloading 

onstraints, and neglect separation constraints as these can only 

e modeled as hard constraints and are hence not relevant to the 

cope of our paper. 

To the best of our knowledge, unloading constraints have al- 

ays been treated as hard constraints in the literature (with few 

xceptions discussed below), which means that no relocation of 

oxes is allowed during delivery at all. This approach may be too 

nflexible and result in vehicles carrying significant lower value. 

epending on the application, relocating items may be acceptable 

n practice and thus preferable to reducing cargo value. This entails 

 trade-off between the transported value and the indirect costs 

ncurred due to relocating items during delivery, which we inves- 

igate in this paper. Modeling soft unloading constraints thus adds 

o the extant literature by providing a more general and flexible 

efinition of the MDCLP. Our penalty functions can be adjusted by 

he operator depending on the needs, and hard constraints can be 

sed too by setting these penalties to infinity. 

Liu et al. (2011) introduced an unloading cost for an item that 

s proportional to the number of items to relocate in order to 

nload it, i.e., the items located in their untakeout field, which 

an be seen as a special case of the penalty functions we use. 

owever, the authors set all such costs equal to zero in their 

lgorithm and experiments, which in effect means enforcing again 

ard unloading constraints. Lurkin & Schyns (2015) deal with load- 

ng a cargo aircraft to serve multiple airports by minimizing the 

umber of handling operations. In this case, the aircraft has fixed 

lots arranged into rows where to assign the so-called unit loading 

evices. Thus, although this problem includes soft unloading con- 

traints, it does not embed the same 3D combinatorial complexity 

s our MDCLP. Moreover, all handling operations count the same. 

o the best of our knowledge, only Gajda et al. (2022) have not 

reated the unloading constraints in an MDCLP as hard constraints, 

ut instead allowed for items to be relocated. Nonetheless, any 

elocation is considered equivalent also in this paper regardless 

f the volume or weight of the item to move, and the number of 

oves in a packing solution is only counted a posteriori, i.e., the 

olution approach does not explicitly minimize it. Therefore, our 

se of penalty functions in the objective and the explicit consid- 

ration of these penalties in our heuristic represents a substantial 

eneralization in terms of both modeling and methodology. 
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Worth mentioning are finally some works that analyze trade- 

ffs involving unloading constraints. Männel & Bortfeldt (2016) and 

 follow-up work by the same authors ( Männel & Bortfeldt, 2018 ) 

rovide an interesting perspective on box reloading effort in multi- 

rop situations. They show that for the pickup and delivery prob- 

em, in contrast to the CVRP, a standard LIFO policy is not suffi- 

ient to rule out any reloading effort. More constraints are needed 

o do so, which gives rise to a spectrum of problem variants with 

ifferent behavior in terms of reloading effort. Junqueira et al. 

2012a) study reachability constraints when varying the parame- 

er representing the distance that can be reached, showing that 

s these constraints become stricter, the packing often becomes 

ess efficient. While the aforementioned variants of unloading con- 

traints affect the feasibility of the solutions, violations of unload- 

ng constraints in our work affect the objective function by means 

f penalties. 

.3. Summary of contributions 

The main contributions of this work are the following: 

1. We formally study the MDCLP with soft unloading con- 

straints and provide a mathematical programming formu- 

lation that accounts for both above and visibility soft con- 

straints. 

2. We propose a heuristic framework that includes construc- 

tion and improvement phases based on a randomized 

extreme-point heuristic and the reconstruction of packing 

regions with high penalties, respectively. The heuristic is 

able to solve large instances and accounts for all types of 

penalty functions and soft unloading constraints (above, vis- 

ibility, and reachability). 

3. We execute an extensive computational study involving dif- 

ferent instances, penalty functions, and region reconstruc- 

tion methods. Our findings underscore the importance of ac- 

counting for soft unloading constraints in the MDCLP and 

can be relevant for logistics operators. 

. MDCLP with soft unloading constraints 

We formally introduce the MDCLP with soft unloading con- 

traints along with the used notation in Section 3.1 , derive a math- 

matical programming formulation of this problem in Section 3.2 , 

nd provide an example comparing MDCLP variants with hard, soft, 

nd no unloading constraints in Section 3.3 . 

.1. Problem description 

We are given a set B of items/boxes available for loading that 

re rectangular-shaped, i.e., cuboids. Each item i ∈ B is associ- 

ted with three dimensions: length, width, and height, denoted 

l i , w i , h i ) ∈ R 

3 + , and hence a volume v i = l i · w i · h i . Moreover, item

 has a weight q i > 0 , a value πi > 0 , and belongs to a customer 

 i ∈ { 1 , . . . , M} , where 1 is the first customer to serve and M is the

ast. A single rectangular-shaped container is given with dimen- 

ions (L, W, H) ∈ R 

3 + . Boxes can only be loaded in the container or-

hogonally relative to the boundaries of the container, which is a 

tandard assumption. Each box is also associated with a set of fea- 

ible orientations in which it can be rotated and that is a subset of 

he six possible orthogonal orientations of a cuboid. 

We introduce a three-dimensional Cartesian coordinate sys- 

em (x, y, z) with the origin (0 , 0 , 0) coinciding with the bottom-

eft-rear corner of the container. The x -axis is directed along 

he long side of the container, the y -axis is perpendicular to it 

n the container’s floor, and the z-axis completes the coordinate 

ystem in the vertical direction. The four corner points of the 
4 
ontainer’s door where unloading takes place have coordinates 

L, 0 , 0) , (L, W, 0) , (L, W, H) and (L, 0 , H) . Given such a coordinate

ystem, the loading position of an item i inside the container is 

niquely defined by the coordinates of its bottom-left-rear corner, 

enoted by (x i , y i , z i ) , coupled with a feasible orientation that has

he effect of altering the order of the elements in the size vector 

l i , w i , h i ) . Although both our mathematical programming formu- 

ation and heuristic account for rotations, to ease exposition we 

ssume in the following that the orientation is fixed, i.e., rotations 

re not allowed. 

As discussed in Section 2.2 , we consider above, visibility, and 

eachability soft unloading constraints. To model them we intro- 

uce an overlapping condition for two items i, j ∈ B on the x -axis

verlap (i, j, x ) ⇐⇒ 

(
x i ≤ x j < x i + l i 

)
∨ 

(
x j ≤ x i < x j + l j 

)
, 

nd use analogous conditions to define overlapping in the other 

wo coordinates. Violations of the unloading constraints for a pair 

f packed boxes i, j ∈ B arise under the following situations. 

• Above violation : item i has to be unloaded before item j but 

the latter item is placed above the former, even partially. 

Mathematically, this means that boxes i and j overlap in 

both x and y coordinates and j is placed at a higher z co- 

ordinate than i ( Nascimento et al., 2021 ), i.e., (
c i < c j 

)
∧ 

(
z j ≥ z i + h i 

)
∧ Overlap (i, j, x ) ∧ Overlap (i, j, y ) . 

(1) 

When condition (1) is true, we assign a cost/penalty 

f a (q j , v j , z j ) ≥ 0 to the above violation that is a function of

weight, volume, and z coordinate of the item j to relocate. 

Intuitively, this penalty should be non-decreasing in all three 

features since the heavier, the bulkier, or the higher the item 

was loaded, the harder or time consuming will be to reposi- 

tion it. 
• Visibility violation : item i has to be unloaded before item j

but the latter is placed, even partially, between the unload- 

ing side and item i thereby making i not (entirely) visible 

from the entrance of the container. Mathematically, this hap- 

pens when boxes i and j overlap in y and z directions and j

is placed at a larger x coordinate than i , i.e., 

(c i < c j ) ∧ 

(
x j ≥ x i + l i 

)
∧ Overlap (i, j, y ) ∧ Overlap (i, j, z) .

(2) 

When condition (2) holds, i.e., visibility constraints are vio- 

lated for item i , we assign a penalty f v (q j , v j , z j ) ≥ 0 with

analogous structure to the penalty related to the above con- 

straints. 
• Reachability violation : item i has to be unloaded but is un- 

reachable by a human operator (or a machine/forklift) since 

the distance between this item and the position the opera- 

tor can reach is higher than a fixed quantity ( Junqueira et al., 

2012a; Liu et al., 2011 ). Specifically, assume j is the first box 

that prevents the operator from moving further ahead and 

reaching box i . Then, i is unreachable if 

(c i < c j ) ∧ 

(
δi j ≥ min { H touchable − z i , L touchable } 

)
, (3) 

where δi j := x j + l j − (x i + l i ) is the distance between boxes 

i and j seen from the unloading side, and L touchable and 

H touchable describe respectively the length of the worker’s 

arm and the height the worker’s hands can reach. Condi- 

tion (3) characterizes (un)reachability as a function of both 

the distance δi j and the z coordinate of the item to pick. It 

holds when δi j is larger than L touchable , or when this distance 

plus z i is larger than H touchable . L touchable and H touchable are typ- 

ically set to 60 and 200 cm, respectively. Under this choice, 
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the min function evaluates to 60 cm for z i ∈ [0 , 140] cm and

decreases linearly for values of z i > 140 cm, reaching zero 

for z i = 200 cm. See also Martínez et al. (2015) for some il-

lustrations of these situations. When reachability is violated, 

we assign a penalty function f r (q j , v j , z j , δi j ) , which may de-

pend on the distance δi j in addition to the properties of the 

box j to relocate. 

The MDCLP with soft unloading constraints is defined as the 

roblem to select and orthogonally pack items from B inside the 

ontainer such that the total value of the loaded items discounted 

y penalties due to violations of conditions (1) –(3) is maximized. 

otice that we do not include in our problem statement additional 

ractical constraints, since we want to isolate the effect of the 

nloading constraints, and highlight the advantages of modeling 

hem as soft by means of penalty functions. Therefore, our solu- 

ions do not ensure that items are, e.g., well supported and verti- 

ally stable during the delivery process, or that weight is balanced 

n the container. Practical implementations of our approach should 

f course include the constraints needed for the specific applica- 

ion. 

.2. Mathematical programming model 

We provide next a mathematical programming formulation of 

he MDCLP with soft unloading constraints covering the case of 

bove and visibility constraints. Although reachability constraints 

re considered in our heuristic framework in Section 4 , we found 

t challenging to characterize the first item j blocking the path of 

he operator to reach another item i in a mathematical program, 

ence we neglect these constraints here. As we did in Section 3.1 , 

o simplify exposition we omit item orientations when describing 

he model and relegate a full formulation including rotations to an 

ppendix. 

