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Abstract 23 

A major challenge in motor neuroscience is to understand the dynamics of motor learning and sequence 24 

acquisition in naturalistic settings beyond keyboard pressing tasks.  A great deal of theory has been 25 

derived from established paradigms like the Discrete Sequence Production (DSP) task, yet it is largely 26 

unknown if applications beyond keyboard responses are feasible.  In addition, further understanding of 27 

whole-body motor learning tasks would unravel other dimensions of motor coordination dynamics that 28 

contribute to learning.  This leads to richer understanding of preparation, decision making, movement 29 

execution and optimisation processes when learning motor sequences.  The current protocol describes 30 

how to conduct a modified DSP task by dance-stepping, allowing the study of whole-body dynamics.  31 

Firstly, we provide the necessary program in an E-Prime® script for replication and the DSP task is 32 

presented in a go/no-go method to further elucidate motor-specific execution.  We explain a basic variant 33 

of the experiment with minimal and commercially available hardware, then scale the research 34 

possibilities and outline the integration of the Xsens motion capture systems for measuring kinematic 35 

variables like centre of mass displacement/ velocity changes.  The additional measures allow researchers 36 

to investigate relationships between response times and movement kinematics for insight to learning 37 

processes.  We showcase representative results to highlight possible ways data could be modelled.  38 

Finally, we cover the future opportunities and limitations of using such an approach.  The goal is to 39 

make the experiment accessible for others to conduct that is supported by a publicly available video of 40 

the experimental procedure.  41 

https://youtu.be/DzjBRirkdqk
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1. Introduction 42 

The Discrete Sequence Production (DSP) task (Verwey, 1999, 2001) is a motor sequence learning 43 

research paradigm with well-established theoretical frameworks explaining the development of 44 

sequential learning behaviour (Abrahamse et al., 2013; Verwey et al., 2015).  The DSP task is typically 45 

performed on a computer where learners use a keyboard to practice two short key pressing sequences of 46 

between 3–7 stimuli (scalable) separated with a clear break (Verwey et al., 2019).  A series of 47 

placeholders (in the form of small squares) are displayed on a monitor, and each of the placeholders 48 

corresponds to one of the keys of the keyboard in a spatially compatible manner (see Abrahamse, 49 

Ruitenberg, de Kleine, & Verwey, 2013).  When a placeholder lights up, learners rapidly press the 50 

compatible response key, and the next stimulus is displayed with virtually no time lag from the previous 51 

response.  The keyboard DSP task has three distinctive features, firstly it starts typically with an 52 

extended practice phase of about 500 repetitions per sequence.  With extensive practice leading to an 53 

over-learning situation, the DSP task becomes a two-choice reaction time task due a stable sequence 54 

representation, performed with automaticity.  Each response consists of a familiar keying sequence that 55 

can be considered a building block of more complex motor movements (Arnold et al., 2017; Verwey et 56 

al., 2019).  The second distinct feature of the DSP task is that sequences are usually counterbalanced for 57 

response sequence positions by performing a shift of keys for individual participants.  Specific 58 

sequential positioning effects due to specific fingers can therefore be ruled out, as each finger contributes 59 

equally to the response times (RT) (Abrahamse et al., 2013).  Counterbalancing also ensures that same 60 

sequences can be familiar and unfamiliar not because of control-order but due to underlying cognitive 61 

control processes.  A third important feature is that the sequences remain discrete, i.e., limited to up to 62 

7 key presses.  This allows participants to prepare part of the sequence and, therewith, allow them to 63 

develop integrated sequence representations (Verwey et al., 2015). 64 

Although key-press tasks are easy to conduct and the brief time to press individual keys give a 65 

good insight in the underlying sequence control processes, a broader ongoing challenge in motor 66 

sequence learning research is the strive for experimental paradigms to be more naturalistic and 67 

ecological like everyday whole-body movement activities.  In daily activities and sports, multiple body 68 

parts are coordinated to successfully perform task-related movements.  Current day theoretical motor 69 

sequence learning frameworks (Abrahamse et al., 2010; Cleeremans & Jimenez, 1998; Clegg et al., 70 

1998; Keele et al., 2003; Verwey et al., 2015; Willingham et al., 2000) have been derived almost 71 

exclusively from keyboard-based tasks.  One limitation is that these frameworks still may not fully 72 

explain the entire spectrum of the motor learning phenomena that result in different motor execution 73 

patterns.  Heuer (1993) outlined that the task constraints typically drive the motor optimisation process, 74 

which means that one cannot assume the same outcomes and phenomena when using different limb 75 

modalities to respond to a centralised sequence structure.  In some instances, indeed movements learnt 76 

in one modality showed limited transfer to other limbs even though sequences remained the same 77 
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(Barnhoorn et al., 2016).  Therefore, it is important to design experiments that account for multilimbed 78 

coordination in sequence learning and current theoretical frameworks provide a strong foundation of 79 

learning phenomena, but also allow for extension of new cognitive and motor discoveries. 80 

