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Chapter 1

Introduction

The study of photo-physical and photo-chemical processes induced by light-matter
interactions attracts great interest because of their role in many natural systems [1,2]
and their relevance in a variety of technological applications [3–5]. Examples of
such processes are the photo-isomerization of the retinal chromophore [6–8], which
initiates vision, and the light-harvesting step that is key to photosynthesis and central
to the functioning of photovoltaic devices [9–13]. In this context, understanding
photo-driven processes has the double aim of elucidating the fundamental physical
mechanisms active in natural photosystems and of tuning the analogous mechanisms
in artificial devices for solar-energy technology, photo-medical applications, or bio-
imaging. For example, computational studies can aid the design of more efficient and
sustainable solar panels [14,15] and directly contribute to pressing problems like the
quest for renewable energies.

In the recent past, significant advances have been made in developing theoretical
and computational tools to understand light-induced phenomena [16], which require
addressing very different scales with different degrees of approximation. Photo-
driven processes in complex materials are in fact inherently multi-scale problems
as they require the quantum mechanical treatment of the photo-active site, the inclu-
sion of environmental effects, and the account of coupled electron-nuclear dynamics
to follow the photo-induced process in time [17–19]. Here, we focus on the quantum
mechanical scale, which entails the numerical solution of the Schrödinger equation.
The great effort devoted by the electronic-structure community to the computation of
ground-state solutions of the same equation has resulted in a number of both reliable
and affordable methods which, when combined with a more approximate descrip-
tion of an embedding environment, allow us for example to follow the ground-state
evolution of chemically active sites in large protein complexes via hybrid quantum-
in-classical simulations [20, 21].

The overall picture becomes considerably more complicated when moving to the
excited-state description of a system. Not only do we need to adapt our methods
to find higher eigenstates of the Hamiltonian but also describe much more intricate
“correlated” portions of a potential energy surface (PES) that include, for example,
conical intersections with lower-lying states. In this scenario, it is not surprising that
a multitude of techniques populates the literature on excited states, each offering a
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1 Introduction

different degree of compromise between accuracy and computational cost to address
larger system sizes [22–25].

In this work, we mainly focus on one family of approaches, namely, real-space
quantum Monte Carlo (QMC) methods, which are characterized by the use of Monte
Carlo algorithms to solve the Schrödinger equation stochastically [26–30]. On the
spectrum of electronic structure methods, they fall more on the accurate than on
the cheap side of computations. However, with the increased availability of com-
putational resources, their appeal lies both in the favorable scaling with system size
(a mere N4 with the number of electrons N ) and the intrinsic ease of paralleliza-
tion. Furthermore, while traditionally employed for the computation of ground-state
properties (mainly energies), QMC methods have recently undergone significant de-
velopments, and their use for the study of excited-state properties appears nowadays
not only feasible but, in several cases, even a favorable choice [31–33].

In the following, we will give a short overview of recent advances in QMC, es-
pecially those connected with the computation of excited states on which we further
build in this thesis. Moreover, we will describe the current open challenges and con-
textualize the achievements in the broader picture of electronic structure methods.
We will focus on the two most widely used flavors of real-space QMC, namely, vari-
ational (VMC) and diffusion Monte Carlo (DMC). In the first method, the square of
a given trial wave function is sampled to estimate the integrals corresponding to the
expectation values of operators on the given wave function. Of course, the results
will depend on the choice of wave function and can be improved by variationally
optimizing the wave function as well as increasing the complexity of its functional
form. In DMC, starting from a given wave function, one stochastically projects it to
a better solution of the Schrödinger equation. However, the so-called fixed-node ap-
proximation, introduced to deal with fermions, forces the solution to have the same
nodal surface as the given wave function. As a consequence, the choice of the start-
ing wave function also matters in DMC.

Wave function form. The most commonly adopted wave function in QMC is
the so-called Jastrow-Slater one, where a Jastrow correlation factor J that accounts
for dynamical correlations is multiplied by an expansion of Slater determinants ex-
pressed over single-electron orbitals that embody static correlation:

Ψ = J
Ndet∑
i=1

ciDi , (1.1)

where Ndet is the number of determinants, and Di and ci are the determinants and
their coefficients, respectively. The Jastrow factor explicitly depends on the inter-
particle distances and, commonly, has an exponential form. The choice of the deter-
minantal part can be very diverse, and the search for novel functional forms is an open
field of research. Possible choices to identify the most important determinantal con-
tributions span from the simple Hartree-Fock (HF) determinant to selected configu-
ration interaction (sCI) expansions. Most recently, neural networks have also been
employed in QMC as sophisticated determinantal components with multi-electron
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orbitals for ground and excited states [34–38]. Relative to the problem of interest,
one will have to compromise accuracy (many determinants or alternative forms) and
computational cost (few parameters).

In excited-state calculations with Jastrow-Slater wave functions, the choice of the
wave function has two main objectives:

i) finding the smallest determinantal set that gives accurate results;

ii) ensure a balanced description of the multiple states involved.

Traditionally, a reasonable compromise was found to be the use of a complete active
space (CAS) expansion, which includes all possible excitations of a given number
of electrons in a small set of active orbitals. Using a shared active orbital space
for all states ensures the balance, and the relevant orbitals are chosen based on the
nature of the excitation in the system of interest and, ultimately, on the chemical in-
tuition of the person performing the calculation. Despite the many successes of this
protocol [39–45], various limitations remain even after fully optimizing the result-
ing Jastrow-Slater wave function in QMC. The construction can suffer from a poor
chemical choice of the active space resulting in the exclusion of critical determinantal
contributions. Furthermore, a complete active space may contain many non-relevant
determinants which slow down the QMC computation without improving the results.
Finally, given the exponential scaling with the number of orbitals, the size of the
active space must be chosen smaller and smaller as the size of the system grows.

Recently, a new protocol has been established that bases the construction of the
wave function on the CI perturbatively selected iteratively (CIPSI) method [31–33,
46–50]. With this sCI method, we replace chemical intuition with an automatic selec-
tion of relevant determinants based on their second-order perturbation energy contri-
bution, and we obtain a compact wave function that is systematically improvable as
we increase the size of the expansion. To balance the multiple states, we ensure that
the expansions of the states involved are of similar quality, using as indicator the fact
that their CI variances or their second-order perturbation energy contribution (i.e. an
estimate of the error with respect to the full CI limit) are matched [32, 33]. With
this protocol, as we show in Chapter 4, we can reach high accuracies with relatively
compact wave functions making it possible to push the QMC computation of excited
states to increasingly large molecular sizes, which are, for instance, challenging for
high-level coupled cluster methods.

Optimization of the wave function. After the choice of the form of the wave
function, the second fundamental challenge in a QMC calculation is the variational
optimization of the trial wave function. The optimization step is the core compu-
tation in VMC and also provides the starting wave function for a subsequent DMC
calculation. To this aim, one typically minimizes the energy of the system, but for
excited states, other variational principles such as variance minimization are possible
candidates, as we explore in Chapter 3.

In optimizing the wave function, one aims at reaching convergence to the optimal
parameters as quickly as possible. The optimization of the energy requires the com-
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1 Introduction

putation of the gradients and, possibly, of more complex quantities (e.g. Hessian),
which can be used to speed up the convergence. Since all integrals are computed
stochastically, the choice of minimization method in QMC must be a compromise
between speed and robustness to the noise. For example, the stochastic gradient
descent optimizers used in deep learning algorithms are very robust to noise when
employed in VMC, but require many iterations to converge since they only use the
information of the gradients. On the other hand, in the Newton method [51] or the
so-called linear method [52,53], the number of iterations becomes smaller, but longer
Monte Carlo runs are needed at each iteration to sample the quantities of interest. In-
deed, despite the efforts to formulate these algorithms in terms of QMC estimators
characterized by reduced variance, these quantities remain very noisy. The reason is
that the computation of the Hessian elements, for instance, includes functions that
are rather different from the sampled wave function (e.g. the Hamiltonian acting on
the wave function derivatives) and are, therefore, more severely affected by noise. In
this thesis, we mainly employ the stochastic reconfiguration (SR) method [54, 55],
which is often sufficiently fast and robust to noise since it goes beyond a gradient-
only approach, using a poor man’s Hessian related to the overlap of the derivatives of
the wave function. We illustrate the strengths and limitations of this approach when
it comes to the convergence of interatomic forces during the variational optimization
in Chapter 6.

Research effort is continuously being devoted to improve existing optimization
methods, for example, by constructing a hybrid stochastic gradient and linear-method
optimizer [56] or by rewriting the Hamiltonian in a transcorrelated fashion for the
optimization of the linear coefficients [57]. Similarly, in Chapter 3, we develop alter-
native approximate Hessian expressions when optimizing the variance of the energy
with the Newton method. We also note that, for the various optimization approaches
in the literature, low-memory implementations specific to QMC have been proposed,
which avoid the additional bottleneck of having to store large matrices [58–60].

When optimizing excited-state wave functions, the optimization can be done in a
state-average or state-specific mode. The state-average procedure in QMC optimizes
Jastrow-Slater wave functions of multiple states, which share the Jastrow and orbital
parameters and have different linear coefficients to ensure orthogonality among the
states [39, 61] as also done in Chapter 3. Such an approach avoids the collapse of
higher-energy states but is variationally less flexible in situations where orbital relax-
ation is required, rendering state-specific approaches more appealing. Among state-
specific procedures, minimizing the variance instead of the energy would seem par-
ticularly suitable for excited states since, for exact wave functions, the variance has
a minimum for every state. Various methods based on this variational principle have
been recently applied to excited states [49,62]. However, as we demonstrate in Chap-
ter 3, the use of variance minimization is, in general, problematic due to the possible
presence of very shallow or no barrier in the landscape of the variance for approx-
imate wave functions [61]. Alternatively, one can proceed with energy minimiza-
tion imposing orthogonality among the states using a penalty method [37, 63–65].
This state-specific approach appears very promising since it can benefit both from
well-tested energy minimization schemes, such as the SR method, and from the in-
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dependent optimization of all parameters, only having to impose an orthogonality
constraint [63, 66].

Nuclear forces. With the availability of robust QMC protocols to build and op-
timize the electronic wave function, one ingredient is still needed to turn QMC into
an internally-consistent method, namely, the optimization of nuclear geometries with
QMC forces. This has recently become possible thanks to the formalism introduced
in Ref. [67,68], which enables the computation of complete sets of energy derivatives
in VMC at a similar cost per Monte Carlo step as the computation of the energy itself.
This formalism was successfully employed within our research group, allowing us to
optimize all variational parameters in large determinantal expansions. Using CIPSI
wave functions, we managed to determine the accurate optimal VMC geometries of
several small and medium-size molecules in the ground and excited states [31,32,46].

Therefore, in principle, we should now be in a position to follow an excited-state
relaxation in QMC performing Born-Oppenheimer molecular dynamics over the time
scale of few picoseconds. To date, however, this has not been done because of one
main remaining hurdle, namely, the lack of energy conservation due to the stochastic
nature of the interatomic forces. While the increase in computational power might
mitigate this issue by enabling longer Monte Carlo sampling, such a brute-force ap-
proach is bound to fail as the size of the system grows or the time scales needed are
longer. The noise in the QMC forces has been “exploited” within a Langevin scheme
to define a temperature and compute thermodynamic averages [69–71], but the di-
rect use of QMC forces in an actual molecular dynamics remains unexplored. In this
thesis, we take on this challenging task and analyze in depth several issues related
to the use of noisy forces in dynamics. In particular, in Chapter 5, we propose vari-
ous strategies to deal with the impact of the statistical noise on molecular dynamics
simulations, at least over the time scales of a few picoseconds. We then conclude in
Chapter 6 by investigating other surprising consequences of the use of QMC forces
in molecular dynamics, for instance, those due to their slow convergence during the
variational optimization.

As a final remark on nuclear forces in QMC, we note that the computation of
forces within DMC is a current topic of research [72–76] and the expression for un-
biased energy derivatives of the fixed-node DMC energy has been recently worked
out but only applied so far to model systems [77].

Contextualizing with other methods. As mentioned above, despite their favorable
scaling with the number of electrons, QMC methods are positioned on the compu-
tationally heavy side of the spectrum of electronic structure methods and are surely
not a mainstream technique for excited-state investigations. On the side of rela-
tively cheap approaches, we find the widely used density functional theory (DFT)
and, when it comes to excited states, its time-dependent formulation (TD-DFT).
TDDFT is generally quite successful [78–82] but there are well-known problem-
atic cases such as the description of excitations of charge-transfer or multi-reference
nature [79,80,83]. Several solutions have been put forward, but the lack of a unifying
approach and the dependence of the results on the choice of the exchange-correlation
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1 Introduction

functional can lead to practical difficulties in using the method.
A more accurate description of excited states is often offered by the so-called

multi-reference methods [25], of which perhaps the most popular is the CAS self-
consisted field (CAS-SCF) approach and its second-order perturbation theory exten-
sions, which can successfully incorporate static as well as dynamical correlation via
perturbation theory. However, as mentioned above, the results may strongly depend
on the choice of the active space and, ultimately, on the users’ chemical intuition [84].
Moreover, even though these methods are typically computationally more affordable
for small systems than a QMC calculation, they scale exponentially with the number
of orbitals in the active space, so a good description with a large enough active space
becomes quickly prohibitive for medium to large systems.

Currently, the gold standard for the computation of vertical excitation energies
is coupled cluster (CC) theory [85]. This class of techniques is quickly developing
and, like QMC, has the advantage of being systematically improvable. Indeed, one
can start from a version that only includes single and double excitations (CCSD) and
gain further accuracy by including, for instance, triple (T) or even quadruple (Q)
excitations. While these methods are black-box and relatively easy to use, they scale
poorly with system size with CC3 and CCSDT (needed to treat single excitations)
and CC4 and CCSDTQ (needed for double excitations) scaling with the number of
electrons as N7, N8, N9, and N10, respectively. Consequently, their application to
the study of excited states of larger molecules becomes problematic as we will also
see in Chapter 4.

Very expensive but highly accurate are methods that aim at approaching the full
CI (FCI) limit in the space of all possible determinants in a given orbital basis. While
these methods are computationally demanding and, ultimately, scale exponentially,
they have seen remarkable developments in recent years. In particular, approaches
like FCI-QMC [87] or the aforementioned selected CI (CIPSI) have been developed
to accelerate the convergence to the FCI limit by selecting in a stochastic or determin-
istic manner, respectively, the most important determinants in the complete space. As
already discussed, we make here extensive use of the CIPSI technique not to extrap-
olate to the FCI limit but to generate compact “smart” determinantal components for
our QMC wave functions of multiple states.

To conclude, we note that machine learning can also be used as a tool to enhance
the exploration of excited-state PESs with the aid of ab initio training data. While
machine learning is well established for ground-state problems, its use in the context
of excited states, although promising, is still relatively new [88, 89].

In conclusion. With this brief overview, we have tried to position QMC methods
in relation to other, more familiar electronic structure techniques, underlining their
potential as well as current hurdles. For excited states, a wide variety of quantum
approaches are available, which should be viewed as complementary tools, given the
difficulty of tackling with a single technique all aspects of an excited-state process
(e.g. from the primary photo-excitation to the relaxation towards a conical inter-
section region). This thesis contributes to this field of research by focusing on the
development of QMC methods for excited states and, in particular, setting the first
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1.1 Structure of the thesis

few steps for the use of QMC forces in molecular dynamics simulations. We believe
that further developments of the methods are possible and that QMC approaches are
an important asset for excited-state calculations both because of their ability to ac-
count for static and dynamical correlation and for their natural adaptability to the
on-going increase of computational resources.

1.1 Structure of the thesis

This thesis comprises four research chapters preceded by a concise methodological
overview. In the Methods Chapter, we introduce the background theory needed for
the applications and further developments contained in this thesis. In particular, we
illustrate various techniques available for solving the electronic problem, starting
with the Hartree-Fock solution and moving to multi-configuration methods such as
CASSCF and CIPSI. We then cover real-space quantum Monte Carlo techniques,
which are central to this dissertation. We conclude with various aspects related to
the treatment of the nuclei, giving a microscopic derivation of Langevin dynamics to
introduce the starting equations for the theory developed in Chapter 5.

Variance minimization 

escapes the target state!

Figure 1.1: Illustrative drawing of our findings regarding variance minimization,
where the system loses the target state and converges to states with lower variance,
which may lie higher or lower in energy.

Chapter 3 investigates the optimization procedure that better suits the QMC treat-
ment of excited states. In particular, we compare the use of two variational princi-
ples, namely, variance and energy minimization. Using energy minimization, we
find accurate excitation energies for two prototypical molecules while, with variance
minimization, we encounter severe difficulties. In particular, over long optimiza-
tion runs, one loses the target state since the optimization finds little or low barrier
to escape from a local minimum, and the wave function converges to another state
characterized by a lower variance as illustrated in a cartoonish manner in Fig. 1.1.
Since we do not know a priori which eigenstate of the Hamiltonian corresponds to
the global minima of the variance, we conclude that variance optimization is not a
suitable procedure for the state-specific treatment of excited states.

In Chapter 4, we employ QMC to establish accurate excitation energies of cya-
nine dye molecules and explore how to build compact QMC wave functions that offer
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1 Introduction

a balanced description of the ground and the excited state of interest. To this aim,
we generate multi-determinantal components of the QMC wave functions with the
CIPSI approach and find that employing expansions with matched CI variances guar-
antees a good relative description of the states and of the corresponding excitation
energies. Following this protocol, we establish new reference data for cyanine dyes
of increasing size, reaching systems where other accurate, suitable methods, such as
CC3, are not computationally affordable, as illustrated in Fig 1.2.

NELEC :

NDETS : 15k

24

136

5k

C
N

3

C
N

19

CN3 CN7 CN11 CN15

Figure 1.2: Difference in excitation energies between highly-correlated methods such
as CC3 and extrapolated FCI (when available) and DMC-CIPSI (left panel) for a
series of cyanine dyes. The VMC-CIPSI relative values are also plotted. In the right
panel, we show some of the cyanine molecules treated and indicate the size of the
determinantal component used in the QMC calculations.

In Chapters 5 and 6, we explore the impact of using noisy forces in molecular dy-
namics simulations. Our interest is in using QMC forces to dynamically follow the
relaxation of a system in the excited state and therefore focus on the time scales of a
few picoseconds. As shown in Fig. 1.3 for thiophene, as a prototypical molecule, the
use of noisy QMC forces leads to an increase of the total energy in time, unphysical
rotations and translations, and an overall corruption of the dynamical path. In Chap-
ter 5, we develop various strategies to stabilize molecular dynamics simulations in
which the forces are affected by stochastic noise and, for the sake of efficiency, do so
using a classical force field to which we manually add the QMC statistical error on
the forces. We find a promising route to ameliorate the problem by performing a fit
of the forces in time and, successively, apply a Langevin-like scheme to thermalize
the excess noise in the forces.

Having explored a protocol to limit the impact of the noise, in Chapter 6, we
evidence additional problems that arise when performing molecular dynamics sim-
ulations using actual QMC forces. In particular, a partially converged variational
optimization of the wave function has unexpected consequences for the dynamics of
a system. Although costly, a strict convergence of the interatomic forces during the
wave function optimization is necessary to ensure energy conservation. We propose
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1.1 Structure of the thesis

Figure 1.3: Total (kinetic and potential) energy of a thiophene molecule in which we
drive the molecular dynamics simulation with QMC forces. The energy increases in
time faster for the simulation where fewer Monte Carlo steps are used to sample the
forces, resulting in larger noise.

a method to speed up the variational optimization during a molecular dynamics run,
which we tested so far on a simple C2 molecule. Finally, we combine all our findings
and perform molecular dynamics simulations with QMC forces on C2 and thiophene.
We conclude by showing some promising preliminary relaxation runs of thiophene
in the excited state.
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Chapter 2

Theoretical methods

In this Chapter, we describe the electronic structure methods that are at the core of
this dissertation and briefly introduce the basics of molecular dynamics simulations.

2.1 Separating the electronic and nuclear motion

The time-dependent Schrödinger equation in atomic units (~ = me = e = 1) has the
following form

i
∂

∂t
Ψ(r,R, t) = Ĥ(r,R)Ψ(r,R, t) , (2.1)

where Ψ is the total wave function, and r and R represent the electronic and nuclear
positions, respectively.

The non-relativistic Hamiltonian Ĥ is given by

Ĥ(r,R) = −
∑
I

∇2
I

2MI

−
∑
i

∇2
i

2
+
∑
i<j

1

|ri − rj|

−
∑
I,i

ZI
|RI − ri|

+
∑
I<J

ZIZJ
|RI −RJ |

= T̂N(R) + Ĥel(r,R) , (2.2)

where we separate the nuclear kinetic energy operator from the electronic Hamilto-
nian, which includes the kinetic operator for the electrons and the Coulomb interac-
tions of the electrons and nuclei with charge Z. The sums over capitalized indices
are relative to the nuclei, while lower-case indices label the electrons.

For fixed nuclear positions R, the solution of the time-independent electronic
Schrödinger equation is

Ĥel(r,R)ψj(r,R) = Eel
j ψj(r,R) , (2.3)

with {ψj} the electronic eigenfunctions with eigenvalues Eel
j .
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In the Born-Huang (BH) representation [1, 2], we write the full molecular wave
function in terms of the electronic eigenstates

Ψ(r,R, t) =
∞∑
j

ψj(r,R)χj(R, t) , (2.4)

and therefore include a dependency on time only in the nuclear solutions {χj}. In-
serting this wave function in Eq. 2.1 and using the orthogonality of the electronic
eigenstates, we obtain

i
∂χk
∂t

= [T̂N(R) + Eel
k (R)]χk(R, t) (2.5)

−
∞∑
j

Nn∑
I

1

2MI

[〈ψk|∇2
R|ψj〉+ 2 〈ψk|∇R|ψj〉∇R]χj(R, t) .

The equation in the first line evolves the nuclear wave function on a specific poten-
tial energy surface (PES) given by the electronic energy of an eigenstate, while the
second part contains non-adiabatic couplings to the other eigenstates.

In this thesis, we follow the Born-Oppenheimer approximation (BOA) [3] and
assume that the coupling terms are negligible so that we can approximate the wave
function with a single term as

Ψ(r,R, t) ≈ ψj(r,R)χj(R, t) . (2.6)

This means that, during the time evolution, we assume that the system always stays
on one PES, Eel

j (R), and that the electrons relax instantaneously when the nuclei
move [4,5]. The BOA is usually a safe choice when studying ground-state properties
but, if one is interested in dynamical processes in the excited state, one needs to
take in account that, when two PESs become close to each other, the coupling terms
become relevant, and the BOA does no longer hold. In this case, one may adopt non-
adiabatic molecular dynamics techniques such as surface hopping [6,7] to enable the
system to “hop” between different PESs. In this thesis, we will explore the use of
quantum Monte Carlo forces in dynamics and simply stop the evolution when the
chosen excited-state PES is energetically close to another one.

2.2 Solving the electronic problem
We focus now on the computation of the electronic energy for given nuclear coordi-
nates R, and write the electronic Hamiltonian as

Ĥel(r,R) = −
∑
i

∇2
i

2
+
∑
i

vext(ri) +
∑
i<j

1

|ri − rj|
, (2.7)

where we omit the nuclear repulsion term, which is a constant, and denote the
electron-nucleus Coulomb interaction as vext. While we can rewrite the first two
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2.2 Solving the electronic problem

terms as a sum of one-body operators, the electron-electron interaction is of course
non separable and an approximate solution to the problem must be sought.

Electronic structure theory focuses on the solution of this equation using differ-
ent approximate schemes, which can be mainly divided into two large categories,
namely, density functional theory (DFT) and wave function methods. In the first
case, the interacting problem is exactly mapped to a non-interacting one in an effec-
tive potential which accounts for exchange and correlation among the electrons and,
in practice, must be approximated. In the second case, one attempts to directly solve
the fully interacting Schrödinger equation, always introducing some approximations.
In this thesis, we are mainly concerned with the second category of approaches,
which we briefly describe below.

2.2.1 Hartree-Fock approximation

The starting point of all wave function methods is the Hartree-Fock (HF) approxima-
tion, which uses a non-interacting ansatz for the wave function to describe a system of
interacting electrons [8–13]. The wave function is a Slater determinant (SD) [14] of
single-particle spin-orbitals, which accounts for the anti-symmetry of the fermionic
solution.

If we denote by x = (r, σ) the electron spatial and spin coordinates (σ = ±1), a
SD is given by

ψSD(x1, . . . ,xN) =
1√
N !

∣∣∣∣∣∣∣∣∣
Φ1(x1) Φ1(x2) · · · Φ1(xN)
Φ2(x1) Φ2(x2) · · · Φ2(xN)

...
...

...
...

ΦN(x1) ΦN(x2) · · · ΦN(xN)

∣∣∣∣∣∣∣∣∣ .
where N is the total number of electrons and {Φi} is a set of orthonormal spin-
orbitals usually written as a product of spatial and spin orbitals, Φi = φi(r)χi(σ).
Being a determinant, the wave function is zero if two electrons occupy the same
space-spin position (x) or if two orbitals are the same.

To find the optimal non-interacting solution for the interacting system, one min-
imizes the expectation value of Ĥel on the wave function ψSD with respect to the
orbitals, which results in the HF equation

f̂ |φi〉 =
N∑
j=1

εij |φj〉 , (2.8)

where f̂ is the Fock operator and the sum runs over all the occupied orbitals. The
real-space representation of the left-hand-side of the HF equation is given by

〈r| f̂ |φi〉 = −1

2
∇2φi(r) + vext(r)φi(r) +

(
vHFφi

)
(r) , (2.9)
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which, in addition to the external potential, contains an effective non-local potential,
vHF. This consists of two terms, a Coulomb and an exchange term as(

vHFφi
)
(r) =

(
vCoulombφi

)
(r) +

(
vHF

x φi
)
(r)(

vCoulombφi
)
(r) =

[ N∑
j=1

∫
|φj(r′)|2

|r− r′|
dr′
]
φi(r)

(
vHF

x φi
)
(r) = −

N∑
j=1

δsisj

[∫
φ∗j(r

′)φi(r
′)

|r− r′|
dr′
]
φj(r) . (2.10)

where vCoulomb describes the electrostatic interaction of an electron with the charge
distribution of the system. The j = i component in the exchange potential, vHF

x ,
cancels the self-interaction term in the Coulomb potential, whereas the j 6= i terms
account for the exchange interaction with electrons in orbitals with the same spin
quantum number. This last term is a direct consequence of the wave function anti-
symmetry, so it has no classical counterpart.

The Hartree-Fock equation is solved iteratively to find the optimal {φi}. Starting
from a guess for the initial spin orbitals, one constructs the HF potential, solves the
HF equations to obtain a new set of spin orbitals, and iterates until convergence.
For molecular systems, a common choice is to represent the spin-orbitals as a linear
combination of atomic orbitals (LCAO) as

φi(r) =
Nn∑
I=1

MI
b∑

j=1

aIji ηjI(r−RI) , (2.11)

where M I
b is the number of atomic basis functions centered on nucleus I . The func-

tions {η} are usually chosen to be Gaussians,

η(r) = xaybzc exp(−αr2) . (2.12)

since this choice allows the analytical computation of the one- and two-body inte-
grals obtained from expressing the Fock operator in the atomic basis. Finding the
HF solution becomes equivalent to the problem of determining the optimal LCAO
coefficients, aIji.

2.2.2 Beyond the Hartree-Fock approximation
The HF method gives the optimal non-interacting solution to an interacting problem
and the difference between the resulting energy, EHF, and the exact one, E, is called
correlation energy,

Ecorr = E − EHF . (2.13)

Post-HF quantum chemical methods attempt to recover this missing part of the en-
ergy with the use of a better ansatz for the wave function.
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2.2 Solving the electronic problem

The most straightforward way to improve on HF is to expand the wave function
in terms of multiple Slater determinants and build a so-called configuration interac-
tion (CI) wave function. Such an expansion is constructed by exciting one or more
electrons from the orbitals occupied in the HF determinant to the virtual orbitals as

ψCI = c0DHF +
∑
ac

ca→cD
a→c +

∑
abcd

cab→cdD
ab→cd + . . . , (2.14)

where, in addition to the HF determinant, one has determinants consisting of single
excitation (a → c), double excitation ab → cd, and so on. Depending on the prob-
lem of interest, one can decide how many and which contributions to include in the
expansion.

For a given expansion in Slater determinants, it is then possible to minimize the
energy and find the optimal set of CI coefficients, {ci}, by solving the secular equa-
tion,

K∑
j=1

〈Di|Ĥel|Dj〉c(k)
j = E

(k)
CI

K∑
j=1

〈Di|Dj〉c(k)
j , (2.15)

where 〈Di|Dj〉 = δij since the orbitals are orthonormal. It is important to note that
going beyond the single determinant ansatz also enables the description of excited
states. In fact, diagonalizing the secular problem, we obtain a set of energies, {E(k)

CI },
each being variational with respect to the corresponding eigenstate [15, 16].

In principle, for a given basis set, one can consider expansions including all possi-
ble excitations (up toN electrons and to behind all orbitals) and find the best possible
solution in the given basis. This procedure, called full CI (FCI), leads to very accurate
results but is computationally too expensive and can only be applied to very small
systems. For this reason, one usually adopts smaller expansions such as a CI singles
(CIS), where one only considers the determinants relatives to single excitations, or
CI singles and doubles (CISD), which also includes double excitations.

A more involved treatment is the multi-configurational self-consistent-field (MC-
SCF) approach where one optimizes the molecular orbitals in the expansion in addi-
tion to the CI coefficients. This approach considerably improves the description of a
given state since the optimal LCAO coefficients in a multi-determinantal expansion
can be quite different from the starting HF ones. In this thesis, we often use the
complete-active-space SCF (CASSCF) method, one of the most popular among the
MCSCF approaches. In a CASSCF calculation, one divides the orbital space into
three groups, namely, doubly occupied, active, and virtual orbitals, and generates a
FCI expansion in the restricted space of the active orbitals, optimizing both the CI
and the LCAO coefficients. The active space is usually labeled as CAS(n,m) where
one considers all possible excitation of n electrons in m active orbitals [17]. The
choice of orbitals included in the active space is often done based on a chemical in-
tuition and represents the most delicate part of the procedure as we discuss later in
this thesis.

Finally, if one is interested in describing an excited state which has the same sym-
metry as lower-lying state(s), one typically performs a state-average (SA-CASSCF)
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calculation over the states of interest to obtain a set of orbitals, which offers a bal-
anced description of the multiple states by minimizing a weighted average of their
energies,

ESA =
∑
J

wJ
〈ψJ |Ĥel|ψJ〉
〈ψJ |ψJ〉

, (2.16)

with
∑

J wJ = 1, where the index J labels the states. With this procedure, the
wave functions share the same orbitals and the CI coefficients are used to ensure
orthogonality. It is important to note that, since the orbitals are common, they are not
optimal for any of the states involved but quantities such as the excitations energy
are reasonably described.

2.2.3 Perturbation methods
One route to improve upon methods such as HF, CI, or CASSCF is to use perturbation
theory. In the Rayleigh-Schrödinger formulation, the total electron Hamiltonian is
partitioned into a zeroth-order Hamiltonian, Ĥ(0)

el , and a perturbation operator, V̂ ,

Ĥel = Ĥ(0)
el + V̂ . (2.17)

The Møller-Plesset perturbation theory at second order (MP2) or the complete-active-
space perturbation theory at second order (CASPT2) are examples of perturbation
methods to the same order, which differ in the choice of the zeroth-order Hamil-
tonian. In MP2, one uses the Hartree-Fock operator as the zeroth-order Hamilto-
nian [18], while in CASPT2 one constructs a one-body Hamiltonian with the CASSCF
wave function as eigenstate [19, 20].

In this thesis, we extensively use the Epstein-Nesbet partitioning of the Hamilto-
nian [21, 22], where the FCI space is divided in a space S, spanned by the determi-
nants {|Di〉}, and the external space of all other determinants {|α〉}. The zeroth-order
Hamiltonian is then constructed to have the same matrix elements of the original
Hamiltonian within the space S,

〈Di|Ĥ(0)
el |Dj〉 = 〈Di|Ĥel|Dj〉 , (2.18)

and to be diagonal in the space external space as

〈Di|Ĥ(0)
el |α〉 = 0 (2.19)

〈α|Ĥ(0)
el |α〉 = 〈α|Ĥel|α〉 , (2.20)

Consequently, Ĥ(0)
el is defined as

Ĥ(0)
el =

∑
i,j∈S

〈Di|Ĥel|Dj〉|Di〉〈Dj|+
∑
α/∈S

〈α|Ĥel|α〉|α〉〈α| , (2.21)

and the perturbative potential has then the following properties

〈Di|V̂|α〉 = 〈Di|Ĥel|α〉
〈Di|V̂|Dj〉 = 0 . (2.22)
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2.2 Solving the electronic problem

Within this formulation, a CI wave function which diagonalizes Ĥel in the current
space S with variational energy E(0) is an eigenstate of Ĥ(0)

el with the same en-
ergy. Furthermore, the first-order perturbation correction to the energy is zero and
the second-order one equals

EPT2 =
∑
α

|〈α|Ĥel|Ψ(0)〉|2

E(0) − 〈α|Ĥel|α〉
=
∑
α

δE(2)
α , (2.23)

which we have rewritten as the sum of the contributions from the determinants, {|α〉}
outside the space S. The Epstein-Nesbet perturbation theory is used to estimate the
second-order corrections in the CI perturbatively selected iteratively (CIPSI) method.

