
Yield Evaluation of Faulty Memristive Crossbar
Array-based Neural Networks with Repairability

Anu Bala∗, Saurabh Khandelwal∗, Abusaleh Jabir∗ and Marco Ottavi†

∗School of ECM, Oxford Brookes University, UK

Email: {15057719, skhandelwal, ajabir}@brookes.ac.uk
†University of Rome Tor Vergata and Italy, University of Twente, The Netherlands

Email: m.ottavi@utwente.nl

Abstract—This paper evaluates the yield of a memristor-based
crossbar array of artificial neural networks in the presence of
stuck-at-faults (SAFs). A technique based on Markov chains is
used to estimate the yield in the presence of stuck-at-faults. This
method provides a high degree of accuracy. Another method that
is used for analysis and comparison is the Poisson distribution,
which uses the sum of all repairable fault patterns. A fault repair
mechanism is also considered when evaluating the yield of the
memristor crossbar array. The results demonstrate that the yield
could be improved with redundancies and a higher repairable
stuck-at-fault ratio.

Keywords-Memristor, Memristive Crossbar, Stuck-at-Faults,
Neural Network

I. INTRODUCTION

A memristive crossbar architecture provides fast, low power

circuits for high precision matrix-vector multiplication [1],

[2]. The computational accuracy of memristor-based neural

circuits is considerably affected by stuck-at-faults in memristor

devices, as it is difficult to avoid stuck-at-faults during the

manufacturing processes. Memristors can be stuck in a low

or high resistive state. Therefore, these faults can limit the

recognition accuracy of memristor-based neural circuits [3],

[4].

In most cases, neural networks can accept a limited number

of faulty synaptic weights; however, a high defect rate dramat-

ically reduces the accuracy of the matrix-vector calculations.

The retraining and weight mapping processes are used to train

the neural network with faulty memristors [5]–[7].

This paper aims to calculate the yield of a memristor

crossbar array used for neural networks using a Markov chain,

which provides ease of use without sacrificing accuracy and

representativeness. The benefit of the repair process is also

considered while using the Markov chain model. The Poisson

distribution approach proposed in [8] is also used for analysis

and comparison as it is a faster industry-based approach for

embedded SRAMs. Different aspects of these two evaluation

techniques are also discussed.

The rest of the paper is organized as follows: Section II

describes the yield models used for yield evaluation in this

paper. Section III explains the simulation of a memristor

crossbar array with stuck-at-faults. It also explains the state

diagram and transition rates of the Markov chain that are

used to evaluate the yield. The yield evaluation results are

demonstrated in Section IV. Section V compares the results

of both the methods used for yield calculations. The paper is

concluded in Section VI.

II. BACKGROUND

The yield is described as the probability of chip acceptabil-

ity during the manufacturing process.

A. The Markov chain modeling

The Markov chains [9], [10] are a stochastic model that

represents a series of probable events in which the next state’s

probabilities are entirely based on the events in the current

state, not the previous states.

A labeled directed graph G = (V,E) can be used to

describe a Markov chain with state-space V and transition

matrix P , where the edges are defined by nonzero probability

transitions.

E = (u, v)|Pu,v > 0 (1)

Here, an edge from u to v is labeled by the probability Pu,v .

The matrix will be N×N if the Markov chain has N potential

states. This matrix’s rows must add up to one. An N×1 Initial

State Vector is also included in a Markov chain.

In Markov chains, a higher-order transition matrix is used

to determine the probability of that transition occurring over

a number of steps.

B. Poisson Distribution

Let λ0 be the mean number of faults of each type in a

memristor crossbar array. The probability that a crossbar array

has k faults is determined by the Poisson distribution function

as shown in Eq. 2

P (k) =
e−λ0λk

0

k!
, for k = 0, 1, 2 · · · (2)

The probability of a chip having no faults is known as the

yield, which is determined for k = 0 by Eq. 3 i.e., if there is

no redundancy on the chip.

Y = P (0) = e−λ0 (3)978-1-6654-7355-2/22/$31.00 ©2022 IEEE20
22

 IE
EE

 2
8t

h
In

te
rn

at
io

na
l S

ym
po

si
um

 o
n

O
n-

Li
ne

 T
es

tin
g

an
d

R
ob

us
t S

ys
te

m
 D

es
ig

n
(I

O
LT

S)
 |

97
8-

1-
66

54
-7

35
5-

2/
22

/$
31

.0
0

©
20

22
 IE

EE
 |

D
O

I:
10

.1
10

9/
IO

LT
S5

67
30

.2
02

2.
98

97
18

3

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 28,2022 at 14:51:22 UTC from IEEE Xplore. Restrictions apply.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 28,2022 at 14:51:22 UTC from IEEE Xplore. Restrictions apply.