As a step towards investigating multilimbed motor sequence learning, Du and Clark (2018) 81 

ported another keying paradigm called the Serial Reaction Timed (SRT) task (Nissen & Bullemer, 82 

1987), into a foot-step version to investigate centre of mass (CoM) changes prior to movement, as an 83 

objective indicator for explicit knowledge of sequence.  Olivier et al. (2021) reported on the feasibility 84 

of the SRT task foot-step design, to understand its utility across different populations, thus backing the 85 

trend of increased interest of naturalistic motor sequence learning tasks.  The DSP task has the same 86 

potential as the SRT task for transfer towards a dance-step version.  Our goal was to create a dance-step 87 

DSP task that would encompass the same properties at the basic level to measure behavioural 88 

performances, with the ability to scale up for different experimental goals.  There are three main points 89 

that we consider as new developments from the usual key-press DSP task: 1) Disassociation of cognitive 90 

and motor processes; 2) increased scalability of DSP task experiments to understand individualised body 91 

kinematics; 3) applications to ageing.  92 

The first point is that cognitive processes involved in movement planning for finger-press 93 

execution are often embedded in RT when stimuli are continuous with immediate responding because 94 

finger-presses do not involve moving to new locations due to their fixed locations.  RT is typically a 95 

summation of reaction time and movement time (Du & Clark, 2018; Du et al., 2017), and it is important 96 

to detangle these two important elements.  In the current manuscript, the DSP task segregates both 97 

processes by firstly showing participants the sequence stimuli, and then collecting motor responses in a 98 

separate phase akin to a go/no-go task previously implemented in keyboard versions (De Kleine & Van 99 

der Lubbe, 2011).  In the Method and Materials section, we provide the E-Prime® script which executes 100 

this clear separation of preparation and execution phases and explain the experiment setup in detail. 101 

The second point is that the experiment should remain simple enough to be executed with 102 

minimal equipment but with the option to scale up other related measurements.  The minimal option 103 

requires just a modern computer and a commercially available dance-pad to perform the experiment.  104 

Scalability is important for future work and the current manuscript focuses on the integration with an 105 

advanced body motion capture system called the Xsens MTw Awinda and the MVN Analyze software 106 

(Xsens, 2021).  The Xsens MTw Awinda is a leading wearable, wireless inertial measurement system 107 

(IMS) that allows for three-dimensional (3-D) analysis of human movements (Blair et al., 2018).  The 108 

IMS system combines the use of multiple inertial sensors in the form of 3D-accelerometers, gyroscopes 109 

and magnetometers, that are attached to various bodily segments and provide accurate kinematical 110 

estimations.  Once the sensors (up to 20 sensors in one full suit) are set up, they provide accurate 3D 111 

positioning and orientation of each segment (forearm, shank, centre of mass etc.).  Combined with the 112 

attached MVN Analyze software, precise estimations of segment/ sensor displacement (x, y, z axes), 113 
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velocity and angular acceleration can be acquired and extracted to add a richness to movement aspects 114 

of motor sequence learning built upon the knowledge from the key-press DSP (KP-DSP) task.   115 

In addition to RT performance, modern motion capture allows for further investigations in time-116 

space factors that affect motor sequencing and understand whether coordinated body movements 117 

differences between individuals can explain task constraints imposed in the DSP task (Heuer, 1993).  In 118 

the KP-DSP task, sequence learning characteristics are intentionally derived from a very low number of 119 

finger joints and their relative degrees of freedom (DoF) to unveil underlying sequencing properties.  120 

Each finger is paired with a single keyboard-press to respond to stimuli in a spatially compatible manner.  121 

In what we coin here as the dance-step DSP (DS-DSP) task, an uneven number of limbs (effectors) 122 

pairing with response locations result in dynamically changing DoFs to optimise sequence execution.  123 

This kind of motor execution allows for development into methods to differentiate individual ways that 124 

learners are acquiring motor sequences.  For example, different participants may use different limbs for 125 

the same stimuli and/or use other ways to optimise their responses (i.e. jumps/ rotations etc.), which 126 

cannot be elucidated from key-press tasks with designated finger responses.  This brings about new 127 

opportunities to understand motor learning driven by limb kinematics that predict RT/accuracy 128 

relationships.  Above, we highlighted that anticipatory processes of CoM could indicate sequence 129 

knowledge (Du & Clark, 2018), and here hypothesise that other kinematical properties like CoM 130 

velocity and acceleration may reveal a more holistic understanding of sequence learning in whole body 131 

movements.  We consider the present approach a contribution towards an ongoing paradigm shift in 132 

quantifying individual differences in motor learning, alongside group-level aggregation reporting.  133 

Explicitly, the DS-DSP task is different from the KP-DSP task in that: 1) feet are used instead of 134 

individual fingers, 2) sequence elements involve aimed movements to a target location (instead of just 135 

moving a finger down), and 3) there is freedom in choosing effectors (feet) to step on a target location. 136 