2.2.4 CIPSI

CIPSI is a selective CI (sCI) approach, which relies on perturbation theory for the
selection of the important determinants in the expansion. Given a starting set of deter-
minants in the space S, one iteratively selects other relevant contributions, |α〉, out-
side the space according to their second-order perturbation energy contribution [23–
25].

After constructing a starting wave function which defines the initial space S, the
CIPSI procedure can be summarized into the following main steps:

1. For all determinants {|Di〉} in S, we construct the determinants of the external
space {|α〉} which are given by all possible single and double excitations from
{|Di〉}.

2. For each |α〉, we compute the second-order perturbative correction, δE(2)
α .

3. A subset {|α∗〉} of {|α〉} is selected based on a given threshold on δE(2)
α . This

subset is included in the reference space S as

S ′ ← S ∪ {|α∗〉} , (2.24)

where we denote the enlarged reference space as S ′.

4. By diagonalizing the Hamiltonian in the space S ′, we find the new reference
wave function with its optimal linear coefficients and variational energy. A
new expression for the zeroth-order Hamiltonian Ĥ(0)

el (Eq. 2.21) can then be
constructed.

5. We iterate from Step 1 until a given criterion is satisfied, for instance, if a
target number of determinants is reached or if EPT2 is such that the variational
CI energy can be reliably extrapolated to the full CI energy. In this thesis, we
will typically stop the CIPSI procedure when we obtain a target value of PT2
energy or CI variance.
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2 Theoretical methods

The choice of the starting space S depends on the nature of the states of interest
and it is usually a HF determinant when treating the ground state. In this thesis, we
consider excited states of predominantly single-excitation nature and different sym-
metry than the ground state, and we therefore perform a CIS calculation to construct
a starting expansion from the subset of single excitations in the same symmetry class
of the target state. From this subset, we retain the CIS determinants with higher CI
coefficient.

The CIPSI procedure outlined above is rather schematic and the actual scheme
is in fact more complicated to render the algorithm more memory efficient [23, 26].
In particular, the number of single and double excitations from the reference deter-
minants scales like O(Ndet ×N2 ×N2

bas) where Ndet is the number of determinants
in S, N the number of electrons, and Nbas the total number of basis functions. Stor-
ing all their second-order contributions δE(2)

α for the subsequent selection would be
too memory demanding. To address this issue, the present algorithm uses a recently
introduced stochastic PT2 sampling method [26].

In this procedure, one only generates single and double excitations out of a subset
of determinants in the reference space S, which are drawn stochastically using Monte
Carlo (MC) sampling from the S with probabilities proportional to their weights.
For each drawn determinant, all possible single and double excitations are built, and
their net second-order energy contribution is computed. In order to describe this
algorithm, we first need to define a partitioning of the external determinantal space
{|α〉} into Ndet subsets {|αi〉} so that

{|α〉} =

Ndet⋃
i=1

{|αi〉}, where {|αi〉} ∩ {|αj〉} = Ø ∀ i 6= j , (2.25)

where each {|αi〉} contains all unique single and double excitations that can be gen-
erated out of an internal determinant |Di〉, which do not already exist in S or in
{|αj<i〉}. Note that the internal determinants are ordered in decreasing order of their
weights, i.e. c2

i ≥ c2
i+1. As it is done for the external determinantal space {|α〉},

one can also decompose the total PT2 contribution of {|α〉} into the sum of PT2
contributions corresponding to the different subspaces {|αi〉}

EPT2 =

Ndet∑
i=1

ei , (2.26)

where

ei =
∑

|α〉∈{|αi〉}

|〈α|Ĥel|Ψ(n)〉|
2

E(n) − 〈α|Ĥel|α〉
, (2.27)

and Ψ(n) is the wave function at the nth iteration of the CIPSI selection. Because of
the ordering mentioned above, we have that the {|α〉} ∈ {|αi〉} are not connected
to any |Dj<i〉 with a non-zero coefficient. It follows that, by introducing a subspace
wave function

Ψ
(n)
i =

Ndet∑
m=i

cm |Dm〉 , (2.28)
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2.2 Solving the electronic problem

we can simplify Eq. 2.27 as

ei =
∑

|α〉∈{|αi〉}

|〈α|Ĥel|Ψ(n)
i 〉|

2

E
(n)
var − 〈α|Ĥel|α〉

. (2.29)

In the same way, we can now rewrite the total PT2 contribution (Eq. 2.26) as

EPT2 =

Ndet∑
i=1

∑
|α〉∈{|αi〉}

|〈α|Ĥel|Ψ(n)
i 〉|

2

E
(n)
var − 〈α|Ĥel|α〉

. (2.30)

It is good to note that, given the way in which the {|αi〉} are constructed, the absolute
value of the ei rapidly decays for increasing values of i [26]. Moreover, with increas-
ing values of i, the number of determinants involved in the sum of Eq. 2.29 decreases,
making the computation of ei faster. Furthermore, the magnitude of the denomina-
tor of Eq. 2.29 increases (with increasing i) and the norm of the wave function Ψ

(n)
i

decreases.
To get the unbiased estimates of EPT2, we want to compute the ei contributions

through a MC stochastic sampling. With this aim, we can rewrite the expression for
the PT2 energy as

EPT2 =

Ndet∑
i=1

ei =

Ndet∑
i=1

pi

(
ei
pi

)
=

〈
ei
pi

〉
pi

, (2.31)

where pi is an arbitrary probability distribution. The optimal choice of pi, given by a
zero-variance condition, is

popt
i =

ei
EPT2

. (2.32)

Starting from this formula, Garniron et al. note that the magnitude of ei is related to
the norm of the truncated wave function Ψ

(n)
i [23,26], so they choose the probability

distribution pi as

pi =
〈Ψ(n)

i |Ψ
(n)
i 〉∑Ndet

j=1 〈Ψ
(n)
j |Ψ

(n)
j 〉

=

∑Ndet

m=i c
2
m∑Ndet

j=1

∑Ndet

k=j c
2
k

. (2.33)

Finally, in the code implementation, they restrict the numerator to the leading coeffi-
cient and reduce the denominator into a simpler form using as pi the expression

pi =
c2
i∑Ndet

j=1 c
2
j

, (2.34)

which, according to the simulations of Ref. [26], does not significantly change the
results compared to using Eq. 2.33.

To summarize, one proceeds by sampling the probability distribution pi, drawing
the corresponding internal determinant |Di〉, and generating all the unique single and
double excitations. At this point, one computes the value ei/pi and adds it to the

23



2 Theoretical methods

average in order to estimate EPT2. In practice, the value of ei is calculated only the
first time a |Di〉 is drawn; it is then stored in memory for the following times that the
same |Di〉 is drawn. Indeed, since the computation of ei is the most expensive part,
computing them only once makes the algorithm extremely efficient. Furthermore,
the first few determinants |Di〉 (smallest i) are removed from the stochastic sam-
pling process since they are often responsible for the most significant contributions to
EPT2. The contributions computed from external determinants that are connected to
the dominant ones (the one removed from the stochastic sampling) are stored as a de-
terministic component of EPT2. The remaining contributions are stochastically sam-
pled as previously discussed. In practice, we follow a hybrid stochastic-deterministic
scheme, where, starting from the deterministic component, at every MC step, the
average is updated by adding the ei contribution of all the newly drawn generators
while keeping track of all previous draws.

2.2.5 Quantum Monte Carlo

Quantum Monte Carlo (QMC) methods are a large class of electronic structure tech-
niques which solve the Schrödinger equation stochastically. In this dissertation, we
focus on two of the most commonly used variants of real-space QMC, namely, vari-
ational (VMC) and diffusion Monte Carlo (DMC). In the following, we will briefly
describe these two methods and refer to Refs. [27–30] for a more in-depth descrip-
tion.

Variational Monte Carlo

Let us assume that we want to compute a quantum mechanical observable, namely,
the expectation value of an operator Ô on a given wave function. In the spatial
representation, we have

〈Ô〉 =
〈ψ|Ô|ψ〉
〈ψ|ψ〉

=

∫
drψ∗(r)Ôψ(r)∫
drψ∗(r)ψ(r)

. (2.35)

where r labels here the 3N electronic spatial coordinates. Monte Carlo integration
can now be used as an effective method to estimate this high-dimensional integral.

To understand how to proceed, we need to further manipulate the integral and
we do so for the computation of the energy but the approach holds also for other
operators. In particular, we rewrite the expectation value of the Hamiltonian as

EV = 〈Ĥel〉 =

∫
drψ∗(r)Ĥelψ(r)∫
drψ∗(r)ψ(r)

=

∫
dr

|ψ(r)|2∫
dr |ψ(r)|2

Ĥelψ(r)

ψ(r)

=

∫
dr ρ(r)EL(r) , (2.36)
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2.2 Solving the electronic problem

where ρ is the normalized square of the wave function and the local energy, EL, is
the result of the action of the Hamiltonian on the wave function divided by the wave
function.

Since ρ is positive and integrates to one, we can interpreted it as a probability
distribution and use the Metropolis algorithm to sample M electronic coordinates,
{rm}, that are asymptotically distributed as ρ. The energy can then be estimated as
the average of the local energies computed on the sampled configurations,

EV = 〈EL〉ρ ≈
1

M

M∑
m=1

EL(rm) . (2.37)

In VMC, the energy like any other observable is therefore estimated with a statistical
error. For the statistical error to be meaningful, the wave function ψ should yield a
finite variance σ21. In the case of the variational energy, the variance has the form

σ2
V =

〈ψ|(Ĥel − EV )2|ψ〉
〈ψ|ψ〉

= 〈(EL(r)− EV )2〉ρ , (2.38)

and the error as a function of the number of MC steps behaves as

Err(EV ) ∼ σV√
M

. (2.39)

In practice, if we want to approximate the energy of an eigenstate of the Hamiltonian,
there are two sources of errors: i) the systematic error coming from the use of an
approximate wave function and ii) the statistical uncertainty Err(EV ).

In VMC, when ψ approaches an eigenstate of the Hamiltonian, the local energy
EL becomes constant and equal to the correspondent eigenvalue of Ĥel. Conse-
quently, the energy becomes the exact eigenvalue energy and the variance goes to
zero. This property, called the zero-variance principle, implies that, as the wave
function improves, the MC estimate of the energy converges more rapidly with the
number (M ) of configuration sampled. For this reason, a great effort in VMC is put
into improving the input wave function used.

Chapters 3 and 4 discuss the choices we make to construct accurate VMC wave
functions for ground and excited states, and how to optimize them. Here, we briefly
introduce the Jastrow-Slater functional form typically adopted for the wave function,

ψ(r1, . . . , rN) = J (r1, . . . , rN)
∑
k

dkD
↑
k(r1, . . . , rN↑)D↓k(rN↑+1, . . . , rN) , (2.40)

where (r1, . . . , rN ) explicitly denote the 3N coordinates of the electrons. The de-
terminants D↑k and D↓k are spin-assigned (up and down, respectively) Slater determi-
nants of single-particle orbitals [31, 32].

1If the variance is infinite but the expectation value of the quantity of interest is finite, the estimate
of the integral will still converge for the law of big numbers but the statistical uncertainty will decrease
slower than 1/

√
M .
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2 Theoretical methods

The Jastrow factor, J , is here an exponential function of polynomials of the inter-
particle distances and accounts for so-called dynamical correlation. It is also used
to impose Kato’s cusp conditions at the coalescence points of the particles, where
the inter-particle distance goes to zero and the potential diverges. In particular, the
functional form employed in this work is the following product,

J =
∏
I,i

eA(riI) ×
∏
i<j

eB(rij) ×
∏
I,i<j

eC(riI ,rjI ,rij) , (2.41)

where lower-case indices label electrons and the upper-case ones the nuclei. The
A, B, and C terms account for electron-nucleus, electron-electron, and electron-
electron-nucleus correlations, respectively. In this thesis, we mainly restrict the de-
scription to a 2-body interaction, namely, A and B terms, keeping the 3-body C part
equal to zero and only using it for testing purposes.

While we keep the form of the Jastrow factor fixed, we explore here how to con-
struct the determinantal part of the Jastrow-Slater wave function, maintaining a com-
promise between accuracy and computational effort. When studying excited states, it
is also important to maintain a balanced description between the states of interest to
ensure a good cancellation of errors and an accurate computation of excitation ener-
gies. Here, we typically employ wave functions generated in a CASSCF calculation
or via a CIPSI selection as discussed in Chapter 4

In summary, in VMC, given a wave function ψ, we estimate the expectation value
of an operator on that wave function by MC integration. Since we are interested in
the eigenstates/eigenvalues of the Hamiltonian, we try to construct a wave function
as close as possible to the desired state, and improve it by optimizing its parameters.
In Chapter 3, we further discuss the use of different variational principles to optimize
ground and excited states, namely, variance versus energy minimization.

Diffusion Monte Carlo

The other variant of real-space QMC we employ here is diffusion Monte Carlo. DMC
is a so-called projection method where, starting from a given wave function, one
projects a better approximation by stochastically applying an operator which inverts
the spectrum of the Hamiltonian. In DMC, one uses the following projection operator

e−t(Ĥel−ET ) , (2.42)

and, starting for instance from the best wave function obtained in VMC, one itera-
tively project the ground-state solution ψ0 of the Hamiltonian.

To demonstrate this, let us expand the initial wave function, ψ, on the basis of the
eigenstates of the Hamiltonian {ψi} with eigenvalues {Ei} and apply the operator
(Eq. 2.42). In the limit of large t, we have

lim
t→∞

e−t(Ĥel−ET)|ψ〉 = lim
n→∞

∑
i

e−t(Ei−ET)|ψi〉〈ψi|ψ〉

≈ e−t(E0−ET)|ψ0〉〈ψ0|ψ〉 , (2.43)
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2.2 Solving the electronic problem

since the excited states decay faster than the ground state, having energies Ei > E0.
If the trial energy, ET , is adjusted so that ET ≈ E0, we avoid the exponential decay
of the signal and obtain the ground-state solution. We note that ψ0 survives only if
the starting wave function has non-zero overlap with the exact ground state.

To understand how to perform this projection stochastically, we express the action
of the projection operator in the position representation as

ψ(r′, t+ τ) =

∫
drG(r′|r; τ)ψ(r, t) , (2.44)

where

G(r′|r; τ) = 〈r′|e−τ(Ĥel−ET )|r〉 (2.45)

is the Green function that describes the imaginary-time propagation from |r〉 to |r〉′.
In practice, we employ the Trotter approximation to factorize the kinetic and potential
operators, and write the projection operator for small time-step τ as

e−τĤel = e−τ(T̂+V̂ ) = e−τV̂ /2e−τT̂ e−τV̂ /2 +O(τ 3) . (2.46)

The imaginary-time Green function in the short-time approximation is then given by

G(r′|r; τ) ≈ 1

(2πτ)3N/2
exp

[
−(r′ − r′)2

2τ

]
× exp

[
−
(
V (r′) + V (r)

2
− ET

)
τ

]
. (2.47)

We stress that the repeated application of the short-time Green function yields a so-
lution which is affected by a time-step error. Consequently, in DMC, one needs to
perform calculations for different time-steps and extrapolate the results for τ → 0.

In a DMC simulation, one starts by sampling a set of configurations in 3N -
dimensions, the so-called walkers, distributed according to the initial trial wave func-
tion and performs the DMC projection by evolving the walkers through a diffusion
and a branching process, namely, by sampling the Gaussian distribution and using
the exponential factor in the approximate Green function (Eq. 2.47) as a re-weight.
The basic DMC algorithm can be summarized as follows

1. Generate M0 walkers by sampling the trial wave function ψ with the Metropo-
lis algorithm.

2. Sample a 3N -dimensional Gaussian distribution, G(ξ), with standard devia-
tion
√
τ and diffuse each walker as r′ = r + ξ.

3. For each walker, compute the factor

p = exp

[
−
(
V (r) + V (r′)

2
− ET

)
τ

]
, (2.48)
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which we interpret as its probability of survival to the next iteration: if p < 1,
the walker survives with probability p; if p > 1, the walker continues and new
walkers are created at the same configuration with probability p− 1.

The branching process will increase the walker population in regions where
the potential is higher than the trial energy and suppress it where the potential
is lower.

4. Adjust ET so that the number of walkers remains roughly equal to the initial
value M0.

In practice, this simple algorithm is highly inefficient since the potential can vary
significantly and also diverge at the particle coalescence points, leading to large fluc-
tuations in the walker population.

To overcome this problem, we introduce importance sampling and rewrite the
integral in Eq. 2.44 in terms of the probability distribution f(r, t) = ψ(r)ψ(r, t)
which is a product of the trial wave function and the projected solution. It is easy to
show that f satisfies

f(r′, t+ τ) =

∫
dr G̃(r′|r; τ)f(r, t) , (2.49)

where the so-called importance-sampled Green function is given by

G̃(r′|r; τ) = ψ(r′)〈r′|e−τ(Ĥel−ET)|r〉/ψ(r) . (2.50)

In the short-time approximation, this Green function becomes

G̃(r′|r; τ) ≈ 1

(2πτ)3N/2
exp

[
−(r′ − r− v(r)τ)2

2τ

]
× exp

[
−
(
EL(r′) + EL(r)

2
− ET

)
τ

]
. (2.51)

where v(r) = ∇ψ(r)/ψ(r) is the drift velocity and the local energyEL(r) now enters
the re-weighting factor. This imaginary-time propagator describes a drift-diffusion-
branching process with the drift velocity v(r) pushing the walkers to regions of the
space where the wave function is significant. Furthermore, the local energy substi-
tutes the potential V in the re-weighting factor and, for a good trial wave function ψ,
this guarantees smaller fluctuations (e.g. imposing the cusp conditions ensures that
the local energy does not diverge at the coalescence points). In fact, in the limit of
ψ being an eigenstate of the Hamiltonian, EL becomes a constant and the walkers
simply drift and diffuse, being distributed in the small time-step limit as ψ2.

With this modified Green function, the DMC algorithm is stable and can be used
to treat bosonic systems. However, for electrons, we need to introduce additional
approximations to address what is known as the fermionic sign problem: since the
bosonic ground state has a lower energy than the fermionic one, projecting the wave
function without any constraint will ultimately yield the bosonic state. To prevent
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2.3 Solution for the nuclei

the solution from collapsing on the bosonic ground state, we employ the so-called
fixed-node approximation in which one imposes that the solution has the same nodes
as the trial wave function. In the simple DMC algorithm, one would need to kill the
walkers crossing the nodes but, when the drift-diffusion-branching Green function
is employed, the fixed-node approximation is automatically satisfied in the limit of
τ → 0 since the drift velocity pushes the walkers away from the nodes. The fixed-
node solution is exact only if the nodes of the trial wave function are exact. In
general, the DMC algorithm gives an upper bound to the exact energy.

In conclusion, even though DMC projects a better approximation starting from
a given trial wave function, a bias remains in the results because of the fixed-node
approximation. For this reason, we typically invest significant effort to construct
flexible wave functions and fully optimize them in VMC before carrying out a DMC
calculation. In this thesis, we also perform DMC calculations to compute excited
state energies. In most of the cases presented here, the excited state is a ground state
in its own symmetry class, so we are ensured that the resulting energy is variational.
In Chapter 3, we also use DMC to compute the energy of excited states with the
same symmetry as the ground state. In this case, all what we know is that, if the
nodes are exact, we obtain the exact solution and the variationality of the energy is
not guaranteed. In our studies, we find that, unless the trial wave function is really
poor, DMC approaches the exact excited-state solution from above.

2.3 Solution for the nuclei
Part of this thesis aims at extending the use of QMC forces to the study of dynami-
cal processes. Employing stochastic forces to drive the dynamics generates a series
of challenges which we discuss in Chapters 5 and 6. Here, we shortly introduce
the equations used to solve Newton equations and discuss Langevin dynamics. We
note that we always treat the nuclei as classical and work in the Born-Oppenheimer
approximation.

2.3.1 Molecular dynamics
The objective of a molecular dynamics (MD) calculation is to find the solution x(t)
to the Newton equation of motion

m
d2x

dt2
= FC , (2.52)

where x is the position of a classical particle (a nucleus), m its mass, and FC the
conservative force applied to the system. In our case, we would like to use the force
computed from the solution of the electronic problem.

In this work, we use the so-called velocity-Verlet algorithm to evolve the sys-
tem [33–35]. We start by expanding the velocities to second order as

v(t+ ∆t) = v(t) +
FC(t)

m
∆t+

v̈

2
∆t2 +O(∆t3) . (2.53)
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If we also expand v̇(t+ ∆t) to first order and solve for v̈, we obtain

v̈

2
∆t2 =

∆t

2m
(FC(t+ ∆t)− FC(t)) +O(∆t3) ,

where we used that v̇ = FC(t)/m. Inserting this equation in Eq 2.53, we obtain

v(t+ ∆t) = v(t) +
∆t

2m
(FC(t+ ∆t) + FC(t)) +O(∆t3) . (2.54)

If we expand also the position to second order, the velocity-Verlet equations become

x(t+ ∆t) = x(t) + v(t)∆t+
FC(t)

2m
∆t2 +O(∆t3)

v(t+ ∆t) = v(t) +
FC(t) + FC(t+ ∆t)

2m
∆t+O(∆t3) . (2.55)

The standard implementation of the algorithm follows four steps:

1. Compute the half-step velocities v(t+ ∆t/2) = v(t) + ∆t
2m
FC(t).

2. Update the positions as x(t+ ∆t) = x(t) + v(t+ ∆t/2)∆t.

3. Compute the force FC(t+ ∆t) at the new configuration.

4. Compute the full-step velocities v(t+ ∆) = v(t+ ∆t/2) + ∆t
2m
FC(t+ ∆t).

To prepare the system, one only needs to input a starting configuration and initialize
the velocities by sampling the Maxwell-Boltzmann at a specific temperature.

2.3.2 Langevin dynamics

Molecular dynamics simulations are widely employed to study both dynamical and
thermodynamical properties of very diverse systems. However, if the system of in-
terest is embedded in a complex environment, the treatment of all the particles in-
volved might become computationally unfeasible. To address this problem, one can
for instance rely on Langevin dynamics which is a method where the effect of the
environment is included in the description of the system in an effective manner.

Langevin dynamics was first introduced through empirical considerations but it
is possible to derive the equations starting from the Newtonian description of all the
degrees of freedom of a system and averaging out the ones relative to the bath. We
follow here such a derivation of Langevin equations, which we obtain in a general-
ized form (Eq. 2.73) less commonly encountered in the literature but which we will
use in Chapter 5.

We start from a system which comprises two different sets of degrees of freedom,
namely, {Rk, Pk} for theN particles whose motion we want to describe, and {rk, pk}
for the n particle that we consider as a bath. For a classical Hamiltonian H that
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describes the motion of the full system, we can write the time evolution of a quantity
Q via the Louvillian operator L̂ as

dQ

dt
= iL̂R,PQ+ iL̂r,pQ = iL̂Q , (2.56)

where L̂r,p is defined as

iL̂r,p =
n∑
k=0

∂H

∂pk

∂

∂rk
− ∂H

∂rk

∂

∂pk
, (2.57)

and L̂R,P is similarly defined. By Taylor expanding Q(t) at t = 0, we obtain

Q(t) =
∑
k

tk

k!

dk

dtk
Q(t)

∣∣∣∣
t=0

=
∑
k

tk

k!
(iL̂)kQ(0) = eiL̂tQ(0) , (2.58)

and, if we use this formula to describe the evolution of the momentum Pk(t), we have
for the force on particle k

dPk
dt

= iL̂Pk(t) = eiL̂tiL̂Pk(0) . (2.59)

The objective now is to average out the degrees of freedom of the bath and follow
the evolution of the particle of interest. To do so, we rewrite the equation as

dPk
dt

= eiL̂t〈iL̂Pk〉B + eiL̂t
(
iL̂Pk − 〈iL̂Pk〉B

)
, (2.60)

where the subscript B indicates the average over all the possible initial conditions of
the bath. The equation contains therefore two terms, an average force 〈iL̂Pk〉B and a
fluctuating term, namely the force minus the average.

Let us analyze the first term, namely, the average force. Since we are averag-
ing with respect to all initial configurations of the bath, the term relative to L̂r,p is
zero. Moreover, R and P are independent, so the Louvillan term with the derivative
∂Pk/∂Rk is also zero. In conclusion, the average force is given by

〈iL̂Pk〉B =

〈
− ∂H
∂Rk

〉
B

=

〈
− ∂φ

∂Rk

〉
B

, (2.61)

where we assume that the potential, φ, is the only term of the Hamiltonian explicitly
depending on Rk. In particular, φ depends both on R and r but the dependence on r
drops out since we are averaging over the bath coordinates. As next step, we rewrite
the average force in terms of the free energy of the system, A, as〈

− ∂φ

∂Rk

〉
B

= −∂A(R)

∂Rk

, (2.62)

where

A(R) = −kBT
∫
dr

∫
dp e−βH(r,q,R,P ) , (2.63)
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with β = 1/kBT and kB the Boltzmann constant. The integral in the definition of A
runs over all the positions and momenta of the bath.

Finally, we obtain the average force given by the first term in Eq. 2.60 as

eiL̂t〈iL̂Pk〉B = −eiL̂t∂A(R)

∂Rk

= −∂A(R; t)

∂Rk

, (2.64)

where we use that also the free energy evolves in time under the action of the Lou-
villian operator as given in Eq. 2.58.

We now focus on the fluctuating contribution to the force in Eq. 2.60. To this
aim, we first introduce the projector notation for the average of a quantity Q over the
bath B

〈Q〉B = ℘Q , (2.65)

where ℘2 = ℘ and, consequently, (1−℘)2 = (1−℘) and ℘(1−℘) = (1−℘)℘ = 0.
With this notation, the fluctuating term of Eq. 2.60 can be written as

eiL̂t
(
iL̂Pk − 〈iL̂Pk〉B

)
= eiL̂t(1− ℘)iL̂Pk . (2.66)

We first note that, since ℘(1−℘) = 0, the average on the bath of the fluctuating force
is zero,

℘(1− ℘)iL̂Pk = 0 , (2.67)

but this does not hold for the average of the time evolution of the fluctuating force,
so

℘(eiL̂t(1− ℘)iL̂Pk) 6= 0 . (2.68)

In order to gain some understanding on the fluctuating term, we use the identity

eiL̂t(1− ℘)iL̂Pk = e(1−℘)iL̂t(1− ℘)iL̂Pk

+

∫ t

0

dτeiL̂(t−τ)℘iL̂e(1−℘)iL̂τ (1− ℘)iL̂Pk , (2.69)

which is proven in Refs. [36, 37].
We now define

FR
k ≡ (1− ℘)iL̂Pk and FR

k,t = e(1−℘)iL̂t(1− ℘)iL̂Pk , (2.70)

where we use the superscriptR to indicate that, as a random force, its average is zero.
Then, Eq. 2.69 becomes

eiL̂t(1− ℘)iL̂Pk = FR
k,t +

∫ t

0

dτeiL̂(t−τ)℘iL̂FR
k,τ . (2.71)
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With further manipulations [38] , one can approximate the integral as∫ t

0

dτeiL̂(t−τ)℘iL̂FR
k,τ ≈ −β

∫ t

0

dτ
∑
j

Pj(t− τ)

M
〈FR

j F
R
k,τ 〉B(t− τ) . (2.72)

where we assume for simplicity that all particles have mass M .
In conclusion, inserting our findings for the average and random components in

Eq. 2.60, we have

dPk
dt

= −∂A(R; t)

∂Rk

+ FR
k,t − β

∫ t

0

dτ
∑
j

Pj(τ)

M
〈FR

j F
R
k,t−τ 〉B(τ) , (2.73)

where the first term is a conservative force and the second a random force with
〈FR

k,t〉B = 0. The last term contains the contribution of the velocities vj = Pj/M at
previous times through the correlation of the random forces at different times.

Typically, one assumes that the momenta barely change in the time interval in
which the random forces decorrelate. If this approximation holds, we can bring the
momenta out of the integral and simplify the expression as

dPk
dt

= −∂A(R; t)

∂Rk

+ FR
k,t −

∑
j

Pj(t)

M
γj,k(t) . (2.74)

Finally, comparing the last two equations, we see that the parameter γj,k(t) satisfies

〈FR
j F

R
k,t−τ 〉B(τ) = 2kBTγj,k(t)δ(t− τ) , (2.75)

which is the fluctuation-dissipation theorem and allows us to physically interpret the
friction as a time correlation at the microscopic level.

While this is the general Langevin formulation, the random contributions of
the various degrees of freedom are considered to be uncorrelated so that γj,k(t) =
γ(t)δj,k. In this way, we recover the more familiar expression of the Langevin equa-
tion,

dPk
dt

= −∂A(R; t)

∂Rk

+ FR
k,t −

Pk
M
γ(t) . (2.76)

In this dissertation, we mainly consider the last expression but, in Chapter 5, we deal
with random forces with memory so that we strat from an equation more similar to
Eq. 2.73.

2.4 Codes used in this thesis

We list here the codes employed to perform the simulations in this thesis and give a
more in-depth description of the computational details in each Chapter.
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• CHAMP [39] is a quantum Monte Carlo code, which we use to perform total en-
ergy calculations and obtain the forces for molecular dynamics. The code can
perform both VMC and DMC calculations with wave functions of the Jastrow-
Slater form.

• Tinker [40] is a molecular dynamics package. In this thesis, we modify this
code to mimic a molecular dynamics simulation in which the forces have noise
and to quickly explore possible solutions.

• GAMESS [41, 42] is a quantum chemistry code which we use to generate the
starting wave function for our QMC calculations in either a Hartree-Fock or a
CASSCF calculation.

• Gaussian09 [43] is an electronic structure program that we eploy to com-
pute optimized geometries with various DFT functionals as well as time-dependent
(TD)DFT excitation energies.

• QP2 [24] is a code which can perform CIPSI calculations. We use the code
both to determine extrapolate FCI (exFCI) estimates of excitation energies and
to obtain determinantal expansions for QMC.

• Molcas [44] is another quantum chemistry code specialized in multiconfigu-
rational methods. We employ it to perform CASPT2 calculations.

• PSi4 [45] is a coupled cluster code that we use for iterative approximate cou-
pled cluster singles, doubles, and triples (CC3) calculations.

• CFOUR [46] is also a coupled cluster code that we employ for CC3 calculations
for big molecules since the code is parallelized.

• VMD [47] is a program which we use to visualize trajectories from molecular
dynamics and extract bond information.
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Chapter 3

Variational principles in QMC: the
troubled story of variance
minimization

†

We investigate the use of different variational principles in quantum Monte Carlo,
namely energy and variance minimization, prompted by the interest in the robust
and accurate estimate of electronic excited states. For two prototypical, challenging
molecules, we readily reach the accuracy of the best available reference excitation
energies using energy minimization in a state-specific or state-average fashion for
states of different or equal symmetry, respectively. On the other hand, in variance
minimization, where the use of suitable functionals is expected to target specific
states regardless of the symmetry, we encounter severe problems for a variety of
wave functions: as the variance converges, the energy drifts away from that of the
selected state. This unexpected behavior is sometimes observed even when the target
is the ground state, and generally prevents the robust estimate of total and excita-
tion energies. We analyze this problem using a very simple wave function and infer
that the optimization finds little or no barrier to escape from a local minimum or
local plateau, eventually converging to a lower-variance state instead of the target
state. For the increasingly complex systems becoming in reach of quantum Monte
Carlo simulations, variance minimization with current functionals appears to be an
impractical route.

3.1 Introduction
Light-induced processes are at the heart of a variety of phenomena and applications
which range from harnessing the response to light of biological systems to improv-
ing the technologies for renewable energies. The contribution of electronic structure

†This chapter has been published as A. Cuzzocrea, A. Scemama, W. J. Briels, S. Moroni and C.
Filippi, “Variational Principles in Quantum Monte Carlo: The Troubled Story of Variance Minimiza-
tion”, J. Chem. Theory Comput. 2020, 16, 4203–4212
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theory in this field hinges on its ability to efficiently and accurately compute excited-
state properties. In this context, the use of quantum Monte Carlo (QMC) methods
is relatively recent and quite promising [1–9]: QMC approaches provide an accurate
(stochastic) solution of the Schrödinger equation and benefit from a favorable scal-
ing with system size and great ease of parallelization [10–12]. Importantly, recent
methodological advancements [13–16] enable the fast calculation of energy deriva-
tives and the optimization of many thousands of parameters for the internally consis-
tent computation of QMC wave functions and geometries in the ground and excited
states [9, 17].

Here, we investigate the use of two different variational principles for ground and
excited states in QMC, namely, variance and energy minimization, to assess whether
they allow us to fully capitalize on the increased power of minimization algorithms
and availability of accurate wave functions. Variance minimization techniques [18–
22] have been extensively employed in QMC for the last 30 years but their potential
for the computation of excited states has only recently been revisited and exploited
to compute vertical excitation energies of various small molecules [23,24]. Different
functionals for the optimization of the variance [19,22,23] have also been put forward
with the common attractive feature of the built-in possibility to target a specific state
and avoid in principle the complications encountered in energy minimization where,
without constraints, one would generally collapse to lower-energy states.