For each box i ∈ B, in addition to the continuous position vari- 

bles ( x i , y i , z i ) we define a binary variable t i equal to 1 if item i

s loaded and 0 otherwise. Moreover, to ensure that item pairs do 

ot overlap, we introduce for i, j ∈ B binary variables b i j , f i j , and

 i j equal to 1 if item i is fully behind, left, or under item j, respec-

ively, and 0 otherwise. At least one of these variables must be 1 

hen both i and j are loaded (i.e., t i = t j = 1 ), which translates to

he non-overlapping constraints (4) . 

b i j + b ji + f i j + f ji + u i j + u ji + (1 − t i ) + (1 − t j ) ≥ 1 

∀ i, j ∈ B, i < j, (4a) 

 i + l i ≤ x j + L (1 − b i j ) ∀ i, j ∈ B, (4b) 

 i + w i ≤ y j + W (1 − f i j ) ∀ i, j ∈ B, (4c) 

 i + h i ≤ z j + H(1 − u i j ) ∀ i, j ∈ B. (4d) 

We further restrict the domain of the position variables x i ∈ 

0 , L − l i ] , y i ∈ [0 , W − w i ] , and z i ∈ [0 , H − h i ] to guarantee that

oaded items do not exceed the boundaries of the container. 

Constraints (4) are common in packing problems ( Chen, Lee, 

 Shen, 1995 ). Due to (4b) , b i j = 1 �⇒ x i + l i ≤ x j , hence the two

tems do not overlap as i is fully behind j on the x coordinate (sim-

larly for the other coordinates). These constraints alone however 

o not allow tracking the situations when two items do overlap, 

hich is needed to model the unloading constraints. To this end, 

e introduce a second set of constraints (5) that enforce the re- 

erse implications, e.g., b i j = 0 �⇒ x j ≤ x i + l i . 

 j ≤ x i + l i + L b i j ∀ i, j ∈ B, c i � = c j , (5a) 
5 
 j ≤ y i + w i + W f i j ∀ i, j ∈ B, c i � = c j , (5b) 

 j ≤ z i + h i + H u i j ∀ i, j ∈ B, c i � = c j . (5c) 

Constraints (4), (5) jointly model b i j + b ji = 0 ⇐⇒ 

verlap (i, j, x ) , and similarly f i j + f ji = 0 ⇐⇒ Overlap (i, j, y ) ,

nd u i j + u ji = 0 ⇐⇒ Overlap (i, j, z) . Notice that generating con-

traints (5) is not necessary for item pairs belonging to the same 

ustomer (i.e., c i = c j ). 

To track joint overlap in two dimensions in above and visi- 

ility constraints (1), (2) , we introduce support binary variables 

 i j , d i j ∈ { 0 , 1 } so that a i j = 1 ⇐⇒ Overlap (i, j, x ) ∧ Overlap (i, j, y )

nd d i j = 1 ⇐⇒ Overlap (i, j, y ) ∧ Overlap (i, j, z) . This can be done

y imposing 

 i j + b ji + f i j + f ji ≥ 1 − a i j ∀ i, j ∈ B, c i < c j , (6a) 

 i j + b ji + f i j + f ji ≤ 2(1 − a i j ) ∀ i, j ∈ B, c i < c j , (6b) 

f i j + f ji + u i j + u ji ≥ 1 − d i j ∀ i, j ∈ B, c i < c j , (6c) 

f i j + f ji + u i j + u ji ≤ 2(1 − d i j ) ∀ i, j ∈ B, c i < c j . (6d) 

Moreover, detecting above and visibility violations requires cou- 

ling the described overlapping conditions in two directions with 

nother condition for the third coordinate, which is done by 

p i j + 1 ≥ a i j + u i j ∀ i, j ∈ B, c i < c j , (7a) 

 i j + 1 ≥ d i j + b i j ∀ i, j ∈ B, c i < c j , (7b) 

here p i j and r i j are additional binary variables that are activated 

i.e., set to 1) when above and visibility constraints are violated, re- 

pectively. Thus, the MDCLP with soft unloading constraints obeys 

4) –(7) and has an objective function 

ax 
∑ 

i ∈B 
πi t i −

∑ 

i ∈B 

∑ 

j∈B: c i <c j 

[
p i j · f a (q j , v j , z j ) + r i j · f v (q j , v j , z j ) 

]
. 

(8) 

In general, (4) –(8) is a mixed-integer nonlinear program, where 

onlinearities only appear in the objective function. If both f a and 

f v are linear functions of box parameters like weight q j and vol- 

me v j , and of the loading coordinate z j , then this model becomes 

n MILP that can be solved using off-the-shelf commercial opti- 

ization solvers. Examples of such linear penalties are 

f a (q j , v j , z j ) := αa q j + βa v j + γa z j + ηa , (9a) 

f v (q j , v j , z j ) := αv q j + βv v j + γv z j + ηv , (9b) 

ith (αa , βa , γa , ηa , αv , βv , γv , ηv ) ∈ R 

8 + . We report the MILP in-

luding rotations in an appendix. 

Notice that a formulation of the MDCLP with hard 

bove/visibility unloading constraints can be obtained as a 

pecial case of (4) –(8) by fixing all penalty activation variables p i j 

nd r i j to zero. This implies that a i j + u i j ≤ 1 and d i j + b i j ≤ 1 in

7) , i.e., violations are infeasible. 
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Table 1 

Parameters defining the MDCLP instance. 

Length Width Height Volume Weight Value Customer 

Demand ( l i , cm) ( w i , cm) ( h i , cm) ( v i , m 

3 ) ( q i , ton) ( πi ) ( c i ) 

2 95 50 35 0.166 0.22 0.22 1 

2 90 55 45 0.223 0.24 0.24 2 

2 90 60 40 0.216 0.26 0.26 3 

2 105 65 40 0.273 0.28 0.28 4 

Table 2 

Results from the MILP formulations. 

Cargo Penalty 

Strategy Objective Value # items Amount # violations Runtime (s) 

MDCLP-B 74.2 88.0 7 13.8 5 0.8 

MDCLP-H 76.0 76.0 6 0.0 0 8.6 

MDCLP-S 80.9 86.0 7 5.1 2 22.1 
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.3. Illustrative example 

In this section, we use the model formulation introduced in 

ection 3.2 to compare three strategies to tackle the MDCLP: (i) 

olve the basic CLP without unloading constraints and assess the 

enalties a posteriori (denoted MDCLP-B strategy), (ii) solve the 

DCLP with hard unloading constraints ( MDCLP-H ), and (iii) solve 

irectly the MDCLP with soft unloading constraints ( MDCLP-S ). 
otice that also the first two strategies provide a feasible solution 

o the MDCLP with soft unloading constraints. 

To illustrate this comparison, we define in Table 1 a small in- 

tance with 8 items and 4 customers, where up to 2 identical 

tems need to be delivered to each customer. The container size is 

L, W, H) = (160 , 120 , 100) cm and all six orientations of the items

re permissible. 

We consider model (4) –(8) or simplifications thereof us- 

ng penalties (9) for above and visibility constraints with coef- 

cients (αa , βa , γa , ηa , αv , βv , γv , ηv ) = (0 . 1 , 0 . 1 , 0 , 0 , 0 . 1 , 0 . 1 , 0 , 0) ,

.e., penalties are linear functions of weight and volume of the 

oxes to move and include no dependency on the z coordinate 

 ηa = ηv = 0 ) and no constants ( γa = γv = 0 ). Penalties in this ex-

mple are defined in a simplistic manner as the focus here is on 

omparing the three strategies. In practice, however, defining the 

unctional form of the penalties and their coefficients plays a big- 

er roles because, depending on the unloading system (e.g., hu- 

an worker or forklift) or even the specific product, weight can 

e a strong constraint, or volume can be, or both. We solve the 

orresponding MILPs to optimality using Gurobi 9.1 and show the 

esults in Table 2 and Fig. 1 . To ease intuition, columns in this ta-

le related to the objective function value and its two components 

cargo value and penalty amount) are normalized to 100% of the 

otal value of the 8 items, that is, a solution including all items 

nd with zero penalty would have an objective of 100. 

Interestingly, the three packing solutions are different under 

ach approach in terms of both cargo composition and loading co- 

rdinates of the chosen boxes. While MDCLP-B achieves the high- 

st cargo value of 88.0 (which is expected as this strategy indeed 

aximizes this objective alone), it violates 5 times the above and 

isibility constraints incurring a high penalty of 13.8. The opposite 

an be said for MDCLP-H , which does not violate any of the un- 

oading constraints but results in the lowest cargo value of 76.0, 

ith only 6 boxes loaded instead of 7 as under the other strate- 

ies. Finally, MDCLP-S achieves a cargo value of 86.0 and violates 

 unloading constraints for a total penalty of 5.1, hence reaching 

he best objective function value of 80.9. Therefore, by accounting 

or soft unloading constraints, MDCLP-S manages the trade-off be- 

ween cargo value and penalties more efficiently and its objective 

C

6 
alue is 9.0% and 6.4% higher than that of MDCLP-B and MDCLP-H , 
espectively. 

The running time varies considerably across formulations. 

hilst MDCLP-B needs less than one second, MDCLP-H and 

DCLP-S take roughly 9 and 22 seconds respectively, which is 

ubstantial given that this small instance only includes eight items. 

he reason behind this variation is that modeling soft unloading 

onstraints requires a significant number of additional binary vari- 

bles and big- M constraints compared to the standard CLP (which 

s already challenging as discussed in Section 2 ), namely variables 

 i j , d i j , p i j , and r i j appearing in constraints (5) –(7) . The formu-

ation with hard unloading constraints lies somehow in between, 

ince a i j and d i j are needed, but not p i j and r i j . Additional experi- 

ents show that solving times are highly instance-dependent and 

ary depending on both the dimensions of the boxes and the co- 

fficients of the penalties (as also discussed later in Section 5.4 ). 

onetheless, the observed running times clearly indicate a con- 

istent ranking of the three strategies MDCLP-B , MDCLP-H , and 

DCLP-S as mentioned above, and that it is not viable to solve 

he MDCLP with hard or soft unloading constraints optimally for 

arger instances, e.g., comprised of 50 or more items. Moreover, 

he presented formulation does not include reachability constraints 

nd would be even harder to tackle under nonlinear penalties. For 

hese reasons, we develop next a heuristic framework that sacri- 

ces optimality but is very fast and can deal with large instances 

s well as more general penalties. Despite our focus is on the un- 

oading constraints, this heuristic could be extended to incorporate 

ther practical constraints (e.g., vertical stability and load bearing). 