The third and final point is that naturalistic motor sequence learning tasks can make training 137 

more interactive in diverse populations like the elderly which may reap additional peripheral benefits 138 

like improved dynamic balance and control.  For example, Granacher et al. (2012) showed that 139 

participation in 8-weeks of progressive salsa dancing programme enhanced both static and dynamic 140 

postural control in the elderly.  In general, the efficacy in dance or dance-like programs are positive and 141 

suggest that participation in these kinds of activity can lead to better management of dynamic mobility, 142 

overall physical performance and balance improvements (Fernández-Argüelles et al., 2015; Rodrigues-143 

Krause et al., 2019).  It is therefore possible that the DS-DSP task in an applied sense, act as a dynamic 144 

mobility motor learning program (with progressive training) that may lead to improvement of balance 145 

control.  Elderly populations may benefit from this kind of motor learning, leading to a reduction in the 146 

risk of falls.  Improvement of overall health and wellbeing for the elderly is an important global topic 147 

and the DS-DSP task may be a novel way to bridge fundamental science paradigms into modern and 148 

applied fields as part of health-based interventional programs for the elderly. 149 
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2. Method and materials 150 

2.1. Dance-step Discrete Sequence Production Task in E-Prime® 151 

We used E-Prime® as our stimulus presentation software due to its consistency in collecting reliable 152 

behavioural data (RT and accuracy) and relative ease in programming.  The full script was programmed 153 

in E-Prime® Version 2.0.10.356, (download .es2 file from The Open Science Framework: 154 

https://osf.io/zmxay/download) and also curated on Github (https://github.com/Eggcite/DS_DSP) for 155 

adaptation and replication (Appendix 2).  The main difference between the key-press DSP (KP-DSP) 156 

and the dance-step DSP (DS-DSP) tasks is the stimulus layout from a horizontal row of boxes, to the 157 

dance mat design that spatially corresponds to four areas (↑, ↓, → and ←) with a centre neutral position 158 

(see Fig. 1A).  We used a high-quality commercially available dance mat (Nonslip Dance Pad Version 159 

5 from D-Force) (See Appendix 1 for full equipment list).  Participants start the DS-DSP task standing 160 

with both feet on the centre area of the dance mat whilst stimuli are presented on a wide screen television. 161 

We used LG model nr. OLED77CX6LA with a diagonal size of 77 inches, 3840 × 2160 pixel resolution 162 

in HDR colour, with a screen refresh setting of 120 Hz that was positioned approximately 1.20 m from 163 

the participant on the dance mat.  The viewing angle of the display was approximately 120° and the 164 

visual angle dimension of each box was 2°×2 with an overall viewing of the stimulus area approximately 165 

30°.  The TV screen and the dance mat were connected to a Windows laptop that executed the DS-DSP 166 

task script (see Fig. 2 for connectivity of all devices).  The setup requires a freeware application called 167 

JoyToKey (https://joytokey.net/en/), which converts input from the responses to assigned keys for E-168 

Prime® to register the dance mat.  Thereafter, E-Prime® recognises the directional keys as input from 169 

a traditional keyboard.  We mapped the ↑, ↓, → and ← as W, S, D, A respectively as input for responses. 170 

https://osf.io/zmxay/download
https://github.com/Eggcite/DS_DSP
https://joytokey.net/en/
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 171 

Fig. 1. Experimental set-up and stimuli.  (A) An example of a commercially available dance mat.  (B) 172 

During the dance step task participants stand with both feet in the centre of the dance mat that is 120 cm 173 

away with the overall viewing angle of the stimulus area of ~30°.  After six stimuli have been presented, 174 

participants reproduce the sequence by stepping with one foot on the spatially corresponding areas on 175 

the dance mat.  (C) An example of the Discrete Sequence Production task sequence that is presented 176 

from the onset of stimuli to the Go/NoGo signal. The duration of presentation is indicated for each phase. 177 

Each trial consists of six stimuli (can be reduced/ increased) that are presented by the successive 178 

lighting up of the rectangular placeholders on the screen.  As shown in Fig. 1 (C), first the default screen 179 

is presented with a cross in the middle lighting up in yellow for 1000 milliseconds (ms) upon which six 180 

rectangles take turns lighting up in yellow for 750 ms each (cf. De Kleine & Van der Lubbe, 2011).  181 

Next, participants see the default screen for another 1500 ms after which the cross in the middle lights 182 

up in either blue (Go) or red (NoGo).  In the case of a Go stimulus, participants reproduce the sequence 183 
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they just saw by taking six steps on spatially corresponding areas on the dance mat.  In the case of a 184 

NoGo stimulus, the waiting time lasted three seconds until the next sequence was displayed.  As outlined 185 

in De Kleine & Van der Lubbe (2011), the break during which participants wait for a signal makes it 186 

possible to separate sequence preparation and execution.  The frequency of Go or NoGo stimuli was 187 