For our study, we select two molecules, a small cyanine dye and a retinal model,
because of the difficulties they pose in the computation of the lowest vertical exci-
tation energy [4, 25–28], and the different requirements in the procedure adopted in
energy minimization: while the ground and excited states of the cyanine belong to
different symmetries and can therefore be treated in a state-specific manner, this is
not the case for the retinal model, where energy minimization must be performed in
a state-average fashion. For both molecules and therefore regardless of the nature
of the optimization, we find that energy minimization leads to the stable and fast
convergence of the total energies of the states of interest. Furthermore, with the use
of compact and balanced energy-minimized wave functions constructed through a
selected configuration interaction (CI) approach, we recover vertical excitation ener-
gies which are already at the variational Monte Carlo (VMC) level within chemical
accuracy (about 0.04 eV) of the reference coupled cluster or extrapolated CI values.
On the other hand, for both molecules and for nearly all wave functions investigated,
the optimization of all parameters in variance minimization is problematic since it
results in the apparent loss of the state of interest over sufficiently long optimization
runs, precluding the estimate of the excitation energy. This occurs for the differ-
ent functionals originally proposed to stabilize the optimization and, surprisingly, in
some cases also when targeting the ground state. This finding is unexpected, espe-
cially considering that variance minimization has been the method of choice in QMC
for decades and is still routinely used, albeit for simpler systems and/or for wave
functions with a small number of parameters, often limited to the Jastrow factor.

To understand these newly-found issues, we examine how variance minimization
behaves when optimizing the linear coefficients of a very small CI expansion: work-
ing in the linear sub-space spanned by a few approximate eigenvectors, we discover
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that the optimization of the CI parameters in variance minimization does not con-
verge to the target eigenstate but to a different one. In this specific example, during
the minimization, the system slowly reaches the eigenstate corresponding to the ab-
solute minimum of the variance, no matter what the starting state is. We verify that
a similar pattern explains the unexpected behavior observed for more complicated
wave functions.

It is well known that the variance reaches its minimum value of zero for every
exact eigenstate [19]. This is the very basis of variance minimization. Whether the
variance maintains a minimum when any particular eigenstate is described by a given
approximate wave function is a question that can only be assessed empirically on
case by case basis. Our calculations identify missing minima in several instances of
current interest for QMC simulations. Systematic improvement of the wave function
to recover the zero-variance property of the exact eigenstates would be possible in
principle, but impractically demanding.

Our findings pose severe limitations on the application of variance minimization
for the increasingly complex systems that are becoming accessible to QMC simula-
tions.

In Section 3.2, we recap the equations used for energy and variance optimiza-
tion, discuss the procedure employed for the state-average case, and introduce the
ingredients for a stable version of the Newton method in variance minimization. In
Section 3.3, we summarize the computational details and, in Section 3.4, present the
accurate vertical excitation energies obtained in energy minimization and the diffi-
culties encountered in variance minimization for both molecules. We elucidate these
findings and conclude in Section 3.5.

3.2 Methods

We briefly introduce below the variance and energy minimization approaches used to
optimize the wave functions in variational Monte Carlo. While we employ variance
minimization as a state-specific approach to target a given state, we must distinguish
between a state-specific and a state-average route for energy optimization when the
excited state of interest is of different or equal symmetry, respectively, than other
lower-lying states.

3.2.1 Wave function form

The wave functions employed in this work are of the Jastrow-Slater type, namely, the
product of a determinantal expansion and a Jastrow correlation function, J , as

Ψ = J
Ndet∑
i=1

ciDi , (3.1)

where the determinants are expressed on single-particle orbitals and the Jastrow fac-
tor includes an explicit dependence on the electron-electron distances. Here, the
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Jastrow factor is chosen to include electron-electron and electron-nucleus correlation
terms [29]. For the determinantal component, we select the relevant determinants ac-
cording to different recipes: i) very simple ansatzes such as Hartree-Fock (HF) or a
CI singles (CIS) expansion recently put forward as a computationally cheap and suffi-
ciently accurate wave function for excited states in QMC [8,30]; ii) complete-active-
space (CAS) expansions where small sets of important active orbitals are manually
identified; iii) CI perturbatively selected iteratively (CIPSI) expansions generated to
yield automatically balanced multiple states for a fast convergence of the QMC ex-
citation energy with the number of determinants. All expansions are expressed in
terms of spin-adapted configuration state functions (CSF) to reduce the number of
variational parameters.

3.2.2 Energy minimization
For state-specific optimization in energy minimization, we employ the stochastic re-
configuration (SR) method [14, 31] in a low-memory conjugate-gradient implemen-
tation [14]. Given a starting wave function Ψ depending on a set of parameters p, we
denote the derivatives of Ψ with respect to a parameter pi as Ψi = ∂iΨ. At every step
of the SR optimization, the parameter variations, ∆pi, are computed according to the
equation:

S̄∆p = −τg , (3.2)

where τ is a positive quantity chosen small enough to guarantee the convergence.
The vector g is the gradient of the energy with components:

gi =
∂E

∂pi
= 2

[
〈Ψi|Ĥ|Ψ〉
〈Ψ|Ψ〉

− E 〈Ψ|Ψi〉
〈Ψ|Ψ〉

]

= 2

[〈
Ψi

Ψ
EL

〉
− 〈EL〉

〈
Ψi

Ψ

〉]
, (3.3)

where EL = ĤΨ/Ψ is the so-called local energy and 〈.〉 denotes the Monte Carlo
average of the quantity in brackets over the electron configurations sampled from
Ψ2/ 〈Ψ|Ψ〉. The matrix S̄ has components:

S̄ij =
〈Ψi|Ψj〉
〈Ψ|Ψ〉

− 〈Ψ|Ψi〉
〈Ψ|Ψ〉

〈Ψ|Ψj〉
〈Ψ|Ψ〉

=

〈
Ψi

Ψ

Ψj

Ψ

〉
−
〈

Ψi

Ψ

〉〈
Ψj

Ψ

〉
≡
〈

Ψ̄i

Ψ

Ψ̄j

Ψ

〉
, (3.4)

which is expressed in the last equality as the overlap matrix in the semi-orthogonal
basis, Ψ̄i = Ψi − [〈Ψ|Ψi〉 / 〈Ψ|Ψ〉]Ψ.

When the state of interest is energetically not the lowest in its symmetry class,
we start from a set of wave functions for the multiple states which share the same
Jastrow factor and orbitals but are characterized by different linear CI coefficients as

ΨI = J
Ndet∑
i=1

cIiDi , (3.5)

42



3.2 Methods

where the superscript I indicates a particular state. To obtain a balanced description
of the states of interest, we optimize the non-linear parameters of the orbitals and the
Jastrow factor by minimizing the state-average energy [1]:

ESA =
∑
I

wI
〈ΨI |Ĥ|ΨI〉
〈ΨI |ΨI〉

, (3.6)

where the weights wI are kept fixed and
∑

I wI = 1. To this aim, we follow the SR
scheme (Eq. 3.2) and use the gradient of the state-average energy

gSA
i =

∑
I

wIg
I
i , (3.7)

where gIi is the gradient with respect to a parameter pi of the energy of state I , which
is computed from the wave function ΨI and its derivatives as in Eq. 3.3. Moreover,
in analogy to the single-state optimization, we introduce a weighted-average overlap
matrix defined as

S̄SA
ij =

∑
I

wI S̄
I
ij , (3.8)

where the overlap matrix for each state is computed from the corresponding wave
function as in Eq. 3.4. We stress that, while the state-average SR procedure is defined
simply by analogy with the single-state case, it employs the correct gradients of the
SA energy (gSA) and, therefore, at convergence, leads to the minimization of the
state-average energy.

We alternate a number of optimization steps of the non-linear parameters with
the optimization of the linear coefficients cIi , whose optimal values are the solution
of the generalized eigenvalue equations

HCIcI = EIS
CIcI , (3.9)

where the Hamiltonian and overlap matrix elements are defined in the basis of the
functions {JDi} and estimated through Monte Carlo sampling. After diagonal-
ization of Eq. 3.9, orthogonality between the individual states is automatically en-
forced. To solve the eigenvalue equation with a memory efficient algorithm, we use
the Davidson diagonalization scheme in which the lowest energy eigenvalues are
computed without the explicit construction of the entire Hamiltonian and overlap
matrices [14]. A similar procedure was recently followed in Ref. [32].

3.2.3 Variance minimization
To perform variance minimization, we can directly minimize the variance of the state
of interest,

σ2 =
〈Ψ|(Ĥ − E)2|Ψ〉

〈Ψ|Ψ〉
, (3.10)
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3 Variational principles in QMC: the troubled story of variance minimization

or follow a somewhat more stable optimization procedure by minimizing the expres-
sion

σ2
ω =
〈Ψ|(Ĥ − ω)2|Ψ〉

〈Ψ|Ψ〉
, (3.11)

where the energy ω is fixed during the optimization step and then appropriately mod-
ified to follow the current value of the energy as originally proposed in Ref. [19].
Recently, a functional Ω has been put forward,

Ω =
〈Ψ|(ω − Ĥ)|Ψ〉
〈Ψ|(ω − Ĥ)2|Ψ〉

, (3.12)

whose minimization is equivalent to variance minimization if ω is eventually updated
to the running value of E − σ [23].

Because of its simplicity, we choose here the functional σ2
ω but also compare

the convergence behavior obtained with the functional Ω. To this aim, we use the
Newton optimization method as in Ref. [22] and update the parameters as

∆p = −τh−1g , (3.13)

where g is here the gradient of σ2
ω and h its Hessian matrix, and the parameter τ is

introduced to damp the size of the variations.
The components of the gradient are given by

gi = 2

[〈
ĤΨi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈E2

L〉 (3.14)

− ω

(〈
Ψi

Ψ
EL

〉
+

〈
ĤΨi

Ψ

〉
− 2

〈
Ψi

Ψ

〉
〈EL〉

)]
,

and we discuss other possible equivalent expressions and their relative fluctuations
in Appendix 3.A. The Hessian matrix elements require the second derivatives of the
wave function and, to avoid their computation, we follow the same approximation
strategy of the Levenberg-Marquardt algorithm [33] and manipulate the expression
of the variance in a somewhat different way than proposed in Refs. [20, 22, 34], to
obtain the approximate expression of the Hessian matrix

hij =

〈[
∂iEL + (EL − ω)

(
Ψi

Ψ
−
〈

Ψi

Ψ

〉)]
(3.15)

×
[
∂jEL + (EL − ω)

(
Ψj

Ψ
−
〈

Ψj

Ψ

〉)]〉
,

Details of the derivation and alternative expressions for the Hessian are given in
Appendix 3.A.

We use the Newton method and the Hessian h (Eq. 3.15) when optimizing both
σ2
ω and the Ω functional in combination with the corresponding gradient. Further-

more, we follow Ref. [23] in keeping ω fixed to an appropriate guess energy for an
initial number of minimization steps, upgrading it linearly to the running energy (or
E − σ in the case of Ω) over some intermediate iteration steps, and then setting it
equal to the current energy estimate for the rest of the run.
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3.3 Computational details

3.3 Computational details

All QMC calculations are carried out with the program package CHAMP [35]. We
employ scalar-relativistic energy-consistent HF pseudopotentials and the correlation-
consistent Gaussian basis sets specifically constructed for these pseudopotentials [36,
37]. Unless otherwise specified, we use a double-ζ basis set minimally augmented
with s and p diffuse functions on the heavy atoms and denoted here as maug-cc-
pVDZ. Basis-set convergence tests are performed with the fully augmented dou-
ble (aug-cc-pvDZ) and triple (aug-cc-pvTZ) basis sets. In all cases, the exponents
of the diffuse functions are taken from the corresponding all-electron Dunning’s
correlation-consistent basis sets [38].

In the state-specific (energy and variance) optimization runs, we sample a guid-
ing wave function that differs from the current wave function close to the nodes [39]
to guarantee finite variances of the estimators of the gradient, overlap, and Hes-
sian matrix elements. In the state-average energy minimizations, we employ equal
weights for the multiple states and sample a guiding wave function constructed as
Ψ2
g =

∑
I |ΨI |2, to ensure that the distribution sampled has a large overlap with all

states of interest [1]. All wave function parameters (Jastrow, orbital, and CI coeffi-
cients) are optimized and the damping factor, τ , in the SR and the Newton method
is set to 0.05 and 0.1, respectively, unless otherwise specified. In the DMC calcu-
lations, we treat the pseudopotentials beyond the locality approximation using the
T-move algorithm [40] and employ an imaginary time-step of 0.05 a.u. which yields
excitation energies converged to better than 0.01 eV.

The HF, CIS, and complete-active-space self-consistent-field (CASSCF) calcula-
tions are carried out with the program GAMESS(US) [41, 42]. For the cyanine dye,
we consider different CAS expansions: a CAS(6,5) and CAS(6,10) correlating 6 π
electrons in the orbitals constructed from the 2pz and 3pz atomic orbitals; a truncated
CAS(14,13) consisting of 6 π and 8 σ electrons in 13 bonding and antibonding or-
bitals. For the retinal model, we employ a minimal CAS(6,6) active space of 6 π
electrons in the orbitals constructed from the 2pz atomic orbitals.

The CIPSI calculations are performed with Quantum Package [43] and the de-
terminantal expansions are constructed to be eigenstates of Ŝ2. For the cyanine dye
where ground and excited states have different symmetry, we follow two paths to
construct the CIPSI expansions: i) we perform separate expansions for the two states
starting from the corresponding CASSCF(6,10) orbitals, and match the variances of
the CI wave functions to obtain a balanced description of the states. We find that
this procedure leads to an automatic match of the second-order perturbation theory
(PT2) energy contributions, which are an estimate of the errors of the wave func-
tions with respect to the corresponding full CI (FCI) limit. Using expansions with
matched PT2 corrections has recently been shown to lead to accurate QMC excita-
tion energies also for a relatively small number of determinants [9]. ii) We perform
the expansion of the two states simultaneously, using a common set of orbitals (the
excited-state CASSCF(6,10) orbitals), and obtain automatically matched PT2 en-
ergy corrections during the expansion [9]. For the retinal model where the ground
and excited states have the same symmetry, we have only one set of orbitals for the
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3 Variational principles in QMC: the troubled story of variance minimization

Figure 3.1: Schematic representations of the CN5 (left) and PSB3 (right) molecules.
White, gray, and blue denote hydrogen, carbon, and nitrogen, respectively.

CIPSI expansions. In this case, we perform a simultaneous expansion with a se-
lection scheme that matches the CI variances and also attempts to balance the PT2
energy contributions of the two states [44].

All total energies are computed on the PBE0/cc-pVQZ ground-state geometry of
the cyanine [45] and retinal molecules. The DFT geometry optimization of the retinal
model is performed with the program Gaussian [46]. The coupled cluster results are
obtained with Psi4 [47].

3.4 Results

We compute the lowest π → π∗ vertical excitation energy of the cyanine
dye (C3H3(NH2)+

2 ) and the minimal model of the retinal protonated Schiff base
(C5H6NH+

2 ) depicted in Fig. 3.1 and denoted as CN5 and PSB3, respectively.
As already mentioned, while being generally challenging for electronic structure
methods [4, 25–28], these examples are representative of the two cases of a ground
(S0) and an excited (S1) state of different (CN5) and equal (PSB3) symmetry. Cor-
respondingly, the energy minimization scheme is state-specific for CN5 and state-
average for PSB3, while variance minimization affords a state-specific optimization
for both molecules, at least in principle.

Ground and excited states of different symmetry

In Table 3.1, we list the ground- and excited-state energies, and corresponding exci-
tation energies of CN5 computed in VMC and DMC with different wave functions
optimized by (state-specific) energy minimization. The simplest case consists of a
single determinant (HF) and a HOMO-LUMO (HL) two-determinant wave function
for the ground and the excited state, respectively. We then consider configuration
interaction singles (CIS) expansions, CAS expansions with increasing active spaces,
and balanced CIPSI expansions with different choices of the starting orbitals, namely,
independent sets for the two states (CIPSI-SS) or a common set of orbitals (CIPSI-
B1). The excitation energies are displayed in Fig. 3.2.

The general trend is a decrease of the excitation energy towards the extrapolated
full CI (exFCI) and approximate coupled cluster singles, doubles and triples model
(CC3) reference values for better wave functions. As an exception, when we move
from the HF/HL to CIS wave functions, the VMC energies of both states decrease but
the corresponding excitation energy becomes worse. With increasingly large CAS
expansions, both the total and the excitation energies improve but the convergence is

46



3.4 Results

very slow. For all these wave functions, the DMC excitation energy is lower than the
VMC value and becomes within 0.1 eV of the reference results for the largest active
spaces with about 50,000 and 70,000 determinants for the ground and the excited
state, respectively. By comparison, the errors of TDDFT and CASPT2 can be as
large as 0.4 and −0.2 eV, respectively [4, 45].
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Figure 3.2: VMC and DMC excitation energies of CN5 calculated with different
wave functions optimized in energy minimization. The exFCI/aug-cc-pVDZ [48] and
CC3/aug-cc-pVTZ reference values are also shown. The approximate total number
of determinants for the CIPSI-SS wave functions of the ground and excited states is
indicated.

Table 3.1: VMC and DMC total energies (a.u.) and excitation energies (∆E, eV)
of CN5 obtained for different wave functions optimizing all parameters (Jastrow,
orbital, and CI coefficients) in energy minimization.

WF No. det No. param VMC DMC
S0 S1 S0 S1 E(S0) E(S1) ∆E E(S0) E(S1) ∆E

HF/HL 1 2 516 529 -40.8372(4) -40.6460(3) 5.202(14) -40.9378(3) -40.7509(3) 5.086(11)
HF/CIS 1 980 516 4751 -40.8372(4) -40.6505(3) 5.080(14) -40.9378(3) -40.7533(3) 5.020(11)
CIS 999 980 5260 4751 -40.8444(4) -40.6505(3) 5.278(14) -40.9393(3) -40.7533(3) 5.061(11)
CAS(6,5) 52 48 567 561 -40.8468(4) -40.6583(4) 5.130(15) -40.9433(3) -40.7582(2) 5.038(10)
CAS(6,10) 7232 7168 3134 3064 -40.8498(4) -40.6628(4) 5.090(15) -40.9439(3) -40.7594(3) 5.022(11)
CAS(14,13) 48206 72732 9480 11727 -40.8583(3) -40.6713(3) 5.091(10) -40.9442(7) -40.7611(7) 4.983(26)
CIPSI-SS 376 1094 1567 2609 -40.8646(3) -40.6842(3) 4.908(12) -40.9467(3) -40.7665(3) 4.905(10)

1344 4382 2478 4531 -40.8798(3) -40.7013(3) 4.857(13) -40.9502(2) -40.7711(2) 4.872(09)
2460 8782 3555 6561 -40.8896(3) -40.7099(3) 4.890(12) -40.9532(2) -40.7748(2) 4.856(09)
3913 14114 4842 8312 -40.8941(2) -40.7167(3) 4.828(11) -40.9559(2) -40.7775(2) 4.856(08)

CIPSI-B1 2456 6120 3971 5466 -40.8847(2) -40.7053(2) 4.880(09) -40.9521(2) -40.7727(2) 4.881(09)
4829 13130 5737 8021 -40.8945(3) -40.7150(3) 4.889(13) -40.9560(2) -40.7766(2) 4.882(08)

exFCI/aug-cc-pVDZ [48] 4.89
CC3/aug-cc-pVDZ 4.851
CC3/aug-cc-pVTZ 4.844

The quality of the results exhibits a further, dramatic improvement with the use
of CIPSI expansions. The VMC and DMC energies obtained with the smallest CIPSI
wave function are lower than the corresponding values obtained with the largest CAS
considered here. Furthermore, constructing ground- and excited-state CIPSI expan-
sions with similar PT2 corrections leads to a balanced description of both states and
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3 Variational principles in QMC: the troubled story of variance minimization

to VMC excitation energies which change very little with increasing expansion size,
being irregularly scattered over a small energy range of 0.08 eV. Importantly, the
DMC excitation energies are compatible with the VMC ones and in excellent agree-
ment with the CC3 and exFCI values. Finally, employing two different sets of or-
bitals to generate the CIPSI expansions leads to marginal differences, namely, to
DMC excitation energies of 4.856(8) and 4.882(8) eV, which are both bracketed by
the reference values.

Having verified that state-specific energy optimization in combination with ac-
curate wave functions allows the robust treatment of CN5, we now employ variance
minimization with the σ2

ω functional to optimize the CAS(6,5) and CAS(6,10) wave
functions of the ground and excited states. The convergence of the corresponding
VMC variances and energies is shown in Fig. 3.3. For the smaller CAS(6,5), we
observe that, while the variance converges rather quickly, the energy appears to do so
more slowly and only after undershooting to a value which generally depends on the
statistical error and initial conditions of the run. For an approximate wave function,
the optimal parameters in variance minimization may differ from those obtained in
energy minimization. Therefore, during the optimization of the variance, the energy
can become lower than the final one.

As reported in Table 3.2, the optimal ground- and excited-state energies are
higher by about 30 mHartree than the corresponding values obtained in energy min-
imization but the resulting excitation energy is compatible within statistical error. If
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Figure 3.3: Convergence of the VMC energy (top) and variance (bottom) of the
ground (left) and excited (right) states of CN5 in the optimization of the CAS(6,5)
and CAS(6,10) wave functions in variance minimization.

we move to the larger CAS(6,10) determinantal expansion, we find however that,
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while the variance reaches a stable value and the ground-state energy has a similar
behavior to the CAS(6,5) case, the energy of the excited state grows steadily and it
is therefore not possible to estimate the vertical excitation energy of the system. Sur-
prisingly, even in the simplest case of the one-configuration (HF/HL) wave functions,
the energy of the excited state keeps slowly rising even after 600 iterations as shown
in Fig. 3.4, while the ground-state energy behaves similarly to the corresponding
CAS cases.

Table 3.2: VMC energies and variances (a.u.) and vertical excitation energies (eV)
of CN5 obtained with energy and variance minimization.

Energy min. Variance min.
E(S0) E(S1) ∆E σ2(S0) σ2(S1) E(S0) E(S1) ∆E σ2(S0) σ2(S1)

CAS(6,5) -40.8468(4) -40.6583(4) 5.13(1) 0.862 0.885 -40.8170(5) -40.6270(5) 5.17(2) 0.733 0.743
CAS(6,10) -40.8498(4) -40.6628(4) 5.09(1) 0.855 0.868 -40.8163(4) – – 0.731 –

Importantly, the apparently unstable behavior is independent of the initial value
of ω and the number of steps over which we keep ω fixed (see Apendix 3.B). The
use of a smaller or larger damping factors (i.e. τ = 0.04 and 0.2) leads to the same
pathological growth of the excited-state energy, characterized by the same slope as a
function of time as shown in Fig. 3.13. Moreover, we recover the same behavior also
when using a gradient-only-based optimizer (see Fig. 3.14). Finally, minimizing the
Ω functional instead of σ2

ω yields an excited-state energy which ultimately rises with
iterations as shown for the excited-state HL wave function in Fig. 3.4.
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Figure 3.4: Convergence of VMC energy of the ground (left) and excited (right)
states of CN5 in the optimization of the HF/HL wave functions within variance min-
imization with the σ2

ω (our default) and the Ω functional.

Ground and excited states of the same symmetry

For PSB3, we optimize the wave functions in energy minimization in a state-average
fashion and report the resulting VMC and DMC total energies and vertical excitation
energies in Table 3.3. As in the CN5 case, CIPSI wave functions are superior to CAS
expansions of similar size and, with only about 400 determinants, the use of CIPSI
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yields not only lower total energies but also a VMC vertical excitation energy in good
agreement with the CC3 reference, largely correcting the error of 0.25 eV obtained
with the CAS(6,6) wave function. For all CIPSI expansions, the DMC excitation
energies are always quite close to the correspondent VMC results and, for the larger
expansions, within 0.05 eV of the CC3 value.

When we perform state-specific variance minimization, we encounter great diffi-
culties in the convergence of the energies as we show for the HF/HL and CAS(6,6)
wave functions in Fig. 3.5. Differently from CN5, we find in general that not only
the energy of the excited state but also that of the ground state grows steadily with
iteration number.

Table 3.3: VMC and DMC total energies (a.u.) and excitation energies (∆E, eV)
of PSB3 obtained for different wave functions optimizing all parameters (Jastrow,
orbital, and CI coefficients) in energy minimization.

WF No. det No. param VMC DMC
E(S0) E(S1) ∆E E(S0) E(S1) ∆E

CAS(6,6) 400 1645 -42.8091(2) -42.6471(2) 4.409(9) -42.9118(2) -42.7541(2) 4.293(6)
CIPSI 422 4011 -42.8174(2) -42.6623(2) 4.221(9) -42.9133(2) -42.7578(2) 4.233(6)

1158 5968 -42.8297(2) -42.6735(2) 4.252(9) -42.9160(2) -42.7609(2) 4.221(6)
2579 8106 -42.8357(2) -42.6796(2) 4.247(9) -42.9169(2) -42.7621(2) 4.214(6)

CC3/aug-cc-pVDZ 4.19
CC3/aug-cc-pVTZ 4.16

-42.79

-42.78

-42.77

-42.76

0 70 140 210 280 350 420

En
er

gy
 (a

.u
.)

Optimization iteration

HF

Ground-state energy Excited-state energy

CAS(6,6)

-42.63

-42.62

-42.61

-42.60

-42.59

-42.58

0 70 140 210 280 350 420
Optimization iteration

HL
CAS(6,6)

Figure 3.5: Convergence of the VMC energy of the ground (red) and excited (blue)
states of PSB3 in the optimization of the RHF/HL and CAS(6,6) wave functions
within variance minimization.

3.5 Discussion and conclusions
While our results confirm the high accuracy reachable in QMC with energy min-
imization, they evidence severe problems in variance minimization which, in most
cases, preclude the estimation of the excitation energy. To gain a better understanding
of the troublesome behavior of the energy during variance minimization, we further
investigate the simple case of the HL wave function of CN5 (Fig. 3.4) and find that
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the energy of the state drifts to higher values during variance minimization also when
one optimizes only the LUMO orbital. Therefore, since optimization of an orbital can
be achieved by mixing it with the unoccupied ones of the same symmetry, we can
recast the LUMO optimization into the linear variation of the CI coefficients of the
single excitations out of the LUMO orbital, which amount to only twelve additional
CSFs in our basis set. With such a small expansion, we can then diagonalize the
Hamiltonian in the basis of the CSFs times the Jastrow factor to estimate its thirteen
eigenvalues and eigenvectors, and work directly in the basis of the eigenstates to as-
sess the behavior of variance minimization when starting from the states which are
optimal for energy minimization.
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Figure 3.6: Convergence of the VMC variance (top) and energy (bottom) of CN5 in
the CI optimization of a small expansion (see text) with variance minimization. The
horizontal lines in the energy plot correspond to the eigenvalues in this reduced space,
and the colored ones are the eigenstates used as starting point in four optimization
runs. The damping factor used in the Newton method is τ = 0.2.

In Fig. 3.6, we show the evolution of the VMC variance and energy for four
variance minimization runs in which we start from different eigenvectors, taking the
corresponding eigenvalues as initial target energies ω. In particular, we consider the
lowest state in B1 symmetry as well as the second, fourth, and thirteenth (correspond-
ing to the highest energy) states. We note that, since our states are not exact eigen-
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states of the full Hamiltonian, the corresponding variances of the local energy are
non zero and are spread over about 0.5 a.u. with the lowest value in correspondence
of the second state. In principle, one would expect to find a feature of the variance
landscape –ideally a local minimum– near each of the approximate eigenstates since
the functionals σ2

ω or Ω are designed to select a particular state through the initial
value of ω, and minimize the variance of that state. Here, the selection of the state
is further facilitated starting each run precisely from the chosen eigenstate, and vari-
ance minimization should perform minor adjustments of the initial parameters from
their optimal values for the energy.

The behavior illustrated in Figs. 3.6 is totally different, with all optimization runs
leaking down to successive lower-variance states and eventually converging to the
absolute minimum corresponding to the second eigenstate. The staircase shape of
the variance evolution points to the presence of flat regions of the variance landscape
close to the eigenstates, from which the optimization can eventually escape. This is
further corroborated if we follow the evolution of the CI coefficients as shown start-
ing from the highest-energy state in Fig. 3.7: the initial coefficient quickly decreases
to zero and other eigenstates become populated until convergence on the second state.
In proximity of some eigenstates, the variance displays a more pronounced plateau,
where the system spends enough time to acquire the full character of that particular
state. It is also interesting to note that the states are populated sequentially with the
order determined by decreasing energies. We stress that we observe a similar behav-
ior of the variance also when using the Ω functional starting from the same set of
approximate eigenstates (see Fig. 3.15).
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Figure 3.7: Evolution of the square of the CI coefficients c2
i (offset by i for clarity)

of the small expansion of CN5 during variance minimization, for the run starting
from the 13th eigenvector; in the inset, the evolution of the energy is replicated to
emphasize flat regions in the energy landscape close to an eigenstate (i.e. when the
corresponding ci ∼ 1).

In Fig. 3.8, we investigate the impact of the statistical error on the loss of the
selected state. In particular, we focus on the evolution of the variance and the energy
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starting from the 4th eigenvector for different lengths of the VMC runs used to com-
pute the gradient and Hessian matrix. The shortest run (larger statistical error) looses
the target state in a slightly smaller number of steps. However, the other runs give
very similar results, suggesting that even longer VMC runs would not stabilize the
target state.
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Figure 3.8: Convergence of the variance (left) and energy (right) for different lengths
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Figure 3.9: Variance (left) and energy (right) convergence for the optimization of the
excited state of the CAS(6,10) wave function. The horizontal lines in the energy plot
correspond to the firsts eigenvalue roots obtained with the Davidson optimization.

This simple wave function of CN5 is an explicit instance of missing one–to–
one correspondence between minima of the variance and approximate eigenstates.
Even if the actual number of minima and their correspondence to particular eigen-
states remains unknown in general, the understanding gained here clearly applies to
the behavior that we have observed for more complicated wave functions. As an
explicit example, we revisit the very problematic optimization of the excited-state
CAS(6,10) wave function (Fig. 3.3) and perform a much longer calculation, finding
that the energy eventually converges as shown in Fig. 3.9. For the final set of Jastrow
and orbital parameters, we determine the eigenvalues in the linear space of the deter-
minants times the Jastrow factor and recover a similar behavior to what observed in
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3 Variational principles in QMC: the troubled story of variance minimization

the simple example: the minimization of σ2
ω brings the system approximately to an

eigenstate with a lower variance, which is in this case the 4th one.
By systematically improving the wave function, it is possible in principle to ap-

proach the exact eigenstate and its zero-variance property, thus recovering the corre-
sponding minimum in the variance landscape. However, a CIPSI expansion which
gives excellent results in energy minimization does not always prove sufficient to
stabilize variance minimization(see Section 3.F). In general, going to extended de-
terminantal expansions for the sake of a stable variance minimization, when energy
minimization results are already satisfactory, appears unpractical, if feasible at all.

In summary, we have shown that the combination of energy minimization with
an appropriate choice of the ground- and excited-state wave functions via a balanced
CIPSI procedure leads to excitation energies that are in excellent agreement already
at the VMC level with the reference values. In particular, we obtained a robust con-
vergence of the total ground- and excited-state energies, and a very accurate excita-
tion energy not only in the easier state-specific case of CN5 but also when employing
energy minimization in a state-average fashion for PSB3. On the other hand, we en-
countered severe problems when employing variance minimization since, over suffi-
ciently long optimization runs, one may loose the state of interest in favor of a state
with lower variance, as we clearly demonstrated with a simple but realistic exam-
ple. Even though, theoretically, the functionals σ2

ω and Ω have a built-in possibility
to target the energy of a specific state, in practice, this is generally not sufficient to
maintain the parameters close to the desired local minimum of the variance. There-
fore, these considerations lead to the conclusion that, with the present functionals
and no a priori knowledge of the parameter landscape of the variance for the system
of interest, energy minimization is a safer and more stable procedure.
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3.A Appendix: Expressions for the gradient and
Hessian

The functional σ2
ω is defined as

σ2
ω =
〈Ψ|(Ĥ − ω)2|Ψ〉

〈Ψ|Ψ〉
= 〈E2

L〉 − 2ω〈EL〉+ ω2 , (3.16)

where EL = ĤΨ/Ψ is the local energy and ω is a target energy kept fixed for some
initial steps NF, varied to reach the running energy average over the following NT

steps, and then simply updated to the current value of the energy for the remaining
part of the optimization.

To minimize this functional with the Newton method, we need to compute the
gradient and the Hessian matrix of σ2

ω. To this aim, we can use the straightforward
expressions, simplify them through some approximation, or further manipulate them
to reduce the statistical noise as discussed below.

3.A.1 Computation of the gradient of σ2
ω

As described in the main text (Eq. 14), we sample the following expression of the
gradient of σ2

ω:

gi = 2

[〈
ĤΨi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈E2

L〉

− ω

(〈
Ψi

Ψ
EL

〉
+

〈
ĤΨi

Ψ

〉
− 2

〈
Ψi

Ψ

〉
〈EL〉

)]
. (3.17)

Importantly, if we make use of the hermiticity of the Hamiltonian operator and mod-
ify the expression as:

g2,i = 2

[〈
ĤΨi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈E2

L〉 − 2 ω

(〈
Ψi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈EL〉

)]
,

(3.18)

this leads to a significant increase of the noise and a very unstable minimization since
the fourth term in Eq. 3.17 does no longer partially cancel the fluctuations of the first
term (ω being equal to the running average energy). If we reintroduce a term to
cancel the fluctuations of the first term, we obtain
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g3,i = 2

[〈
ĤΨi

Ψ
EL

〉
−

〈
ĤΨi

Ψ

〉
〈EL〉+

〈
ĤΨi

Ψ

〉
〈EL〉

]

−2

[〈
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Ψ

〉
〈E2

L〉 − 2ω

(〈
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Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈EL〉

)]
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Ψ
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〉
−

〈
ĤΨi

Ψ

〉
〈EL〉+

〈
Ψi

Ψ
EL

〉
〈EL〉

]

−2

[〈
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Ψ

〉
〈E2

L〉 − 2ω

(〈
Ψi

Ψ
EL

〉
−
〈

Ψi

Ψ

〉
〈EL〉

)]
. (3.19)

where we use Hermiticity to go from the first to the second line of the equa-
tion. This gradient expression has significantly lower fluctuations than g2,i since it is
written in terms of covariances [22] and the optimization is stable. As expected, we
find that the use of gi (with ω updated to the running average energy) and g3,i yields
equivalent speeds of convergence in the optimization.