TABLE I: Transition Table

Transition Rates Weighted sum of probable faults
λG,(i0,j1) λSA0(ncnr)

λG,(i1,j0) λSA1(ncnr)

λ(i0,jn),(i0,jn+1) λSA0(ncnr − n)

λ(i0,jn),(i1,j0) λSA1(nc − (nc − 1))(nr − n)

λ(i0,jn=m),(i1,j0) λ(SA1+SA0)(nc − (nc − 1))(nr − n)

λ(i0,jn),(i1,jn) λSA1(nc − n)nr

λ(i0,jn=m),(i1,jn) λ(SA1+SA0)(nc − n)nr

λ(i1,jn−1),(i1,jn) λSA0(nc − 1)nr − (n− 1)

λ(i1,jn−1),(i2,j0) λSA1(nc − n)nr

λ(i1,jn=m),(i2,j0) λ(SA1+SA0)(nc − n)nr

λ(i1,jn),(i2,jn−1) λSA1(nc − (nc − 1))(nr − n)

λ(i1,jn=m),(i2,jn−1) λ(SA1+SA0)(nc − (nc − 1))(nr − n)

λ(i2,jn−1),(i2,jn) λSA0(nc − 2)nr − (n− 1)

λ(i2,jn−1),F λSA1(nc − 2)nr − (n− 1)

• SA0>SA1. In this case, we considered the ratio of the

SA0 faults to be higher than the SA1 faults.

• SA0<SA1. In this case, the ratio of SA1 faults is

considered higher than SA0 faults.

• SA0=SA1. In this case, the ratio of both faults is

considered equal.

With the increasing percentage of SA0 faults the yield

increases. The yield is higher in the case where the ratio of

SA0 faults is higher.

As we discussed in the previous section, if the percent-

age of SAFs increases beyond the internal tolerance of the

neural network, then the computational accuracy decreases.

Additionally, SAF probabilities increase with the larger array

sizes. The yield is calculated for different-sized memristor

crossbar arrays. The chosen array sizes are 4×4, 128×128,

and 256×256. For all these array sizes, the yield has been

calculated with zero and two spare columns and different fault

ratios have been considered. The plot reported in Fig. 3, Fig. 4

shows the yield for 128×128, 256×256 memristor crossbar

array with and without redundancies. The value of λ0 varies

from 0 to 40 in the plots reported in Fig. 3 and Fig. 4. All the

resulted plots show that the yield is higher with spare columns

as compared to no spare columns. In terms of fault ratio,

results show that with the increase of repairable fault ratio,

the yield increases. Fig. 5 and Fig. 6 illustrate the yield with

two, four and no spare columns for the array sizes 256×256

and 512×512, respectively. Both SAFs are considered equal

in these cases and the value of λ0 varies from 0 to 30. The

results demonstrate that adding more redundancies could boost

the yield. As a result, crossbar array yield can be improved

by using effective re-training methods for memristive neural

networks with SAFs and redundancies.

V. COMPARISON

The yield calculated by using two methods is compared in

this section. For comparison, the Poisson distribution [8] and

the Markov chain model [12] are used to calculate yield. Many

characteristics of these two methods are different. The Markov

chain uses a repair procedure that evolves in real-time, whereas

the Poisson distribution uses a static probabilistic analysis.

0 10 20 30 40

Average Defect Rate

0

0.2

0.4

0.6

0.8

1

Y
ie

ld

with 2 spare col (SA0=SA1)

without spare col

with 2 spare col (SA0>SA1)

with 2 spare col (SA0<SA1)

Fig. 2: Yield evaluation varying fault ratio for 4×4 memristor crossbar array.

0 10 20 30 40 50

Average Defect Rate

0

0.2

0.4

0.6

0.8

1

Y
ie

ld

with 2 spare col (SA0>SA1)

with 2 spare col (SA0<SA1)

with 2 spare col (SA0=SA1)

without spare col

Fig. 3: Yield evaluation varying fault ratio for 128×128 memristor crossbar
array.

0 10 20 30 40 50

Average Defect Rate

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Y
ie

ld

with 2 spare col (SA0>SA1)

with 2 spare col (SA0<SA1)

with 2 spare col (SA0=SA1)

without spare col

Fig. 4: Yield evaluation varying fault ratio for 256×256 memristor crossbar
array.