92% and 8%, respectively.  If the participant moved prior to the Go signal a “Too early!” message was 188 

displayed to halt the current trial, and then the next trial was shown.  In the case of a mistake, feedback 189 

was presented which steps were wrong only after six steps were completed.  When no mistakes were 190 

made, a ‘good’ word was displayed, and the next trial was shown. 191 

 In the provided script (see Appendix 2), participants would practise the following two 192 

sequences: ←→↑↓→← and →↑←↑→↓.  The script has been commented for easy alteration to include 193 

more sequences and/or sequences with more stimuli and responses.  To counterbalance target stimuli 194 

positioning, both sequences were rotated four times resulting in eight different counter-balanced 195 

sequences so that participants received the same sequences but with different positions.  Possible 196 

variations in sequence difficulty or foot strength/preferences were not expected to effect participants’ 197 

learning process.  To give an example, the sequence ←→↑↓→← rotated once resulted in a different 198 

counter-balanced sequence ↑↓→←↓↑.  Participants are given the liberty to organise their responses in 199 

the most naturalistic manner using any combination their two feet for correct execution. 200 

The script is executed as a singular practice block which consists of 24 trials for each of the two 201 

sequences for a total of 48 trials with an additional 4 No-go trials.  Halfway through each block (after 202 

completion of 24 trials) the script would execute a 30-second break before continuing to the second half.  203 

Both number of trials and break sessions/timing can be altered in the script.  A completed block was 204 

indicated by a “This is the end of the session.” message, followed by another feedback screen displaying 205 

the average response time and mistakes (%) for the block after completion.  Between training blocks 206 

participants would be given a three-minute break, and after the fourth block, received a 10-minute break, 207 

in both cases controlled by the experimenter.  Rest breaks are important to avoid physical and mental 208 

fatigue and participants were requested not to end breaks early.  In one of our experiments (subject of a 209 

future manuscript) participants practiced over the course of eight training blocks yielding 192 practice 210 

trials per sequence.  After this we conducted a test phase which comprised of two blocks of 48 trials 211 

(either familiar or unfamiliar) counterbalanced between the participants control for learning order. 212 

2.2. Integration of Motion Capture Technology: Xsens MTw Awinda 213 

If the main goal is to conduct this experiment with the minimal setup and/or the goal of an experiment 214 

is based on DS-DSP task-level manipulations and/or differences between populations, then there is no 215 

need to further integrate complexities in terms of hardware.  The details in previous sections should be 216 

sufficient to conduct the DS-DSP task.  However, if one is also interested in motion capture for 217 

additional research goals like understanding predictors of balance control or anticipatory effects of 218 

motor sequence learning and performance, then integration of the Xsens Awinda system is a natural 219 



Dance Step Sequence Learning, 9 
 

extension with the DS-DSP task (for an extensive review of the Xsens technology see Paulich et al., 220 

2018 & Schepers et al., 2018).  Fig. 2 below shows a schematic overview of how the Xsens extension 221 

is integrated with the E-Prime® only setup. 222 

 223 
Fig. 2. Overview of equipment and respective connections.  The basic setup only requires a stimulus 224 

presentation PC that can run E-Prime® and record behavioural variables including step-level accuracy 225 

and response times of participants.  The bottom right side of the diagram shows that Xsens gyroscope 226 

motion capture sensors that can be configured up to 20 sensors in a full suit for recoding biomechanical 227 

kinematics such as limb segment, sensor vector displacement, velocity and acceleration.  The sensors 228 

communicate through Wi-Fi with the MTw Awinda base station, which connects to the MVN Analyze 229 

recording software via a USB-A cable.  Importantly, E-Prime® sends event markers through line code 230 

via a local ethernet to MVN Analyze for indexing different movement moments (e.g. each step). 231 

The current protocol is focused on capturing measurements of CoM.  We only outline the use 232 

of seven sensors which were the minimum required for accurate measures of lower body kinematics and 233 

CoM specified by Xsens MVN Analyze (Ver. 2021.0.1 build 6752).  Should one require more sensors 234 

for investigating upper-body segments, up to 20 sensors can be used at once for a full suit.  When 235 

recording with seven sensors (or between six to nine), MVN Analyze can have a maximum frame 236 

capture of 100 hertz, whilst using all 20 sensors the maximum output frame capture is 60 Hertz (Paulich 237 

et al., 2018).  The sensors used in this manuscript were: centre on the pelvis, left and right thighs, left 238 

and right shins, left and right foot. Data from the sensors are wirelessly transmitted (through Wi-Fi) to 239 

an MTw Awinda base station – which represents one suit.  A separate computer from the E-Prime® 240 

presentation is required to run the MVN Analyze software so that kinematical data can be recorded, 241 

processed and extracted for further analyses.  To report on data latency, response onset delay between 242 
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the initiation of responses on the dance-pad to when E-Prime® recorded the responses was on average 243 