. Heuristic algorithm 

At a high level, our heuristic algorithm applies in sequence con- 

truction and improvement methods that iteratively perform ran- 

omized loading operations to build or improve a solution. Con- 

truction and improvement phases of our heuristic are described 

n Sections 4.1 and 4.2 , respectively. 

.1. Construction phase 

Our construction algorithm is based on the concept of the ex- 

reme points (EPs) from Crainic et al. (2008) . The idea underlying 

he approach is simple and consists in inserting boxes sequentially 

n the container one after the other, starting from the empty con- 

ainer, and using the EPs as the set of candidate locations for new 

nsertions. Since constructing a solution in this manner is quick, 

e can iterate the procedure N 

C times to generate different pack- 

ng solutions, then pick the one with the highest objective value. 

onstructing one packing solution requires defining: (i) how to sort 
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Fig. 1. Illustration of the three loading solutions (see web version for interpretation of colors). 
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he items, (ii) how to randomize the sorted list, (iii) how to select 

he best point from a set of EPs, and (iv) how to update the set

f EPs after each insertion. We explain our choices in this regard 

ext. 

Since the solution of a constructive method depends on the 

rder in which items are considered, we initially sort them ac- 

ording to a criterion that facilitates the subsequent loading, e.g., 

y placing first those items that are larger and hence harder to 

ack later when space is limited. Specifically, we sort by non- 

ncreasing values one of the following six attributes: volume ( v i ), 
eight ( h i ), area ( l i · w i ), customer-volume ( c i , then v i ), customer-

eight ( c i , then h i ), and customer-area ( c i , then l i · w i ). In the lat-

er three cases, items are sorted first according to the primary at- 

ribute c i ; items with equal c i are then sorted by a secondary at-

ribute. We randomly pick one out of these six sorting criteria for 

ach solution we construct, i.e., each iteration n = 1 , . . . , N 

C . While

he first three criteria based on box size are standard ( Crainic et al.,

008 ), sorting by customer number in the other three cases favors 

he placement of boxes with higher and lower customer numbers 

eeper in the container and closer to its doors, respectively. Thus, 

hese criteria implicitly favor generating solutions with fewer vio- 

ations of the unloading constraints ( Gajda et al., 2022 ). 

Once the items are sorted, we randomize the sequence to in- 

roduce diversification during loading and produce each iteration a 

ifferent solution. We do this by swapping the position of items 

hat are “similar” according to the attribute θ used for sorting. 

pecifically, following Trivella & Pisinger (2016) , we define the 

robability of swapping two consecutive items i and i + 1 in the 

equence by 

Pr (i ↔ i + 1) := 

{
5 (θi +1 /θi − 0 . 9) , if θi +1 /θi > 0 . 9 , 

0 , otherwise. 

his formula states that two items with identical sorting attribute, 

.e. such that θi = θi +1 , are swapped position with 50% probability. 
7 
s the ratio θi +1 / θi decreases (i.e., the items become more differ- 

nt), the probability Pr (i ↔ i + 1) decreases too, until it reaches 0% 

or θi +1 / θi = 0 . 9 . In case of combined attributes, θi equals the sec-

ndary attribute. Furthermore, we randomly rotate the items by 

icking one of their feasible orientations with equal probability. 

his randomization is not carried out separately for each item but 

n a block-wise fashion, that is, the same rotation is applied to all 

tems with identical dimensions, thereby easing the formation of 

ompact blocks with no holes and hence better utilizing the space 

n the container ( Gajda et al., 2022 ). 

Once sorting and randomization have been executed, the items 

re loaded into the container one by one. For each insertion, one 

P from the available set has to be selected and the box placed so 

hat its bottom-left-rear corner coincides with that EP. Initially, the 

ist of EPs is made of just the bottom-left-rear corner of the con- 

ainer with coordinates (0,0,0). When a box is loaded, the set of 

vailable EPs is updated by removing the chosen point while gen- 

rating up to six new EPs using the algorithm described in Crainic 

t al. (2008) , which exploits projections of the corners of the newly 

nserted box onto the walls of the container or other items already 

oaded. To select the EP where to place an item, we adopt a first- 

t decreasing approach that considers the EP with the lowest x - 

oordinate, then the lowest y -coordinate in case of ties on x , and

nally the lowest z-coordinate in case of ties on both x and y . Us-

ng such a first-fit decreasing strategy, we pick the first EP which is 

easible for placing the current box, that is, the box must be fully 

ontained in the container and must not overlap with the boxes 

lready loaded up to that point. 

If an item i cannot be placed in any of the EPs available when

 is considered, (i.e., all EPs are infeasible for inserting i ), then this

tem is temporarily stored in a retry list . After attempting to load 

ll items in the container, a second round is performed with the 

etry list. Thus, the goal of such a list is to reattempt loading when 

ew EPs have been generated. Since the number of items in the 
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etry list is typically much smaller than |B| , to increase the chances 

f loading we adopt an enhanced first-fit decreasing variant that 

hecks feasibility not only for the predefined (randomized) orienta- 

ion, but for all feasible orientations. Boxes that fail insertion again 

re discarded from the constructive solution but may be reconsid- 

red during the improvement phase presented next. 

.2. Improvement phase 

The unloading constraints are not taken into account explicitly 

uring construction, but only implicitly by including the customer 

 i as a sorting criterion. Our improvement phase is instead de- 

igned to explicitly reduce the penalties due to violations of the 

nloading constraints. Indeed the algorithm iteratively defines a 

egion in the container with high improvement potential, empties 

t, and refills it with the goal of increasing the objective function 

alue. Region reconstruction is one of the five possible improve- 

ent moves in the VNS presented by Parreño et al. (2010) . In our

ontext, specifying promising regions is guided by indicators that 

uantify the amount of penalties in the region and/or the propor- 

ion of empty spaces. Thus, rebuilding these regions has the po- 

ential to reduce penalties and/or pack more items in the available 

pace. The reconstructed solution is then compressed to a gapless 

acking and the gained space is used to load additional items. The 

tructure of our approach is outlined in Algorithm 1 . Given a pack- 

Algorithm 1: Improvement algorithm. 

Input: Packing solution S; maximum number of iterations N 

I 

for iteration n = 1 to N 

I do 

Step 1. Compute matrices of conflicts ( C), penalty density 

( D ) and empty spaces ( E) 

Step 2. Select item pair i, j ∈ S delimiting the region using 

criterion M-1 , M-2 , or M-3 

Step 3. Define S 0 obtained by removing all items 

intersecting cuboid P (i, j) from S 

Step 4. Refill S 0 using best-fit decreasing and items in 

B \ S 0 , obtaining S ′ 

Step 5. Compress S ′ and refill it with best-fit decreasing 

and items in B \ S ′ , getting S ′′ 

Step 6. Set S as the solution with highest objective value 

among {S , S 0 , S ′ , S ′′ } 
Output: Improved packing solution S 

ng solution S , this algorithm attempts to improve it by recon- 

tructing regions iteratively for up to N 

I iterations (alternatively, 

ntil a given running time is reached) 1 . In the following we ex- 

lain in detail the steps underlying each iteration. 

Step 1 computes three matrices to support identifying a promis- 

ng region: the conflict matrix C, the density matrix D and the empty 

pace matrix E, each with size |S| × |S| . Matrix C evaluates conflicts 

rising between item pairs. Specifically, given i, j ∈ S with c i < 

 j , we define C i j := f v (q j , v j , z j ) + f a (q j , v j , z j ) + f r (q j , v j , z j , δi j ) ,

hich equals zero if above, visibility, and reachability constraints 

re respected between i and j, and the incurred penalty otherwise. 

atrix D is more sophisticated and encodes information about the 

ensity of penalties inside a given volume. For each i, j ∈ S , we
1 A packing solution S is given by the set of loaded items, their placement coor- 

inates, and their orientation. To ease exposition, when it is clear from the context, 

e abuse notation and refer to S ⊆ B as just the loaded item set. 

m  

U

p

c

8 
ompute the smallest orthogonal cuboid that entirely includes both 

oxes, which we denote by P (i, j) . Then, for each item k ∈ S which

verlaps with P (i, j) , we calculate the unloading cost generated by 

his item by summing up the k -th column of matrix C, and multi-

ly it by the proportion of box k ’s volume that falls inside P (i, j) .

e define D i j as the sum over k of these penalties divided by the 

olume of P (i, j) . Finally, matrix E describes the amount of empty 

pace in regions of the container. For i, j ∈ S , E i j is defined as the

roportion of volume of P (i, j) that is not occupied by boxes. Note 

hat matrices D and E are symmetric while C is not. 

Step 2 uses these matrices to select the region to reconstruct, 

hich involves choosing two items i, j ∈ S and computing the as- 

ociated cuboid P (i, j) . We define three approaches to select i and

j. The first approach, denoted M-1 , just uses the conflict matrix C. 

t computes unloading costs originating from each item by sum- 

ing up the columns of C, and randomly picks one of the ξ items 

ith highest unloading cost. For this item j, a second item i is 

hosen randomly among those in conflict with j, i.e., such that 

 i j > 0 . The second approach M-2 uses the density matrix D by

andomly selecting one of the ξ item pairs (i, j) with highest D i j 

alue. Finally, the last approach M-3 generalizes the former one 

y exploiting both penalty and empty space information. This ap- 

roach randomly picks one of the ξ item pairs (i, j) with highest 
D D i j + ζ E E i j value, where ζ D and ζ E are trade-off parameters. In 

ll three methods, ξ governs the level of randomization and the 

olume of P (i, j) is constrained not to exceed half of the con- 

ainer’s volume. 

Step 3 removes from S all items that even partially overlap with 

 (i, j) , obtaining a new solution S 0 . Although the latter carries 

ower cargo value, it may also have fewer penalties. 