3.A.2 Computation of the Hessian
The computation of the full Hessian matrix involves terms that depend on the second
derivatives of the wave function. To avoid their computation, we follow the same
approximation scheme of the Hessian one adopts when employing the Levenberg-
Marquardt algorithm for the minimization of the mean square fluctuations of a fit
function [33] as also done in the early work on variance minimization [19, 49]. To
this aim, we rewrite the variance as the integral of the square of a function,

σ2
ω = 〈(EL(R)− ω)2〉 =

∫
dR (EL(R)− ω)2Ψ2(R)∫

dR Ψ2(R)

=

∫
dR (EL(R)− ω)2w(R)2 ≡

∫
dRQ2(R) , (3.20)

where we defined

Q(R) = (EL(R)− ω)w(R) = (EL(R)− ω)
|Ψ(R)|√∫
dR′Ψ2(R′)2

. (3.21)

The resulting Hessian matrix with respect to the wave function parameters has com-
ponents:

hij = 2

∫
dR [∂iQ(R)∂jQ(R) +Q(R)∂ijQ(R)] . (3.22)

If Q(R) and ∂ijQ(R) are weakly correlated, one can neglect the last term in this
expression since we are minimizing the variance and therefore the value of Q(R)
over all space (in our case, one aims at (EL(R) − ω) ≈ 0 with ω being equal to the
running average energy). Within this approximation, the Hessian becomes

hij ≈ 2

∫
dR ∂iQ(R)∂jQ(R) . (3.23)
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Since the gradient of the quantity Q is given by

∂iQ(R) = w(R)

[
∂iEL(R) + (EL(R)− ω)

∂iw(R)

w(R)

]
= w(R)

[
∂iEL(R)

+ (EL(R)− ω)

(
∂iΨ(R)

Ψ(R)
−
∫

dR′w2(R′)
∂iΨ(R′)

Ψ(R′)

)]
, (3.24)

we obtain the following approximation for the Hessian

hij = 2

〈 [
∂iEL + (EL − ω)

(
Ψi

Ψ
−
〈

Ψi

Ψ

〉)]
×

[
∂jEL + (EL − ω)

(
Ψj

Ψ
−
〈

Ψj

Ψ

〉)]〉
, (3.25)

If we write out explicitly the derivative of the local energy, we have

hij = 2

{〈(
ĤΨi

Ψ
− ωΨi

Ψ

)(
ĤΨj

Ψ
− ωΨj

Ψ

)〉

−
〈
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(EL − ω)

(
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Ψ

)〉
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〈
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Ψ
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(EL − ω)

(
ĤΨi

Ψ
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Ψ

)〉

+
〈
(EL − ω)2

〉〈Ψi

Ψ

〉〈
Ψj

Ψ

〉}
. (3.26)

We note that, in refs. 22, 50, an approximate expression of the Hessian was put
forward starting from the following expression of the variance on a finite sample of
Monte Carlo configurations:

σ2
ω =

∑
R

(EL(R)− ω)2 , (3.27)

where the weights w(R) are omitted (Eq. 3.21), while they should be included when
the wave function is changed with respect to the one used for the sampling. If we
follow the derivation above to obtain an approximate Hessian, one formally finds

h0,ij = 2
∑
R

∂iEL(R)∂jEL(R) , (3.28)

which can then be expressed as

h0,ij = 2

〈(
ĤΨi

Ψ
− EL

Ψi

Ψ

)(
ĤΨj

Ψ
− EL

Ψj

Ψ

)〉
. (3.29)
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Alternatively, it is possible to obtain this approximate Hessian, starting from the
appropriate expression of the variance and following Ref. 20.

While the use of h0 leads to the efficient optimization of the Jastrow factor, it is
unsuitable for the optimization of the determinant component since the terms,〈

ĤΨi

Ψ
EL

Ψj

Ψ

〉
and

〈
ĤΨj

Ψ
EL

Ψi

Ψ

〉
(3.30)

are infinite. A possible, straightforward way to eliminate the divergences from the
expression of the Hessian is to substitute EL with the fixed value ω as:

h1,ij = 2

〈(
ĤΨi

Ψ
− ωΨi

Ψ

)(
ĤΨj

Ψ
− ωΨj

Ψ

)〉
. (3.31)

This corresponds to the first term of the approximate Hessian matrix (Eq. 3.25).
In Fig. 3.10, we show the convergence of the variance and energy during the

variance optimization of the ground-state CAS(6,6) wave function of PSB3 using the
approximate expressions of the Hessian, h and h1. We see no significant difference
in the convergence behavior of the variance and of the energy, so also the very simple
expression in Eq. 3.31 results in the effective minimization of the variance.
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Figure 3.10: Convergence of the variance (left) and energy (right) in the variance
optimization of the ground-state CAS(6,6) wave function of PSB3 with different
approximate expressions of the Hessian.

3.B Appendix: Dependence of variance minimiza-
tion on the choice of target energy ω

In Fig. 3.11, we show the convergence of the VMC energy and variance for the the
excited state of CN5 with a CAS(6,10) wave function optimized in variance mini-
mization. We compare the convergence when the target energy (ω) is kept fixed for
the whole run and when it is updated following the scheme in Ref. 23.

For the runs with ω fixed, we use three different values of ω which are chosen
to be lower than the energy of the starting wave function. The highest value of ω
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energy ω

(−40.65 a.u.) is close to the energy obtained in energy minimization. For the run
with varying ω, we keep ω fixed to −40.75 a.u. over NF =20 steps and linearly
updated it to the running average energy over the subsequent NT=30 steps.

As expected, we find that, when fixing the value of ω for the whole run, the energy
stabilizes to a certain value which is higher than the target ω and differs depending on
the choice of ω. Therefore, the procedure of keeping ω fixed is unsuitable for com-
puting excitation energies, not only because the method is not size consistent [23]
but also for the strong dependence of the result on the input value of ω.
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Figure 3.11: Convergence of the VMC variance (left) and energy (right) in the vari-
ance minimization of the excited-state CAS(6,10) wave function of CN5 when ω is
kept fixed over the whole run and when ω is updated to the value of the running
average energy [23].

In Fig. 3.12, we investigate the dependence of the results on the choice of NT.
We start from a wave function optimized by maintaining ω fixed for the whole run,
and linearly update the value of ω to the current energy using different values of
steps NT. We find that, no matter how slowly we tune this parameter, once we allow
ω to vary, the energy starts rising and, after a transient number of steps, all the runs
display an equivalent behavior.
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cited state of the CAS(6,10) of CN5 optimized in variance minimization with differ-
ent values of NT.
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3.C Appendix: Dependence of variance minimiza-
tion on the damping factor τ

In Fig. 3.13, we report the convergence of the VMC excited-state energy and variance
in the variance minimization of the CAS(6,10) wave function of CN5 for different
values of the damping factor τ used in the Newton method. We find that, for all the
tested values of τ (τ =0.04, 0.1, 0.2), the growing behavior of the energy is the same
as a function of the product of the number of iterations and τ .
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Figure 3.13: Convergence of the VMC variance (left) and energy (right) in the vari-
ance minimization of the excited-state CAS(6,10) wave function of CN5. The x-axis
corresponds to the number of iteration times the damping factor τ in the Newton
method.

3.D Appendix: Variance minimization with gradient-
only optimizer

In Fig. 3.14, we show the convergence of the VMC variance and energy in variance
optimization with the Newton method and with a gradient-only optimizer, namely,
the ADAM approach, which has recently been successfully tested in the context of
quantum Monte Carlo [51]. We use the HL wave function of the excited-state of CN5
and set the parameters in the ADAM method to β1 = 0.1 and β2 = 0.001.

We find that both optimization schemes lead to the same qualitative results in
terms of energy and variance: in both cases, the energy increases during the opti-
mization and drifts to energies significantly higher than the value of−40.6460(3) a.u.
obtained in energy minimization. Therefore, even if convergence is later achieved,
the converged state will not correspond to the desired lowest state.
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ance minimization of the excited-state HL wave function of CN5 with the ADAM
optimizer and Newton method. Note that the energy obtained in energy minimiza-
tion for the HL wave function is −40.6460(3) a.u. which falls out of the scale.

3.E Appendix: Variance minimization with Ω func-
tional

In Fig. 3.15, we show the convergence of the VMC variance and energy in variance
optimization for the optimization of the LUMO orbital of CN5 with the functional
Ω. As explained in the main text, we recast the optimization of the LUMO as a
CI optimization of thirteen CSFs. The curves shown correspond to variance mini-
mization runs in which we start from different approximate eigenvectors and use the
corresponding eigenvalue energies (Ei) to target the state (ω ' Ei − σ). We observe
a similar behavior to the one obtained with the functional σ2

ω (Fig. 6) with all four
variance/energy curves converging to the second eigenstate.
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Figure 3.15: Convergence of the VMC variance (left) and energy (right) of CN5 in
the CI optimization of the LUMO orbital with the Ω functional in variance mini-
mization. The horizontal lines in the energy plot correspond to the eigenvalues in
this reduced space, and the colored ones are the eigenstates used as starting point for
the optimization runs. The damping factor used in the Newton method is τ = 0.2.
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3.F Appendix: Variance minimization with CIPSI
wave functions

In the respective ranges of determinantal expansions considered in this work, the
CIPSI wave functions give significantly better energies and excitations than the CAS
wave functions, as seen from Tables 1 and 3 of the main text. Their variances, listed
in Table 3.4, are correspondingly lower, but not by a large amount: for instance, the
variance of the best CIPSI wave function for the S1 state of CN5 is just 22% lower
than that of the smallest CAS. Comparatively, we are still far from the limit of the
zero-variance property of exact eigenstates where variance minimization is safe and
stable. On this ground, our CIPSI wave functions may be expected to face problems
in variance minimization to a similar extent than our CAS wave functions.

Table 3.4: Variance for the states S0 and S1 of CN5 and PSB3 with the wave func-
tions of Tables 1 and 3 of the main text.

molecule WF N. of determinants variance (a.u.)
S0 S1 S0 S1

CN5 HF/HL 1 2 0.885 0.893
CIS 999 980 0.853 0.893
CAS(6,5) 52 48 0.862 0.885
CAS(6,10) 7232 7168 0.855 0.868
CAS(14,13) 48206 72732 0.820 0.839
CIPSI-SS 376 1094 0.798 0.799

1344 4382 0.737 0.738
2460 8782 0.699 0.712
3913 14114 0.689 0.686

CIPSI-B1 2456 6120 0.719 0.728
4829 13130 0.688 0.693

PSB3 CAS(6,6) 400 400 0.878 0.891
CIPSI 422 422 0.848 0.851

1158 1158 0.803 0.811
2579 2579 0.786 0.793

This is indeed the case, as shown in Fig. 3.16 where we compare the performance
of variance and energy minimization in the optimization of selected Jastrow-CIPSI
wave functions. In particular, we show the convergence of the VMC energies during
the optimization of the S1 excited-state wave function of CN5 and PSB3.

For CN5, we use the CIPSI expansion with 4382 determinants of Table 1 and
observe that the energy converges with both energy and variance minimization, in
analogy with the CAS(6,5) but not with the CAS(6,10) wave function. For PSB3,
we use the CIPSI expansion with 1158 determinants of Table 3 and perform variance
minimization using two different starting points, which yield the two curves labeled
“variance min 1” and “variance min 2”. We observe that the energy keeps increasing
over a wide range of iterations (“variance min 1”) as for the CAS(6,6) result. We also
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Figure 3.16: Convergence of the VMC energy in the energy and variance optimiza-
tion of Jastrow, linear, and orbital parameters of an excited-state Jastrow-Slater wave
function with a CIPSI expansion of 4382 determinants for CN5 (left) and 1158 de-
terminants for PSB3 (right). The two variance minimization runs shown for PSB3
start from different initial parameters and are bound to converge to the same energy
(barring different local minima).

note that the transient behavior of the energy depends significantly on the starting
point, it can be quite slow (curve “variance min 2”), and is in general more noisy
than in energy minimization.
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Chapter 4

Reference excitation energies of
increasingly large cyanine dyes: a
QMC study

†

We revisit here the lowest vertical excitations of cyanine dyes using quantum
Monte Carlo and leverage recent developments to systematically improve on previ-
ous results. In particular, we employ a protocol for the construction of compact and
accurate multi-determinant Jastrow-Slater wave functions for multiple states, which
we have recently validated on the excited-state properties of several small prototyp-
ical molecules. Here, we obtain quantum Monte Carlo excitation energies in excel-
lent agreement with high-level coupled cluster for all the cyanines where the coupled
cluster method is applicable. Furthermore, we push our protocol to longer chains,
demonstrating that quantum Monte Carlo is a viable methodology to establish ref-
erence data at system sizes which are hard to reach with other high-end approaches
of similar accuracy. Finally, we determine which ingredients are key to an accu-
rate treatment of these challenging systems and rationalize why a description of the
excitation based on only active π orbitals lacks the desired accuracy for the shorter
chains.

4.1 Introduction
Cyanine dyes are a family of charged π-conjugated molecules which are employed
in very diverse applications ranging from dye-synthesized solar cells to the labeling
of bio-molecules [1–3]. Their characteristic structure consists of a chain of an odd
number of carbons with two amine groups at the ends. While their photo-physical
properties are strongly regulated by the length of the carbon chain, the lowest bright
state of the cyanines always maintains a π → π∗ character and can be predominantly

†This chapter has been published as A. Cuzzocrea, S. Moroni, A. Scemama, and C. Filippi,
“Reference excitation energies of increasingly large molecules: a QMC study of cyanine dyes”, J.
Chem. Theory Comput. 2022, 18, 1089–1095
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described as a HOMO to LUMO (HL) transition. Despite the apparent simplicity of
this excitation, its accurate treatment is known to be challenging and, consequently,
cyanine dyes have often been used as model systems to assess the quality of elec-
tronic structure methods for excited states [4–12].

Here, we employ quantum Monte Carlo (QMC) to revisit the vertical excitation
energies of cyanine dyes of the simple form CnHn(NH2)+

2 with n an odd number
ranging from 1 to 17, combining the use of sophisticated multi-determinant wave
functions with recent developments for their efficient optimization in variational
Monte Carlo (VMC) [13–16]. In particular, we build on our successful treatment
at chemical accuracy of the excitation energies and optimal excited-state structures
of small, prototypical molecules [17–19], where the determinantal components of
the multiple states are generated in an automatic and balanced manner with the
configuration interaction using a perturbative selection made iteratively (CIPSI) ap-
proach [20]. Studying the bright excitation of cyanine dyes enables us to demonstrate
the accuracy of our protocol for the shorter chains, where high-level coupled clus-
ter (CC) offers a good compromise in terms of accuracy versus computational cost.
Importantly, it also establishes the applicability of QMC to larger sizes where the
use of other high-level approaches is more challenging. Finally, we identify the key
descriptors of orbital correlations for these systems and elucidate why earlier QMC
studies with limited active space wave functions lacked the expected accuracy [4].

4.2 Methods
We employ QMC wave functions of the so-called Jastrow-Slater form, namely,

Ψ = J
Ndet∑
i=1

ciDi , (4.1)

where J is the Jastrow correlation factor and Di are determinants of single-particle
orbitals. The Jastrow factor explicitly depends on the inter-particle coordinates and
includes here electron-electron and electron-nucleus correlation terms [21].

To generate the determinantal components for the two states, we employ the
CIPSI approach which, starting from a given reference space, builds expansions
by iteratively selecting determinants based on their second-order perturbation (PT2)
energy contribution obtained via the Epstein-Nesbet partitioning of the Hamilto-
nian [22, 23],

δE(2)
α =

|〈α|H|ΨCIPSI〉|2

〈ΨCIPSI|H|ΨCIPSI〉 − 〈α|H|α〉
, (4.2)

where ΨCIPSI is the current CIPSI wave function for the state under consideration
and |α〉 denotes a determinant outside the current CI space. Since the ground and
excited states of the cyanines have different symmetries, a state-specific approach
can be used to perform the selection for the two states separately, using different
orbitals.
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4.3 Computational details

We are here interested in computing excitation energies and, therefore, wish to
achieve a balanced CIPSI description of the states of interest, which leads to con-
verged excitation energies in QMC already for relatively small expansions.

A measure of the quality of a given CIPSI wave function is its PT2 energy contri-
bution, which represents an approximate estimate of the error of the expansion with
respect to the full CI (FCI) limit. Therefore, we can compute the excitation energies
using expansions for the two (or more generally multiple) states with matched PT2
energy and, therefore, ensure comparable quality. We refer the reader to Ref. [19]
on how to impose the “iso-PT2” criterion when treating multiple states of the same
symmetry expanded on a common set of determinants.

Alternatively, one can match the CI variance of the relevant states, which is de-
fined as the variance of the FCI Hamiltonian:

σ2
CI(Ψ

CIPSI) =
∑
i∈FCI

〈ΨCIPSI|H|i〉〈i|H|ΨCIPSI〉

−〈ΨCIPSI|H|ΨCIPSI〉2

=
∑
α

|〈ΨCIPSI|H|α〉|2 . (4.3)

As the CIPSI wave function approaches the FCI limit, the CI variance goes to zero.
For various small molecules [17–19], we have found that matching the PT2 energy
contributions leads to expansions with also very similar variances. In general, this is
not always the case and one of the two criteria might be more suitable than the other
for the computation of the CI excitation energies of a particular system.

While we discuss in detail below the impact of this choice on the QMC exci-
tation energies, we stress already here that the convergence of the QMC results is
established not based on their agreement with available reference data but in an “in-
ternally consistent” manner based on the similarity of the VMC and DMC excitation
energies [19] and their convergence with respect to the number of determinants.

Finally, as an alternative to the CIPSI expansions, we test complete active space
(CAS) expansions for the determinantal components of our QMC wave functions.
We start from separate CASSCF calculations for the two states and consider minimal
active spaces by correlating the π electrons in the π orbitals constructed from the 2pz
orbitals. For the smaller cyanines with up to 7 heavy atoms, CN3–CN7 (we label a
cyanine as CNm with m the total number of C and N atoms), we also explore the
use of a larger active space with molecular orbitals constructed from the 2pz and 3pz
atomic orbitals. Finally, in some cases, we also test the performance of a simple
one-configuration ansatz, namely, the Hartree-Fock (HF) and HOMO-LUMO (HL)
configurations for the ground and the excited state, respectively.

4.3 Computational details

Unless otherwise specified, we employ scalar-relativistic energy-consistent HF pseu-
dopotentials and the correlation-consistent Gaussian basis sets specifically constructed
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for these pseudopotentials [24, 25]. For most of the calculations, we use a double-
ζ basis set minimally augmented with s and p diffuse functions on the heavy atoms
and denoted here as maug-cc-pVDZ. Convergence tests are performed with the fully-
augmented aug-cc-pVTZ basis set. The exponents of the diffuse functions are taken
from the corresponding all-electron Dunning’s correlation-consistent basis sets [26].

The HF and CASSCF computations are performed with the program GAMESS
(US) [27, 28]. When using the CASSCF wave functions in QMC, we truncate the
CAS expansion for CN11 and CN13, using a threshold on the CSF coefficients so
that the configurations make up respectively about 0.9985 and 0.9765 of the weight of
the total wave functions of the two states. The CIPSI expansions are generated with
Quantum Package [29] and constructed to be eigenstates of Ŝ2 [17]. We perform
the selection for the two states separately, starting from CASSCF orbitals obtained
with the larger active spaces for the cyanine molecules up to CN7, and the minimal
CAS from CN9 to CN15. We use the HF orbitals for CN17 and CN19. As shown
in Fig. 4.4 and Table 4.5 for CN3 and Fig. 4.9 for CN15, the use of different or-
bitals to generate the CIPSI expansions has no appreciable impact on the CI or QMC
excitation energies.

The QMC calculations are carried out with the CHAMP code [30]. The determi-
nantal part of our QMC wave functions is expressed in terms of spin-adapted config-
uration state functions (CSF) to reduce the number of parameters during the VMC
optimization. In the wave function optimization, we sample a guiding wave func-
tion that differs from the current wave function close to the nodes [31] to guarantee
finite variances of the estimators of the gradients with respect to the wave function
parameters. All wave function parameters (Jastrow, CI, and orbital coefficients) are
optimized in state-specific energy minimization following the stochastic reconfigura-
tion scheme [14,32]. In the DMC calculations, we treat the pseudopotentials beyond
the locality approximation using the T-move algorithm [33] and employ an imaginary
time-step of 0.05 a.u. which we have already tested for one of the cyanine chains and
shown to yield excitation energies converged to better than 0.01 eV [18]

We compute all energies on the ground-state geometries of CN3–CN11 deter-
mined with all-electron PBE0/cc-pVQZ in Ref. [8] and obtain the geometries for
CN13 to CN19 at the same level of theory with the Gaussian 09 program [34]. We
employ the programs CFour v2.1 [35] and Molcas [36] for the approximate coupled
cluster singles and doubles (CC2) and singles, doubles, and triples model (CC3), and
the CASPT2 calculations, respectively, using the all-electron aug-cc-pVDZ basis set
and the frozen-core approximation, unless otherwise specified.

4.4 Results

We compute the lowest π → π∗ vertical excitation energy of cyanine dyes of the
form CnHn(NH2)+

2 with n ranging from 1 up to 17. The structures of the CN3 and
CN9 molecules are shown in Figure 4.1. In all cases, the point group of the molecule
is C2v with the ground (GS) and excited (ES) states having A1 and B1 symmetry,
respectively.

72



4.4 Results

For CN3 up to CN15, we compare the QMC excitation energies with the all-
electron CC3/aug-cc-pVDZ results. The use of the CC3 method as reference for the
bright excitation of these systems is supported by the agreement of the CC3 excita-
tion energies with the corresponding extrapolated FCI (exFCI) estimates in a small
basis of the smaller CN3 and CN5 to better than 0.05 eV [12]. From a careful inves-
tigation, we know that employing the aug-cc-pVDZ basis set is sufficient given the
agreement with the corresponding aug-cc-pVTZ values. Importantly, the all-electron
CC3/aug-cc-pVDZ excitation energies are very close to the BFD CC3/aug-cc-pVDZ
values, confirming that the use of pseudopotentials does not introduce appreciable er-
rors. The reference CC3/aug-cc-pVDZ values also agree with the corresponding CC3
excitation energies computed with the BFD maug-cc-pVDZ basis set for all cyanines
except the smallest CN3, where a fully-augmented double-ζ basis is needed also in
the BFD calculations.

For dyes larger than CN15, we are however not able to run the CC3 calculations
due to memory requirements [37] and the DMC excitation energy with our best CIPSI
wave function becomes then the reference for other calculations.

4.4.1 Building the expansions

To compute accurate QMC excitation energies for the cyanine dyes, one needs bal-
anced Jastrow-Slater wave functions to describe the ground and excited states. This
is achieved in two stages, where the first is the construction of CIPSI expansions
with the iso-PT2 and/or iso-variance scheme, and the second is a validation criterion
that the resulting excitation energies in VMC and DMC are close to each other and
converged with respect to the number of determinants. In particular, we generate the
ground- and excited-state expansions at the CIPSI level to have either matched PT2
energy corrections or CI variances, which we use as measures of the “distance” of
the wave functions from the FCI limit. Imposing that the determinantal components
satisfy either the iso-PT2 or iso-variance criterion was previously found to lead to
QMC excitation energies which were converged to the best reference values with a
handful of determinants [17, 18], even when the error on the starting CI excitation
energy was relatively large [19].

In Fig. 4.1, we illustrate the convergence of the CI excitation energies of CN3 and
CN9 versus the total number of determinants for expansions characterized by similar
PT2 corrections or CI variances. For CN3, the iso-PT2 construction leads to a some-
what faster convergence of the excitation energy for small expansions, but the two
criteria become quickly equivalent beyond a few 1000 determinants. The situation is
reversed for CN9, where matching the PT2 correction yields a much slower converg-
ing CI excitation energy, while the iso-variance criterion leads to a good agreement
with the CC3 value in the same basis set for little more than 1000 determinants. In
fact, we find that variance-matched expansions yield a faster converging CI excita-
tion energy starting from CN7 and that, surprisingly, fewer determinants are needed
to obtain a good estimate for the larger system sizes considered (see Fig. 4.7). Con-
sequently, the CI treatment of the smallest cyanine, CN3, appears to be the most
difficult as further elaborated in Sec. 4.4.3.

73



4 Reference excitation energies of increasingly large cyanine dyes: a QMC study

Figure 4.1: CI vertical excitation energies of CN3 (top) and CN9 (bottom) versus the
total number of determinants, computed for ground- and excited-state CIPSI expan-
sions having either matched PT2 energy contributions or CI variances. The VMC and
DMC excitation energies obtained using the iso-variance expansions are also shown
(the statistical error is smaller than the symbol size). The BFD pseudopotentials and
the maug-cc-pVDZ basis are used here also for the CC3 calculations.

Importantly, in Fig. 4.1, we also show that QMC largely corrects for possible
shortcomings of the starting CIPSI expansions, yielding excitation energies which
display a rather small dependence on the number of determinants, especially at the
DMC level. For CN3 and small expansions, where the iso-variance criterion sig-
nificantly overestimates the CI excitation energy, VMC and DMC reduce the error
at the CI level by about 0.2 and 0.3 eV, respectively. As the expansions become
larger, the difference between the VMC and the DMC values diminishes, falling well
below chemical accuracy (about 0.05 eV) for both CN3 and CN9. The robustness
of the QMC results is further corroborated for CN7 in Table 4.6, where we show
that, for comparable number of determinants, the use of PT2- and variance-matched
wave functions yields excitation energies that are very close in VMC and completely
equivalent in DMC (even though the two procedures give differences of about 0.2 eV
at the CI level; see Fig. 4.7).
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4.4.2 Best QMC vertical excitations
In Table 4.1, we summarize the VMC and DMC excitation energies of all cyanine
dyes obtained with the largest CIPSI expansions of Table 4.6 and the iso-variance
selection criterion. We also list the QMC and CASPT2 excitation energies computed
with minimal CAS expansions, together with our CC2 and CC3 results and the exFCI
estimates from the literature [12]. We refer the reader to Table 4.6 for additional
QMC calculations with different numbers of determinants in the Jastrow-CIPSI wave
functions.

For the reported CIPSI expansions, the VMC and DMC excitations energies are
very close and also agree within chemical accuracy with the CC3 and exFCI values
in all cases where these methods are applicable. This is in line with our previous
findings that the agreement between VMC and DMC excitation energy is a strong
indication of the balanced quality of the corresponding wave functions [19]. Further-
more, we find that the QMC values for the larger dyes are in very good agreement
with the estimates given by the extrapolation of the CC3 results as a function of
number of electrons. Since DMC can be employed in all cases, we plot all excitation
energies in Fig. 4.2 in terms of their distance to the DMC-CIPSI results, which we
use as reference values.
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Figure 4.2: Excitation energies (eV) at different levels of theory with respect to the
DMC values computed with the CIPSI wave functions (DMC-CIPSI line).

The CASPT2 and QMC-CAS energies computed with the minimal active spaces
are instead very different from the DMC-CIPSI results: CASPT2 always underesti-
mates the excitation energies, whereas QMC-CAS tends to overestimate them, sim-
ilarly to what reported for CAS wave functions in Ref. [4]. For CN3–CN7, we test
the effect of including more π orbitals in the active space, which somewhat amelio-
rates the VMC excitation energies but does not sufficiently affect the DMC values,
which remain far from the DMC-CIPSI reference (see Table 4.7). Interestingly, we
note that both the CASPT2 and QMC-CAS methods approach the best DMC results
as the size of the molecule increases, suggesting an easier treatment of the longer
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chains as already found at the CI level and as further discussed below.

4.4.3 Capturing orbital correlation

To understand the different performance of CAS and CIPSI expansions when used
in QMC wave functions, we focus here on CN3 and analyze in Fig. 4.3 the VMC
and DMC vertical excitation energies calculated using different determinantal com-
ponents in the trial wave functions. As already mentioned, despite being the small-
est cyanine dye, CN3 appears to be the most challenging one: the use of Jastrow-
CAS wave functions leads to quite big errors and the number of CIPSI determinants
needed to converge the excitation energy is larger than for the longer dyes. The
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Figure 4.3: VMC (full circle) and DMC (empty circle) vertical excitation energies
of CN3 for different wave functions. The maug-cc-pVDZ (green) and aug-cc-pVTZ
(Ta, blue) are used.

simplest QMC calculations are performed with a one-configuration (HF/HL) wave
function and the maug-cc-pVDZ basis set. We then proceed to CAS determinantal
components and CIPSI expansions also employing the aug-cc-pVTZ basis set. The
VMC excitation energy computed with the minimal CAS wave functions is worse
than the HF/HL value since the active space comprises more determinants for the
ground state but only the HL configuration for the excited state. DMC ameliorates
the result but using a larger CAS space on the π orbitals only marginally helps (see
Table 4.7). On the other hand, with the CIPSI selected determinants, we have a con-
siderable improvement on the excitation energy and, with the use of just few hundred
determinants, the DMC error reduces to less then 0.1 eV. Employing larger expan-
sions with the maug-cc-pVDZ basis set, we finally converge to VMC values which
are consistent with the DMC ones and approximately 0.04 eV higher than the ref-
erence. The use of the aug-cc-pVTZ basis set further reduces the excitation energy
by about 0.02 eV. We note that, for the longer cyanine chains, the smaller maug-
cc-pVDZ basis set is found to be sufficient for the computation of this excitation
energy [18].
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The superior performance of the use of a CIPSI with respect to the CAS expan-
sions in QMC indicates that some key descriptor of correlation is missing from the
active space and is not recovered through the addition of the Jastrow factor and the
subsequent full optimization in VMC, nor through a DMC calculation with the op-
timal Jastrow-Slater wave function. In this work as in Ref. [4], the active space is
chosen to correlate the π electrons in the π orbitals. From the QMC-CIPSI results, we
can therefore infer that, while the excitation of interest is predominantly of π → π∗

character, other orbital correlations are important and cannot be omitted in the QMC
wave function of the shorter cyanines.

Table 4.2: CI total energies (a.u.) and vertical excitation energies (∆Eexc, eV) of
CN3 computed with the 6-31G basis set and different orbital sets. The last column
reports the error with respect to the FCI excitation energy for CN3 and CN5, and
with respect to the CC3 value for CN7.

E(GS) E(ES) ∆Eexc err
CN3
1 CSF -149.39966 -149.07223 8.91 1.39(2)
CAS-σ -149.613(1) -149.307(1) 8.32 0.80(2)
CAS-π -149.44486 -149.14840 8.07 0.55(2)
CAS-π + SD-σ -149.7151(5) -149.4346(5) 7.65 0.13(2)
CC3 -149.74049 -149.46354 7.54 0.02(2)
FCI -149.741(1) -149.465(1) 7.52(2) –
CN5
1 CSF -226.27705 -226.04468 6.32 1.48(1)
CAS-σ -226.581(1) -226.373(1) 5.66 0.82(1)
CAS-π -226.34204 -226.15212 5.17 0.33(1)
CAS-π + SD-σ -226.745(2) -226.557(2) 5.03 0.19(1)
CC3 -226.80736 -226.62972 4.83 -0.01(1)
FCI -226.809(1) -226.631(1) 4.84(1) –
CN7
1 CSF -303.14723 -302.95611 5.20 1.64
CAS-σ -303.580(4) -303.409(4) 4.73(4) 1.17(4)
CAS-π -303.23260 -303.09606 3.72 0.16
CC3 -303.86766 -303.73676 3.56 –

To better understand this, we present a CI study for CN3–CN7 with the small
6-31G basis set in Table 4.2. We correlate only the valence electrons and use state-
average natural orbitals obtained with a preliminary calculation at the CIPSI level.
For each state, we compute the energy with only one CSF and, on top of this config-
uration, we perform a CAS-CI calculation restricted to the σ and the π orbitals in a
CAS-σ and CAS-π, respectively. The reference FCI excitation energy in this basis
and the associated confidence interval are computed following the scheme presented
in Ref. [38] rather than extrapolating the variational energies of the individual states
in the limit of the PT2 energy correction going to zero. Indeed, the uncertainties
of the extrapolated FCI energies of both states is larger than the uncertainty on the
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estimated excitation energy computed with this scheme. Since the CC3 estimate for
CN3 and CN5 is in excellent agreement with the FCI value, we use the CC3 exci-
tation energy as reference for CN7. We note that, because of the use of the simple
6-31G basis set, the FCI and CC3 excitation energies are much higher than the more
accurate results presented above but this is not relevant for the present discussion.

For the CN3 molecule, the excitation energy obtained with a single CSF for each
state is 8.91 eV, namely, higher by 1.4 eV than the FCI result. The CAS-π calculation
corrects only 60% of the error, indicating that the σ orbitals also play an important
role in the stabilization of the excited state. Similarly, the excitation energy obtained
with the CAS-σ improves the excitation energy with respect to the single CSF by
recovering about 31% of the error. These results indicate the importance of both σ
and π orbitals in the calculation of the excitation energy of CN3.