167.4 ms (± 20.8 ms; 2880 trials), in which E-Prime® accounts for as onset delays in its response time 244 

calculations.  The network delay for receiving event markers in MVN Analyze after sent from E-Prime® 245 

was on average 7.3 ms (± 2.4 ms; 2880 trials) which falls within a normal range for local User Datagram 246 

Protocol (UDP) communications.  Importantly, none of the participants reported any feeling of lag 247 

delays when responding to the stimuli. 248 

2.3. Experimental procedure 249 

The procedure and data outlined in the next sections was performed in accordance with Human Ethics 250 

guidelines approved by the University of Twente Ethics Committee filed as No. 210390. 251 

2.3.1. Participant preparation together with Xsens 252 

Participants in the lab were briefed about the purpose of the study, outlined their rights to leave at any 253 

time during the experiment.  Participants then provide written informed consent to collect performance 254 

data and for body measurements like height, weight, arm span, hip height that were required and entered 255 

into the MVN Analyze software for accurate modelling of the CoM displacement.  Participants were 256 

also asked to remove their shoes to measure their feet size and to attach sensors to each foot.  Afterwards, 257 

a total of seven Xsens sensors were attached with the velcro tapes/binds from Xsens to one of each foot 258 

(2), shin (2), thigh (2) and one on the Pelvis (1), see Fig. 3 below (Xsens, 2022).  This section is covered 259 

in the video component https://www.youtube.com/watch?v=DzjBRirkdqk. 260 

 261 

Fig. 3. Xsens MTw Awinda seven sensor setup for minimal measurement of lower body kinematic 262 

performance (adapted from Xsens, 2022). The circles highlight the location of sensors attached to the 263 

https://www.youtube.com/watch?v=DzjBRirkdqk
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thighs, shins, feet and pelvis.  This is a standardised minimal setting in the MVN Analyze software to 264 

estimate centre of mass changes. 265 

2.3.2 Xsens calibration 266 

With the sensors attached, a calibration procedure for the Xsens is required. The participant is instructed 267 

to stand straight, both arms hanging by the side (known as a N-pose) and wait for the researcher to start 268 

the procedure in MVN Analyze software.  Once ready, the researcher signals to the participant to walk 269 

four meters in a straight line at normal walking speed to a predetermined marking on the ground, turn 270 

180 degrees, and walk back to the starting position.  MVN Analyze then processes the calibration 271 

procedure and notifies when a good calibration result is achieved – otherwise the calibration procedure 272 

is repeated.  273 

2.3.3. Executing the Dance-Step Discrete Sequence Production task with Xsens 274 

Once calibration is complete participants are instructed about the DS-DSP task in detail like explaining 275 

the number of trials, number of blocks, rest periods (shorter and longer rest), opportunity for bathroom 276 

breaks, drinks and offered to ask further questions.  Participants watch a demonstration on how to 277 

perform the DS-DSP task and are explicitly shown to step with their whole foot during the task and not 278 

just with their toes.  Participants are told to perform the DS-DSP as best they could with a goal to make 279 

the movement fast, accurate and smooth based on their own interpretation of the “dance” sequence 280 

presented.  The participants were not controlled based on their chosen strategy (e.g. they could adopt 281 

spins or turnarounds as part of their sequence routine) or controlled which foot should be mapped to 282 

which response area on the dance mat.   283 

When ready, the participants take position in the centre of the dance mat with both feet facing 284 

the screen (see Fig. 2B) and the researcher then starts the DS-DSP task.  This was necessary prior to the 285 

start of each block to accommodate an additional procedure for the Xsens.  Due to the mainly static 286 

space in which the participant is moving, signals from the Xsens sensors tend to drift (a normal 287 

occurrence of almost all analogue sensor technologies). This requires a locational reset for the sensors 288 

in the MVN Analyze software screen after each 24 trials (1/2 block) for more accurate capture of 289 

translational movement.  The MVN recording starts before the E-Prime® script is executed.  The 290 

participant starts the stimulus presentation by tapping their foot on the X panel on the top left corner 291 

(mapped in JoyToKey as spacebar) on the dance mat.  The E-prime® script then executes the stimulus 292 

presentation and starts capturing response times and accuracy in the background.  The provided script 293 

contains inline code to send event markers via a User Datagram Protocol (UDP ethernet) to MVN 294 

Analyze via a switch/ router.  These event markers add information to the motion capture recording to 295 

index important phases like start and end of movement per sequence execution (refer to Appendix 2: 296 

Line 248 for example of these inline codes to send event markers).  Each experiment block takes between 297 

11 – 15 minutes for completion.  Participants are given 3 minutes of rest between blocks and 10 minutes 298 
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of rest after the half-way mark for recovery of energy. We captured subjective physical demand and 299 

effort via the commonly administered NASA-TLX (Hart & Staveland, 1988), to check if participants 300 

were overly fatigued from each training block before continuing.  In a completed experiment, 301 

participants practised 192 trials per sequence (384 trials for two sequences) across eight practise blocks 302 

and two test blocks (96 trials) for a total of 480 trials.  The experiment completed in approximately 2.5 303 

hours. 304 

3. Exemplar data analysis and results 305 

3.1. Participants 306 

Participants aged 18 to 35 were recruited and given course credits in exchange for their participation.  307 