0 5 10 15 20 25 30

Average Defect Rate

0

0.2

0.4

0.6

0.8

1

Y
ie

ld

without spare col

with 2 spare col

with 4 spare col

Fig. 5: Yield evaluation for 256×256 memristor crossbar array.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 28,2022 at 14:51:22 UTC from IEEE Xplore. Restrictions apply.

TABLE II: Comparison Table for Array size 4×4

λ0=0.2 λ0=0.4 λ0=2 λ0=4
PD MC Difference PD MC Difference PD MC Difference PD MC Difference

no spare col 0.9047 0.9042 -0.0005 0.8178 0.8162 -0.0016 0.3383 0.3323 -0.006 0.0916 0.0898 -0.0018
two spare col 0.9998 0.9999 1e-04 0.9988 0.9996 0.0008 0.891 0.9606 0.0696 0.5312 0.7945 0.2633
four spare col 1 1 0 1 1 0 0.9930 1 0.007 0.8730 1 0.127

TABLE III: Comparison Table for Array size 32×32

λ0=0.2 λ0=0.4 λ0=2 λ0=4
PD MC Difference PD MC Difference PD MC Difference PD MC Difference

no spare col 0.8178 0.8177 -1e-04 0.8178 0.8177 -1e-04 0.3383 0.3371 -0.0012 0.0916 0.0903 -0.0013
two spare col 0.9988 0.9989 1e-04 0.9988 0.9989 1e-04 0.891 0.9054 0.0144 0.5312 0.5711 0.0399
four spare col 1 1 0 1 1 0 0.9930 0.9951 0.0021 0.8730 0.9040 0.031

TABLE IV: Comparison Table for Array size 128×128

λ0=0.2 λ0=0.4 λ0=2 λ0=4
PD MC Difference PD MC Difference PD MC Difference PD MC Difference

no spare col 0.9047 0.9047 0 0.8178 0.8177 -1e-04 0.3383 0.3379 -0.0004 0.0916 0.0911 -0.0005
two spare col 0.9998 0.9998 0 9988 9989 1e-04 0.891 0.8988 0.0078 0.5312 0.5501 0.0189
four spare col 1 1 0 1 1 0 0.9930 0.9936 0.0006 0.8730 0.8812 0.0082

0 5 10 15 20 25 30

Average Defect Rate

0

0.2

0.4

0.6

0.8

1

Y
ie

ld

without spare col

with 2 spare col

with 4 spare col

Fig. 6: Yield evaluation for 512×512 memristor crossbar array.

Yield is evaluated using these methods by considering different

average defect rates and array sizes. The results are calculated

and compared using two, four and no spare columns as shown

in Tables II, III and IV. The same fault ratio is used in both

methods. The execution processes of these two methods are

also different in terms of memory size and aspect ratio. The

Poisson distribution method does not contain these. In terms

of complexity, the Markov chain approach is more complex

than the Poisson distribution as it uses matrix multiplication as

shown in Eq. 5. However, the number of matrix multiplications

in this equation is proportional to the desired accuracy, which

is higher for lower values of execution steps ∆λ and the

highest value of the average fault number λ0. On the other

side, for available spare columns and a given number of faults,

the Poisson distribution method determines if there is a repair

configuration authorised by the available spare columns for

each possible defect. As a result, it is required to compute

fewer operations than the Markov chain. However, the Poisson

distribution ignores the fault overlaps; it does not consider

two horizontal pairs overlapping or two stuck-at-faults on the

same column. As the position of the faults also affects the

vector-matrix multiplication in memristive neural networks.

We considered a lower to higher average defect rate for

comparison and these values are considered based on the data

used in [12]. The evaluated yield results for comparison are

shown in Tables II, III and IV. The results show that both

methods produce close or similar results for smaller values of

λ0 and the yield calculated by using the Poisson distribution

is underestimated for higher values of average defect rate. As

a result, higher defect rates should be considered in order to

obtain more accurate results, and the Markov chain method is

more effective for memristor crossbar based neural networks

as it considers fault positions and array sizes while evaluating

the yield and provides more accurate results for larger array

sizes.

VI. CONCLUSION

In this paper, a Markov chain-based approach is used to

calculate the yield of a memristor crossbar array. Yield is

estimated for different sized memristor crossbar arrays with

varying fault ratios. A Poisson distribution approach is also

considered to evaluate the yield and compare it. The yield is

calculated by considering zero, two, and four redundancies for

chosen array sizes. The Markov chain is more complex than

the Poisson distribution in terms of complexity. However, in

terms of flexibility and accuracy, the Markov chain provides

more accuracy with a higher average defect rate, as the results

are shown. It is more flexible because the crossbar array

can consider defect positions, which is also helpful in re-

training methods used for memristive crossbar neural networks

with stuck-at-faults. Thus, to obtain more accuracy, higher

values of the average defect rate should be chosen. Hence, the

Markov chain can be more effective for calculating the yield

for memristive crossbar arrays used for deep neural networks

because it provides more accurate results with a higher average

defect rate.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 28,2022 at 14:51:22 UTC from IEEE Xplore. Restrictions apply.