Therefore, to partially account for both π and σ correlations, we perform a multi-
reference CI calculation, applying all possible single and double excitations to the
CAS-π determinants. Such a CAS-π+SD-σ calculation also enables the relaxation of
the CAS-π CI coefficients in the presence of most of the σ correlation. The resulting
excitation energy is now significantly improved but still 0.1 eV higher than the FCI
reference, confirming that a similar computational effort needs to be made for the
π and σ orbitals. This justifies the use of CIPSI where the most important Slater
determinants will be chosen to describe σ, π, and σ−π correlation in a “democratic”
way based on their contribution to the second-order perturbation energy.

For CN5, the situation is somewhat different. While the single CSF still overes-
timates the excitation energy by 1.47 eV, the CAS-π wave function behaves better
than for CN3, recovering 80% of the error. Consequently, omitting the σ orbitals
in the active space results in an excitation energy closer to the reference than in the
CN3 case. Once the σ orbitals are introduced, as for CN3, we improve the excita-
tion energy but still observe an overestimation of the CAS-π+SD-σ result by almost
0.2 eV, pointing to the importance of describing the σ as well as the π correlation.
The situation for CN7 is similar as for CN5, suggesting that the whole series behaves
like CN5 and that CN3 is an exception because of the particularly small length of the
chain.

4.5 Conclusion

We have presented a QMC benchmark study of the lowest vertical excitation energies
of cyanine chains. We constructed the determinantal components of the Jastrow-
Slater wave functions through an automatic selected-CI procedure and obtained a
balanced description of the relevant states by ensuring similar quality of the corre-
sponding expansions, for instance by matching their CI variances. With compact
expansions of only a few thousand determinants, upon optimization of all param-
eters in our wave functions, we obtained QMC excitation energies which improve
on the starting CI values and, for the shorter chain lengths where CC3 calculations
are feasible, agree with the CC3 results to chemical accuracy. We also applied our
protocol to longer cyanines and validated the accuracy of our estimates via the con-
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sistent closeness of the determined VMC and DMC excitation energies. Finally, we
showed that key to a successful description of this excitation over all chain lengths is
to account for π, σ, and σ − π correlations, therefore going beyond a CAS treatment
based on π-orbitals only. In conclusion, we believe that the present study further
establishes QMC methods as accurate and robust tools for the treatment of excited
states of relatively large systems and parameter spaces.
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4.A Appendix: CIPSI and QMC results for CN3

In Table 4.3, we report the CI energies, PT2 energies, and CI variances for the CIPSI
expansions of CN3 used in the QMC-CIPSI calculations of Figure 4.3. The values
are relative to single-state CIPSI wave functions of increasing size, that are separately
expanded for the ground and excited states until when the corresponding CI variances
match. We consider the CI variances matched if their difference is less than 0.002
a.u.

In Figure 4.4, we plot the CI excitation energies of CN3 versus the total (GS+ES)
number of determinants. The excitation energies are obtained by matching the vari-
ance or the PT2 energy correction. Even though the PT2-matched excitation energy
converges faster for small expansions, matching the CI variance automatically leads
to expansions with also matched PT2 energy correction beyond few thousands total
(GS+ES) determinants. We also show that the use of CAS(4,3) or CAS(4,6) opti-
mized orbitals does not have an impact on the CIPSI convergence.

Table 4.3: CI energies, CI variances, and PT2 energy corrections (a.u.) of the ground-
and excited-state CIPSI expansions of CN3. The expansions are matched according
to the iso-variance criterion. The CI excitation energy ∆ECI (eV) is also listed. We
use the orbitals obtained from a CASSCF(6,10) calculation of symmetry A1 and B1

for the ground (GS) and excited (ES) states, respectively. The BFD pseudopotentials
and corresponding basis sets are used.

No. det ECI ∆ECI (eV) PT2 ∆PT2 σ2
CI ∆σ2

CI

GS ES GS ES GS ES GS ES
maug-cc-pVDZ basis set

220 300 -27.7557 -27.4770 7.584 -0.4625 -0.4705 -0.0080 1.5994 1.5984 0.0010
602 1254 -27.7898 -27.5141 7.501 -0.4167 -0.4217 -0.0050 1.5050 1.5039 0.0011
1028 2446 -27.8124 -27.5396 7.422 -0.3879 -0.3905 -0.0026 1.4391 1.4373 0.0018
2511 7092 -27.8618 -27.5907 7.376 -0.3296 -0.3300 -0.0004 1.2905 1.2885 0.0020
5005 14696 -27.9085 -27.6363 7.408 -0.2773 -0.2799 -0.0026 1.1420 1.1395 0.0025
6508 20144 -27.9285 -27.6578 7.366 -0.2557 -0.2575 -0.0018 1.0733 1.0744 -0.0011

aug-cc-pVTZ basis set
1483 3246 -27.8102 -27.5367 7.440 -0.5197 -0.5238 -0.0041 2.5206 2.5195 0.0011
2569 6432 -27.8291 -27.5574 7.395 -0.4945 -0.4976 -0.0031 2.4594 2.4587 0.0007
4451 12008 -27.8510 -27.5800 7.373 -0.4672 -0.4698 -0.0027 2.3868 2.3881 0.0013

Going to larger CIPSI expansions, we can also compute the extrapolated FCI ex-
citation energy by fitting the ground- and excited-state CI energies versus the renor-
malized PT2 (rPT2) energy corrections [29], which become zero in the FCI limit. In
Fig. 4.5, we show the convergence of the CI energies as well as their polynomial fits,
which are performed over the interval [-0.1:0] of rPT2 values. We chose to extrapo-
late using the rPT2 energy corrections (instead of the PT2 ones) since the behavior is
more linear as also shown in the Figure. The estimated FCI/maug-cc-pVDZ energy
is 7.25 eV, close to the CC3/maug-cc-pVDZ (BFD) value of 7.27 eV.

In Table 4.4, we list the VMC and DMC excitation energies of CN3 computed
with different determinantal components in the wave functions and with two basis
sets. We employ CIPSI expansions with matched CI variances.
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In Fig. 4.6, we plot the VMC/maug-cc-pVDZ energies of the two states versus
their VMC variances. As proposed in Refs. 39, 40, we fit the VMC energies for the
ground and excited state against the corresponding VMC variances and estimate the
excitation energy as the difference ∆Efit

VMC = Efit
ES(σ2) − Efit

GS(σ2) of the fits of the
energies. The resulting excitation energy is consistently overestimated and, as the
variance becomes smaller, further departs from the reference CC3 value.
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Table 4.4: VMC and DMC total energies (a.u.) and excitation energies (eV) of CN3
obtained for different wave functions. All the variational parameters (Jastrow, orbital,
and CI coefficients) are optimized in energy minimization. We employ the BFD
maug-cc-pVDZ basis set, unless we label the calculation with “Ta” which denotes
the use of the BFD aug-cc-pVTZ basis set.

WF No. det No. parm EVMC ∆EVMC EDMC ∆EDMC

GS ES GS ES GS ES GS ES

HF/HL 1 2 220 230 -28.3005(3) -28.0238(3) 7.529(13) -28.3666(2) -28.0934(2) 7.435(8)
CAS(4,3) 5 4 232 230 -28.3057(2) -28.0238(3) 7.667(11) -28.3693(2) -28.0941(2) 7.488(8)
CAS(4,6) 113 112 302 293 -28.3077(4) -28.0302(3) 7.552(13) -28.3694(2) -28.0959(2) 7.442(7)
CAS(4,6)-Ta 113 112 1008 999 -28.3165(3) -28.0412(3) 7.492(13) -28.3706(2) -28.0985(2) 7.406(7)

CIPSI 220 300 690 880 -28.3201(2) -28.0483(2) 7.396(08) -28.3715(2) -28.1039(2) 7.283(8)
602 1254 1179 1893 -28.3334(3) -28.0625(3) 7.372(11) -28.3752(2) -28.1074(2) 7.288(7)

1028 2446 1653 2293 -28.3375(3) -28.0682(3) 7.326(10) -28.3768(2) -28.1095(2) 7.274(7)
2511 7092 2624 3872 -28.3444(3) -28.0776(3) 7.262(10) -28.3806(2) -28.1140(2) 7.254(7)
5005 14696 3688 6145 -28.3502(3) -28.0835(3) 7.257(10) -28.3830(2) -28.1168(2) 7.242(8)
6508 20144 4234 7648 -28.3526(2) -28.0861(2) 7.252(07) -28.3843(2) -28.1180(2) 7.245(6)

CIPSI-Ta 1483 3246 8395 10445 -28.3427(2) -28.0760(3) 7.257(09) -28.3773(2) -28.1114(2) 7.236(7)
2569 6432 10988 14765 -28.3461(2) -28.0803(2) 7.232(09) -28.3783(2) -28.1128(2) 7.224(7)
4451 12008 14780 19237 -28.3515(2) -28.0859(2) 7.228(09) -28.3802(2) -28.1146(2) 7.227(6)
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variances (left) and resulting fitted excitation energy (right). The reference CC3/aug-
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4.B Appendix: CIPSI results for all molecules

7.3

7.4

7.5

7.6

7.7

7.8

 100  1000  10000

CN3

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

4.8

4.9

5.0

5.1

5.2

 100  1000  10000

CN5

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

3.6

3.7

3.8

3.9

4.0

4.1

 100  1000  10000

CN7

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

2.9

3.0

3.1

3.2

3.3

3.4

 100  1000  10000

CN9

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

2.4

2.5

2.6

2.7

2.8

2.9

3.0

3.1

 100  1000  10000

CN11

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

2.0

2.1

2.2

2.3

2.4

2.5

2.6

2.7

2.8

 100  1000  10000

CN13

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

1.8

1.9

2.0

2.1

2.2

2.3

2.4

2.5

2.6

 100  1000  10000

CN15

CC3

∆
E

C
I 
(e

V
)

Number of determinants

Variance match
PT2 match

Figure 4.7: CI excitation energies of CN3–CN15 for iso-PT2 or iso-variance CIPSI
expansions versus the total (GS+ES) number of determinants.

In Fig. 4.7, we show the convergence as a function of the total number of determi-
nants of the CI excitation energies of CN3–CN15 obtained with ground- and excited-
state CIPSI expansions with either matched PT2 energy corrections or CI variances.
The iso-variance procedure leads to a faster convergence of the CI excitation energy
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for the cyanine molecules larger than CN3 and is chosen to generate the CIPSI ex-
pansions for the calculations of the QMC excitation energies of all molecules. For
all the cases in Fig. 4.7, the CIPSI expansions are performed on CASSCF optimized
orbitals.

For CN17 and CN19, we perform instead the CIPSI expansions on HF orbitals
and show the CI convergence of their excitation energies for the iso-variance proce-
dure1 in Fig. 4.8 and further discuss the use of HF orbitals in Section 4.B.1.
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Figure 4.8: CI excitation energies of CN17 and CN19 for iso-variance CIPSI expan-
sions performed on HF orbitals, versus the total (GS+ES) number of determinants.

4.B.1 Appendix: Use of HF orbitals in CIPSI expansions
Since, for large molecules, the CASSCF computation becomes quite expensive, we
have used HF orbitals to perform the CIPSI calculation for CN17 and CN19. Here,
we validate this choice with two different tests.
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Figure 4.9: Convergence of variance-matched CI excitation energies of CN15 ob-
tained with CAS(16,15) and HF orbitals, versus the total (GS+ES) number of deter-
minants.

In Fig. 4.9, we compare the convergence of the iso-variance CI excitation energy
of CN15 obtained with expansions on CASSCF and HF orbitals. We observe a very

1We do not show the iso-PT2 curves since, in the shown determinantal range, the iso-PT2 criterion
leads to excitation energies very far from convergence.
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similar convergence for the two different orbitals, a finding which makes us confident
in the use of HF orbitals for the larger chains. As an additional test, in Table 4.5,
we report the QMC excitation energies of CN3, obtained with CIPSI determinantal
expansions on CASSCF or HF orbitals. We find that, both at the VMC and the DMC
level, the results obtained with expansions on HF orbitals are compatible with the
CASSCF-based results with a similar number of determinants.

Table 4.5: VMC and DMC total energies (a.u.) and excitation energies (eV) of CN3
obtained with CIPSI expansions on either CASSCF or HF orbitals. All the variational
parameters (Jastrow, orbital, and CI coefficients) are optimized in energy minimiza-
tion. The maug-cc-pVDZ basis set is employed.

Starting orb. No. det No. parm EVMC ∆EVMC EDMC ∆EDMC

CASSCF 2511 7092 2624 3872 -28.3444(3) -28.0776(3) 7.262(10) -28.3806(2) -28.1140(2) 7.254(7)
HF 2525 7374 2587 4066 -28.3452(3) -28.0775(3) 7.282(10) -28.3808(2) -28.1140(1) 7.259(6)

4.C Appendix: QMC results
In Table 4.6, we present the VMC and DMC total and vertical excitation energies
obtained with the CIPSI expansions. In addition to the “best” excitation energies
presented in the main text, we report more estimates obtained with different wave
functions. For CN7, we perform QMC calculations both for CIPSI expansions with
matched PT2 corrections and variances, while we only employ the iso-variance wave
functions for the other molecules.

For CN7, for a similar number of determinants, the iso-PT2 selection gives slightly
less accurate VMC excitation energies than the iso-variance case. However, at the
DMC level, the differences are cured and the excitation energies are compatible.

In Table 4.7, we report the VMC and DMC total and vertical excitation energies
obtained with CAS expansions. We employ the minimal CAS over π orbitals and,
for the smaller CN3–CN5, also a larger space always over π orbitals. For CN11 and
CN13, we truncate the wave functions using the same percentage of the total weight
for the ground and excited states. For larger dyes, we do not compute the QMC-
CAS excitation energies since the CASSCF computation becomes computationally
too demanding.
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Table 4.6: VMC and DMC total energies (a.u.) and excitation energies (eV) of cya-
nine dyes obtained for CIPSI wave functions. All the variational parameters (Jastrow,
orbital, and CI coefficients) are optimized in energy minimization. The maug-cc-
pVDZ basis set is employed.

System No. det No. parm EVMC ∆EVMC EDMC ∆EDMC

GS ES GS ES GS ES GS ES
PT2 matched

CN7 2147 6038 4349 6613 -53.4187(4) -53.2810(3) 3.748(14) -53.5172(2) -53.3807(2) 3.714(8)
Variance matched

CN5a 376 1094 1567 2609 -40.8646(3) -40.6842(3) 4.908(12) -40.9467(3) -40.7665(3) 4.905(10)
1344 4382 2478 4531 -40.8798(3) -40.7013(3) 4.857(13) -40.9502(2) -40.7711(2) 4.872(09)
2460 8782 3555 6561 -40.8896(3) -40.7099(3) 4.890(12) -40.9532(2) -40.7748(2) 4.856(09)
3913 14114 4842 8312 -40.8941(2) -40.7167(3) 4.828(11) -40.9559(2) -40.7775(2) 4.856(08)

CN7 1871 6038 4105 6613 -53.4162(4) -53.2810(3) 3.681(15) -53.5170(2) -53.3807(2) 3.708(8)
5578 18300 7783 12098 -53.4338(3) -53.2996(3) 3.651(12) -53.5227(2) -53.3883(2) 3.656(8)

CN9 132 286 2074 2268 -65.9167(4) -65.8031(4) 3.090(15) -66.0727(3) -65.9618(3) 3.019(11)
1289 3372 4785 7272 -65.9374(3) -65.8255(3) 3.043(12) -66.0772(3) -65.9674(3) 2.989(10)
2120 6360 5741 9345 -65.9482(5) -65.8373(3) 3.031(12) -66.0800(3) -65.9704(3) 2.984(10)

CN11 1071 2970 5320 7403 -78.4706(3) -78.3726(4) 2.668(13) -78.6406(3) -78.5471(3) 2.544(11)
1812 5634 6606 10453 -78.4749(4) -78.3795(3) 2.598(13) -78.6422(3) -78.5479(2) 2.566(10)
2284 6896 7412 11729 -78.4777(4) -78.3841(4) 2.547(14) -78.6441(3) -78.5507(3) 2.542(11)

CN13 714 1810 5306 5985 -90.9883(4) -90.9056(4) 2.250(14) -91.1986(3) -91.1206(3) 2.124(11)
1406 4464 7351 10297 -90.9966(4) -90.9165(4) 2.180(14) -91.2013(3) -91.1224(3) 2.147(10)

CN15 1356 4434 7549 11347 -103.5244(3) -103.4538(3) 1.920(12) -103.7647(3) -103.6934(3) 1.938(11)
2241 7996 9951 15479 -103.5349(3) -103.4668(3) 1.854(12) -103.7674(3) -103.6975(3) 1.902(11)

CN17 559 2028 6995 9184 -116.0318(3) -115.9735(4) 1.586(14) -116.3160(3) -116.2566(3) 1.616(13)
943 3288 8404 11396 -116.0432(4) -115.9814(4) 1.681(14) -116.3220(3) -116.2598(3) 1.692(12)
1384 5068 10592 14978 -116.0502(4) -115.9890(4) 1.663(14) -116.3231(3) -116.2624(3) 1.653(10)

CN19 515 1886 8496 10615 -128.5631(4) -128.5069(4) 1.529(16) -128.8792(3) -128.8239(3) 1.505(13)
1487 4806 12876 15512 -128.5828(4) -128.5242(4) 1.595(16) -128.8872(3) -128.8294(3) 1.572(13)

a Data from our work in Ref. 18.

Table 4.7: VMC and DMC total energies (a.u.) and excitation energies (eV) of cya-
nine dyes obtained for CAS wave functions. All the variational parameters (Jastrow,
orbital, and CI coefficients) are optimized in energy minimization. The maug-cc-
pVDZ basis set is employed.

System CAS No. det No. parm EVMC ∆EVMC EDMC ∆EDMC

(n,m) GS ES GS ES GS ES GS ES
CN3 4,3 5 4 232 230 -28.3057(2) -28.0238(3) 7.667(11) -28.3693(2) -28.0941(2) 7.488(8)

4,6 113 112 302 293 -28.3077(4) -28.0302(3) 7.552(13) -28.3694(2) -28.0959(2) 7.442(7)
CN5a 6,5 52 48 567 561 -40.8468(4) -40.6583(4) 5.130(15) -40.9433(3) -40.7582(2) 5.038(10)

6,10 7232 7168 3134 3064 -40.8498(4) -40.6628(4) 5.090(15) -40.9439(3) -40.7594(3) 5.022(11)
CN7 8,7 625 600 1250 1220 -53.3750(4) -53.2291(4) 3.969(15) -53.5056(2) -53.3649(3) 3.828(10)

8,14 6802 5158 2675 2302 -53.3781(4) -53.2421(4) 3.700(16) -53.5057(2) -53.3702(2) 3.686(6)

CN9 10,9 7956 7920 4257 4197 -65.9151(4) -65.8007(4) 3.114(15) -66.0728(2) -65.9610(2) 3.042(9)
CN11b 12,11 7642 13360 3937 4914 -78.4485(4) -78.3535(4) 2.585(14) -78.6376(3) -78.5436(3) 2.555(12)
CN13c 14,13 529 3338 3445 3949 -90.9798(4) -90.9017(4) 2.130(14) -91.1993(3) -91.1204(3) 2.146(11)
a Data from our work in Ref. 18.
b Truncated so that, for each state,

∑
c2
i = 0.9985 of the total wave function.

c Truncated so that, for each state,
∑
c2
i = 0.9765 of the total wave function.
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Chapter 5

Dynamics with QMC forces:
dealing with noisy forces

Thanks to recent methodological developments, it has become possible to employ ac-
curate quantum Monte Carlo forces for the efficient structural optimization of molec-
ular systems but their use for the study of dynamical processes is still unexplored.
Here, we focus on one of the most commonly used quantum Monte Carlo variants,
namely, variational Monte Carlo, and investigate its performance in a molecular dy-
namics setting. In particular, while employing quantum Monte Carlo forces to drive a
molecular dynamics simulation, one encounters various issues which are not typical
in deterministic quantum simulations. In this Chapter, we focus on the consequences
on the dynamics of the presence of stochastic noise in the forces, and illustrate the
strategies we have developed to minimize its effects.

5.1 Introduction

The field of atomistic simulations has undergone remarkable advances, and it is now
possible to study the dynamics of large proteins or cell membranes for time scales
as long as nanoseconds [1–3]. Concurrently, ab initio molecular dynamics has also
been pushed to bigger systems sizes and, for example, with density functional the-
ory (DFT), one can now treat thousands of atoms for several picoseconds [4–9].
Furthermore, the distance between quantum dynamical methods and realistic prob-
lems has been significantly reduced thanks to the enormous progress in multi-scale
approaches combining quantum with classical models [10–12], most recently in the
context of machine learning schemes [13, 14].

The description of photo-activated processes, however, remains complicated since
it requires the balanced description of multiple electronic states whose nature might
change significantly as the nuclear coordinates evolve. In the literature, such studies
have typically been performed with a rather limited number of electronic structure
methods, which are able to offer a reasonable compromise of accuracy and efficiency
in the computation of the electronic forces in the excited state. Most commonly,
the complete-active-space self-consistent (CASSCF) approach is employed in pho-
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tochemical studies but, while the method can provide a satisfactory description of
static correlation for small molecules, compromises must be made on the size of the
active space as the system becomes larger.

Among available ab initio methods, quantum Monte Carlo (QMC) techniques
have seen significant methodological improvements in recent years and have become
an established electronic structure tool for studying molecular and extended systems.
In particular, it is nowadays possible to compute energy derivatives at a similar com-
putational cost to the one of computing the energy alone [15, 16]. Consequently, we
can now routinely optimize the variational parameters in the many-body wave func-
tions and compute interatomic forces within variational Monte Carlo (VMC). More-
over, thanks to recent work [17–20], we have stable procedures for the generation
and simultaneous optimization of multiple wave functions for ground and excited
states. Currently, these procedures have led to the computation of accurate excitation
energies and geometries both in the ground and in the excited states [17, 18, 21, 22].

Encouraged by these positive results, we want to explore here for the first time
the use of quantum Monte Carlo forces to perform molecular dynamics simulations
in the excited state. To this aim, we must first address various issues which arise
from the use of quantum Monte Carlo forces in molecular dynamics that are absent
in deterministic electronic structure approaches. In this Chapter, we focus on the
presence of noise in the quantum Monte Carlo forces, and propose different strategies
to ameliorate its main impact, namely, the lack of conservation of energy during the
molecular dynamics simulation.

5.2 Noisy forces in quantum Monte Carlo

Interatomic forces in QMC are estimated using Monte Carlo integration and are
therefore characterized by a stochastic noise as any other observable in QMC. In
particular, in variational Monte Carlo, interatomic forces are computed as the aver-
age of a local quantity over a set of NMC electronic configurations, {R}, sampled
from a probability distribution given by the square of a given trial wave function,
ΨT ,

FQMC = 〈f(R)〉|ΨT |2

≈ 1

NMC

NMC∑
i=1

f(Ri) , (5.1)

as further elaborated in the following Chapter. From the central limit theorem, for
sufficiently large NMC, each component of the QMC force will be characterized by a
Gaussian distributed random noise and can therefore be rewritten as

FQMC = FC + FR , (5.2)

where FC is the conservative force one would obtain for infinite sampling, and FR

is the random contribution.
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Figure 5.1: Distribution of the interatomic forces of thiophene at the CC3 ground-
state geometry, computed in multiple QMC runs. We histogram the in-plane com-
ponents of the QMC force along the principal axis of the molecule for sulfur, the
adjacent carbon, and its hydrogen. The MC runs used to generate the forces were
performed with NMC = 720000 and yield a statistical error on the energy of about 1
mHa.

To illustrate this, we compute the interatomic forces for thiophene in 1000 varia-
tional Monte Carlo runs (characterized by different initial random seeds) at the same
ground-state geometry. As shown in Fig. 5.1, the resulting 1000 forces are Gaus-
sian distributed around their averages with a certain spread which we denote here as
σQMC. The spread is proportional to the root mean square fluctuation of the corre-
sponding local quantity (Eq. 5.1) divided by the square root of the number of MC
steps, NMC and, therefore, decreases with increasing length of the QMC run as

σQMC ∼ 1√
NMC

√
〈f(R)2〉|ΨT |2 − (〈f(R)〉|ΨT |2)2 . (5.3)

We note that the spread is different for the different atoms and directions, and that
the forces in Fig. 5.1 are rather small in absolute value since the structure is close to
equilibrium.

Unfortunately, the use of noisy QMC forces in a Born-Oppenheimer molecular
dynamics (BOMD) simulation affects the outcome of the dynamics in undesirable
ways. As shown for thiophene over a time-scale of one picosecond in Fig. 5.2, an
MD simulation with QMC forces in the micro-canonical (NVE) ensemble displays
the following features:

• lack of conservation of total (kinetic plus potential) energy, which increases
with time;

• appearance of nonphysical rotations and translations.

We stress that this MD simulation is started with a structurally distorted thiophene
and no velocities. With these initial conditions, since the molecule is isolated, an
MD simulation with deterministic conservative forces would lead to conservation of

93



5 Dynamics with QMC forces: dealing with noisy forces

-7.4

-7.2

-7.0

-6.8

-6.6

-6.4

-6.2

-6.0

 0  150  300  450  600  750  900

0.8 eV

0.2 eV

T
o

ta
l 
e

n
e

rg
y
 (

e
V

)

time (fs)

NMC steps   
NMC steps × 6

Figure 5.2: Total (kinetic plus potential) energy of thiophene during two MD simula-
tions of 1 ps, where QMC forces are used at each step of the MD. The two simulations
differ in the number of MC samples used to compute the forces in the variational
Monte Carlo runs, namely, NMC = 24 × 104 and 6 × NMC. The corresponding er-
rors in the electronic energy are about 2.2 mHa (0.06 eV) and 0.8 mHa (0.02 eV),
respectively.

energy without translations and rotations of the system. Since we are ultimately in-
terested to study excited-state relaxation processes, we would generally aim at being
able to follow a similarly stable evolution over a time-scale of at least a few picosec-
onds.

The behavior we observe in our MD with QMC forces stems from the fact that
the noise spreads from the forces to the velocities during the simulation. The forces
are indeed used to propagate the velocities and, since the QMC forces have a ran-
dom contribution, this leads to the velocities having an additional component which
“performs” a random walk and whose module increases as the square root of time.
Since the kinetic energy depends on the square of the velocities, it increases linearly
in time and the system heats up. Because of equipartition, the heat will be redis-
tributed among internal as well as center of mass and rotational degrees of freedom,
also resulting in translations and rotations.

As mentioned above, the magnitude of the noise in the QMC forces can be con-
trolled by tuning the length of the QMC run used to estimate the forces at each MD
iteration. If one increases the number of MC steps, the noise will be reduced and
the corresponding increase in the total energy during the MD simulation will also
diminish. This is shown in Fig. 5.2 where the growth of the total energy over 1 ps is
smaller by about a factor of 4 when the length of the QMC run (i.e.NMC) to compute
the forces is appropriately increased. We note that, even though QMC runs starting
from different random seeds result in a different sequence of random errors and yield
a different energy increase during the MD simulation, the overall behavior remains in
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average the same. Consequently, one can achieve conservation of energy as expected
in an NVE simulation by performing longer QMC runs at each MD step. This path
to a stable MD simulation is of course as much straightforward as it is expensive and,
for this reason, we attempt here to reach the same goal through alternative strategies.

In the rest of the Chapter, to quickly test potential solutions to our problem, we
use classical force fields in the MD simulations and add Gaussian-distributed errors
to the components of the deterministic forces to mimic the effect of QMC fluctua-
tions. The variances of the Gaussian distributions to sample the noise are obtained
by fitting the histograms of QMC forces like those in Fig. 5.1.

5.3 Computational details

We perform the QMC (VMC) calculations with the program CHAMP [23]. We
employ scalar relativistic energy-consistent Hartree-Fock (HF) pseudopotentials and
the corresponding aug-cc-pVDZ basis set [24, 25]. We use here a simple Jastrow-
Slater wave function with a single determinant and a 2-body Jastrow factor including
only electron-electron and electron-nucleus terms. The starting orbitals are obtained
in a HF calculation carried out with the program package GAMESS(US) [26]. For
simplicity, in the QMC results shown in this Chapter, we keep the parameters of the
wave function fixed and, at each MD step, we simply recenter the wave function at
the new atomic positions. The nuclei are moved within CHAMP with a standard
velocity-Verlet [27, 28] algorithm and a time-step ∆t of 0.5 fs.

The classical force-field simulations are carried out with the Tinker code [29]
and the OPLS-AA force field with the standard parameters supplied within Tinker.
A time-step of 0.5 fs is used also in Tinker. The root-mean-square widths of the
Gaussian distributions to sample the noise added to the classical forces of thiophene
are listed in Table 5.1(A). The values are obtained from a Gaussian fit of the his-
togram of the forces similar to the one in Fig. 5.1. We prefer to perform a fit instead
of actually computing the root mean square fluctuation since we have some outlier
forces that need to be removed, as we explain in Chapter 6. The Table contains also
other parameters which are relevant in later Sections of this Chapter. The library
SLATEC [30] is linked to both CHAMP and Tinker to perform polynomial fits.

All QMC and force-field simulations for thiophene have the same starting con-
figuration, namely, a distorted geometry and zero velocities, but differ either in the
algorithm to perform the time evolution or in the sequence of random errors added to
the deterministic forces during the MD. If not otherwise specified, we use a starting
geometry whose potential energy is about 1 eV higher than the one corresponding to
the ground-state optimal geometry. This choice allows us to sample configurations
somewhat distant from the minimum as well as explore changes in the potential en-
ergy which are of the same order of magnitude as the excitation energy of thiophene,
as we would like to encounter in future excited-state applications.
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(A) σQMC
C σQMC

S σQMC
H

0.0027 0.0020 0.0009

(B) FIT 1 FIT 2 FIT 3 FIT 4
τC,S 1.5 1.2 1.3 1.2
τH 1.0 0.9 1.0 0.8

(C) T (K) 0.01 0.05 0.1 1.0 10.0
γC 2.0960 0.4192 0.2096 0.0210 0.0021
γS 0.4340 0.0862 0.0434 0.0043 0.0004
γH 2.7751 0.5550 0.2775 0.0277 0.0028

(D) C S H

FIT 1
τE 1.22 0.89 1.30
σE 0.00045 0.00073 0.00007

FIT 2
τE 1.22 0.93 1.17
σE 0.00033 0.00059 0.00006

(E)
FIT 1

T (K) 0.003 0.010 0.100 0.500
ω 0.655 0.910 0.991 0.995

FIT 2
T (K) 0.001 0.003 0.010 0.100
ω 0.205 0.825 0.951 0.995

Table 5.1: (A) QMC errors (a.u.) on the forces in thiophene, averaged over all atoms
of the same type and over all directions for a QMC run of NMC =960000. (B)
Values of dimensionless (in units of ∆t) parameters, τfit, used for the exponential
fit of the forces. (C) Correspondence between the input temperature (K) and the
dimensionless parameter γ. (D) Values of dimensionless (in units of ∆t) parameters,
τE , and σE (a.u.) used in the modified Langevin approach with memory for two
different sets of fit parameters as labeled in part (B) of this Table. (E) Correspondence
between the input temperature (K) and the dimensionless parameter ω for two sets of
fit parameters as labeled in part (B) of this Table.
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5.4 Results
In this Section, we present various strategies we have explored to reduce the im-
pact that noisy forces have on an MD simulation. We focus here on the thiophene
molecule as prototypical example and, for simplicity, restrict ourselves to its ground-
state description since our findings concerning noise will also be valid in the case of
excited states. We use the conservation of the total energy as the primary indicator
of the success of a given scheme since this is an easy way to judge our progress.

The Section is divided into three parts, which can be considered as additive or
alternative steps one can employ to improve on a standard MD simulation in which
the forces have a statistical noise.

5.4.1 Removing rotations and translations

As discussed above, the use of noisy forces results in a rise in temperature during
an MD simulation and a redistribution of the resulting energy among all degrees
of freedom, including the center of mass and the rotational degrees. To contrast
the consequent appearance of nonphysical translations and rotations, for an isolated
molecule, one can simply set the total angular momentum and the translation of the
center of mass to zero at each time step of the MD simulation. To this aim, we rely
here on the approach implemented in Tinker, which we summarize in Appendix 5.A.

Always starting from zero velocities and the same distorted geometry (see Com-
putational Details Section), we perform MD simulations with noisy forces for thio-
phene both with all degrees of freedom left unconstrained as well as with rotations
and translations removed from the system. In order to have statistically meaningful
results, we compute 30 trajectories for both cases, which we obtain by starting with
different random seeds for the Gaussian noise added to the classical forces. As shown
in Fig. 5.3, constraining the translational and rotational motion of the molecule re-
sults in an improvement in the conservation of the total energy with a reduction in its
growth of about 0.1 eV over the 2 picoseconds of MD.

This is however clearly not sufficient to solve the issue. Moreover, while remov-
ing the unwanted rotations and translations is possible for an isolated molecule, this
solution cannot be applied when studying a molecule in a bath, for example, in a
hybrid quantum-in-classical calculation where we use QMC for the quantum part.

We note that, in such an embedded calculation, one might hope that part of the
statistical noise is dissipated from the molecule to the rest of the system, contributing
to stabilizing the energy of the molecule treated with QMC. However, from prelimi-
nary QMC/molecular mechanics MD simulations of thiophene solvated in benzene,
it appears that, over the time scales of few picoseconds, the combined system does
not thermalize and the quantum part significantly heats up.