Participants were healthy with no history of neurological, psychological or psychiatric disorders; no 308 

alcohol, tobacco or other drug addictions or dependencies; no signs of cognitive impairment as well as 309 

no obvious physical injuries or impairments that would affect their performance during the DS-DSP. 310 

Finally, they should not have taken part in similar sequence learning studies prior.  24 participants took 311 

part in the study (19 females, average age 20.5 ±2.3 years; 87.5% right-footed). Participants were also 312 

tested on their foot dominance by asking questions around ball-kicking and declaration of their lead leg 313 

if they skated or snowboarded and confirmed by having them perform a simple footedness test that 314 

involves first closing their eyes, standing straight and then pushing them from behind which typically 315 

caused them to take a step forward with their dominant foot (Staniszewski et al., 2016; van Melick et 316 

al., 2017).  Those that identified as being right-footed would be assumed to react faster with preference 317 

of control using their right leg. 318 

3.2. Dance step Discrete Sequence Production task results: Response time and Accuracy 319 

Extraction of the data was merged at the participant level to form a completed data frame.  Next, we 320 

show some exemplar results and visualisations based on the data of individual participants, and factorial 321 

level analysis on learning blocks to highlight basic data analysis. 322 
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 323 

 324 

Fig. 4. Visualisation of (A) raw response time (ms) for 384 trials.  Across the majority of participants, 325 

learning can be inferred from the decrease in response times from the repetition of trials and block 326 
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progressions.  In (A) differences in response time changes between participants 18 and 28 (in red boxes) 327 

suggest different learning styles or strategies in DS-DSP task performance.  It could be suggested that 328 

participant 18 was performance was more of a ‘reacting’ to the stimuli (cf. Verwey et al. 2015) and/or 329 

favouring accuracy than speeded responses.  (B) Shows individual participant learning curve response 330 

times across 8 learning blocks.   331 

 332 

Fig. 5. Visualisation of linear-mixed effects model of mean step-level response times across blocks for 333 

accurate only sequence trials across 24 participants.  This is one of the emerging methods to analyse the 334 

Discrete Sequence Production task.  The mean response times for whole sequence execution in the 335 

dance-step are relatively short, considering that key-press responses are between the 200 to 400ms 336 

(Barnhoorn et al., 2019; Verwey & Abrahamse, 2012). 337 



Dance Step Sequence Learning, 15 
 

 338 

Fig. 6.  Linear-mixed effect model of step-level response times across blocks of accurate only sequence 339 

trials across 24 participants. The DS-DSP task appears to showcase a different concatenation pattern in 340 

that the usual 3rd or 4th position slowing (indicating a chunk separation) usually observed in the key-341 

press DSP is not evident.  Instead, the slowing occurs in the 6th position for the DS-DSP.  342 

There are multiple ways that behavioural data could be analysed like aggregation methods for 343 

ANOVA repeated measures (Verwey, 2003) for within task factorial comparisons, or emerging linear-344 

mixed effects models (Chan et al., 2020; Chan et al., 2018).  There is a recent push towards 345 

accountability of individual performance whilst explaining group level phenomena.  This has sparked a 346 

re-emergence for the use of latent growth curve analysis and exponential functions (Brown & Heathcote, 347 

2003; Heathcote et al., 2000; Wiechmann, 2021).  In-depth reporting of exemplar results remains the 348 

subject of a future manuscript. 349 

3.2. Xsens results: Sequence-level Centre of Mass velocity changes with training 350 

Extraction of Xsens data is performed via the MVN Analyze software package using the inbuilt export 351 

function for displacement, velocity, and acceleration variables.  Since we recorded each block 352 

performance as an individual file – all 48 trials were captured, but with the help of event markers, clear 353 

segregation of individual dance-step/ sequence level performance is possible.  We showcase CoM 354 

velocity between two exemplar participants (18 & 28) for sequence level execution across training 355 

blocks 1 and 8 to highlight learning differences.  356 
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 357 

 358 
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 359 
Fig. 7. Average sequence trial centre of mass velocity (m/s) in the A) x-axis, B) y-axis and C) z-axis for 360 

a comparison between participants 18 and 28.  This data was obtained from the Xsens Awinda motion 361 

capture system.  This is a follow up comparison of earlier learning curves in Fig. 4A.  The figures show 362 

different patterns, in that participant 28 shows a development of more variability in the velocity of x, y 363 

and z-axes compared to participant 18 from block 1 to block 8.  The changes between block 1 and 8 for 364 

participant 28 with regards to sequence performance, could be linked to Bernstein’s classical theories 365 

of freeing of degrees of freedom alongside expertise development (Bernstein, 1947; Raap et al., 2009). 366 