Step 4 refills the emptied region by applying an extreme-point 

euristic. First, some EPs are (re)generated at the bottom-left-rear 

orners of the removed items. Then, all EPs are ranked in a first-fit 

ashion based on coordinates as described in Section 4.1 and are 

onsidered sequentially for placing items. For each insertion, we 

valuate all items i ∈ B \ S 0 and all feasible orientations o ∈ R i us-

ng a best-fit strategy with a merit function m io := πi −
{∑ 

(C i o j + 

 ji o ) : j ∈ S 0 
}

, where C i o j denotes the penalty between item i with

rientation o and the already loaded item j, i.e., it coincides with 

he conflict matrix element C i j once item i is given orientation o

analogous for C ji o ). The item-orientation pair (i, o) with highest 

erit value is selected for loading. The procedure ends when all 

tems are loaded or when all EPs are considered, giving a new so- 

ution S ′ . 
Step 5 transforms S ′ into a so-called gapless packing where no 

ox can be moved to lower x , y , or z coordinates, i.e., all boxes

re shifted as much as possible towards the corner (0,0,0). This is 

mportant to reduce empty spaces since the refilling process often 

eads to gaps between items. To produce such a gapless packing, 

e use the interval graphs resulting from the projection of boxes 

nto the Cartesian axes ( Fekete et al., 2007 ), which allows to easily 

dentify the sequence in which boxes must be shifted ( Trivella & 

isinger, 2016 ). To illustrate, consider the interval graph related 

o coordinate x . Each node in this graph is a box and an edge

onnects two nodes if the corresponding boxes overlap in x . Each 

dge is also assigned a direction, with the arrow pointing towards 

he box with highest x coordinates. We can use this graph to 

erform a shift by reassigning coordinates using two rules. First, 

 box i without incoming edges is given a coordinate of x i = 0

nd is marked as processed. Second, a box with only incoming 

dges from processed boxes is assigned coordinate x i equal to the 

aximum of x j + l j over the connected processed boxes j ∈ S ′ .
sing these rules, we can iteratively process all nodes. The same 

rocedure is applied to the y and z directions. As the described 

ompression method may free up some space in the container, we 
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Table 3 

Specification of penalty function parameters. 

Set Penalty level α β γ

P-1 low 2.5 · 10 −3 5.0 · 10 −3 4.5 · 10 −3 

P-2 medium 7.5 · 10 −3 15.0 · 10 −3 4.5 · 10 −3 

P-3 high 12.5 · 10 −3 25.0 · 10 −3 4.5 · 10 −3 

P-4 very high 17.5 · 10 −3 35.0 · 10 −3 4.5 · 10 −3 
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pply again the extreme-point best-fit strategy to attempt filling 

his space. We call the resulting solution S ′′ . 
Step 6 picks the best solution among {S , S 0 , S ′ , S ′′ } , i.e., the

ne with highest objective function value. Conceptually, it is not 

ossible to rank these four solutions a priori. For example, we 

now that the cargo value under S ′′ is at least as high as the one

nder S ′ , but the former solution may incur higher penalties be- 

ause more items are loaded, hence more easily some of the un- 

oading constraints are violated. Finally, the entire process (Steps 

–6) is iterated by selecting and refilling a new region, which will 

e different than the previous one due to the embedded random- 

zation. 

. Numerical study 

This section presents an extensive computational study based 

n the heuristic algorithm of Section 4 . In Section 5.1 , we introduce

he instances and computational setup. In Section 5.2 , we compare 

DCLP variants with soft, hard, and no unloading constraints. In 

ection 5.3 , we study in detail the effectiveness of the improve- 

ent phase. In Sections 5.4 and 5.5 we compare the performance 

f our method with that of a commercial optimization solver and 

 heuristic algorithm from the literature, respectively. Finally, we 

nalyze in Section 5.6 the region reconstruction methods used in 

he improvement phase. 

.1. Instances and study design 

Our experiments are based on the well-known BR instances 

rom Bischoff et al. (1995) and Davies & Bischoff (1999) , compris- 

ng 1500 CLP instances divided into 15 classes of 100 instances 

ach. The 15 classes differ by the level of heterogeneity in the item 

et, which ranges from weakly heterogeneous (BR1 has T = 3 item 

ypes) to highly heterogeneous (BR15 has T = 100 item types), 

here an item type describes a set of items with identical features, 

.e., dimensions and set of permissible orientations. These instances 

nclude 178.5 items on average with a maximum of 1961. 

A BR instance specifies a container size (which is 

87 × 233 ×220 cm in all instances corresponding roughly to 

 20-foot container) and a set of T item types each provided with 

 demand, i.e., the number of identical items. The BR instances 

re traditionally used to maximize the loaded volume and no data 

n item value and weight is given, which is instead needed here. 

hus, we associate each item type with a value and a weight by 

ultiplying its volume by a random number drawn uniformly 

rom [0.7,1.3] and [1,3], respectively. This randomization is used 

o create more realistic instances, as not every item has equal 

ensity and value while it is reasonable to assume that volume 

s correlated with both value and weight. We then generate 

ustomer numbers by randomly picking a number of customers 

 ∈ { 2 , . . . , min { 8 , T }} and associating all items of the same type

ith a random customer in { 1 , . . . , M} , also ensuring that each

ustomer is assigned at least one item type. 

We solved all 1500 instances using the three strategies al- 

eady introduced in Section 3.3 , namely MDCLP-B , MDCLP-H , 
nd MDCLP-S , with small adaptations to the heuristic framework. 

pecifically: 

• MDCLP-B ( Sequential approach ). This strategy runs the con- 

struction phase only of the heuristic for 30 seconds per in- 

stance (see Section 4.1 ). It only accounts for unloading im- 

plicitly through sorting. The penalties are evaluated a pos- 

teriori for all generated solutions, and the one with high- 

est objective (total cargo value minus penalties) is selected. 

Under very high penalties this evaluation may be negative; 

we choose zero in this case, which corresponds to an empty 

shipment. 
9 
• MDCLP-H ( Hard unloading constraints ): This approach relies 

on an adaptation of the construction phase that enforces 

hard unloading constraints by only allowing placements of 

items into EPs when no unloading constraint is violated. As 

penalties are always zero by definition, the constructed so- 

lution with the highest cargo value after a 30-second execu- 

tion is chosen. 
• MDCLP-S ( Soft unloading constraints ): This strategy employs 

the same construction phase as MDCLP-B followed by an 

improvement phase (see Section 4.2 ). For improvement, we 

apply Algorithm 1 to the five best solutions returned by the 

construction phase for 20 seconds each, totaling 100 sec- 

onds. We then choose the best among the five improved 

solutions and the MDCLP-H solution, which we recall is al- 

ways feasible. This means that MDCLP-S runs in 160 sec- 

onds as it requires the construction solutions from the other 

two strategies in addition to the improvement phase. 

The penalties for violating the unloading constraints are defined 

s follows (see also Section 3.1 ). 

f a (q j , v j , z j ) = (1 + γ z j ) · (αq j + βv j ) , (10a) 

f v (q j , v j , z j ) = (1 + γ z j ) · (αq j + βv j ) , (10b) 

f r (q j , v j , δi j ) = (1 + γ δi j ) · (αq j + βv j ) , (10c) 

hich depend on the three parameters α, β , and γ . We consider 

our different sets of parameters ranging from low to very high 

enalties and that we report in Table 3 . 

To elaborate, we set the coefficient β = 2 α because items’ 

eights are generated by multiplying their volume by a uniform 

andom variable U [1 , 3] , which has a mean of 2. Thus, we try to at-

ribute equal importance to weight and volume when calculating 

he penalties. When moving from P-1 to P-4 , the coefficients α
nd β increase linearly and by up to seven times, which based on 

xperimentation appear to cover a reasonable spectrum of values. 

egarding γ , this parameter is set in all cases equal to the mul- 

iplicative inverse of the height H of the container. This implies 

hat an obstructing item placed close to the top of the container 

ill generate roughly double the penalty compared to the same 

tem placed at the bottom. Consider for example a typical item of 

alue 100, volume 100, and weight 200, neglecting units. Based on 

able 3 , a single violation of the above constraints (10a) caused 

y this item would result in a penalty ranging from 0.5–1.0% of 

ts value under P-1 , to 3.5–7.0% of its value under P-4 , depend- 

ng on the height at which this box is loaded. Of course, an item 

ay be simultaneously subject to more penalties arising from con- 

icts with multiple items. In contrast to the illustrative example 

n Section 3.3 , notice that (4) –(8) would be a nonlinear program 

nder penalties (10) . 

The heuristic algorithm was implemented in Python and run on 

 server equipped with a quad-core Intel Xeon E3-1585L v5 pro- 

essor, with memory usage never exceeding 500 MB. On average 

cross all instances, running the construction phase for 30 seconds 

llows to perform 420 iterations (i.e., packing solutions generated). 

ue to the large number of randomized iterations we can execute 
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Table 4 

Comparison of MDCLP-H and MDCLP-S strategies. 

MDCLP-H MDCLP-S �SH (%) 

Class P- ∗ P-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4 

BR1 77.1 84.1 81.4 80.4 79.9 9.0 5.5 4.2 3.6 

BR2 76.2 83.4 80.6 79.4 78.7 9.4 5.8 4.2 3.3 

BR3 72.8 80.9 77.0 75.3 74.5 11.2 5.8 3.5 2.4 

BR4 72.4 80.4 76.5 75.0 74.4 11.0 5.6 3.6 2.6 

BR5 72.1 79.6 75.6 74.0 73.2 10.4 4.8 2.7 1.6 

BR6 70.7 79.0 74.6 72.8 72.0 11.7 5.5 3.0 1.8 

BR7 70.0 78.1 73.7 72.3 71.1 11.6 5.3 3.3 1.7 

BR8 69.4 77.7 73.4 71.4 70.4 12.0 5.9 3.0 1.6 

BR9 69.4 77.0 72.7 70.9 70.0 11.0 4.7 2.2 1.0 

BR10 68.9 76.5 72.2 70.4 69.4 11.0 4.8 2.1 0.8 

BR11 69.3 76.4 72.4 70.4 69.8 10.4 4.5 1.7 0.7 

BR12 68.4 76.1 71.4 69.6 68.8 11.2 4.4 1.6 0.6 

BR13 68.9 76.3 72.0 70.0 69.2 10.7 4.4 1.6 0.4 

BR14 68.3 75.8 71.4 69.4 68.6 11.1 4.5 1.6 0.4 

BR15 68.7 75.9 71.4 69.6 68.9 10.5 4.0 1.3 0.3 

Mean 70.8 78.5 74.4 72.7 71.9 10.8 5.0 2.6 1.5 
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Fig. 2. Distribution of improvements of MDCLP-S over MDCLP-B for medium 

penalties ( P-2 ). 
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i

n 30 seconds, increasing further the time limit does not bring sig- 

ificant extra benefit to the construction phase. Instead, about 20 

egion reconstruction iterations can be executed when improving 

 solution for 20 seconds. An improvement iteration is therefore 

ore costly than a construction iteration, which is expected since 

lgorithm 1 employs more sophisticated operations than construc- 

ion. Both construction and improvement iterations could be par- 

llelized to drastically reduce the runtime, which we did not do 

ere. In Sections 5.2 –5.5 , we use the region definition M-1 with 

= 5 (see Step 2 of Algorithm 1 ), and compare it with the other

ariants M-2 and M-3 later in Section 5.6 . 