5.4.2 Fitting the forces to reduce the noise

A possible solution to the problem of statistical noise is to follow one of the most
standard approaches to handle a set of data with random noise, namely, to perform a
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Figure 5.3: Total energy (eV) of thiophene averaged over 30 MD simulations using
noisy forces (blue), and over 30 simulations where rotations and translations of the
center of mass are removed at every time step (red). In both cases, the equations of
motion are solved with the velocity-Verlet scheme.

fit. Fitting or filtering the noise is routinely applied to experimental data and is also
at the core of many audio or video devices to remove white noise. When dealing
with a potential energy surface, one is commonly interpolating between points of
the configuration space (e.g. with machine learning force fields [14, 31]) rather than
screening random noise. On the other hand, when using QMC, the problem is more
similar to the latter with the interatomic forces being the noisy data.

Here, we would like to use the fit as a means to separate the conservative force,
FC, from its correspondent random component, FR, (see Eq. 5.1) and do so on-
the-fly during an MD simulation. If the simulation is on-the-fly, the fit can only be
performed on past configurations to improve the present force prediction. Since the
forces are the gradients of the potential energy with respect to the atomic coordinates,
the most natural choice would be to fit the forces against the nuclear positions. How-
ever, in doing so, we encountered severe difficulties, especially close to the turning
points where almost all of the points used to perform the fit have the same spacial
configuration and, within the noise, the same values for the forces.

Therefore, to overcome this problem, we perform the fit of the noisy forces
against time. For simplicity, we treat each force component (in each direction and
for each atom) independently and use a third-order polynomial fit to be able to de-
scribe inflection points. We then use this fitted estimate of the force, FE , instead
of the noisy ones to drive the dynamics according to the velocity-Verlet integration
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scheme,

Estimated force scheme:
(5.4)

vEn+1/2 = vEn +
1

2m
FE
n ∆t

xEn+1 = xEn + vEn+1/2∆t

compute FQMC
n+1 → FE

n+1

vEn+1 = vEn+1/2 +
1

2m
FE
n+1∆t

where we add the superscript E to all the quantities which are dependent on the
estimated forces (in this case, all but the QMC forces). Note that, when using a
force-field force with added noise, we still denote the corresponding force with the
label “QMC”.

For all results presented in this Section, we constrain the motion of the molecule
to enforce no rotations and no translations of the center of mass as previously ex-
plained.

Fitting procedure

We fit the noisy forces in time over a fixed number of points, Nfit and, for the first
(Nfit − 1) steps of the MD, collect the forces needed to perform the fit, using FE =
FQMC to evolve the system.

At the Nfit-th and subsequent steps, we use the noisy forces of the present and
past points to get a better estimate, FE , of the current force as illustrated in Fig. 5.4.
We find it fundamental for the success of this procedure to include the force of the
present time step, tp, especially when the force changes sign and a prediction based
only on the past values tends to dramatically overshoot or undershoot the real value.

time

present time

points in the fit

Figure 5.4: Illustrative scheme of the fitting procedure. We fit the force in time and,
at a certain time tp, we use the past (Nfit − 1) noisy forces and the present one to
determine a new estimate of the current force.

To perform the fit, we have to choose a value of Nfit and decide how to weigh the
noisy forces in the fit. Intuitively, we would like that the forces closer to the present
time have a higher impact on the final result. Therefore, in addition to the use of
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equal weights for all points, we suggest the use of weighting functions decaying in
time and investigate the impact on the conservation of the total energy.

In particular, we explore the following functional forms for the weights, w(t):

a) w(t) = 1;

b) w(t) =
1

(tp − t)/∆t+ 1
;

c) w(t) = exp[−(tp − t)/∆t];

where t ≤ tp. After experimenting with these weights and various values of Nfit we
have found that the exponential weights perform the best. They have the additional
benefit that Nfit can be chosen fixed while the range of actively used data points is
tuned by a parameter τfit as in

w(t) = exp[−(tp − t)/(τfit ∆t)] . (5.5)

This choice also enables us to differentiate between atom types via the values of
τfit. Indeed, in the case of thiophene, the forces on the hydrogen oscillate faster in
time than on the carbon and sulfur atoms, so hydrogen will require smaller decaying
times than the other atoms: if a full oscillation of the hydrogen forces is completed
in fewer time-steps, fewer points can be adequately fitted for hydrogen with a third-
order polynomial relative to the other atoms. Consequently, including too many
forces in the past will result in an inadequate fit, while, by including too few, we
will not have enough information to perform an adequate fit. While it would be
optimal to introduce three different values of τfit for the the different atom types, a
good compromise is to use a common one for sulfur and carbon (τS,C) and a different
one for hydrogen (τH) in order to reduce the number of parameters to tune.

In Fig 5.5, we show the results obtained by evolving the system with forces fitted
with exponential weights and four different sets of decaying times, τfit (FIT1–4),
which are listed in Table 5.1(B). A value of Nfit = 10 is sufficient for all sets of
fit parameters. For each case, we compute 100 trajectories and average their energy
and the corresponding root-mean-square fluctuations as a function of time. Different
choices of decay times in the weights can yield either an increase or a decrease of
the total energy with respect to the conserved value. Importantly, by appropriately
tuning the parameters τfit, we can stabilize the total energy over a time scale of the
order of picoseconds. Moreover, for the chosen range of weighting parameters (0.8–
1 for τH and 1.2–1.5 for τS,C), we always improve over the MD result with noisy
forces. Since the error on the average total energy is given by the root-mean-square
fluctuations divided by the square root of the number of trajectories (and is about
0.02 eV after 2 ps), the average energy of FIT 3 is statistically compatible with the
total NVE energy over the whole simulation.

A few remarks can be made concerning the values of τfit. First of all, our third
order fit function can only be used over a time range that spans part of the period
with which the atom is moving. Since the hydrogen atom moves much faster than
the carbon and sulfur atoms, it is clear that its τfit value must be smaller than those
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Figure 5.5: Total energies (eV) of thiophene (top) and relative root-mean-square fluc-
tuations (bottom) averaged over 100 MD runs. We use the exponential fit (Eq. 5.5)
with different sets of parameters, τfit, as detailed in Table 5.1(B).
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for the other atoms. Second, similarly, in case a run is performed with a much lower
initial energy, then, either, preferably, the time step must be adjusted or the τfit values
must be adjusted such as to cover the same fraction of the period of the atom’s mo-
tion. Thirdly, we find it possible to tune the parameters such that the average energy
remains constant over a time span as long as three picoseconds (not shown). Since
this is not possible in later applications, we do not pursue this further here. Finally,
it is surprising that, with FIT 1, the total energy goes down. One explanation for
this behavior can be that the fit systematically takes “shortcuts” at extrema of the po-
tential energy. Of course, part of the randomness characteristic for the QMC forces
remains in the fitted forces, which means that finally all curves must linearly increase
like the one with the noisy “QMC” forces. We have checked that this is indeed the
case, also when the forces are fitted according to FIT 1.

We report the spread of the trajectories also to remind us that these are average be-
haviors, which might not hold for a single trajectory. This is important because, when
performing QMC calculations, one would like to extract the needed information with
as few trajectories as possible. Surprisingly, performing a fit does not decrease the
spread among the trajectories with respect to the use of noisy forces. Furthermore,
the spread grows in time, becoming as large as 0.2 eV after 2 ps, so the longer the
MD, the less representative a single trajectory becomes. Of course the spread is
around a much better average, and therefore still less damaging than without the fit.

Finally, we note that, while we have removed here translations and rotations, the
fit procedure improves the results of an MD with noisy forces also when we do not
constraint the motion as shown in Fig. 5.10 in Appendix 5.B.

5.4.3 Thermalizing the noise

The fit procedure just presented combined with the removal of rotations and trans-
lations allows us to perform a nearly stable MD simulation with the use of noisy
forces. The behavior of the average total energy differs however for different sets
of τfit which are relatively close [see Fig 5.5 and Table 5.1(B)]. Furthermore, since
tuning these parameters can become costly for more complex systems, we would
like to make our approach more stable by decreasing the dependence of the results
on the fit parameters. To this aim, we now investigate if it is possible to diminish
the influence of the noisy component in FQMC by adding a friction term to prevent
the excess kinetic energy from increasing. In other words, we want to stabilize the
excess kinetic energy as it is also done with Langevin dynamics.

Langevin dynamics

In many cases in physics, the system under investigation displays dynamics on a wide
spectrum of time scales. In case one is only interested in the slow modes of the sys-
tem, for example the slow motion of colloids in a system containing fluid molecules
and colloidal particles, it is usually profitable to eliminate the fast modes altogether.
This unavoidably leads to so-called Langevin dynamics for the slow modes. In this
case, the acceleration of the slow degree of freedom is governed by a conservative
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force to which are added a friction force, proportional to minus the velocity of the
degree of freedom addressed, and a random force. In case the additional forces are
related through the so called fluctuation-dissipation theorem, the system is guaran-
teed to behave as being thermalized to a preset temperature T . In particular, the
average energy of the system is guaranteed to fluctuate around some average value,
with the average value and the size of the fluctuations governed by the temperature.
The question that poses itself is: Can we make use of Langevin dynamics to prevent
the increase of energy that has plagued our runs up to now?

In order to point at some differences between the usual application of Langevin
dynamics and the application that we are aiming for, consider the Langevin equation
as it appears in most physical applications

m
d2x

dt2
= −ξ dx

dt
+ FC + FR , (5.6)

where the first and last terms in the right hand side represent the friction force and
the random force respectively. The latter of these is a Gaussian random force with
first and second moments

〈FR〉 = 0 (5.7)
〈FR(t)FR(t′)〉 = 2kBTξδ(t− t′) . (5.8)

The first of these is obvious, the second is the aforementioned fluctuation-dissipation
theorem. Although we will meet more involved integration schemes later, let us here
stick to the simplest one, where we approximate the Dirac delta as δ(t) = 1/∆t. This
approximation cannot be seen independent from a discretization of the time axis as
in computer simulations, where

∫
F (t)dt is replaced by

∑
n F (n)∆t. With this, we

may calculate the random force as

FR(n) =

√
2kBTξ

∆t
G(n) =: σG(n), (5.9)

where G is a Gaussian random number with average zero and unit variance.1 We
conclude that the strength of the random force, denoted σ, is related to the friction
coefficient and the temperature through

√
2kBTξ/∆t.

Now consider the differences between applying this set of equations in the usual
physical application and the intended application with QMC forces. In the usual ap-
plication, FC is a known force derived from a known force-field model. Moreover,
the friction coefficient ξ and the temperature T are physically determined quantities,
from which the strength of the random force follows through the use of Eq. 5.9. So,
in case the update of the velocities is done with the simplest possible integrator, the
random forces effect a change of the velocities equal to FR∆t, i.e. a change pro-
portional to

√
∆t. Now, in the case of QMC forces, we do not know FC nor do we

know FR, we only know the sum of the two, which is FQMC. We do know, how-
ever, the strength of the random force since it can be calculated from the QMC run

1The fluctuation-dissipation theorem after discretization reads 〈FR(n)FR(n′)〉 =
2kBTξ〈G(n)G(n′)〉/∆t = 2kBTξδn,n′/∆t.
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as discussed in Section 5.1. This means that of the two quantities ξ and T only one
can be chosen independently, while the other follows from the fluctuation-dissipation
theorem. An important consequence of all of this is that with the naive integration
scheme, mentioned a few lines ago, the random forces lead to changes of the veloc-
ities equal to FR∆t, which is now proportional to ∆t. So the effect of the random
force is similar to that of FC , and the two forces can be combined again to become
the measured FQMC. As presented here, this seems to hold only for the naive in-
tegrator but we will see below that it also holds in a particular limit for the more
involved, correct integrator. Finally, in the usual application to physical systems, one
is interested in thermally averaged dynamics, i.e. in thermally averaged time correla-
tion functions. This is what is guaranteed by the Langevin equation as written in Eq.
5.6. In our application to cure the QMC/MD runs from increasing energies, we are
interested in following the real path as it follows from the exact forces and the initial
conditions as closely as possible. For details, see below.

Let us mention at this point that Langevin dynamics in combination with QMC
forces has been used before by Sorella and coworkers [32–34] with a rather differ-
ent aim. These authors suggest a method to optimize the sampling efficiency of the
algorithm when calculating thermal averages. To this end they add noise and corre-
sponding random forces to the Langevin equation, beyond the noise already present
in the QMC forces. This approach has been successfully applied for instance to study
the phase diagram of liquid hydrogen [33,35] or to determine the molecular vibration
properties of small molecules such as H2S or SO2 [32]. To compute such thermody-
namic quantities, it is necessary to sample thermally relevant configurations on the
potential energy surface (PES) but not to follow the evolution of the system on such
a PES for any given amount of time. For example, in order to compute the molecular
vibrations, the authors obtain configurations close to the minimum from a Langevin
dynamics and estimate the average elements of the Hessian matrix.

Thermalizing the noise and not the signal

As stated above, in this work we are interested in time-related quantities and want
to follow a realistic dynamics of the system. Since the Langevin equation as written
in Eq. 5.6 quickly affects the trajectory as compared to a Newtonian evolution, we
suggest to change it into

m
d2x

dt2
= −ξ(dx

dt
− vE) + FQMC , (5.10)

where vE is the best estimate that we have for the actual path. The intuitive picture
that we have is that the friction term combines with the random components in the
QMC forces, such that together they stabilize the excess energy to be thermalized
to some preset temperature. Surely, even then energy will gradually leak into the
system but hopefully not very fast. We now must split the QMC force in a way that
allows the calculation of vE . Therefore we write FQMC = FE + F Y , and so

m
d2x

dt2
= −ξ(dx

dt
− vE) + FE + F Y , (5.11)
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where FE is the force that gives rise to the velocity vE . This equation guarantees
that if FQMC is calculated increasingly more accurately and approaches FE , then
both F Y and the friction force become zero, and the correct dynamics is obtained.
Note that it is assumed that when FQMC approaches FC , also FE approaches FC , so
the fit should do no harm in case it is applied in a purely classical MD run.

We now choose to let FE be the force that we calculated in Section 5.4.2. When
solving the equation, we treat FE as a deterministic force, with a corresponding
deterministic vE . We treat F Y as the random component of FQMC, obeying the
fluctuation-dissipation theorem

〈F Y (t)F Y (t′)〉 = 2kBTξδ(t− t′) . (5.12)

It is not clear from the beginning if the procedure will improve on the case with fitted
forces.

To solve the adjusted Langevin equation, we write the position and velocity as
sums of estimated terms plus noisy contributions,

x = xE + y (5.13)
dx

dt
= vE + w , (5.14)

where xE and vE are the position and velocity that result from the estimated force
FE . Consequently w = dy

dt
, and the equations to solve become

m
dvE

dt
= FE (5.15a)

m
dw

dt
= −ξw + F Y . (5.15b)

At a first glance, these two equations appear to be independent of each other but they
are linked via the computation of the force: the estimated force FE is obtained from
the fit of the QMC forces which are computed on the positions, x = xE + y.

It is easy to show that the excess velocity, w, satisfies the following integral equa-
tion which we must evaluate,

w(t) = w(0)e−ξt/m +
1

m

∫ t

0

dτe−ξ(t−τ)/mF Y (τ) . (5.16)

Below we will suggest several ways to perform the integral.

Integrating the modified Langevin equations

As a first attempt to solve this equation, we follow Ref. [32] and consider F Y to be
constant during each time interval being considered. This allows us to easily perform
the integral, obtaining

w(t+ ∆t) = w(t) +
1

ξ

(
1− eξ∆t/m

)
F Y (t) (5.17)
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Again following Ref. [32], we calculate the change of y during the given time in-
terval simply as w∆t. We update the estimated positions and velocities, xE and vE

respectively, using the velocity-Verlet algorithm. In order to treat random and deter-
ministic forces on a similar footing, after all they are both constant during the time
step, we apply the velocity-Verlet algorithm to the random contributions as well. The
resulting algorithm is

Langevin scheme 1
(5.18)

wn+1/2 = e−ξ
∆t
2mwn +

1

ξ
(1− e−ξ

∆t
2m )F Y

n

vEn+1/2 = vEn +
1

2m
FE
n ∆t

xn+1 = xn + vEn+1/2∆t+ wn+1/2∆t

→ FQMC
n+1 → FE

n+1, F
Y
n+1

wn+1 = e−ξ
∆t
2mwn+1/2 +

1

ξ
(1− e−ξ

∆t
2m )F Y

n+1

vEn+1 = vEn+1/2 +
1

2m
FE
n+1∆t

We quickly investigate the two limits, i.e. when ξ → ∞ or ξ → 0; recall that
σQMC remains constant while taking the limits. When ξ → ∞, the random contri-
bution to the velocity becomes zero and the scheme reduces to the simple velocity-
Verlet integration of the dynamics governed by FE . On the other hand, in the limit
of ξ → 0, we recover the evolution with the QMC force since

lim
ξ→0

e−ξ
∆t
2mwn = wn

lim
ξ→0

1

ξ
(1− e−ξ

∆t
2m )F Y

n+1 =
∆t

2m
F Y
n+1 , (5.19)

and, by substituting the equations for vEn+1/2 and wn+1 in xn+1, we obtain

xn+1 = xn + vEn+1/2∆t+ wn+1/2∆t

= xn + (vEn + wn)∆t+
1

2m
(FE

n + F Y
n )∆t2

= xn + vn∆t+
1

2m
FQMC
n ∆t2 . (5.20)

Had we not applied the velocity-Verlet split to the random contributions as well, we
would have found in the limit of ξ → 0

vEn+1 =
(FE

n + FE
n+1)

2

∆t

m

wn+1 = F Y
n

∆t

m
. (5.21)

Consequently, the random force would enter differently from the deterministic force
and the total would not exactly be equal to an update with FQMC.
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Results

We now investigate the performance of our modified Langevin dynamics with damped
excess velocity and the integration Langevin scheme 1. In particular, to explore
whether the approach ameliorates the conservation of total energy in thiophene, we
perform runs with different values of the the damping parameter ξ (for fixed ∆t and
σQMC).

We summarize the results in Fig. 5.6, where we label the runs using the dimen-
sionless parameter γ:

γ =
ξ∆t

m
, (5.22)

since γ enters the exponentials in the formulas above and gives a direct indication
of the size of the contribution coming from the noisy velocities. In Table 5.1(C), we
report the values of γ for the different atoms and the corresponding temperature, T ,
since T is the actual parameter that we vary in the simulations.

Figure 5.6: Total energies (eV) for different values of the γ parameters (γ = γC

is given), obtained with integration Langevin scheme 1, compared with the curves
obtained with the noisy (NOISE) and fitted (FIT) forces. All runs are performed with
the same starting seed and the same weights in the fit, labeled FIT 1 in Table 5.1(B).

To easily compare the behavior as a function of γ, we use the same sequence of
random numbers to introduce the Gaussian noise in the forces. When nothing is said
to the contrary, we use the shorthand γ = γC . Clearly, already for γ = 2 (T = 0.01
K), we are approaching the limit of γ →∞ and closely following the curve obtained
with fitted forces [FIT 1 in Table 5.1(B)]. On the other hand, for values of γ smaller
than 0.02 (T ≥ 1 K), we recover the curve obtained with noisy forces. For the values
in between, the total energy lies between the two cases so that, by varying γ, we
gradually move between the two limits.

We however do not find a range of γ for which the total energy is not between
the two limits, namely, neither being conserved better than the fitted case or worse
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than the noisy one. We conclude that, as an alternative to the fitted case, the modified
Langevin scheme presented so far is not a viable candidate. We therefore suggest to
abandon some of the assumptions we have adopted to solve our equations.

5.4.4 Treating the random forces as properly random
In an attempt to improve our integration scheme, we notice that treating F Y as a
constant during the integration interval in Eq. 5.16 may not be correct. In a more
refined integration scheme, F Y would occur many times, each time with its own
random number. We therefore should treat it as a real random function, also when
integrating the equation of motion over an interval of one time step ∆t.

In this Section, we will make use of the fluctuation-dissipation theorem (Eq. 5.12)
at several occasions. As a result, both ξ and T will enter the equations. As we
mentioned before, since the strength σQMC of the random force F Y is fixed, only
one of ξ and T can be chosen freely. Approximating δ(t) = 1/∆t in the fluctuation-
dissipation theorem, we obtain the relation between the three of them

ξ =
(σQMC)2∆t

2kBT
. (5.23)

It may seem inconsistent to approximate the Dirac delta as 1/∆t, while still integrat-
ing stochastic forces over the entire time interval. We will show however in Appendix
5.C that the results that we obtain are correct.

With this in mind, we notice that the integral in Eq. 5.16 represents a sum of
many random numbers, and therefore must be a Gaussian distributed random num-
ber, which we write as σwGw(t) with Gw(t) being drawn from a standard Gaussian
with unit variance; the actual variance of the stochastic integral is σ2

w. The latter we
compute according to

σ2
w =

∫ ∆t

0

dτ

∫ ∆t

0

dτ ′e−ξ(∆t−τ)/me−ξ(∆t−τ
′)/m〈F Y (τ)F Y (τ ′)〉

= 2kBTξ

∫ ∆t

0

dτe−2ξ(∆t−τ)/m

=
kBT

m
(1− e−2ξ∆t/m) ,

where we have made use of the fluctuation-dissipation theorem Eq. 5.12. Inserting
this into Eq. 5.16, we get

w(t+ ∆t) = w(t)e−ξ∆t/m +

√
kBT

m

√
1− e−2ξ∆t/mGw. (5.24)

To obtain the position y, we integrate dy
dt

= w(t) with w(t) given in Eq. 5.16,
we swap the integrations in the resulting double integral according to

∫ t
0
dτ ′
∫ τ ′

0
dτ

=
∫ t

0
dτ
∫ t
τ
dτ ′ and perform the integral over τ ′, obtaining

y(t) = y(0) +
m

ξ
w(0)(1− e−ξt/m) +

1

m

∫ t

0

dτ(1− e−ξ(t′−τ)/m)F Y (τ).
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We next treat the stochastic integral as we did for the velocities and write the result
as σyGy, obtaining

y(t+ ∆t) = y(t) +
m

ξ
w(t)(1− e−ξ∆t/m)

+

√
2kBT

ξ

√
∆t− 2m

ξ
(1− e− ξ∆tm ) +

m

2ξ
(1− e− 2ξ∆t

m )Gy

(5.25)

Here, Gw and Gy are two independent random numbers. With these new equations
for the noisy evolution, we revisit our algorithm. For the systematic part, we still
choose a velocity-Verlet integration, while the noisy part will be included according
to the equations above. Now that we have an analytical expression for the stochas-
tic displacement, making a half-step will not improve the algorithm. Therefore we
suggest to apply Langevin scheme 2.

Langevin scheme 2
(5.26)

vEn+1/2 = vEn +
1

2m
FE
n ∆t

yn+1 = wn
m

ξ
(1− e−

ξ∆t
m )

+

√
2kBT

ξ

√
∆t− 2m

ξ
(1− e− ξ∆tm ) +

m

2ξ
(1− e− 2ξ∆t

m )Gy
n

xn+1 = xn + vn+1/2∆t+ yn+1

→ FQMC
n+1 → FE

n+1

wn+1 = e−ξ
∆t
m wn +

√
kBT

m

√
1− e− 2ξ∆t

m Gw
n

vEn+1 = vEn+1/2 +
1

2m
FE
n+1∆t

Note that, in Langevin scheme 1, we skipped an independent computation of yn
since that could implicitly be done by adding the velocities vEn and w. This can not
be done in the present case. It is easy to see that, in the limit of ξ →∞, the stochastic
displacement y goes to zero, and Langevin scheme 2 becomes equal to the Estimated
force scheme. At first sight, it may seem that the stochastic velocity w remains finite
and equal to

√
kBT/m, but since ξ = (σQMC)2∆t/(2kBT ), we find that T goes to

zero when ξ goes to infinity. The other limit, when ξ goes to zero, yields

wn+1 = wn +
σQMC

m
Gw
n∆t (5.27a)

yn+1 = wn∆t+

√
4

3

σQMC

m
Gy
n

(∆t)2

2
. (5.27b)
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As argued above, choosing independent random contributions to velocity changes,
unrelated to the ones already induced by the random component included in FQMC

may introduce additional randomness into the procedure. One may argue that in the
limit of very small values of γ the algorithm must approach that of a normal run with
QMC forces. This can be achieved by applying in Langevin scheme 2 the following
substitutions

Gw 7−→ F Y (t)

σQMC
(5.28a)

Gy 7−→
√

3

4

F Y (t)

σQMC
, (5.28b)

as is is clear from the limits for small γ shown above. Results obtained with Langevin
scheme 2 modified like this are shown in Fig. 5.7.

Figure 5.7: Total energies (eV) obtained for different values of γ = γC and Langevin
scheme 2 with substitutions according to Eq. 5.28. All runs start with the same
random seed. The weight parameters in the fit are labeled FIT 1 in Table 5.1(B).

As is clearly seen, all curves obtained with varying values of γ change monotonously
from the fitted curve to the QMC curve. In order to have more flexibility, we suggest
to keep Langevin scheme 2 as it is presented, i.e. with independent random numbers
Gw and Gy.

Using this new formulation, it is not possible to compare the results of the MD
simulation with fitted (FIT) and noisy (NOISE) forces with a fixed sequence of ran-
dom number, since we are introducing two extra series of random numbers (Gw

n and
Gy
n). For this reason, we directly plot the results as averages on 100 trajectories. In

Fig. 5.8, we show how the total energy varies in dependence of the value of γ = γC;
the values of τfit are taken according to FIT 1 [Table 5.1(B)].

As expected, for small values of γ and correspondingly high temperatures [see
Table 5.1(C)], we introduce noise in the system and the total energy grows in time
similarly to the behavior obtained with noisy forces. In the limit of large values of γ,
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we converge instead to the estimated curve (FIT 1). Differently from the findings so
far, the use of Langevin scheme 2 yields a range of values of γ (around 0.2–0.3) for
which the energy is conserved over the entire 2 ps of the calculation.

With this range being appropriate in combination with FIT 1, we are interested
if it is possible to find a range of γ values that can be applied to all sets of FIT
parameters studied in this work. In Fig. 5.9, we present the results for different FIT
parameters and values of γ equal to 0.4 and 2 respectively. In all cases, for averages
of 100 trajectories, the new algorithm contributes to a stabilization of the total energy.
In some cases the improvement is minor but this is to be expected since we are fixing
γ instead of using the optimal value for each set of τfit independently. Importantly,
we note that the results for the curves FIT 2–4 clearly indicate that, with the present
integration scheme, we are not bounded between the two limits of small and large
ξ: we can now find a range of parameters for which we thermalize the noise and
obtain nearly constant energy even when both the FIT and NOISE curves result in
increasing total energy.

Therefore, our procedure is effective in thermalizing the noise for different sets
of τfit over a range of γ values centered around γ = 1. This is important since,
when finally using forces from an actual QMC simulation to drive the dynamics (as
opposed to the forces from an OPLS-AA force field with added noise), the optimal
values of τfit may change. Depending on the size of the system, it could then be too
expensive to perform enough simulations to determine the new optimal parameters.

In Fig. 5.11 in Appendix 5.B, we show the results for Langevin scheme 2 when
we do not remove rotations and translations. It turns out that, in this case, we are not
able to improve on the results with fitted forces when using a value of γ equal to 2.
We did not investigate further if an optimal γ exists in this case.

Figure 5.8: Total energies (eV) obtained for different values of γ = γC and the
Langevin scheme 2 (Eq. 5.26). The weights parameters in the fit are labeled FIT 1 in
Table 5.1(B). The results are averages of 100 trajectories.
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Figure 5.9: Total energies resulting from Langevin scheme 2 (Eq. 5.26) with γ = 0.4
and γ = 2 respectively, and for different sets of τfit. We compare each curve with the
noisy one and the respective FIT. The parameters of the fits are given in Table 5.1(B).
The results are averages of 100 trajectories.

5.5 Conclusions
In this Chapter, we investigated the impact of driving a molecular dynamics simu-
lation with noisy forces and explored some strategies to minimize undesirable con-
sequences such as the lack of conservation of total energy. Our interest stems from
the desire to use QMC forces, which are inherently affected by a stochastic error,
to follow the evolution of a system on an excited-state potential energy surface for
time scales of at least a few picoseconds. We have shown that we obtain significant
amelioration of the problem by removing nonphysical rotations and translations, and
by employing an appropriate fit procedure of the forces. We also extensively inves-
tigated the possibility to thermalize and, therefore, control the noise with a modified
Langevin scheme which we have found to add stability to the molecular dynamics
simulations in some cases. That said, further studies are needed since we are not fully
understanding yet how these positive occurrences are connected to specific features
of the algorithm. In the next Chapter, we will apply the different strategies proposed
here to dynamical simulations with actual QMC forces.
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5.A Appendix: Removing rotations and transla-
tions

We present here the equations used to impose that the center of mass velocity and
the total angular momentum are zero at each time step, as implemented in the code
Tinker [29].

We denote the center of mass position, velocity, and angular momentum as

RCM =
1

M

N∑
i=1

miri (5.29)

VCM =
1

M

N∑
i=1

mivi (5.30)

LCM = RCM ×MVCM (5.31)

where N is the total number of particle and M =
∑N

i=1mi is the total mass of the
system.

To impose a zero velocity of the center of mass, we simply shift the velocities of
all particles at each time step as

vi → vi − VCM . (5.32)

Then, we want to impose that the total angular momentum of the system is zero.
Since the center-of-mass velocity is zero, we define the angular momentum with
respect to the center of mass as

L =
N∑
i=1

xi ×mivi , (5.33)

where xi = ri − RCM.
We now subtract from each velocity vi a component that corresponds to a rigid

body rotation
vi → vi −Ω× xi (5.34)

where the angular velocity Ω should be chosen such that the resulting system has
zero angular momentum with respect to the center of mass. This can be achieved
by writing the angular momentum from Eq. 5.33 as L = I Ω, where I is the inertia
tensor

I =
N∑
i=1

mi [(xi · xi) 1− xixi] , (5.35)

and choosing Ω = I−1L. Here, 1 is the three-dimensional unit tensor.
In order to prove that the resulting system has zero angular momentum, we must

show that
N∑
i=1

xi ×mi (vi −Ω× xi) , (5.36)
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equals zero. Evaluating the cross products, we obtain

N∑
i=1

xi ×mivi −
N∑
i=1

mixi × (Ω× xi)

=
N∑
i=1

xi ×mivi −
N∑
i=1

mi [(xi · xi)Ω− xi(xiΩ)]

=
N∑
i=1

xi ×mivi − IΩ = 0, (5.37)

because I Ω = I I−1∑N
i=1 xi ×mivi =

∑N
i=1 xi ×mivi.

5.B Appendix: Not removing rotations and trans-
lations

Here, we quickly summarize the results of our main procedures but, now, when rota-
tions and translations are not removed.

Fit without removing rotations and translations

We compute the total energy and the spread of the trajectories with fitted forces
and integration Estimated force scheme (Eq. 5.4) and without imposing zero angular
momentum and center-of-mass velocity. For the fit, we use the same parameters as
in Fig. 5.5 and Table 5.1(B).

From Fig. 5.10, we conclude that, also in this case, the fit procedure increases
the amount of time in which the total energy is constant. However, the spread of
the noise in the kinetic energy is faster and, with this set of parameters, we do not
manage to keep constant energy for more than 1 ps.

Figure 5.10: Total energies (eV) and relative spread (eV) averaged over 100 trajec-
tories obtained with fitted forces (FIT1–4 in Tab. 5.1) without imposing the removal
of translations and rotations.
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Langevin scheme 2 without removing rotations and translations

In this Section, we report the results of the Langevin scheme 2 (Eq. 5.26) in the case
in which we do not remove rotations and translations at each time step. We use the
same value of γ = 2 and again average on 100 trajectories as in Fig 5.9 but, in this
case, we see no clear improvement. It appears that, for this value of γ, we lose the
improvement obtained for the case in which we do constrain the motion by removing
rotations and translations. It is possible that, in the current situation, the noise is
spreading in the system too fast and the algorithm loses its effectiveness. We did not
investigate this further for different values of γ.

Figure 5.11: Total energies (eV) averaged over 100 trajectories, resulting from al-
gorithm 5.26 with the same values of τfit as in Fig. 5.9. We again plot the simple
fit curve (obtained with Eq. 5.4) and the noisy curve for comparison. We use, as
previously, γ = ξ∆t/m = 2.

5.C Appendix: Langevin with memory
When treating F Y in Eq. 5.11 as a random contribution to the QMC forces, we
assumed that they are delta correlated in time. This neglects the fact that, when
calculating FE , we make use of QMC forces from the recent past and that, therefore,
F Y acquires some memory. We therefore should adjust the equation of motion for
the random component of the velocity accordingly

m
dw

dt
= − 1

kBT

∫ t

0

〈F Y (0)F Y (t− t′)〉w(t′)dt′ + F Y (t), (5.38)

with 〈F Y (t)〉 = 0. The fluctuation-dissipation theorem, which guarantees that the
velocities will be distributed according to the Maxwell-Boltzmann equation, has been
explicitly incorporated by writing the friction kernel as 〈F Y (0)F Y (t− t′)〉/kBT .

115



5 Dynamics with QMC forces: dealing with noisy forces

Integration scheme with memory

We now choose the following analytical expression

〈F Y (t)F Y (t′)〉 = (σE)2e−2|t−t′|/τE , (5.39)

to represent the memory of the random forces. There is no simple, unique way to
relate σE to σQMC that we used in the main text. The reason is that σQMC represents
the value of the random force time correlation function when it is approximated to
be constant over an interval of length ∆t and zero elsewhere. A relation between
σQMC and σE can be obtained in different ways, for example by putting equal the
time integral of the two representations of the random force time correlation function
up to time ∆t or up to infinity. It is possible however to make comparisons between
the two approaches by defining

ξE =
(σE)2τE

2kBT
. (5.40)

The fluctuation-dissipation theorem then becomes

lim
τE→0
〈F Y (t)F Y (t′)〉 = 2kBTξ

E e
−2|t−t′|/τE

τE
, (5.41)

which for small values of τE turns into 2kBTξ
Eδ(t− t′).