4.  Discussion 367 

The goal of this manuscript was to facilitate researchers that are interested in motor sequence learning 368 

and performance, of the implementation of a whole-body version of a usual DSP task, coined here as 369 

the DS-DSP task.  We wanted to transfer the same task properties and general motor learning 370 

phenomenon in a more naturalistic format beyond keyboard-based laboratory settings and provided 371 

detailed methodology here.  This was achieved whereby general learning patterns in Fig. 4 and Fig. 5 372 

showcased trial-level and block-level RT decline, that were comparable to previous key-press iterations 373 

of DSP task (De Kleine & Van der Lubbe, 2011; Verwey, 1999).  This backs the burgeoning trend of 374 

porting other motor sequence learning tasks that have been shown to be feasible (Olivier et al., 2021) 375 

and learning differences between different populations (Du et al., 2017).   376 

 The DS-DSP task provides an improvement to the usual keypress DSP task as a way to decern 377 

cognitive preparatory processes from motor execution processes because of the go/no-go approach.  This 378 
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was already evident in earlier work (De Kleine & Van der Lubbe, 2011), but the DS-DSP task provides 379 

new opportunities to test the limits of existing motor learning models like the C-SMB (Verwey et al., 380 

2015).  For example, evidence support that the concatenation/chunking phenomenon is resultant due to 381 

the combination of three to four individual keypresses executed as a single chunk to connect parts of a 382 

longer sequence together (Ruitenberg et al., 2015).  In a typical six-key sequence, a significant increase 383 

in RT around the fourth keypress indicates that “split” of a sequence (Abrahamse et al., 2013).  In the 384 

current work, participants performing the DS-DSP task (see Fig. 6) using two effectors (feet) and a 385 

constraint to develop an efficient strategy for fast responding, do not appear to slow at this middle point 386 

and execute the six-item sequence as if it were a single chunk.  Further investigations are required to 387 

ascertain this point and understand if differences in effectors versus response positions indeed nullify 388 

the need for a concatenation, or that a dynamic relationship for multilimbed performance is evolving 389 

(Heuer, 1993).  Another possible argument might be that coarticulation (Shah et al., 2013) of the lower 390 

body maybe much easier to utilise as there are less and larger joints to coordinate for responding to the 391 

task goal.  These points all provide important directions that aim to further understand the cognitive and 392 

motor mechanistic actions in the DS-DSP task to push the science of optimisation processes in motor 393 

sequence learning. 394 

Because the DS-DSP task is a full-body activity and there is increased motor coordination and 395 

complexity, it is valuable to incorporate the measurement of kinematical parameters using modern 396 

motion capture techniques.  Whilst force-plates have been used in motor learning research (Du & Clark, 397 

2018) and are technically considered the “gold standard” in biomechanics research (Basu, 2021), there 398 

is a significant disadvantage as it requires a laboratory and significant cost setup.  Another advantage of 399 

the DS-DSP combined with the Xsens is that key indicators of anticipatory actions like CoM changes 400 

prior to movement can indicate cognitive processes that contribute to motor planning/preparation and 401 

execution processes in sequence learning (Kanekar & Aruin, 2014).  In addition, kinematic parameter 402 

changes during planning or performance could be predictive of the response times and accuracy 403 

performance, which may be important factors to help model individual variations to performances (Chan 404 

et al., 2021).   405 

The Xsens is also portable, robust, and designed to be operated in different environments.  This 406 

means that investigations in diverse environments such as schools, hospitals, outdoors or rehabilitation 407 

centres are possible.  Diverse populations like the elderly can therefore be supported by bringing the 408 

testing and training programs to them whilst maintaining the contextual integrity of a test environment. 409 

Furthermore, when investigating the elderly, biomechanical limitations of finger movement have been 410 

revealed (Barnhoorn et al., 2017) which contribute to finger-press RT slowing.  We argue that what is 411 

more functional are postural effects in the elderly, such as CoM variability which could be an important 412 

parameter that be predictive of falls risk in the elderly population (Graham et al., 2017).  In summary, 413 

we think that the DS-DSP will play a key role in applied psychology and motor neuroscience with the 414 

fields looking for more naturalistic and ecological testing paradigms.  415 
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4.1. Considerations and future directions 416 

During the implementation of the DS-DSP task we noticed several differences from the KP-DSP task 417 

which we propose should be investigated as future work for the field of applied psychologists and motor 418 

neuroscientists.  The first is the physiological requirements that differ from a mostly passive sitting 419 

posture to a whole-body movement.  On the practical level, one must account for the amount of practice 420 

administered and enough rest for the recovery of energy.  For example, some participants obviously 421 

performed the task with much effort from the start (even though instructions were standardised), whilst 422 

others paced themselves explaining that the experiment was ~2.5 hours long.  Regardless, we followed 423 

a rule of giving participants approximately three-minute break between blocks, aiming to account for 424 

about >85% of recovery based on normal activity energetic systems utilisation and recovery (Rodríguez-425 