.2. Sequential approach, hard, and soft unloading constraints 

We start by comparing the objective function value under 

DCLP-H and MDCLP-S for all penalties in Table 4 . The reported 

alues are averages across 100 instances of each BR class, except 

or the last row where the average is over both instances and 

lasses. The MDCLP-H strategy is not affected by the choice of the 

enalty and its objective is independent from the penalty. The last 

our columns labeled �SH (%) contain the average improvement 

chieved by MDCLP-S over MDCLP-H as percentage. 

Varying the penalty coefficients ( α, β) considerably affects the 

DCLP-S objective, which decreases with increasing coefficients. 

his is expected since the set of feasible packing solutions and 

heir cargo value is the same regardless of the soft unloading con- 

traints but the penalty component is an increasing function of α
nd β . As a consequence, the improvement over MDCLP-H (which 

s independent of the penalty) varies too and ranges from 9–12% 

nder P-1 to 0.3–3.6% under P-4 . Further investigation shows 

hat in several instances, under high and especially very high 

enalties, the MDCLP-S improvement phase could not outper- 

orm MDCLP-H , hence the latter solution was chosen by MDCLP-S 
counting as a zero improvement). This means that exploiting the 

exibility introduced by soft unloading constraints is challenging 

nder very high penalties, and suggests that planning based on 

ard constraints may suffice when the operator weighs heavily 

he indirect cost of relocating items during delivery. Nevertheless, 

he statistics in the table support the explicit consideration of soft 

nloading constraints in general, as they can lead to solutions of 

uch higher objective values compared to directly enforcing hard 

nloading constraints. Finally, we notice that the improvement is 

lightly larger for the more homogeneous BR classes, especially un- 

er P-3 and P-4 . 
Table 5 compares MDCLP-B and MDCLP-S . It shows the objec- 

ive function value of the two strategies under all penalties and BR 
10 
lasses (the results for MDCLP-S are analogous to those in Table 4 ) 

nd the average improvement by MDCLP-S over MDCLP-B ex- 

ressed as percentage, denoted �SB (%) . 

For all BR classes, the amount of improvement (i.e., �SB ) in- 

reases with the coefficients ( α, β) of the penalty function. On av- 

rage, this improvement varies between 2.4% with P-1 to 10.5% 

ith P-4 , reaching a maximum of about 15% for BR5 under P-4 . 
he reason behind this behavior is that MDCLP-S is aware of 

he penalty when optimizing the trade-off between cargo value 

nd unloading cost in the improvement phase, while MDCLP-B 
s passively subject to increasing penalties. In other terms, the 

oading solutions by MDCLP-B are generated during the construc- 

ion phase independently of the penalty, maximizing the cargo 

alue, hence indirectly the filling degree of the container. These 

olutions typically present many unloading constraints violations, 

hose cost can be marginal under low penalties such as P-1 but 

s substantial under higher penalties like P-3 or P-4 . Overall, 

he numbers in Table 5 reveal that neglecting the unloading con- 

traints during the packing phase leads to poor solutions with a 

otentially high cargo value but that are very expensive to unload. 

vercoming this issue requires applying an improvement phase 

hat accounts for the unloading costs. 

Next, we investigate more in depth the benefit of the improve- 

ent phase of our heuristic, and provide more insights on the de- 

omposition of the objective function into cargo value and penal- 

ies. 

.3. Analysis of improvement 

In Fig. 2 , we show the distribution over all 1500 instances of the 

mprovement �SB under penalty P-2 , which was only reported as 
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Table 5 

Comparison of MDCLP-B and MDCLP-S strategies. 

MDCLP-B MDCLP-S �SB (%) 

Class P-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4 P-1 P-2 P-3 P-4 

BR1 82.0 77.1 74.1 71.5 84.1 81.4 80.4 79.9 2.5 5.6 8.4 11.7 

BR2 81.9 77.7 74.5 71.6 83.4 80.6 79.4 78.7 1.8 3.7 6.7 9.9 

BR3 79.6 73.8 69.6 65.8 80.9 77.0 75.3 74.5 1.7 4.3 8.1 13.2 

BR4 78.7 73.4 69.8 66.6 80.4 76.5 75.0 74.4 2.1 4.2 7.4 11.7 

BR5 78.2 72.0 67.7 63.8 79.6 75.6 74.0 73.2 1.8 5.0 9.4 14.9 

BR6 77.3 71.8 67.9 64.2 79.0 74.6 72.8 72.0 2.2 3.9 7.4 12.2 

BR7 76.3 71.1 67.1 63.5 78.1 73.7 72.3 71.1 2.3 3.7 7.6 12.0 

BR8 75.7 70.7 67.3 64.2 77.7 73.4 71.4 70.4 2.7 3.8 6.1 9.7 

BR9 75.1 70.6 67.3 64.2 77.0 72.7 70.9 70.0 2.5 3.0 5.3 9.0 

BR10 74.4 70.2 66.9 63.8 76.5 72.2 70.4 69.4 2.7 2.9 5.2 8.8 

BR11 74.5 70.2 67.1 64.2 76.4 72.4 70.4 69.8 2.6 3.0 4.9 8.8 

BR12 74.1 69.6 66.2 62.9 76.1 71.4 69.6 68.8 2.7 2.6 5.1 9.3 

BR13 74.4 70.4 67.3 64.3 76.3 72.0 70.0 69.2 2.6 2.3 4.1 7.6 

BR14 74.0 69.6 66.1 62.8 75.8 71.4 69.4 68.6 2.4 2.6 5.0 9.2 

BR15 73.8 69.5 66.0 62.8 75.9 71.4 69.6 68.9 2.8 2.8 5.3 9.8 

Mean 76.7 71.8 68.3 65.1 78.5 74.4 72.7 71.9 2.4 3.5 6.4 10.5 

Fig. 3. Evolution of objective function value in 4th BR7 instance under penalty P-2 . 
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n average in Table 5 . To ease visualization, we collect around 220 

nstances with zero improvement ( �SB = 0% ) into a first bar de- 

icted for range [ −1 , 0] , and truncate the graph at �SB = 20% , dis-

arding about 20 instances with larger improvements. 

The distribution is right skewed. Although the bulk of the im- 

rovement lies between 0 and 6%, with an average of 3.5%, there 

re 158 instances (or 10.5%) with improvements of 6–10%, and fur- 

her 77 instances (or 5.1%) with improvements of more than 10%. 

his suggests that there is a certain variability in the effective- 

ess of our improvement heuristic with respect to different pack- 

ng configurations. Nonetheless, applying this phase is critical to 

void huge losses in a significant subset of instances. This is even 

ore emphasized under higher penalties such as P-3 and P-4 
here the proportion of instances with improvements above 10% 

s roughly 20% and 37%, respectively. 

For a single instance, Fig. 3 shows how the objective function 

alue evolves during construction and improvement phases. For 

his illustration, we extended the improvement phase to 60 sec- 

nds per solution and display markers only for the first, last, and 

mproving iterations of both phases. 

Construction and improvement iterations both play an essen- 

ial role in this example as they increase the objective value from 

bout 60 to 66 and from 66 to 72, respectively. Let us denote by 

 1 , . . . , S 5 the five best solutions obtained at the end of the con-

truction phase, in this order. In the instance considered in Fig. 3 , 

t is the second best solution S 2 (dotted green line) that results in 

he overall best solution after experiencing an improvement of 6.5. 

nstead, S 1 (continuous blue line) could only be improved by 4.4, 

anking third after improvement. Interestingly, S 5 (dashed brown 

ine) could be improved by 9.2, ending up second after improve- 
11 
ent. This clearly shows that seemingly worse solutions from the 

onstruction phase may embed more potential for improvement. 

What we observe here is not an isolated case. We found indeed 

hat S 1 produced the best packing after the improvement phase 

n about 40% of the instances (including those instances with zero 

mprovement), while the remaining 60% was provided by solutions 

 2 to S 5 , each with at least a 10% share. This proves that improving

n array of different packing solutions is helpful whilst focusing 

n just a single one may be inefficient. On the BR7 instances, for 

xample, the average improvements �SB shown in Table 5 would 

e roughly halved when only improving S 1 . Given this analysis and 

esults, applying the improvement phase to an even larger number 

f solutions may have the potential to bring some additional gain, 

t the obvious expense of higher computing time. 

We finally investigate whether the improvement observed in 

igs. 2, 3 stems from increasing the cargo value, from reducing the 

nloading costs, or both, and show our results in Table 6 . This ta-

le contains the cargo value (labeled “Val.”), the incurred penalties 

“Pen.”), and their difference (“Dif.”), obtained after construction 

nd improvement phases under all BR classes and penalty sets. 

otice that for the construction phase, “Dif.” coincides with the 

DCLP-B objective, but for the improvement phase, “Dif.” differs 

rom the MDCLP-S objective as the latter is lower bounded for 

ach instance by the hard constrained solution. This means that 

Dif.” for the improvement phase is always less than or equal to 

he objective of the MDCLP-S heuristic discussed in Section 5.2 . 

reen and red entries of the table highlight, respectively, improve- 

ents and worsening in cargo value or penalties. 

The results are mixed and depend on both penalty weights and 

eterogeneity of instance. Under the intermediate penalties P-2 
nd P-3 , the cargo value and the unloading costs often improve 

imultaneously. Under low penalties ( P-1 ), some extra unloading 

ost is usually introduced with the goal of increasing the cargo 

alue by a larger extent. Under very high penalties ( P-4 ), the op- 

osite happens and some cargo value is sacrificed during improve- 

ent to cut the unloading costs by a more significant amount. 

verall, this analysis shows that balancing the trade-off between 

he two objective function components is crucial to ensure the 

ighest solution quality, but is not straightforward without an im- 

rovement phase as it depends on the instance’s features and on 

he penalties. 