The problem may now be solved by Laplace transformation, which yields

w(t) = w(0)wH(t) +

∫ t

0

dt′wH(t− t′)F
Y (t′)

m
(5.42a)

wH(t) = e−t/τ
E

cosh(ωt/τE) +
e−t/τ

E

ω
sinh(ωt/τE). (5.42b)

The dimensionless parameter ω is given by

ω =

√
1− (σEτE)2

mkBT
. (5.43)

We calculate the position y(t) by integrating the velocity w(t). After swapping the
time integrals according to

∫ t
0
dτ ′
∫ τ ′

0
dτ =

∫ t
0
dτ
∫ t
τ
dτ ′ and simplifying the equa-

tions, we get

y(t) = y(0) + w(0)yH(t) +

∫ t

0

dt′yH(t− t′)F
R(t′)

m
(5.44a)

yH(t) =
2τE

1− ω2
− e−t/τ

E

1− ω2
τE
[
2 cosh(ωt/τE) +

(1 + ω2)

ω
sinh(ωt/τE)

]
(5.44b)

This concludes the formal solution of the Eq. 5.38 with kernel given in Eq. 5.39.
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As before, for numerical applications, the stochastic contribution to the change
of the velocity during one time step becomes σwGw with the variance given by

σ2
w =

(σEτE)2

(mω)2

e−2∆t/τE

2(ω2 − 1)
× (5.45)[

−1 + ω2 − 2e2∆t/τEω2 + (1 + ω2) cosh(2ω∆t/τE) + 2ω sinh(2ω∆t/τE)
]
.

Similarly we write the stochastic contribution as σyGy with σy for one time step ∆t
being given by

σ2
y = Ω

[
4∆t(1− ω2)− 2τE(5 + ω2)

]
(5.46)

− Ωe−2∆t/τEτE
[
2 cosh(ω∆t/τE) +

1 + ω2

ω
sinh(ω∆t/τE)

]2

+ 2Ωe−∆t/τEτE
[
(7 + ω2) cosh(ω∆t/τE) +

3 + 5ω2

ω
sinh(ω∆t/τE)

]
,

where Ω is given by

Ω =
(σE)2

m2

(τE)3

(1− ω2)3
. (5.47)

This concludes the solution of the model.
The solution remains valid even when ω becomes imaginary; just replace ω by

iω and work out the consequences. Since hyperbolic functions become trigonometric
functions in this case, it does not seem to be useful for our application. In any case,
this only occurs when T is nonphysically small.

The integration scheme is now the same as Langevin scheme 2, with σw and σy
replaced by the new expressions.

Limits

It is interesting to consider the limit when τE is much less than ∆t. Evidently, in
this case the integral in Eq. 5.38 becomes small unless (σE)2τE remains finite, i.e.
unless ξE and T remain finite. Under these conditions, we have

ω =
√

1− 2ξEτE/m ≈ 1− ξEτE/m (5.48a)
2ω∆t/τE ≈ 2∆t/τE − 2ξE∆t/m (5.48b)

With this approximation, we find after some lengthy algebra

σ2
w =

kBT

m

(
1− e2ξE∆t/m

)
(5.49a)

σ2
y =

2kBT

ξE

(
∆t− 3

2

m

ξE
− 2

m

ξE
e−2ξE∆t/m +

2m

ξE
e−ξ

E∆t/m

)
(5.49b)

These equations are equivalent to the ones that we used in Section 5.4.4, provided
ξE = ξQMC, i.e. provided

(σE)2τE = (σQMC)2∆t (5.50)

117



5 Dynamics with QMC forces: dealing with noisy forces

This gives us the required relation between σE and σQMC.
We have calculated τE and σE for the various atoms and for two fit curve (FIT

1 and FIT 2) [see Table 5.1(D)] and found that the above relation is not met exactly
but well enough to justify the procedure used in the main text.

Results

We estimate the parameters τE and σE by performing a long NVE run (10 ps) where
we evolve the system with the deterministic forces, FC , and compute the fitted force,
FE , with weights parameters corresponding to FIT 1 at each time-step. We then
calculate the auto-correlation function of the difference F Y = FQMC − FE for each
atom and fit its logarithm linearly in time in order to obtain τE ; σE follows im-
mediately from the time zero value of the auto correlation function. All results are
averaged over atoms of the same type and all directions of motion. The averaged re-
sults are collected in Table 5.1(D) and the resulting values of ω with the temperature
correspondence are given in Tab.(E).

In Fig. 5.12, we show the total energies as averages over 100 runs, obtained with
fit-parameters according to FIT 1 and with different values of ω corresponding to the
temperatures listed in Table 5.1(E). In all cases, we have ω < 1 so that the hyperbolic
solution holds. For ω = 0.991, the total energy is remarkably stable for times up to
a bit more than one picosecond. Also for other cases with ω close to one, the results
are encouraging; only with ω = 0.655 does the energy decrease faster than when
only the fit is applied.

Figure 5.12: Average total energy over 100 trajectories obtained accounting for mem-
ory and using different values of ω. The fitted forces are estimated with the weights
of FIT 1 and the parameters τE listed in Table 5.1.

In Fig. 5.13, we present similar calculations but, now, with the parameters that
go with FIT 2. All curves are very close to the FIT curve, none of them improving
on the latter. This is in contrast with previous calculations based on the simpler case
of Langevin scheme 2 without memory.
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Figure 5.13: Average total energy over 100 trajectories obtained accounting for mem-
ory and using different values of ω. The fitted forces are estimated with the weights
of FIT 2 and the parameters τE listed in Table 5.1.

In conclusion, we find that the scheme with memory yields similar results to
the ones obtained without memory, with only small differences, sometimes to better
sometimes to worse results. From a practical perspective, the memory case is more
laborious since one has to determine the parameters σE and τE for each atom type.
While this is easy and fast in the simulations with force fields and added noise, the
task becomes more demanding in a QMC calculation. For this reason, we will prefer
to adopt the simpler scheme with no memory in the following Chapter.
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Chapter 6

Dynamics with QMC forces:
exploring limits and possibilities

In the previous Chapter, we explored various approaches to reduce the impact of the
stochastic noise in the forces on a molecular dynamics simulation. Here, we analyze
other technical issues connected to the quantum Monte Carlo computation of the
forces, namely, the reduction of the infinite variance of the force estimators and the
need of well-optimized wave functions. Finally, we combine the findings of the two
Chapters and perform Born-Oppenheimer molecular dynamics simulations driven by
quantum Monte Carlo forces for two prototypical systems.

6.1 Introduction

We revisit here the various strategies we have developed to ameliorate the lack of
energy conservation resulting from the use of noisy forces in molecular dynamics
simulations. While, for most of the tests so far, we have utilized a classical force
field to which we manually added Gaussian noise, we now test the approaches in
actual QMC simulations where the noise comes directly from the use of Monte Carlo
sampling to estimate the forces.

When moving from classical simulations with noise to quantum Monte Carlo
runs, we encounter two additional problems. The first is the well-known issue of the
force estimator having an infinite variance for approximate wave functions, which
we solve following a standard procedure, namely, employing a guiding wave func-
tion finite at the nodes [22]. Despite the adoption of this scheme, we occasionally
encounter forces that are more than three standard deviations from the average and
must perform an additional check in the simulation to remove such forces during
the molecular dynamics. The second problem concerns the optimization of the wave
function. In particular, if the wave function is not fully optimized, we lose the cor-
respondence between forces and potential energy, and the total energy is no longer
conserved, decreasing in time during the molecular dynamics simulation. This prob-
lem is not present when performing a structural relaxation since, in that case, one is
simply optimizing the potential energy with respect to the variational and structural
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parameters. Having identified the need for a strict optimization of the wave function,
we propose a strategy to speed up its convergence and, consequently, decrease the
overall computational cost.

We test these methodological aspects in molecular dynamics simulations with
quantum Monte Carlo forces for the carbon dimer and thiophene. We choose the C2

molecule since the simplicity of its potential renders the analysis of the various issues
more straightforward. Furthermore, thanks to its small size, C2 represents a compu-
tationally affordable case for extensive testing. Thiophene is instead an interesting
system since it constitutes a building block for a class of donor polymers in organic
solar-cell devices [23–25]. For this reason, thiophene has been extensively investi-
gated both with pump-probe experiments [26] and with theoretical studies trying to
characterize the deactivation pathways following photo-excitation [27–31].

Because of its strong multireference character, the theoretical description of the
lowest-energy bright state of thiophene is in fact quite challenging and, for this state,
different highly-correlated methods predict vertical excitation energies which span a
range as large as 0.5 eV [17]. Since QMC is able to accurately describe the vertical
excitation energy as well as the excited-state optimal geometry of thiophene [17],
this molecule is a good candidate for exploring the performance of QMC forces in
molecular dynamics simulations in the excited state. In the last part of this Chapter,
we present the preliminary results of such simulations, highlighting the remaining
challenges posed by the use of QMC forces.

6.2 Computational details

We employ the program package CHAMP [33] to perform the variational Monte
Carlo (VMC) calculations. For all calculations, we use scalar relativistic energy-
consistent pseudopotentials and the corresponding aug-cc-pVDZ basis set [34, 35].
We employ Jastrow-Slater wave functions where the Jastrow factor contains 2-body
terms accounting for electron-electron and electron-nucleus correlation. For the
Slater part, we use either a Hartree-Fock (HF) determinant or complete active space
(CAS) expansions, which are generated with the program GAMESS(US) [36]. At
the start of the molecular dynamics, we fully optimize the wave function with the
stochastic reconfiguration method [37, 38] and a damping factor τSR = 0.05. When
optimizing the wave function in the excited state, we use a penalty method as intro-
duced in Ref. [18] with the implementation described in Ref. [19] and λ = 1 a.u.
Unless otherwise specified, the nuclei are moved within CHAMP with a standard
velocity-Verlet algorithm [39, 40] and a time-step ∆t = 0.5 fs. In order to per-
form a polynomial fit for the forces as introduced in Chapter 5, we link the library
SLATEC [41] to CHAMP. The parameters used in the fit of the forces are listed in
Table 6.1.

This work focuses on two prototypical molecules, namely, the simple C2 dimer
and the thiophene molecule. For C2, we employ a CAS(4,4) wave function to cor-
relate the two π1u and the corresponding antibonding π1g orbitals. When testing the
divergences in the VMC estimator of the forces, we use a close-to-equilibrium geom-
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etry with an inter-atomic distance of 1.26 Å. To test the effects of the wave function
optimization and perform molecular dynamics simulations, we start from a stretched
C2 geometry with an inter-atomic distance of 1.58 Å. As in the previous Chapter, we
always have zero velocities at the start of the MD simulations.

For thiophene in the ground state, we use a simple HF ansatz for the determi-
nantal component of the Jastrow-Slater wave function to perform computationally
affordable tests, and the same starting geometry as in the classical studies of the pre-
vious Chapter. When moving to the excited-state simulations of thiophene, we build
a CAS(10,9) wave function comprising the two σ and corresponding σ∗ orbitals on
the CS bonds and the lowest three π and two π∗ orbitals as suggested in Ref. [31].
As starting velocities and geometries, we use some configurations obtained from a
Langevin simulation at 300 K performed with the classical force fields OPLS-AA
and the package Tinker [42].

(A) C2 FIT 1 FIT 2 FIT 3
τC 1.5 1.8 2.0

(B) Thiophene FIT 1 FIT 2 FIT 3
τS,C 1.8 1.9 2.0
τH 1.0 1.3 1.4

Table 6.1: Values of the dimensionless (in units of ∆t) parameters, τfit, used for the
exponential fit of the forces (see Eq. 5.5) for (A) C2 and (B) thiophene.

6.3 Forces with finite variance
As elaborated in the Methods Chapter, given a trial wave function ΨT , we write the
energy in VMC as

E =

∫
dREL(R)ρ(R) ≡ 〈EL(R)〉 , (6.1)

where R denotes the positions of the N electrons, EL(R) = HΨT (R)/ΨT (R) is the
local energy, and ρ(R) = |ΨT (R)|2/

∫
dR |ΨT (R)|2 is the probability distribution

that we sample during the Monte Carlo run.
Performing the gradient with respect to the nuclear positions, Rα, we obtain the

nuclear force

F = −∇αE = 〈f(R)〉 , (6.2)

with the local force given by [22, 43, 44]

f(R) = −(∇αEL(R) + (EL(R)− E)∇α ln ρ(R)) , (6.3)

where we assume that the wave function depends explicitly on the positions of the
nuclei. This estimator of the forces obeys the so-called zero-variance principle: as
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6 Dynamics with QMC forces: exploring limits and possibilities

the wave function and its derivatives become exact, the variance goes to zero since
EL equals E for every electronic configuration, ∇αEL becomes a constant, and,
consequently, f(R) is also constant.

Unfortunately, even though the estimator has zero variance in the limit of an
exact eigenstate, it has an infinite variance for an approximate wave function. To
understand this, let us consider for instance the term EL∇α ln ρ, which gives the
following contribution close to the node

EL(R)∇α|ΨT (R)|2 = 2
HΨT (R)

ΨT (R)

∇αΨT (R)

ΨT (R)
∼ 1

ΨT (R)2
, (6.4)

which diverges as the wave function goes to zero. While the average of this term is
finite since the distribution Ψ2

T goes to zero quadratically at the nodes canceling the
divergence, the variance (see Eq. 5.3) is infinite since one needs to average the square
of this term.

Various schemes have been proposed to regularize this estimator and overcome
this problem [22,45,46]. Here, we employ a guiding wave function which is finite at
the nodes as proposed in Ref. [22] and rewrite the estimator of the force as

F =
〈f(R)w(R)〉Ψ2

g

〈w(R)〉Ψ2
g

with w(R) =
ΨT (R)2

Ψg(R)2
, (6.5)

where we are explicitly indicating that we are now sampling Ψ2
g. The local quantity

we now average does no longer diverge at the nodes and the variance of this new
estimator is therefore finite. As guiding wave function, we use the same form as in
Ref. [22],

ΨG(R) =

{
ΨT (R) for d(R) ≥ ε

ε(d(R)/ε)d(R)/εΨT (R)/d(R) for d(R) < ε ,
(6.6)

where d(R) is a measure of the distance of the electronic configuration from the
nodal surface, which we estimate here as

d(R) =
1

|∇ΦT (R)/ΦT (R)|
, (6.7)

where ΦT is the determinantal component of the trial wave function ΨT .
We test this regularization scheme on the simple C2 at a fixed geometry close to

equilibrium and perform multiple independent QMC runs of the same length for two
different values of ε. As shown in Fig. 6.1, while the average of the force is the same
for both values of ε, the spread of the force significantly decreases for the higher
value of the node-distance parameter. That said, even when using this larger ε, we
observe occasionally that the force is several standard deviations outside the average.
We believe that this is related to numerical instabilities in the computation of the
force and these issues are currently being investigated. However, for the purpose
of performing MD simulations, such outliers cannot be used to update the atomic
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Figure 6.1: Force (a.u.) acting on one atom of a C2 molecule close to equilibrium
computed in 10.000 independent QMC runs of the same length with two different
values of the node distance, ε.

configurations and we therefore include an additional check in the MD to manually
remove them.

Rather than the force itself, we use its statistical error to select which forces must
be discarded. This choice follows from the observation that, during a molecular
dynamics run, the forces will naturally vary quickly but their errors should depend
weakly on the configurations. Consequently, it is possible to use the error as an
indicator of the quality of a force since a “kick” in the forces is typically mirrored
by a similar variation in the error. This correlation is clear from Fig. 6.2 where we
plot the absolute value of the QMC forces and the corresponding errors, and, in order
to have more frequently large variations, we set the node-distance parameter to the
lower value of ε = 0.01.
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Figure 6.2: Absolute value of the force and its error (a.u.) in C2, computed in multiple
QMC runs with a parameter ε = 0.01. The same geometry of C2 is used as in Fig. 6.1.
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6 Dynamics with QMC forces: exploring limits and possibilities

If we denote the error as σQMC like in the previous Chapter (not to be confused
with the root-mean-square fluctuation of the local force estimator), for each atom and
each coordinate, we average this error over a short past history as

(σQMC
i,j )2(t) =

∫ t
−∞ dt

′ e−(t−t′)/τ (σQMC
i,j )2(t′)∫ t

−∞ dt
′ e−(t−t′)/τ

=
1

τ

∫ t

−∞
dt′ e−(t−t′)/τ (σQMC

i,j )2(t′) , (6.8)

where i and j label atoms and coordinates, respectively, and the past values enter
in the average with an exponentially decaying weight as suggested in Ref. [47]. We
introduce this time average instead of a fixed value of the error since also the error
depends on the atomic configuration even though to a much lesser extent than the
forces. By differentiating the last equation, we obtain

d(σQMC
i,j )2(t)

dt
=

1

τ
[(σQMC

i,j )2(t)− (σQMC
i,j )2(t)] , (6.9)

and, to first order in the time step ∆t,

(σQMC
i,j )2(t+ ∆t) ' (1− ∆t

τ
)(σQMC

i,j )2(t) +
∆t

τ
(σQMC

i,j )2(t) . (6.10)

Therefore, at each time step of a molecular dynamics run, we update this time average
and, if the current (σQMC

i,j )2 for an atom/component of the force exceeds the corre-

sponding (σQMC
i,j )2 by more than three times, we recompute the complete force (all

atoms and coordinates) in the present configuration. Typically, we use τ = 15×∆t
to average over a short history since the error varies slowly over time.

6.4 Optimization of the wave function
In the computation of the interatomic forces, we need to keep in account that the
wave function can depend explicitly on the nuclear coordinates (e.g. via an atom-
centered basis set) as well as implicitly via the wave function parameters. Therefore,
the derivative with respect to the nuclear positions should be rewritten as

∇αE =
∂E

∂Rα

+
∑
i

∂E

∂ci

dci
dRα

, (6.11)

where the first term was discussed in the previous Section and the second term con-
tains the derivatives of the energy with respect to the parameters {ci} of the wave
function. The second term can be neglected if one does not reoptimize the wave
function or if the wave function is optimal and, consequently, the derivatives of the
energy with respect to the parameters are zero.

Not surprisingly, non-optimizing the wave function is not possible when one con-
siders large displacements with respect to the original set of nuclear coordinates
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6.4 Optimization of the wave function

where the wave function was optimized. This is exemplified for a C2 molecule in
Fig. 6.3, where we can appreciate the dramatic difference between the potential en-
ergy curve obtained with a simple one-determinantal Jastrow-Slater wave function
with optimal parameters at each MD step, and the one determined with fixed param-
eters (i.e. the wave function is just recentered at the new geometry).

Figure 6.3: Potential energy curve (eV) of C2 computed during an MD simulation
with a wave function fully optimized at each time step (blue) and one in which the
parameters are fixed and the wave function is recentered at the new positions (red).

In our simulations, we estimate the forces using only the first term in Eq. 6.11
and, since we aim at obtaining accurate results, we want to optimize the wave func-
tion at each MD step. A new question therefore arises, namely, how strict the vari-
ational optimization of the wave function in variational Monte Carlo should be to
ensure that neglecting the second term yields forces which are compatible with the
corresponding potential energy surface. To assess this, we perform several short MD
runs for C2 in which we employ a different number of optimization iterations of the
wave function at each MD step, and show the results in Fig. 6.4. We find that a short
variational optimization of 5 and 20 optimization iterations leads to a decrease of
the total (kinetic plus potential) energy, even over the very short simulation times of
one oscillation of C2 (about 20 fs): with only five optimization iterations, we lose
as much as 0.8 eV of energy. We recover conservation of energy by increasing the
number of optimization iterations per MD step to fifty or one hundred. As expected,
when we do not optimize the wave function so that the second term in Eq. 6.11 is
identically zero, the energy is also conserved. As it will be clear below, the number
of iteration steps needed depends on the total energy of the system, namely, on how
fast and in which portion of the potential energy surface the system is moving. Here,
we start indeed from a very stretched geometry of C2 with a bond of 1.58 Å while
the minimum is around 1.25 Å.

To understand this surprising decrease in total energy, we plot the single com-
ponents of the energy, namely, kinetic and potential energies, as a function of the
number of iterations in the optimization of the wave function in Fig. 6.14 in Ap-
pendix 6.A. For the case of five optimization iterations, the potential energy of the
system starts to deviate from the 100 iteration case already after the first oscillation
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Figure 6.4: Total (kinetic plus potential) energy (eV) of a C2 molecule during an MD
run driven by QMC forces, where the variational parameters in the wave function are
optimized with a different number of optimization iterations at each MD iteration.

and, as the simulation proceeds, the system loses kinetic energy, cooling down to
relatively low energies. This behavior results from the fact that a few optimization
steps are sufficient to give a seemingly converged potential energy during the first
MD steps but are not enough to yield converged interatomic forces, and the system
slowly starts to lag behind. In Fig. 6.5, we show the convergences of the forces dur-
ing an MD simulation. In particular, we select the time interval over which the wave
function changes the fastest (e.g. the steepest part of the potential in Fig. 6.3). We
see that, in the part where the potential energy increases during the dynamics, stop-
ping the variational optimization too early yields forces that are too large in absolute
value. Oppositely, where the potential energy decreases, the forces are too small.

This means that effectively the system is moving on a different potential energy
surface as schematically illustrated in Fig. 6.6. When the system is climbing the
steepest part of the potential energy surface (PES), a not-fully optimized force is
higher in absolute value than the actual force since, during the variational optimiza-
tion, the energy is converging from a starting higher value and, therefore, also a
higher force. For the same reason, the force will be too low when moving towards
the minimum. Consequently, in the first case, the force will slow down the system
too much, which makes the system lose too much kinetic energy. In the second case,
the force will push the system down too little and, again, the system will lose kinetic
energy. The decrease of kinetic energy means that the portion of potential energy
visited gradually decreases, as shown in Appendix 6.A. The energy loss slows down
in time and the total energy eventually stops decreasing when the chosen number of
optimization iterations is enough to describe the slower change of the wave func-
tion characterizing the lower-energy portion of the PES. In fact, in a system with
high kinetic energy (for example, when we start from a very stretched geometry), we
will visit in less time more different configurations than if the kinetic energy is low.
Consequently, the wave function from one-time step to the next will change more
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Figure 6.5: Forces (a.u.) on the two carbon atoms of the C2 molecule during an MD
run, where we also show the 100 steps of wave function optimization performed at
each MD step. The time range corresponds to the central part of the potential energy
surface shown in Fig. 6.4. The arrows are only intended as a guide for how the force
changes during the variational optimization.

and need more extended optimization. On the other hand, if we have small kinetic
energies, we visit very close configurations, so the wave function only needs minor
adjustments at each MD step.

Going down:
Force is too weak

Partially optimized forceFully optimized force

Going up:
Force is too strong

Present point

Figure 6.6: Schematic behavior of fully and partially-converged forces when moving
upwards (left) and downwards (right) a PES. The unconverged forces correspond to
an effective (not fully optimized) PES higher than the variational one. We add a black
arrow to signal the direction of the velocity at the present point.

These findings underline the necessity of fully optimizing the wave function
when performing an MD simulation driven by QMC forces. Since performing such
optimization at each MD step can be quite costly, we exploit the robustness to noise
of the stochastic reconfiguration optimization method to speed up the optimization.
In particular, we begin the variational optimization using very short and therefore
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cheap MC runs, and linearly increase the number of MC steps with the optimization
iteration as to ensure well converged forces. In the Results Section, we also present
a different method to speed up the wave function optimization by using informa-
tion from previous MD steps, which we have tested so far only on the C2 molecule,
obtaining encouraging results.

6.5 Results

We assess here the performance of the various strategies introduced in the previous
Chapter in actual QMC simulations as opposed to classical ones with force fields
with added Gaussian noise. Furthermore, we investigate the additional effect poten-
tially introduced by the optimization of the wave function. For all calculations, we
use a node-cutoff value of ε = 0.05 and control the forces as explained above in
Section 6.3.

6.5.1 The carbon dimer

We begin by analyzing the molecular dynamics simulations driven by QMC forces
for a simple C2 molecule. We first investigate the case in which we do not optimize
the wave function and perform averages over 20 trajectories of 5 ps. For C2, we use
longer times than for thiophene because the increase in total energy is slower given
the smaller number of degrees of freedom. We always start the simulations from a
stretched geometry with a bond of 1.587 Å and compute the forces in Monte Carlo
runs ofNMC = 250880, which corresponds to an error on the energy of about 1 mHa.

In Fig. 6.7, we illustrate the cumulative effect of the different strategies to amelio-
rate the impact of noise presented in Chapter 5. We find that, also here, constraining
the rotational and translational motion of the molecule slows down the increase in
total energy but does not fully solve the problem (panel a). In addition to these
constraints, we then introduce an exponential fit of the forces over previous steps
(Eq. 5.5) and use the fitted forces to displace the nuclei. We employ three different
sets of fit parameters τfit reported in Table 6.1(A) and obtain a significant improve-
ment in the conservation of total energy with a nearly stable simulation over about 3
ps for one set of parameters (panel b, FIT 3). We note that, in this case, the optimal
parameter is τC = 2 while, in the classical case, for the carbon atom of thiophene,
we have 1.2 < τC < 1.5. It is reasonable to expect that changing system and error on
the forces (i.e. NMC) leads to different optimal parameters. We will further comment
on this aspect for thiophene, where the starting configurations of the classical and
quantum simulations are identical.

Finally, we fix the fit parameter τfit corresponding to FIT 2 and use the Langevin
scheme 2 (Eq. 5.26) to thermalize the noise. Differently from the previous Chapter,
we let the damping parameter γ vary with the error in the QMC forces and use a
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(a) Removing rotations (b) Fitting the forces.

(c) Thermalizing the noise.

Figure 6.7: Total (kinetic plus potential) energies (eV) of C2 averaged over 20 molec-
ular dynamics runs, where the wave function is not optimized but simply recentered
at each time step. In panel a (top left), we perform simulations constraining the mo-
tion of the center of mass and the rotation of the molecule. In panel b (top right),
we use fitted forces with the fit parameter τfit reported in Table 6.1(A) and, in panel
c (bottom), thermalize the noise where we use the fitted forces FIT 2 and report the
value of γ averaged over all atoms and coordinates. In panels b and c, we constrain
the rotational and translational motion.
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γi,j(t) which varies in time and is also atom and coordinate dependent as

γi,j(t) =
(σQMC

i,j )2(t)∆t2

2kBTmi

, (6.12)

where i and j label the different atoms and coordinates. As explained above, we
prefer to employ the time-averaged value (σQMC)2(t) as defined in Eq. 6.10 to avoid
unwanted sharp changes in γ that may come from the Monte Carlo computation of
the forces. As in the previous Chapter, the temperature is an input parameter.

In Fig. 6.7c, we show the simulations for two values of the temperature, T = 0.01
and 0.1 K, which correspond to a value of γ at the first time step of about 5 and
0.5, respectively, where we report here a single value averaged over the two atoms
and all coordinates as in the previous Chapter. The results are very encouraging: for
the smaller γ, we improve on the fit and obtain a stable total energy for the all 5
ps of the calculation. For the higher value of γ, we have a similar behavior to the
corresponding fit curve as expected from the limit of the integration scheme.

Having assessed the validity of the findings in Chapter 5 for the case where we do
not optimize the wave function, we now add the additional complication of perform-
ing a variational optimization at each MD step, and present the results in Fig. 6.8. At
each MD step, we perform 150 steps of wave function optimization with the stochas-
tic reconfiguration method, where for safety, we increase the number of steps to 150
from the 100 used in the previous Section. Since having such a long variational opti-
mization leads to a considerable increase in the computational cost, we perform here
averages on five trajectories and stop the simulations after 2.5 ps, while keeping fixed
the value of NMC to compute the final forces.

(a) Removing rotations (b) Fitting the forces.

Figure 6.8: Total (kinetic and potential) energies (eV) for C2 averaged over five
molecular dynamics simulations where the wave function is optimized with 150 steps
of the stochastic reconfiguration method at each MD step. In panel a (left), we show
the total energy when we remove rotations and translations and, in panel b (right),
the results for different fit parameters as reported in Table 6.1(A), where we remove
rotations and translations.

As regards constraining the translation and rotational motion, we observe the
same trends as before, namely, a slowing down of the increase in total energy (panel
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a). Moreover, even though one would expect additional noise with respect to the case
with non-optimized wave functions, we do not observe significant differences in the
spread of the trajectories. However, there are some surprising differences:

1) the total energy of the noisy curve (NOISE) does not increase in the 2.5 ps time
of the simulation;

2) when fitting the forces (panel b), the fit parameters that were optimal before
(FIT 2 and 3 in Fig. 6.7) are now clearly worsening the conservation of energy
and, in particular, in both cases, the total energy decreases in time.

To understand these findings as compared to the case with no wave function opti-
mization, there are three factors to keep in mind:

i) we have lower statistics since we average over 5 trajectories compared to the
previous 20;

ii) the optimization of the wave function leads to a change in the potential so that
the optimal fit parameter τfit may change;

iii) 150 iterations of wave function optimization with the stochastic method might
not be enough to guarantee sufficiently converged forces and a stable total
energy over long times.

While all factors can, in principle, contribute to the observed results, the constant
total energy of the noisy curve (obtained without a fit and removing rotations and
translations; Fig. 6.8a) is particularly unexpected. Indeed we kept the same total
number of Monte Carlo steps (NMC) in computing the final forces used to move the
atoms as in the case without wave function optimization (Fig. 6.7a). Consequently,
we would expect a similar increase in the total energy.

This consideration leads us to conclude that factor iii) is likely playing the most
significant role. Therefore, we infer that, while setting the number of stochastic
reconfiguration optimization steps to avoid energy loss (Fig. 6.4), we reached an
incorrect conclusion. Indeed we were focusing on the conservation of energy over
too short time scales, namely, 0.025 ps compared to the current 2.5 ps. We expect the
optimal fit parameters for the case with and without wave function optimization to be
in the same range of values. For this reason, we conclude that the energy conservation
observed with the noisy curve without rotations and translations (Fig. 6.8a) is due to
a fortuitous cancellation of the increase of energy due to noise and the decrease due
to insufficient optimization steps. Similarly, the energy decrease we observe when
fitting the forces (Fig. 6.8b) is again due to a lack of convergence of the forces in the
wave function optimization. We further comment on this aspect while examining the
thiophene molecule in an attempt to obtain a more complete picture.

6.5.2 Thiophene
For testing the case of thiophene, we use a simple HF starting wave function and,
to limit the computational cost, a smaller number of Monte Carlo steps, NMC, than
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the one employed in the previous Chapter to set the standard deviation, σQMC, of
the Gaussian noise added to the classical force-field forces. In particular, we use
NMC = 512000, which corresponds to an error in the energy of about 1.5 mHa.

We present the results in a similar way as for C2 starting with simulations where
the wave function is not optimized, but restrict the averages to only 5 trajectories
and the total time of the simulation to 1 ps. Having only 5 runs makes it more
difficult to have quantitative estimates but still allows us to assess the trends in the
simulations. As expected and shown in Fig. 6.9, constraining the translational and
rotational motion of thiophene slows the increase in total energy during the molecular
dynamics (panel a). Similarly, the fit procedure yields the intended improvement on
the use of noisy forces (panel b). However, the optimal fitting parameters, τfit, listed
in Table 6.1(B) are quite different from the values obtained with a classical force
field in the previous Chapter (see Table 5.1(B)). In particular, both τS,C and τH are
larger than in the classical case. Given that we start from the same initial conditions
as in the classical case, we attribute this discrepancy to the difference between the
QMC and the classical potential energy surface. For example, while in the classical
case, the initial conditions lead to an average kinetic energy of 1 eV, here, the kinetic
energy is about 0.85 eV. While the higher error in the forces (i.e. the choice of NMC)
can ,in principle, also be responsible for the change in parameters, we rule this out
since, for C2 and different lengths of the Monte Carlo runs to compute the forces, we
find the same range of optimal carbon parameters.

Finally, in Fig. 6.9c, we employ Langevin scheme 2 to thermalize the noise in
simulations with fitted forces (FIT 2) and different values of the γ parameters, which
are computed as in Eq. 6.12 for C2. We use different temperatures of 0.05 and 0.1
K, which correspond to a value of γ at the first time step of 2 and 0.7, respectively
(averaged over all carbon atoms and coordinates). The behavior of the total energy
is similar to the case of C2, where the larger γ does not improve on the fit. Given the
poorer statistics than in the C2 case, we cannot conclude that the results relative to
the smaller γ ameliorate the fit ones: even though the increase in energy is slower at
longer times, it also appears that the total energy is underestimated between 200 and
400 fs. Based on the current results, we can conclude that when we do not optimize
the wave function, we find similar trends for thiophene in QMC as in the classical
case, with the fitting procedure improving on the use of noisy forces. Due to the
difference with the force field PES, the fit parameters must, however, be reset, and
further investigation is needed on the effects of the thermalization of the excess noise
with respect to the fit.

Also, for thiophene, we now move to the case where we optimize the wave func-
tion, using different numbers of steps in the variational optimization with the stochas-
tic reconfiguration method at each MD step. As shown in Fig. 6.10 for averages over
5 trajectories of 0.3 ps, the use of 150 steps of variational optimization yields a nearly
constant energy for the entire simulation time, while we recover the same increase
with 200 steps as in the case with no optimization (panel a). This leads us to conclude
that 150 steps are insufficient to converge the QMC forces and that we are experienc-
ing the same issue encountered in Section 6.4: the decrease in energy due to lack of
convergence in the forces balances by chance the increase due to noise. Therefore,
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(a) Removing rotations. (b) Fitting the forces.