Fernández et al., 2019).  Halfway through the experiment (fourth block), we administered a longer break 426 

lasting 10 minutes and offered a sugary drink for recovery of glycose stores.  Our younger participants 427 

did not report any adverse physical issues, but further investigation is needed for elderly population.  428 

Physiologists and ergonomists may provide an interdisciplinary view on the exertion and rest ratios for 429 

recovery and optimal learning performance.    430 

A second direction that is important is the development of strategy over the course of learning. 431 

The DS-DSP task is interesting for this as instead of a single effector (i.e. finger) mapped to a single 432 

response key, the lower body has two effectors with four possible response positions. This means that 433 

effectors must be re-utilised again for future responses even when they have already been used earlier 434 

in the sequence.  This gives rise to different strategies amongst participants as there is a need to 435 

reorganise limited effectors in the most efficient way to optimise performance of the sequence.  For 436 

example, some participants choose to hop and use quick double step with both feet over certain parts of 437 

the sequence, whilst others chose to spin around even though their body does not face the screen 438 

anymore.  The subject of how to best model these strategy adaptations (including classifiers) for a similar 439 

sequence is beyond the scope of the manuscript, but including kinematical variables is likely essential 440 

to further discern individual differences between participants.  It is important to recognise that individual 441 

strategies exist in the DS-DSP task performances, and that aggregation of RT may only provide a limited 442 

scope for the understanding sequence learning performance.   443 

4.2. Summary  444 

Our goal was to modernize and convert a well-established motor sequence learning paradigm into a 445 

more ecological and applied methodology.  This brings about new avenues of research, further testing 446 

of existing theoretical frameworks, integration of cutting-edge technology and further collaborations.  447 

This manuscript provided theoretical background, extensive instruction, and possible ways to visualise 448 

and analyse the data.  We hope more researchers will utilise such paradigms and/or be inspired to adapt 449 

existing ones to further motor neuroscience research. 450 
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5. Procedural video component  451 

The video component that is published alongside this manuscript is available here: 452 

https://www.youtube.com/watch?v=DzjBRirkdqk    453 
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Appendix 1: Equipment list 459 

Basic setup 460 

Equipment 

name 

Make Model Comment 

E-Prime® Psychology 

Software Tools 

Minimum Ver. 2.0 

(3.0 preferred) 

For creating the stimuli executing 

the experiment 

Display for 

stimuli 

LG (in this 

experiment) 

Model nr. 

OLED77CX6LA (77 

inch display) 

Any computer monitor/ TV that has 

at least 60Hz refresh rate 

Dance mat USB 

device 

D-Force Nonslip Deluxe 

Dance Pad Ver. 5 

(https://dancepadma

nia.com/deluxe/) 

Multiple options from retailers but 

choose one that is non-slip and of 

higher quality 

USB Input 

mapper 

JoyToKey Ver. 5.2.1 PC software used to map the dance 

mat as keyboard input 

Personal 

computer (PC) 

Any brand Any model Ensure PC has the minimum 

Windows OS requirement to run E-

Prime® 2/3 

Weighting scale 

and tape 

measure for 

height 

Any brand Any model To record individual differences  

 461 

Optional complexities: 462 

Equipment 

name 

Make Model Comment 

3D Motion 

Capture   

Xsens MTw Awinda 

system (up to 20 

sensors) 

The motion capture system gives 

access to kinematics of limb 

positioning such as velocity, 

acceleration and displacement   

3D Motion 

capture 

software 

Xsens MVN Analyze (on a 

yearly subscription) 

The software allows for capture of 

3D recordings, analysis and export 

of data files.  

https://dancepadmania.com/deluxe/
https://dancepadmania.com/deluxe/
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Ethernet router 

network hub 

Any major brand 

e.g. Linksys, TP-

Link etc. 

Any model that has 

at least 4 ethernet 

slots (and an ethernet 

cable) 

The hub is for communications 

between the motion capture 

computer and the stimuli computer 

for sending and receiving event 

markers  

Personal 

computer (PC) 

Any major brand Ensure that the 

computer has the 

latest Windows 

10/11 OS 

This computer should have enough 

processing power (≥ Intel i7 in 

2021), ram (≥16gb) and storage for 

motion capture  
  463 
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Appendix 2: E-Prime® Script 464 

The file is an E-Prime® 2.0 file but can be upgraded to an E-Prime® 3.0 file easily and you can obtain 465 

them here: https://osf.io/zmxay/download.  Here we outline the entire script and its execution. Please 466 

obtain the script that is freely available and curated at the following Github: 467 

https://github.com/Eggcite/DS_DSP/blob/main/ID1_script.   468 

[See Supplementary Material]  469 

https://osf.io/zmxay/download
https://github.com/Eggcite/DS_DSP/blob/main/ID1_script
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