.4. Comparison with commercial solver 

In this section, we compare the solutions of our heuristic strat- 

gy MDCLP-S with those obtained when solving the MILP with a 
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Table 6 

Analysis of improvement: cargo value vs. unloading cost. 

P-1 P-2 

Construction Improvement Construction Improvement 

Class Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif. 

BR1 85.4 3.4 82.0 86.7 3.0 83.7 82.6 5.5 77.1 83.8 4.1 79.8 

BR2 85.0 3.1 81.9 86.1 2.9 83.2 83.0 5.3 77.7 83.7 4.0 79.7 

BR3 83.6 4.0 79.6 85.0 4.1 80.9 80.8 7.0 73.8 81.7 5.6 76.1 

BR4 82.6 3.9 78.7 84.5 4.2 80.3 79.7 6.3 73.4 81.3 5.9 75.4 

BR5 82.8 4.6 78.2 84.2 4.6 79.6 79.2 7.2 72.0 80.9 6.3 74.6 

BR6 81.3 4.0 77.3 83.4 4.4 79.0 78.2 6.4 71.8 80.4 6.2 74.2 

BR7 80.4 4.1 76.3 82.6 4.5 78.1 77.4 6.3 71.1 79.1 6.1 73.0 

BR8 79.8 4.1 75.7 82.2 4.5 77.7 76.2 5.5 70.7 78.7 5.7 73.1 

BR9 78.8 3.7 75.1 81.6 4.6 77.0 75.7 5.1 70.6 78.2 5.7 72.5 

BR10 78.4 4.0 74.4 81.1 4.6 76.5 75.3 5.1 70.2 77.8 5.7 72.1 

BR11 78.6 4.1 74.5 80.8 4.4 76.4 75.2 5.0 70.2 78.0 5.9 72.1 

BR12 78.2 4.1 74.1 80.8 4.7 76.1 75.0 5.4 69.6 77.6 6.3 71.3 

BR13 77.6 3.2 74.4 80.7 4.4 76.3 75.5 5.1 70.4 77.5 5.8 71.8 

BR14 77.9 3.9 74.0 80.5 4.6 75.8 75.0 5.4 69.6 77.3 6.2 71.2 

BR15 77.7 3.9 73.8 80.5 4.6 75.9 75.0 5.5 69.5 77.2 6.1 71.2 

Mean 80.6 3.9 76.7 82.7 4.3 78.4 77.5 5.7 71.8 79.5 5.7 73.9 

P-3 P-4 

Construction Improvement Construction Improvement 

Class Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif. Val. Pen. Dif. 

BR1 81.8 7.7 74.1 82.1 3.9 78.2 80.5 9.0 71.5 80.6 3.0 77.6 

BR2 82.0 7.5 74.5 81.6 4.1 77.5 81.5 9.9 71.6 79.9 4.0 75.9 

BR3 79.3 9.7 69.6 79.6 6.6 73.0 78.6 12.8 65.8 77.2 6.3 71.0 

BR4 78.1 8.3 69.8 78.7 6.1 72.6 77.9 11.3 66.6 76.8 5.9 70.9 

BR5 77.8 10.1 67.7 77.7 6.1 71.7 77.2 13.4 63.8 75.1 5.4 69.7 

BR6 77.4 9.5 67.9 78.0 6.6 71.4 76.9 12.7 64.2 75.7 6.5 69.3 

BR7 76.5 9.4 67.1 77.0 6.7 70.4 76.1 12.6 63.5 74.8 7.2 67.6 

BR8 75.4 8.1 67.3 76.7 6.5 70.2 74.9 10.7 64.2 74.5 6.7 67.8 

BR9 75.1 7.8 67.3 76.4 6.5 69.9 74.8 10.6 64.2 74.3 6.7 67.6 

BR10 74.8 7.9 66.9 75.8 6.7 69.1 74.4 10.6 63.8 73.8 7.1 66.7 

BR11 74.5 7.4 67.1 75.7 6.7 69.1 74.4 10.2 64.2 73.9 7.2 66.7 

BR12 74.5 8.3 66.2 75.7 7.6 68.1 74.1 11.2 62.9 73.4 7.9 65.5 

BR13 74.8 7.5 67.3 75.7 6.7 69.0 74.5 10.2 64.3 73.8 7.4 66.4 

BR14 74.5 8.4 66.1 75.5 7.4 68.0 74.2 11.4 62.8 73.2 8.1 65.1 

BR15 74.4 8.4 66.0 75.3 7.3 68.0 74.1 11.3 62.8 72.9 7.8 65.1 

Mean 76.7 8.4 68.3 77.4 6.4 71.1 76.3 11.2 65.1 75.3 6.5 68.9 

Table 7 

Comparison of MDCLP-S and Gurobi on BR4 and BR10 instances. 

MDCLP-S Gurobi MDCLP-S Gurobi 

BR4 Items 130s 130s 600s BR10 Items 130s 130s 600s 

1 106 79.56 18.92 22.56 1 136 76.90 3.11 3.11 

2 123 79.16 6.69 6.69 2 123 75.80 20.66 20.66 

3 135 81.69 5.57 5.57 3 136 71.52 2.93 2.93 

4 169 77.85 3.05 3.05 4 122 78.71 3.71 3.71 

5 130 80.50 9.12 9.12 5 133 72.84 3.75 3.75 

6 132 81.89 2.89 56.78 6 159 71.62 1.88 1.88 

7 138 82.61 6.28 6.28 7 127 74.63 4.47 4.47 

8 107 74.94 16.74 27.10 8 123 72.03 6.63 6.63 

9 149 78.04 2.36 4.92 9 107 72.05 3.72 7.22 

10 133 79.69 3.91 3.91 10 126 72.16 6.27 6.27 

Mean 132 79.59 7.55 14.60 Mean 129 73.83 5.71 6.06 
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ommercial optimization solver, namely Gurobi 9.1. We recall that 

he complete MILP is reported in the appendix in (11) . We per- 

ormed two sets of experiments: (i) using directly some of the BR 

nstances, to investigate the limits of the solver, and (ii) on smaller 

nstances that can be solved to optimality, so that we can compare 

ur results with optimal solutions. 

In the first experiment, we consider 20 BR instances from 

lasses BR4 and BR10 (to include different degrees of heterogene- 

ty) and solve them with penalty P-3 , excluding the reachabil- 

ty constraints (10c) which are not modeled in the MILP. Table 7 

hows the objective function value achieved by MDCLP-S running 

30 seconds (of which 30 for construction and 100 to improve 5 
12 
olutions) and from Gurobi with the same time budget as well as 

n increased budget of 600 seconds. 

It is evident from the table that the solver struggles to find 

ood feasible solutions to instances with over 100 items. In most 

ases, the solver does not retrieve any improving solution when 

oving from 130 to 600 seconds, and the values are often so low 

hat the best solutions found are essentially useless. This strength- 

ns the discussion in Section 3.3 about the need for developing a 

euristic method. 

We verified that moderate-sized instances of 40–60 items are 

lso intractable. Thus, we need to scale down the instance size 

onsiderably in order to compare our results with optimal solu- 
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Table 8 

Comparison of MDCLP-S and Gurobi on reduced BR4 instances. 

Gurobi MDCLP-S 

BR4 Val. Pen. Obj. Items Time Val. Pen. Obj. Items Gap (%) 

1 89.99 0.00 89.99 11 244.8 87.61 2.97 84.65 10 5.9 

2 84.33 0.38 83.95 11 9.5 73.95 1.52 72.43 10 13.7 

3 92.31 1.08 91.22 10 922.5 87.38 0.82 86.56 10 5.1 

4 85.59 0.73 84.86 11 9.4 74.52 2.84 71.68 10 15.5 

5 92.05 1.22 90.83 10 689.2 88.56 0.87 87.69 9 3.5 

6 85.21 0.77 84.44 10 > 7200.0 85.72 5.31 80.41 10 4.8 

7 89.12 0.52 88.60 11 40.5 81.47 2.98 78.49 10 11.4 

8 90.52 0.50 90.02 11 28.7 86.40 1.79 84.61 10 6.0 

9 85.55 1.77 83.78 10 318.2 76.29 2.15 74.14 10 11.5 

10 82.57 0.00 82.57 10 5.1 78.97 0.00 78.97 9 4.4 

Mean 87.72 0.70 87.03 10.5 946.8 82.09 2.12 79.96 9.8 8.1 

t

s

s

m

a

w

t

a

1

i

a

b

h

m

g

c

b

t

i

g

s

s

s

t

o

e

5

e

v

T

d

w

t

t

w

w

T

s

i  

t

s

o

a

e

f

a

t

t

c

1  

r

(

m

n

l

c

t

a

p

e

t

M
i  

T

i

T

p

o

c

p

R
c

5

S

p

A

o  

b

a

f

e

w

o

m

a

d

m

ions. In the following, we consider 10 instances of 12 items con- 

tructed from the BR4 instances previously used in Table 7 . More 

pecifically, we choose the 12 items so that the proportion of de- 

ands across item types is respected as much as possible (e.g., 

n instance with 100 and 50 items of type 1 and 2, respectively, 

ould be turned into a 12-item instance with 8 and 4 items of 

ype 1 and 2, respectively). Moreover, the dimensions of all boxes 

re scaled up so that the joint volume of the 12 boxes becomes 

00% the volume of the container. For these instances, the results 

n Table 8 show the objective function value obtained by MDCLP-S 
nd Gurobi, its breakdown into cargo value and penalty, the num- 

er of loaded items, and the runtime of the solver capped at 2 

ours. 

Our heuristic solutions are on average 8% away from the opti- 

al. The number of loaded items suggests that a reason for this 

ap is the ability of the solver to better fill the volume of the 

ontainer by loading one more box on average (or loading larger 

oxes), which in small instances translates to a significant propor- 

ion of cargo value. Although the penalties in the optimal solutions 

mprove too compared to our heuristic, their contribution to the 

ap is only about 1.5%. The computational time required by the 

olver fluctuates significantly, which is impractical. Whilst some in- 

tances were solved in ten seconds, others needed several hundred 

econds, and one was not solved to optimality in 2 hours. Thus, al- 

hough there may be a benefit in using off-the-shelf commercial 

ptimization software, this benefit is limited to problems that are 

xtremely limited in size. 