(c) Thermalizing the noise.

Figure 6.9: Total (kinetic plus potential) energies (eV) of thiophene averaged over 5
molecular dynamics runs when we recenter the wave function without optimizing it.
In panel a (top left), we show the total energy when we do and do not constrain the
translational and rotational motion. In panel b (top right), we fit the forces with the
different fit parameters, τfit, given in Table 6.1(B). In panel c (bottom), we thermalize
the noise for the fitting procedure FIT 2 and different values of γ labeled with the
average over all carbon atoms and coordinates. Both in panels b and c, we remove
translations and rotations from the system.

(a) Runs with noisy forces. (b) Runs with fitted forces.

Figure 6.10: Total (kinetic plus potential) energies (eV) of thiophene averaged over
5 molecular dynamics runs. Panel a (left): energies obtained with 150 and 200 itera-
tions of variational optimization at each MD step, compared with the no-optimization
case. Panel b (right): results relative to the fit procedure with parameters FIT 2. In
all cases, we constrain the translational and rotational motion.
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comparing the behavior of the total energy with the equivalent run with no optimiza-
tion appears to be a safe way to assess the number of needed steps in the variational
optimization. We note that, unfortunately, the averages obtained with/without opti-
mization and for different numbers of optimization steps behave in a very similar way
in the first 0.1 ps, rendering difficult a quick determination of the optimal number of
steps with short runs, as we had already inferred for C2.

Finally, in Fig. 6.10b, we show the total energy obtained in simulations with fitted
forces and the parameters labeled FIT 2, with and without variational optimization.
In particular, we use 200 optimization iterations of optimization and, in the short-
time investigated, find a similar behavior to the no-optimization case. Therefore,
also when we turn on the optimization, we can stabilize the total energy following
the fit procedure, provided a sufficiently high number of iterations of wave function
optimization is performed. Additionally, the fit parameters appear to be transferable
from the no-optimization case to the one when the wave function is optimized.

6.5.3 Excited-state relaxation of thiophene

All tests so far on the use of QMC forces in molecular dynamics clearly point to the
slow convergence of the variational optimization as an even more severe problem
than the presence of noise in the forces, at least over short times. In the examples of
the previous Section, this issue was controlled by performing stricter optimizations.
Here, as last test, we further raise the stakes and perform preliminary simulations of
excited-state molecular dynamics with QMC forces. This study is at an early stage
and should be seen as a proof of concept. In particular, we limit the analysis to
two trajectories with different starting points, do not consider possible non-adiabatic
effects, and employ a state-specific energy minimization approach based on a penalty,
which was only recently implemented in our in-house QMC code [19].

For the time being, we do not constrain the translational and rotational motion,
we do not fit the forces nor thermalize the noise. To ensure that the fluctuations in
the forces are finite, we use a node-cutoff parameter ε = 0.05 and further control the
forces as explained in Section 6.3. In addition, we optimize the wave function at each
time step, which is necessary if one wants to describe the system moving away from
the ground-state minimum configuration towards the conical intersection region. To
this aim, we perform 200 interactions of stochastic reconfiguration optimization as
in the previous thiophene calculations.

In Fig. 6.11, we show the time evolution following the excited-state forces for two
runs that start from different configurations. The runs employ the same number of
Monte Carlo steps and are therefore affected by the same amount of stochastic noise.
In one run (panel a), the system reaches a distorted configuration with an out-of-
plane sulfur atom, which we know from previous work in the literature to be visited
in the excited-state relaxation, being, in fact, the excited-state minimum. However,
since the total energy is clearly not being conserved (panel b), we decided to stop the
simulation. In the other run (panel c), the system reaches a conical intersection region
in about 50 fs in line with the results of Ref. [29]. Moreover, the final configuration is
the ring puckered one, which has a crucial role in the deactivation process and occurs
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on the same time scales as the more common ring opening one [29].

(a) Potential energies of the two states (run 1).
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(b) Total energy of the excited state (run 1).

(c) Potential energies of the two states (run 2).
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(d) Total energy of the excited state (run 2).

Figure 6.11: Potential and total energies (eV) of two molecular dynamics simula-
tions in which we follow the excited-state forces starting from two different initial
conditions. In panels a and c (left), we plot the ground- and excited-state potential
energies (with the starting ground-state energy as offset) during the two simulations
and also depict the final structure of the molecule. In both runs, the statistical error
on the potential energy is about 1 mHa (0.027 eV). In panels b and d (right), we plot
the corresponding total energies (with the starting total energy as offset).

Unfortunately, both runs exhibit a large loss in total energy of about 0.3 eV in
60 fs. While the molecule does not come to rest as in the examples of the previous
Section (see Appendix 6.B), this lack of energy conservation implies that we cannot
trust the results, for example, regarding the time needed to reach the conical inter-
section. Based on our previous findings, the decrease in total energy indicates that
200 optimization iterations are insufficient to converge the forces. This is perhaps
to be expected since we moved from a HF wave function in the previous tests to
a more complex complete-active-space wave function with as many as 5292 linear
coefficients to optimize. Since raising the number of optimization steps beyond 200
is computationally quite demanding, various routes for accelerating the variational
optimization are currently being explored within the group. We also note that some
jumps are present in the ground-state PES, which are possibly due to noise either in
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the energy (we are following the forces in the excited state) or in the optimization of
the multiple states, which must be further investigated.

In conclusion, more work is clearly needed to render the use of VMC forces com-
bined with the multi-state optimization a viable tool to investigate excited-state relax-
ation processes. It is, of course, encouraging that the system reaches configurations
that align with previous findings [28,29], but the main obstacle over short time scales
remains the optimization of the wave function. In the next Section, we explore a pos-
sible method aimed at speeding up the optimization, which looks promising for C2.
Further work is ongoing within the group to accelerate the stochastic reconfiguration
method via the use of appropriate rescaling factors for the various parameters [48,49]
which is currently being tested on thiophene in the ground state.

6.5.4 Accelerating the optimization of the wave function

Here, we propose a strategy to accelerate the convergence of the wave function op-
timization by using the wave function of the previous MD configurations to predict
better starting parameters at the present MD step. In Fig. 6.12, we show how the wave
function parameters of C2 vary in time during an MD run in which we optimize them
at every step. Both the CI and orbital parameters follow a clear oscillatory pattern
related to the motion of the molecule. Given their smooth variation in time, it is pos-
sible to save a short history of the parameters to predict the present ones through a
fit.
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Figure 6.12: Time evolution of some linear and orbitals coefficients during an MD
run of C2 in which we optimize the parameters at each MD step. At every MD step,
we plot the values of the parameters at the last of the 100 iterations of variational
optimization.

The procedure is similar to the fit of the forces performed in Chapter 5: we em-
ploy a third-order polynomial fit and, since a prediction with no knowledge of the
present is too unstable, we include some information from the present configuration.
To this aim, we perform 50 optimization iterations at each MD step and save the
optimal parameters of the previous 14 steps. We then perform a smaller number of
optimization steps (20) at the present configuration and fit the previous and present
parameter values (15 steps in total) with a third-order polynomial to estimate a better
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Figure 6.13: Total energies (eV) averaged over five MD runs where 50 iterations of
variational optimization are performed at each MD step with a standard procedure
(OPT50) and by fitting the orbital coefficients (FIT-OPT50) as described in the text.

starting point for the wave function at the present step. We then proceed with the op-
timization from the fitted wave function for 30 more iterations and finally compute
the forces. In Fig. 6.13, we apply this procedure to the optimization of the orbital
coefficients and obtain conservation of energy with only 50 optimization iterations,
compared to the more than 100 iterations needed to have constant energy without
the wave function fit. For completeness, in the same Figure, we also show that the
energy decreases if we use 50 variational optimizations with no fit.

6.6 Conclusion

In this Chapter, we have investigated the use of VMC forces in molecular dynamics
simulations. Our ultimate interest is to follow excited-state deactivation pathways,
so we have focused on the time scale of picoseconds and encountered three main
obstacles: i) the stochastic noise of the forces; ii) the infinite variance of the force
estimators; iii) the need for a well-converged optimization of the wave function and,
consequently, well-converged interatomic forces.

We have shown that it is possible to ameliorate the impact of all three issues, but
more work remains to be done, especially on the first and the last one. Concerning
the presence of noise in the forces, we have developed different strategies which help
in reducing the increase of total energy over the time scales of interest. The main
drawback is the need to tune various parameters (e.g. in the fit of the force), which
will depend on the starting conditions and on the portions of PES being visited by
the system. Ultimately, a functional form more flexible than the simple third-order
polynomial used here will have to be employed. Second, we have shown that well-
converged variational optimization is necessary for achieving energy conservation.
This step is the most computationally costly, and more research is needed before we
can perform affordable production runs. However, we believe that speeding up the
convergence is possible either through modifications in the stochastic reconfiguration
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method or through developments along the lines of what presented above.
In summary, this work takes a first, in-depth look at the possibilities and limita-

tions of the use of QMC for molecular dynamics. Despite the remaining challenges,
we believe that it shines a positive light on the potential use of QMC methods to
study dynamical processes in the excited state on the time scale of picoseconds. We
stress that such a study has only recently become possible thanks to the fast access to
the computation of energy derivatives and to the continuous development of robust
protocols to build excited-state wave functions and optimizers.

142



6.A Appendix: Impact of the variational optimization on potential and kinetic
energies

6.A Appendix: Impact of the variational optimiza-
tion on potential and kinetic energies

In Fig. 6.14, we show the kinetic and potential energies of C2 computed in MD runs
where we perform different numbers of optimization iterations of the wave function.

With 5 or 20 optimization iterations per MD step, we nearly recover the potential
energy of a fully optimized wave function (100 iterations) during the first few MD
steps. However, as time progresses, the system loses kinetic energy and the motion
becomes confined to smaller parts (lower energy) of the PES.
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Figure 6.14: Kinetic and potential energy (eV) during an MD run in which we
compute the QMC forces and energies after a different number of iterations of the
variational optimization. The two plots correspond to the total energy presented in
Fig. 6.4.

6.B Appendix: Kinetic energy during the excited-
state dynamics of thiophene

In Fig. 6.15, we plot the kinetic energy obtained during the two MD runs for thio-
phene in which we follow the excited-state forces. In these simulations, the total
energy decreases by 0.3 eV over 60 fs and the results of Run 1 clearly indicate that
the kinetic energy is slowly being damped. For Run 2, since the potential energy
is quickly decreasing towards a conical intersection, the kinetic energy is somewhat
increasing but not sufficiently to ensure energy conservation.
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Figure 6.15: Kinetic energy (eV) of the two molecular dynamics runs of thiophene
driven by the QMC forces in the excited state. The two plots correspond to the total
energies of Fig 6.11.
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Summary and Outlook

From vertical excitations towards excited-state relaxation:
a journey with quantum Monte Carlo

With this dissertation, we contribute to the study of molecular excitations by as-
sessing and expanding a specific electronic structure method: quantum Monte Carlo
(QMC). The excited states of molecules play a central role in activating many natu-
ral processes such as human vision, and in the functioning of new technologies like
solar panels. Their theoretical study is a very active field of research but, due to their
complex nature, we still lack a standard procedure to analyze them. On one side,
in many photo-induced processes, the effects of the environment on the molecule
become decisive and have to be taken into account, for example, by using mixed
quantum/classical approaches. On the other, outside the ground state equilibrium,
the potential energy surfaces to be described is very complex, and especially when
multiple states interact, the available quantum chemistry methods often fail.

In this thesis, we do not consider any effect of the environment and work on im-
proving the quantum mechanical description of excited states by focusing on QMC
methods, a class of techniques for solving the Schrödinger equation in a stochastic
manner. Lately, they are attracting increasing interest in the electronic structure com-
munity thanks to their favorable scaling with the number of electrons and the natural
ease in parallelization. In the context of excited states, they are affirming as a valid
alternative to other methods, especially for those complex cases where the cheapest
options (such as time-dependent density functional theory) fail in the description.
Moreover, recent algorithmic advancements in the QMC community have made it
possible to extend the description from small to medium and relatively large (about
100 non-hydrogen atoms) molecules and to compute accurate geometries in both
ground and excited states. Encouraged by this work, in this dissertation, we further
investigate the use of QMC for the study of molecular excited states. In particular,
in the first half of the manuscript (Chapters 3 and 4), we try to build robust protocols
to compute vertical excitations. In the second (Chapters 5 and 6), we explore and try
to address the problems connected to using QMC methods to describe excited-state
relaxation.

Building robust strategies to study vertical excitations. The use of QMC meth-
ods in the analysis of vertical excitation is a quite recent and fastly developing field.
We here contribute to it by investigating two crucial aspects: the construction of
the starting trial wave functions and their optimization. For the optimization of the
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wave function, there are different quantities that one can minimize. In Chapter 3,
we discuss which variational principle is more effective between variance and en-
ergy minimization in the context of excited states. In particular, we obtain accurate
excitation energies for two prototypical molecules by minimizing the energy, but we
encounter severe difficulties following the variance. By analyzing a simple model,
we infer that the variance landscape has little or no barriers between its minima. For
this reason, while minimizing the variance, the optimization leads to the, a priori
unknown, global minimum of the variance, making it hard or impossible to target a
specific state.

Using energy minimization, we then discuss in Chapter 3 and in more depth in
Chapter 4 the possible ways of constructing the trial wave function when the aim is
a balanced description of multiple states. We demonstrate how, by using a selected
configuration interaction (sCI) scheme, we can build compact trial wave functions
that, after being fully optimized in QMC, give vertical excitations energies in line
with other accurate quantum chemistry methods. Differently than the scheme previ-
ously used (based on complete active space (CAS) calculations), with sCI, we have
an automatic way of selecting important contributions to the wave function, remov-
ing any dangerous bias that could be introduced by the user’s understanding of the
problem. Moreover, with the sCI scheme, we obtain better accuracy with fewer pa-
rameters (less computationally demanding). Therefore, we can describe relatively
large molecules (in Chapter 4 we go from 3 to 19 atoms, excluding hydrogens) that
are not accessible by other accurate methods such us full CI (FCI) or approximate
coupled cluster singles, doubles, and triples (CC3).

Exploring the use of QMC methods for describing excited-state relaxations. Es-
tablishing systematic protocols for accurately calculating vertical excitations opens
the way for the study of excited-state relaxations. At the moment, few electronic
structure methods can achieve the task; with this work, we try to asses if we can use
QMC for such studies by investigating its strengths and limitations. In Chapter 5, we
focus on the consequences of having a statistical error (typical of any quantity esti-
mated with an MC integration) on the forces while performing a molecular dynamics
(MD) calculation. The error in the forces creates a random walk in the velocities re-
sulting in an increase in the total energy in time. Of course, the error would go to
zero in the limit of an infinitely long MC run (infinite points for the integral), and the
MD total energy would be stable. However, such long MC runs are currently too ex-
pensive, especially if we want to perform picoseconds long MD runs (as is needed to
follow excited state relaxation processes). For this reason, we develop new strategies
to obtain as stable as possible total energies without increasing the computational
cost. In particular, we constrain the molecule’s center of mass motion, removing un-
physical rotations and translations, and we develop an on-the-fly fit procedure that
uses the information of the past MD forces to improve the estimate of the present
one. In this way, we obtain relatively stable total energies by tuning few fit parame-
ters. To further improve on it, we also attempt to develop a Langevin-like scheme to
thermalize the excess noise without corrupting the dynamical path. In Chapter 6, we
examine two additional technical problems relative to QMC-driven MD calculations:
the infinite estimator of the variance of the forces and the effects of the optimization



of the QMC wave function at every MD step. The first is a known problem that we
solve in a standard way by introducing a guiding wave function designed to remove
the infinity. Regarding the second problem, we find that a partial optimization of the
wave function results in a decrease of the total energy in time, so at each MD, it is
crucial to perform a strict optimization (although expensive). Combining all these
findings and strategies, we show how we converge towards performing stable MD
simulations; moreover, quite encouragingly, our preliminary results in the excited
states align with previous findings.

To summarize, this dissertation contributes to establishing and enhancing QMC
methods for the study of photo-excitations. Parallel to this work, new efficient pro-
cedures for performing wave function optimization have been proposed, and they
have successfully been used for computationally challenging cases such as the ex-
cited states with a strong double excitation character. Moreover, with the rise of
machine learning methods, an increasing effort is being devoted to creating wave
function structures based on neural networks, and into borrowing and integrating ef-
ficient machine learning optimization algorithms into QMC. Additionally, big-scale
research projects, such as the European center of excellence TREX project, are im-
proving the efficiency and user-friendliness of the main QMC codes, enabling more
users to experiment with these methods. In this very active research picture, this
work has the advantage of not only contributing to the creation of robust backbones
for QMC calculations in excited states, but also of exploring the new territory of
molecular dynamics simulation with QMC forces. This direction is quite exciting
since it allows us to move from the static description of vertical excitations toward
following actual photo-excitation processes. Of course, more work is still necessary,
for example in understanding how to build efficient wave functions that are suitable
for molecular dynamic simulations. Furthermore, creating a more effective opti-
mizer would reduce the cost of the optimization (currently this being the bottleneck
of QMC-driven MD simulations). In summary, this dissertation helps setting up the
pillars needed to extend the description to more complex scenarios. For example,
together with the aforementioned advancements, a possibility is now to incorporate
non-adiabatic effects, for example, by including hopping probabilities among energy
surfaces.





Samenvatting en Vooruitblik

Van verticale excitaties naar relaxatie van de aangeslagen
toestand: een reis met quantum Monte Carlo.

Met dit proefschrift leveren we een bijdrage aan de studie van moleculaire excita-
ties door een specifieke elektronische structuurmethode te beoordelen en uit te brei-
den: quantum Monte Carlo (QMC). Aangeslagen toestanden van moleculen spelen
een centrale rol in het activeren van vele natuurlijke processen zoals het menselijk
gezichtsvermogen, en in het functioneren van nieuwe technologieën zoals zonnepa-
nelen. Theoretische studie van deze processen is een zeer actief onderzoeksgebied,
maar door hun complexe aard ontbreekt het ons nog steeds aan een standaardpro-
cedure om ze te analyseren. Enerzijds worden bij veel foto-geïnduceerde processen
effecten van de omgeving op het molecuul doorslaggevend en moet er daarom reke-
ning mee worden gehouden, bijvoorbeeld met een gemengde quantum/klassieke aan-
pak. Anderzijds zijn, buiten het evenwicht van de grondtoestand, de te beschrijven
potentiële energieoppervlakken zeer complex. Vooral wanneer meerdere toestanden
interactie met elkaar vertonen schieten de beschikbare quantumchemische methoden
vaak tekort.

In dit proefschrifthouden we geen rekening met omgevingseffecten. We werken
aan het verbeteren van de quantummechanische beschrijving van aangeslagen toe-
standen door ons te richten op QMC-methoden, een klasse van technieken voor het,
op een stochastische manier, oplossen van de Schrödinger vergelijking. De laatste
tijd krijgen deze technieken steeds meer belangstelling in de elektronische struc-
tuurgemeenschap dankzij de gunstige schaling met het aantal elektronen en door de
eenvoud van parallellisatie. In de context van aangeslagen toestanden vestigen deze
technieken zich als een goed alternatief voor andere methoden, vooral voor die com-
plexe gevallen waarin de goedkoopste opties (zoals tijdsafhankelijke dichtheidsfunc-
tionaaltheorie) falen in de beschrijving. Bovendien hebben recente ontwikkelingen
van algoritmen in de QMC-gemeenschap het mogelijk gemaakt de beschrijving uit
te breiden van kleine tot middelgrote en relatief grote (ongeveer 100 zware atomen)
moleculen en nauwkeurige geometrieën te berekenen in zowel de grondtoestand als
in de aangeslagen toestanden. Aangemoedigd door dit werk, onderzoeken we in dit
proefschrift het gebruik van QMC verder voor de studie van moleculaire aangesla-
gen toestanden. In het bijzonder proberen we in de eerste helft van het manuscript
(hoofdstukken 3 en 4) robuuste protocollen te ontwikkelen voor de berekening van
verticale excitaties. In de tweede helft (hoofdstukken 5 en 6) verkennen we pro-
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blemen die samenhangen met het gebruik van QMC-methoden om de relaxatie van
aangeslagen toestanden te beschrijven. Het ontwikkelen van robuuste strategieën
om verticale excitaties te bestuderen. Het gebruik van QMC methoden bij de ana-
lyse van verticale excitaties is een vrij actueel en een zich snel ontwikkelend onder-
zoeksgebied. In dit proefschrift leveren we hier een bijdrage aan door twee cruciale
aspecten te onderzoeken: de constructie van zogenaamde trial golffuncties en hun
optimalisatie. Voor de optimalisatie van de golffunctie zijn er verschillende groot-
heden die men kan minimaliseren. In de context van aangeslagen toestanden be-
spreken we in hoofdstuk 3 welk variatieprincipe effectiever is: variantie- of energie-
minimalisatie. Nauwkeurige excitatie-energieën voor twee prototypische moleculen
zijn door ons verkregen door de energie te minimaliseren, maar stuiten we op ern-
stige moeilijkheden bij het volgen van de variantie. Uit analyse van een eenvoudig
model leiden we af dat het variantielandschap weinig of geen barrières kent tussen
zijn minima. Daarom leidt de optimalisatie bij het minimaliseren van de variantie
tot het, a priori onbekende, globale minimum van de variantie, waardoor het moei-
lijk of onmogelijk is om een specifieke toestand aan te pakken. Met behulp van
energieminimalisatie bespreken we vervolgens in hoofdstuk 3 en meer diepgaand in
hoofdstuk 4 de mogelijke manieren om de trial golffunctie te construeren wanneer
het doel een evenwichtige beschrijving van meerdere toestanden is. We laten zien
hoe we, met behulp van een selected configuration interaction (sCI) schema, com-
pacte trial-golffuncties kunnen bouwen die, na volledig geoptimaliseerd te zijn in
QMC, verticale excitaties energieën geven die in overeenstemming zijn met andere
nauwkeurige quantumchemische methoden. Anders dan de eerder gebruikte proce-
dure (die gebaseerd is op complete active space (CAS) berekeningen), hebben we
met sCI een geautomatiseerde manier om de belangrijke bijdragen aan de golffunctie
te selecteren, waardoor elke gevaarlijke vooringenomenheid van het begrip van het
probleem van een gebruiker, wordt weggenomen. Bovendien verkrijgen we met het
sCI-schema een grotere nauwkeurigheid met minder parameters (minder rekeninten-
sief). Daarom kunnen we relatief grote moleculen beschrijven (in hoofdstuk 4 gaan
we van 3 tot 19 zware atomen) die niet toegankelijk zijn met andere nauwkeurige
methoden zoals volledige CI (FCI) of benaderde coupled cluster singles, doubles en
triples (CC3). Onderzoek naar het gebruik van QMC-methoden voor de beschrijving
van relaxaties van aangeslagen toestanden. Het opstellen van systematische proto-
collen voor het nauwkeurig berekenen van verticale excitaties opent de weg voor de
studie van relaxaties van de aangeslagen toestand. Momenteel zijn er weinig elek-
tronische structuurmethoden die deze taak kunnen uitvoeren; met dit werk proberen
we na te gaan of we QMC voor dergelijke studies kunnen gebruiken door de sterke
punten en beperkingen ervan te onderzoeken. In hoofdstuk 5 richten we ons op de
gevolgen van een statistische fout (typisch voor elke grootheid die geschat wordt met
een MC-integratie) op de krachten tijdens het uitvoeren van een moleculaire dyna-
mica (MD) berekening. De fout in de krachten creëert een zgn. random walk in de
snelheden die resulteert in een toename van de totale energie in de tijd. Uiteraard
zou de fout naar nul gaan in de limiet van een oneindig lange MC-run (oneindig
veel punten voor de integratie), en zou de totale MD-energie stabiel zijn. Dergelijke
MC runs zijn momenteel echter te duur, vooral als we picoseconden lange MD runs



willen uitvoeren (zoals nodig is om relaxatieprocessen van de aangeslagen toestand
te volgen). Daarom ontwikkelen we nieuwe strategieën om zo stabiel mogelijke to-
tale energieën te verkrijgen zonder de rekenkosten te verhogen. Zo beperken we de
beweging van het massamiddelpunt van het molecuul, waarbij we niet-fysieke rota-
ties en translaties verwijderen, en we ontwikkelen een on-the-fly fit-procedure die de
informatie van de vroegere MD-krachten gebruikt om de schatting van de huidige
te verbeteren. Op deze manier verkrijgen we relatief stabiele totale energieën door
weinig fit-parameters in te stellen. Om dit verder te verbeteren, proberen we ook
een Langevin-achtig schema te ontwikkelen om de overtollige ruis te thermiseren
zonder het dynamische pad te corrumperen. In hoofdstuk 6 onderzoeken we twee
bijkomende technische problemen in verband met QMC-gestuurde MD berekenin-
gen: de zgn. infinite estimator van de variantie van de krachten en de effecten van
de optimalisatie van de QMC golffunctie bij elke MD stap. Het eerste is een bekend
probleem dat we op een standaard manier oplossen door een sturende golffunctie
te introduceren die de oneindigheid wegneemt. Wat het tweede probleem betreft,
vinden we dat een gedeeltelijke optimalisatie van de golffunctie resulteert in een af-
name van de totale energie in de tijd, dus bij elke MD is het van cruciaal belang
om een strikte optimalisatie uit te voeren (hoewel duur). Door al deze bevindingen
en strategieën te combineren, laten we zien hoe we convergeren naar het uitvoeren
van stabiele MD simulaties; bovendien zijn onze voorlopige resultaten in de aange-
slagen toestanden, heel bemoedigend, in overeenstemming met eerdere bevindingen.
Samengevat draagt dit proefschrift bij aan het vaststellen en verbeteren van QMC
methoden voor de studie van foto-excitaties. Parallel aan dit werk zijn nieuwe ef-
ficiënte procedures voor het uitvoeren van golffunctie-optimalisatie voorgesteld, en
deze zijn met succes gebruikt voor computationeel uitdagende gevallen zoals de aan-
geslagen toestanden met een sterk dubbel excitatie karakter. Bovendien wordt, met
de opkomst van machine learning, steeds meer aandacht besteed aan het creëren van
golffunctiestructuren op basis van neurale netwerken, en aan het lenen en integreren
van efficiënte machine learning optimalisatiealgoritmen in QMC. Bovendien ver-
beteren grootschalige onderzoeksprojecten, zoals het Europese center of excellence
TREX-project, de efficiëntie en gebruiksvriendelijkheid van de belangrijkste QMC-
codes, waardoor meer gebruikers met deze methoden kunnen experimenteren. In dit
zeer actieve onderzoeksveld heeft dit werk het voordeel dat het niet alleen bijdraagt
aan de totstandkoming van robuuste QMC berekeningen aan aangeslagen toestan-
den, maar ook dat het nieuwe terrein van moleculaire dynamica simulatie met QMC
krachten wordt verkend. Deze richting is erg spannend, omdat het ons in staat stelt
om van de statische beschrijving van verticale excitaties over te stappen op het vol-
gen van werkelijke foto-excitatieprocessen. Natuurlijk is er nog meer werk nodig,
bijvoorbeeld om te begrijpen hoe efficiënte golffuncties kunnen worden opgebouwd
die geschikt zijn voor moleculair dynamische simulaties. Bovendien zou het ma-
ken van een effectievere optimalisator de kosten van de optimalisatie verminderen
(momenteel is dit de bottleneck van QMC-gestuurde MD simulaties). Samengevat
helpt dit proefschrift bij het opzetten van de pijlers die nodig zijn om de beschrijving
uit te breiden naar complexere scenario’s. Samen met de bovengenoemde verbete-
ringen is het nu bijvoorbeeld mogelijk om niet-adiabatische effecten op te nemen,



bijvoorbeeld door zgn. hopping-waarschijnlijkheden tussen energieoppervlakken op
te nemen.



Acknowledgments

This manuscript is the result of four years of work in the computational chemical
physics group of the University of Twente. This experience would not have been
possible without the help and support of many people. As I approach the end of this
journey, I want to express my gratitude to each of them.

I start by thanking my promotor Prof. Claudia Filippi for her help and constant
presence in this journey. Her guidance and support throughout the whole time have
been essential to me. She is a careful supervisor, a passionate researcher, and a model
to follow. Her academic honesty and personal involvement with any of her students
are admirable. I am grateful to her for this opportunity which has made me grow
both personally and professionally. I also want to thank my unofficial co-supervisor
Prof. Wim Briels, who has been patiently coming to Enschede to work with us. I
appreciate having the opportunity to work closely with him and of going through
the creative solutions he comes up with for any new problem. I thank him for his
warm presence and for cheering my days by always being ready to discuss any kind
of subject with both wisdom and curiosity.

Next, I would like to thank Dr. Anthony Scemama, who has collaborated with
us for the first half of this work. Thanks for introducing us to the CIPSI code and
for always being easy to reach for any doubt or difficulty with the code. Similarly, I
would like to thank Dr. Saverio Moroni, whose sharp comments and considerations
always give an exciting twist to the papers and become the motivation to dig deeper
and gain a better understanding. I also want to thank Prof. Johannes Neugebauer,
Prof. Geert-Jan Kroes, Dr. Bernd Ensing, Prof. Geert Brocks, and Prof. Wim Briels
for agreeing to be part of my committee and for taking the time to read my thesis.

Of course, I could not forget to thank all the rest of the people who have created
a positive and comfortable environment for me during these years. Firstly, Monika,
who has made me feel welcome from the first day I arrived in the group and has
guided me to my life in Enschede. She has been an invaluable help in my work
and a great friend to share any activity with. I thank Emiel for sharing some parts
of the dynamics project with me with his great enthusiasm. I also want to thank
all the former and present group members: Vishal, Jonas, Ramon, Ravindra, Stu,
Edgar, Jacopo, and Marco, for creating a supportive and relaxed atmosphere where
to unload all complaints and stress that accompany the Ph.D. life. Moreover, seeing
the group expand and get closer contact with the rest of the theory corridor has been
great. I am grateful to Raisa, Linn, Menno, Jonathan, Geert, Paul, Max, and Kostas
for making lunchtime more lively and for the nice outings. Finally, I thank Gerrit-Jan

159



for his cheerful presence and valuable feedback on my summary and, of course, for
providing a Dutch translation of it.

I thank my paranymphs, Valentina Barone and Kriti Gupta, for agreeing to stay
next to me during the ceremony. I hope you will make time go faster! I am delighted
to have shared these years with both of you. In particular, I should thank Vale for
appreciating my food and not complaining even when the result is fairly questionable.
And, I thank Kriti for cooking amazing food for me and for sharing with me the
excitement of trying new restaurants.

I also want to thank the fantastic chemists that populate the other side of the
corridor! You have always been up to take a coffee with me and made me feel
included. I am particularly thankful to Luca, Daniele, Jacopo, and Giuli for sharing
different parts of this path with me with coffees, dinners, gossip and much more. I
also want to thank Martina, Ege, Natalya, Mireia, and Hazal for being caring and
supportive in the last challenging months of my Ph.D.

I will also need to thank Bave, Sasi, Lelo, Stu, Vale, and Laura for filling and
disrupting my every day here. Thanks also to my new (or not so much!) Enschede
friends Martina, Lucia, Lorenzo, Federica, Raffaele, Benedetta, Kostas, Rojin, Sid,
Phritvi, Krupa and Abel for the time spent together. I also thank Andi, Ani, Ceci,
Fil, Fra and Martoli for constantly keeping going with me. I thank my small and
extended family for being amazingly supportive. I am grateful for the care and the
chaos each of you provides to my life. Finally, I thank my father for forcing the
pumpkin flowers to wait for me alive and my mother for frying them in all mystical
ways.




	Introduction
	Structure of the thesis
	Bibliography

	Theoretical methods
	Separating the electronic and nuclear motion
	Solving the electronic problem
	Solution for the nuclei
	Codes used in this thesis
	Bibliography

	Variational principles in QMC: the troubled story of variance minimization
	Introduction
	Methods
	Computational details
	Results
	Discussion and conclusions
	Appendix: Expressions for the gradient and Hessian
	Appendix: Dependence of variance minimization on the choice of target energy 
	Appendix: Dependence of variance minimization on the damping factor 
	Appendix: Variance minimization with gradient-only optimizer
	Appendix: Variance minimization with  functional
	Appendix: Variance minimization with CIPSI wave functions
	Bibliography

	Reference excitation energies of increasingly large cyanine dyes: a QMC study
	Introduction
	Methods
	Computational details
	Results
	Conclusion
	Appendix: CIPSI and QMC results for CN3
	Appendix: CIPSI results for all molecules
	Appendix: QMC results
	Bibliography

	Dynamics with QMC forces: dealing with noisy forces
	Introduction
	Noisy forces in quantum Monte Carlo
	Computational details
	Results
	Conclusions
	Appendix: Removing rotations and translations
	Appendix: Not removing rotations and translations
	Appendix: Langevin with memory
	Bibliography

	Dynamics with QMC forces: exploring limits and possibilities
	Introduction
	Computational details
	Forces with finite variance
	Optimization of the wave function
	Results
	Conclusion
	Appendix: Impact of the variational optimization on potential and kinetic energies
	Appendix: Kinetic energy during the excited-state dynamics of thiophene
	Bibliography

	List of publications
	Summary and Outlook
	Samenvatting en Vooruitblik
	Acknowledgements