REFERENCES

[1] C. Liu, Q. Yang, B. Yan, J. Yang, X. Du, W. Zhu, H. Jiang, Q. Wu,
M. Barnell, and H. Li, “A memristor crossbar based computing engine
optimized for high speed and accuracy,” in 2016 IEEE Computer Society

Annual Symposium on VLSI (ISVLSI). IEEE, 2016, pp. 110–115.
[2] M. Hu, J. P. Strachan, Z. Li, E. M. Grafals, N. Davila, C. Graves, S. Lam,

N. Ge, J. J. Yang, and R. S. Williams, “Dot-product engine for neuro-
morphic computing: Programming 1t1m crossbar to accelerate matrix-
vector multiplication,” in 2016 53nd acm/edac/ieee design automation

conference (dac). IEEE, 2016, pp. 1–6.
[3] L. Xia, W. Huangfu, T. Tang, X. Yin, K. Chakrabarty, Y. Xie, Y. Wang,

and H. Yang, “Stuck-at fault tolerance in rram computing systems,” IEEE

Journal on Emerging and Selected Topics in Circuits and Systems, vol. 8,
no. 1, pp. 102–115, 2017.

[4] C.-Y. Chen, H.-C. Shih, C.-W. Wu, C.-H. Lin, P.-F. Chiu, S.-S. Sheu,
and F. T. Chen, “Rram defect modeling and failure analysis based on
march test and a novel squeeze-search scheme,” IEEE Transactions on

Computers, vol. 64, no. 1, pp. 180–190, 2014.
[5] O. Tunali and M. Altun, “A survey of fault-tolerance algorithms for

reconfigurable nano-crossbar arrays,” ACM Computing Surveys (CSUR),
vol. 50, no. 6, pp. 1–35, 2017.

[6] L. Chen, J. Li, Y. Chen, Q. Deng, J. Shen, X. Liang, and L. Jiang,
“Accelerator-friendly neural-network training: Learning variations and
defects in rram crossbar,” in Design, Automation Test in Europe Con-

ference Exhibition (DATE), 2017, 2017, pp. 19–24.
[7] B. Zhang, N. Uysal, D. Fan, and R. Ewetz, “Handling stuck-at-faults in

memristor crossbar arrays using matrix transformations,” in Proceedings

of the 24th Asia and South Pacific Design Automation Conference, 2019,
pp. 438–443.

[8] X. Wang, M. Ottavi, and F. Lombardi, “Yield analysis of compiler-based
arrays of embedded srams,” in Proceedings 18th IEEE Symposium on

Defect and Fault Tolerance in VLSI Systems. IEEE, 2003, pp. 3–10.
[9] J. R. Norris and J. R. Norris, Markov chains. Cambridge university

press, 1998, no. 2.
[10] G. O. Roberts, “Markov chain concepts related to sampling algorithms,”

Markov chain Monte Carlo in practice, vol. 57, pp. 45–58, 1996.
[11] C. Liu, M. Hu, J. P. Strachan, and H. Li, “Rescuing memristor-based

neuromorphic design with high defects,” in 2017 54th ACM/EDAC/IEEE

Design Automation Conference (DAC), 2017, pp. 1–6.
[12] M. Ottavi, “Evaluating the yield of repairable srams for ate: Ieee

transactions on instrumentation and measurement,” IEEE transactions

on instrumentation and measurement, 2006.
[13] B. Ciciani and G. Iazeolla, “A markov chain-based yield formula for

vlsi fault-tolerant chips,” IEEE transactions on computer-aided design

of integrated circuits and systems, vol. 10, no. 2, pp. 252–259, 1991.
[14] C. Yakopcic, R. Hasan, and T. M. Taha, “Tolerance to defective

memristors in a neuromorphic learning circuit,” in NAECON 2014-IEEE

National Aerospace and Electronics Conference. IEEE, 2014, pp. 243–
249.

[15] C. B. Moler, Numerical computing with MATLAB. SIAM, 2004.

Authorized licensed use limited to: UNIVERSITY OF TWENTE.. Downloaded on November 28,2022 at 14:51:22 UTC from IEEE Xplore. Restrictions apply.