.5. Comparison with methods from the literature 

The approach in the literature that is closest to ours is Gajda 

t al. (2022) , where penalties are item-independent, and each box 

iolating the unloading constraints counts as one (see Section 2 ). 

he solution method developed in Gajda et al. (2022) is a ran- 

omized constructive heuristic called RCH . Here, we compare RCH 
ith our MDCLP-S heuristic to investigate whether considering 

he number of boxes to relocate may be a sufficient approach for 

he MDCLP with soft unloading constraints. 

Since RCH accounts for a variety of practical constraints that 

e do not consider (e.g., vertical stability, loading priorities, and 

eight distribution), a direct comparison would be unfair for RCH . 
hus, we implemented a simplified version of RCH that neglects 

uch additional practical constraints, and tested it for all 1500 BR 

nstances and penalties P-1 , P-2 , P-3 , and P-4 . Table 9 reports

he averaged RCH results and their percentage difference with re- 

pect to MDCLP-S (see Table 6 ). Both methods have a time limit 

f 130 seconds. Unlike MDCLP-S , notice that RCH does not have 

n improvement phase; hence, the time budget available is used 

ntirely for the construction phase. 
13 
When looking at the cargo value alone, RCH slightly outper- 

orms MDCLP-S , especially for the more heterogeneous instances, 

nd by 1.2% on average across all BR classes and penalties. In con- 

rast, RCH incurs penalties that are substantially higher and up to 

hree times those incurred by MDCLP-S . On average across all BR 

lasses, the penalized value achieved by RCH is 0.5%, 4%, 7.8%, and 

2% worse than MDCLP-S under penalty P-1 , P-2 , P-3 , and P-4 ,
espectively. These statistics reveal that if penalties are very small 

e.g., P-1 ), then putting more emphasis on maximizing cargo value 

ay be a good strategy, whereas incorporating advanced tech- 

iques to reduce penalties such as region reconstruction leads to 

imited gains. For example, RCH uses a preprocessing phase during 

onstruction to combine items into blocks, which possibly explains 

he slight improvement in cargo value. Nevertheless, if penalties 

re more significant (e.g., P-2 to P-4 ) and item-specific, then sim- 

ly targeting a reduction in the number of item relocations is in- 

fficient as shown by the large performance gap. 

Besides considering the objective function used in this paper, 

o improve fairness we also compare the performance of RCH and 

DCLP-S on the trade-off between cargo value and the number of 

tems to relocate, managing which is a goal in Gajda et al. (2022) .

o this end, we show in Fig. 4 the randomized RCH and MDCLP-S 
terations and their implied Pareto frontiers on three BR instances. 

o improve visualization, we have truncated some less interesting 

ortions of the solution space. 

As we can see, results are mixed and no method dominates the 

ther, with the two Pareto frontiers often crossing each other. In 

onclusion, our approach to tackle soft unloading constraints im- 

licitly reduces the number of items to relocate as effectively as 

CH , in addition to dominating this method considerably when it 

omes to minimizing the penalties. 

.6. Region reconstruction methods 

Finally, we compare the three methods introduced in 

ection 4.2 to define the region to reconstruct during the im- 

rovement phase, namely M-1 , M-2 , and M-3 (see Step 2 of 

lgorithm 1 ). Our setting involves ξ = 5 in all methods and trade- 

ff parameters ζ D = 0 . 7 and ζ E = 0 . 3 in M-3 , which we picked

ased on preliminary experiments. In Table 10 , we report the aver- 

ge objective value obtained when employing these three methods 

or each BR class and parameter set. To ensure consistency, for 

ach instance we improve the same five constructi ve solutions 

hen applying M-1 , M-2 , and M-3 . 
It is evident that approach M-1 based on the conflict matrix 

utperforms the others in most instances, except for the more ho- 

ogeneous classes BR1–5 under penalty P-1 where instead M-2 
nd M-3 produce slightly better results. Typically, the performance 

ifference between M-1 and the best among M-2 and M-3 is 

arginal but can also reach up to 1–2% in some instances. Recall 
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Table 9 

RCH results on the BR instances and comparison with MDCLP-S . 

P-1 P-2 P-3 P-4 

Class Val. Pen. Obj. Val. Pen. Obj. Val. Pen. Obj. Val. Pen. Obj. 

BR1 84.0 2.8 81.2 82.0 5.0 77.0 80.4 6.3 74.2 79.0 7.1 72.0 

-3.1% -6.3% -3.0% -2.2% + 21% -3.5% -2.1% + 60% -5.2% -1.9% + 136% -7.3% 

BR2 83.1 3.8 79.3 80.6 6.5 74.1 78.5 8.2 70.3 77.9 10.8 67.2 

-3.5% + 31% -4.7% -3.7% + 62% -7.1% -3.8% + 100% -9.3% -2.5% + 169% -11.5% 

BR3 83.3 5.3 78.1 78.9 8.0 70.9 77.3 10.9 66.4 76.2 14.0 62.2 

-2.0% + 28% -3.5% -3.5% + 42% -6.8% -2.9% + 65% -9.1% -1.3% + 122% -12.4% 

BR4 83.6 5.7 77.8 79.0 8.6 70.4 76.1 10.8 65.3 75.3 14.1 61.1 

-1.1% + 36% -3.1% -2.9% + 46% -6.7% -3.3% + 76% -10.0% -2.0% + 139% -13.8% 

BR5 83.2 5.1 78.1 79.7 8.8 71.0 78.3 12.7 65.6 77.3 16.6 60.7 

-1.2% + 12% -1.9% -1.4% + 39% -4.9% + 0.8% + 107% -8.5% + 2.9% + 207% -12.9% 

BR6 83.2 6.0 77.1 78.4 8.9 69.6 77.3 13.3 64.0 76.2 17.3 58.9 

-0.3% + 37% -2.4% -2.4% + 43% -6.3% -0.9% + 102% -10.4% + 0.6% + 165% -15.0% 

BR7 83.1 5.6 77.6 78.9 8.7 70.2 77.8 13.1 64.7 77.3 17.7 59.6 

+ 0.6% + 24% -0.7% -0.2% + 43% -3.9% + 1.1% + 95% -8.0% + 3.3% + 146% -11.8% 

BR8 83.7 5.4 78.3 80.2 9.6 70.6 79.3 14.9 64.4 78.1 19.5 58.7 

+ 1.8% + 21% + 0.7% + 1.9% + 69% -3.4% + 3.4% + 129% -8.2% + 4.9% + 191% -13.5% 

BR9 84.1 6.2 77.9 79.2 9.1 70.1 77.8 13.4 64.4 77.2 18.0 59.2 

+ 3.0% + 35% + 1.1% + 1.2% + 60% -3.4% + 1.8% + 106% -7.8% + 3.8% + 168% -12.5% 

BR10 84.0 5.9 78.1 79.4 8.8 70.7 78.6 13.5 65.1 77.4 17.6 59.9 

+ 3.6% + 28% + 2.1% + 2.1% + 54% -2.0% + 3.6% + 101% -5.8% + 4.9% + 147% -10.2% 

BR11 84.5 6.0 78.4 80.0 9.1 70.9 78.7 13.5 65.2 78.5 18.7 59.9 

+ 4.5% + 37% + 2.7% + 2.6% + 54% -1.6% + 4.0% + 102% -5.6% + 6.2% + 159% -10.3% 

BR12 84.2 6.5 77.8 79.6 10.0 69.6 78.8 15.6 63.2 77.9 20.8 57.1 

+ 4.2% + 38% + 2.2% + 2.6% + 58% -2.4% + 4.1% + 105% -7.2% + 6.1% + 163% -12.8% 

BR13 83.8 6.1 77.7 79.3 8.8 70.4 78.8 14.1 64.7 78.2 19.0 59.2 

+ 3.8% + 38% + 1.8% + 2.3% + 52% -1.9% + 4.1% + 110% -6.2% + 6.0% + 157% -10.8% 

BR14 83.0 6.7 76.3 78.2 9.6 68.6 77.4 15.0 62.4 76.5 20.0 56.5 

+ 3.0% + 45% + 0.6% + 1.1% + 54% -3.7% + 2.5% + 103% -8.2% + 4.5% + 146% -13.2% 

BR15 83.0 6.4 76.6 78.2 9.2 69.0 77.5 14.5 63.1 77.0 19.6 57.4 

+ 3.1% + 38% + 0.9% + 1.3% + 51% -3.1% + 2.9% + 98% -7.3% + 5.6% + 151% -11.8% 

Mean 83.6 5.6 78.0 79.4 8.6 70.9 78.2 12.6 65.5 77.3 16.7 60.6 

+ 1.1% + 29% -0.5% -0.1% + 50% -4.0% + 1.0% + 97% -7.8% + 2.7% + 158% -12.0% 

Fig. 4. Trade-off between cargo value and item relocations under RCH and MDCLP-S . 
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hat M-2 chooses the region based on its penalty density, which 

ncodes information on conflicts like M-1 as well as additional in- 

ormation on the volume where conflicts occur. Thus, the superior 

erformance of M-1 over M-2 was unexpected, but we attribute 

t to the latter approach favoring the selection of smaller regions 

hat are more likely to exhibit a high penalty density. Considering 

uch small regions may be less efficient as they provide less flex- 

bility for reconstruction. Also surprising is the contrast between 

-2 and M-3 since the latter method exploits extra information on 

mpty spaces but performs better in less than half of the instances 

mostly those with high penalties). Therefore, our results suggest 
14 
hat empty spaces and penalty densities do not convey critical in- 

ormation to select the region to reconstruct, while letting conflicts 

uiding the search seems sufficient. 

Finally, Table 11 shows the number of “wins” each region 

efinition method achieves over the 100 instances of each class, 

nd complements the former table that only reports average 

erformance. In case of ties among two or three methods, we 

ttribute one point to each of them, meaning that the total score 

ay add up to more than 100. The results from this table are 

onsistent with the previous discussion since M-1 obtains the 

ighest score in most configurations of BR classes and penalties, 
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Table 10 

Comparison of region reconstruction methods: objective function value. 

P-1 P-2 P-3 P-4 

Class M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 

BR1 83.7 83.6 83.8 79.8 79.3 79.9 78.2 76.2 78.1 77.6 74.4 77.6 

BR2 83.2 83.2 83.2 79.7 79.2 78.9 77.5 76.1 77.2 75.9 73.4 75.3 

BR3 80.9 81.0 80.9 76.1 75.6 75.7 73.0 71.4 72.4 71.0 68.0 70.2 

BR4 80.3 80.4 80.2 75.4 75.1 75.0 72.6 71.6 72.5 70.9 68.3 70.4 

BR5 79.6 79.7 79.6 74.6 73.7 73.6 71.7 69.8 70.8 69.7 66.4 68.8 

BR6 79.0 78.8 78.7 74.2 73.5 73.6 71.4 69.8 70.5 69.3 67.3 68.4 

BR7 78.1 78.0 77.7 73.0 72.7 72.4 70.4 69.0 69.4 67.6 65.5 66.9 

BR8 77.7 77.5 77.1 73.1 72.5 71.9 70.2 69.3 69.0 67.8 66.2 66.7 

BR9 77.0 76.9 76.4 72.5 72.2 71.6 69.9 68.9 68.8 67.6 66.1 66.3 

BR10 76.5 76.2 75.7 72.1 71.7 71.0 69.1 68.4 68.2 66.7 65.3 65.7 

BR11 76.4 76.3 75.8 72.1 71.6 71.3 69.1 68.5 68.3 66.7 65.8 65.7 

BR12 76.1 75.9 75.5 71.3 70.9 70.4 68.1 67.6 67.2 65.5 64.5 64.6 

BR13 76.3 76.1 75.5 71.8 71.7 71.1 69.0 68.4 68.1 66.4 65.4 65.6 

BR14 75.8 75.7 75.2 71.2 70.8 70.2 68.0 67.3 66.8 65.1 64.4 64.0 

BR15 75.9 75.5 74.8 71.2 70.8 70.1 68.0 67.3 66.8 65.1 64.2 64.5 

Mean 78.4 78.3 78.0 73.9 73.4 73.1 71.1 70.0 70.3 68.9 67.0 68.0 

Table 11 

Comparison of region reconstruction methods: number of wins. 

P-1 P-2 P-3 P-4 

Class M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 M-1 M-2 M-3 

BR1 30 46 39 39 49 52 49 58 56 53 57 58 

BR2 35 34 34 41 50 29 47 47 41 61 44 51 

BR3 24 46 34 41 43 35 54 44 36 61 38 41 

BR4 32 40 34 40 41 33 45 32 39 56 30 36 

BR5 27 42 31 53 28 25 49 34 31 56 37 35 

BR6 45 40 23 51 29 28 59 28 31 56 28 32 

BR7 44 36 25 40 44 26 53 30 25 55 27 36 

BR8 48 31 21 61 33 20 61 32 24 59 31 33 

BR9 46 34 22 57 38 21 69 29 19 66 31 26 

BR10 47 41 12 63 38 11 62 30 24 66 25 29 

BR11 48 38 16 61 27 22 52 30 26 60 33 25 

BR12 48 40 14 56 36 22 57 44 21 63 26 28 

BR13 43 39 18 44 42 24 58 38 20 61 30 35 

BR14 42 42 20 54 38 17 60 28 22 60 35 19 

BR15 53 37 13 55 35 18 65 34 19 58 29 33 

Mean 40.8 39.1 23.7 50.4 38.1 25.5 56.0 35.9 28.9 59.4 33.4 34.5 
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merging as the most robust method to select a region. However, 

-1 rarely exceeds a score of 55 or 60, implying that M-2 and 

-3 still win in a significant subset of instances. E.g., M-2 is 

omparable to M-1 for low penalties and weakly-heterogeneous 

nstances. This hints that extending our algorithm by randomizing 

he region reconstruction method (i.e., picking a different method 

t each improvement iteration) may have some potential to further 

mprove a packing solution. 

. Conclusion 

The aim of this study was to model and solve a variant of the 

DCLP in which the unloading constraints are not enforced as 

ard constraints, as commonly done in the literature, but are in- 

tead treated as soft constraints, which is relevant in practice for 

ogistics operators (see, e.g., the discussion in Gajda et al., 2022 ). To 

his end, we introduced penalty functions that are activated when 

bove, visibility, and reachability unloading constraints are violated 

etween item pairs belonging to different customers. The defini- 

ion of these penalties is flexible and allows an operator to model 

he indirect cost/time of moving items during delivery (emphasiz- 

ng, e.g., heavy or bulky items) and consequently account for the 

rade-off between this cost and the value of the transported cargo. 

After presenting a mixed-integer programming formulation able 

o tackle small instances under specific penalties, we proposed a 

ore general heuristic framework made of fast construction and 

mprovement phases, and tested it on a large set of instances from 
15 
he literature. Our computational study provides a set of algorith- 

ic insights (e.g., on the role of construction vs. improvement, on 

he region reconstruction techniques, and on the limited usefulness 

f commercial optimization solvers) as well as managerial insights. 

n particular, it shows that a loading strategy incorporating soft un- 

oading constraints may be significantly more efficient than a se- 

uential approach that only evaluates penalties a posteriori, a hard 

nloading constraint approach, and a heuristic from the literature 

hat counts the number of box relocations without directly mini- 

izing the penalties. Only under high penalties, planning based on 

ard unloading constraints may be enough. 

Future research may be targeted at improving the heuristic 

lgorithm by: (i) adding movements to the improvement phase 

rom those presented in the VNS of Parreño et al. (2010) , e.g., 

ayer reduction, column insertion, and swapping of items or 

roups of items, (ii) trying alternative merit functions in Step 4 

f Algorithm 1 , or (iii) using the graph representation of Fekete 

t al. (2007) not only to shift boxes and obtain gapless solutions, 

ut also to modify the relative position of items by varying the 

ransitive orientations of the interval graphs as done in Trivella & 

isinger (2016) . 

The problem we consider is static and all penalties are com- 

uted based on the initial packing configuration. In practice, the 

ulti-drop process may also allow at each delivery point to repo- 

ition a portion of the cargo inside the container, potentially elim- 

nating some violations of the unloading constraints for later cus- 

omers or creating new ones. Accounting for the extra decisions 
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o where to relocate items during the multi-delivery phase con- 

titutes an additional layer of flexibility that would be interesting 

o investigate in a dynamic (and certainly more complex) MDCLP 

xtension. 
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ppendix 

In this appendix, we present an MILP formulation for the MD- 

LP with soft unloading constraints and that includes rotations. 

odel (11) relies on the same notation as Section 3 , and in addi-

ion, employs binary variables o i 1 , . . . , o i 6 ∈ { 0 , 1 } for i ∈ B to model

he six different orthogonal orientations of a cuboid. Constraints 

11i) ensure that only one such orientation is selected for each 

tem i ∈ B. 

ax 
∑ 

i ∈B 
πi t i −

∑ 

i ∈B 

∑ 

j∈B: c i <c j 

[
p i j 

(
αa q j + βa v j + γa z j + ηa 

)

+ r i j 

(
αv q j + βv v j + γv z j + ηv 

)]
(11a) 

.t. : f i j + f ji + b i j + b ji + u i j + u ji + (1 − t i ) + (1 − t j ) ≥ 1 

∀ i, j ∈ B, i < j, (11b) 

x i + l i (o i 1 + o i 2 ) + w i (o i 3 + o i 4 ) + h i (o i 5 + o i 6 ) 

−x j ≤ L (1 − b i j ) ∀ i, j ∈ B, (11c) 

y i + l i (o i 3 + o i 5 ) + w i (o i 1 + o i 6 ) + h i (o i 2 + o i 4 ) 

−y j ≤ W (1 − f i j ) ∀ i, j ∈ B, (11d) 

z i + l i (o i 4 + o i 6 ) + w i (o i 2 + o i 5 ) + h i (o i 1 + o i 3 ) 

−z j ≤ H(1 − u i j ) ∀ i, j ∈ B, (11e) 

 i + l i (o i 1 + o i 2 ) + w i (o i 3 + o i 4 ) + h i (o i 5 + o i 6 ) ≤ L ∀ i, j ∈ B, 

(11f) 

 i + l i (o i 3 + o i 5 ) + w i (o i 1 + o i 6 ) + h i (o i 2 + o i 4 ) ≤ W ∀ i, j ∈ B, 

(11g) 

 i + l i (o i 4 + o i 6 ) + w i (o i 2 + o i 5 ) + h i (o i 1 + o i 3 ) ≤ H ∀ i, j ∈ B, 

(11h) 

 i 1 + o i 2 + o i 3 + o i 4 + o i 5 + o i 6 = 1 ∀ i, j ∈ B, (11i) 

x j ≤ x i + l i (o i 1 + o i 2 ) + w i (o i 3 + o i 4 ) 

+ h i (o i 5 + o i 6 ) + L b i j ∀ i, j ∈ B, c i � = c j , (11j) 

y j ≤ y i + l i (o i 3 + o i 5 ) + w i (o i 1 + o i 6 ) 
16
+ h i (o i 2 + o i 4 ) + W f i j ∀ i, j ∈ B, c i � = c j , (11k) 

z j ≤ z i + l i (o i 4 + o i 6 ) + w i (o i 2 + o i 5 ) 

+ h i (o i 1 + o i 3 ) + H u i j ∀ i, j ∈ B, c i � = c j , (11l) 

 i j + b ji + f i j + f ji ≥ 1 − a i j ∀ i, j ∈ B, c i < c j , (11m) 

 i j + b ji + f i j + f ji ≤ 2(1 − a i j ) ∀ i, j ∈ B, c i < c j , (11n) 

f i j + f ji + u i j + u ji ≥ 1 − d i j ∀ i, j ∈ B, c i < c j , (11o) 

f i j + f ji + u i j + u ji ≤ 2(1 − d i j ) ∀ i, j ∈ B, c i < c j , (11p) 

p i j + 1 ≥ a i j + u i j ∀ i, j ∈ B, c i < c j , (11q) 

 i j + 1 ≥ d i j + b i j ∀ i, j ∈ B, c i < c j , (11r) 

ar. : b i j , f i j , u i j , a i j , d i j , p i j , r i j ∈ { 0 , 1 } ∀ i, j ∈ B, (11s) 

 i , o i 1 , o i 2 , o i 3 , o i 4 , o i 5 , o i 6 ∈ { 0 , 1 } ∀ i ∈ B, (11t) 

 i , y i , z i ≥ 0 ∀ i ∈ B. (11u) 
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