
Chapter 9
Finding Equivalent Standards in Small
Samples

Monika Vaheoja

Abstract The process of resetting performance standards, with small samples, in
different forms of an exam is statistically challenging as the estimates are often
biased. Empirical information is therefore, often neglected and content experts reset
the standard. In the current article, performance standards are set to a new form in by
different methods: circle-arc equating and concurrent calibration with OPLM as an
IRT model. The responses on the exam forms that are to be equated are simulated in
different situations varying in sample size, test length, test difficulty and respondent’s
abilities. The results demonstrate that even in small samples (50 subjects taking both
tests), the IRT-method with OPLM as a model outperforms circle-arc equating when
test difficulty and population ability interact.

9.1 Introduction

In computer-administrated tests using item banks, students with different abilities
answer different item sets varying in difficulty, discrimination and number of items.
When test takers receive a diploma or certificate, such a set of items can be referred to
as an exam, throughwhich students demonstrate their mastery of a topic by achieving
a certain minimal level. This minimal performance level is reflected in a cut-score
which reflects a performance standard for the exam and must be fair: cut-scores set
on different exam forms should lead to identical decisions for examinees with the
same ability. In other words, the probability to pass a test must be related to the ability
of the test taker, not the exam the student has responded to.

Numerous methods are available for setting a performance standard on an exam
(for an overview, see Hambleton and Pitoniak 2006) and numerous statistical mod-
els are available for test equating (Kolen and Brennan 2004; von Davier 2011). Test
equating is a process in which the main goal is to establish, with as near accuracy
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as possible, a valid equivalence between raw scores on multiple forms of a test. For
example, to compare examinees’ scores on multiple versions or forms (Holland and
Rubin 1982). This ensures that test scores from multiple forms can be used inter-
changeably. However, as the test equating process is a statistical approach, it provides
more precise results in larger samples (Kolen and Brennan 2004, p. 307–309). The
models and methods that are advised for small samples have been shown to include
large equating error and bias (Kim and Livingston 2010). One method that out-
performed the advised ones, in the context of small sample testing, was circle-arc
equating (Dwyer 2016; Kim and Livingston 2011; LaFlair et al. 2015; Livingston
and Kim 2009), an equating method based on classical test theory. This means that
circle-arc equating may be preferred for the transfer of performance standards to new
forms in cases where there are limited number of examinees.

Dwyer (2016) studied this problem by comparing the estimation precision of the
cut-score when content experts set the standard using the Angoff standard-setting
approach, to when the cut-score was reset with circle-arc equating. The content
experts’ estimateswere also rescaled by correcting thembased on estimates of anchor
items. The results showed that circle-arc equating did indeed outperform resetting
and rescaling the cut-score inmaintaining an equivalent performance standard across
exam forms. However, this study had observed score equating as its subject, which
introduces equating errors when examinees’ ability distributions differ (Lord and
Wingersky 1988). When the examinees’ abilities differ across forms, item response
theory (IRT) is advised.

Item response theory models the probability of a respondent correctly answering
an item (Hambleton et al. 1991). A correct score on an item is dependent on the
ability of the respondent and on the characteristics of the item. Respondents’ abil-
ity cannot be observed directly, so it is included in the model as a latent variable
(θ ). The characteristics of the item can be its difficulty parameter (β), discrimina-
tion parameter (α) and guessing parameter (γ ). The primary goal of item response
models is to estimate this latent variable for each person as precisely as possible.
Limited research is available on the minimum sample size required for IRT equating
to maintain equivalent performance standards across test forms. Using IRT equating
is even discouraged with small samples (Kolen and Brennan 2004, p. 303).

However, the use of IRT may be recommended for transferring a performance
standard from one form to the next in cases where exam form consist of highly
discriminative items. Because the α and β of items influences the test information
function and thereby the test standard error (Yen and Fitzpatrick 2006). And if the
exam has been constructed to have its average difficulty nearby the targeted expected
cut-point, its standard error will be the smallest around that area.

In IRT, the standard error of measurement differs across ability and gives the
smallest error in expected score values where the test gives the most information.
This means that where the most information is given, the expected scores for the
difficulty of the exam are estimated more accurately (Lord and Novick 2008). With
the classical test theory approach, which includes circle-arc equating, the standard
error of measurement is equal for all scores. If the cut-score falls into the extremes
of the scale score, it may be better to use the circle-arc approach due to the constant
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standard error across the score scale. However, if the cut-score is in the middle range
of the score scale, it may be preferable to use the IRT approach.

Therefore, within this article, both of the above methods are compared in re-
estimating the performance standard on a new form in cases where exam forms vary
in length, number of examinees, difficulty and ability distribution.

9.2 Method

To maintain an equal performance standard across exam forms and to study its
accuracy, we used simulated data. Because our interest is to find the best solution for
the practice for the national exam in teacher-training program in the Netherlands,
we make use of the characteristics of the student ability distributions, characteristics
of the item bank and the process to find a cut-score on a new form that equals with
the ability of the cut-score on the reference exam. This means that we transferred
the cut-score from the reference exam to a new form with IRT concurrent calibration
and circle-arc equating.

The examinees’ item responses were simulated for two forms to study the effect of
sample size (50, 100, 200, 400 and 800), ability (both populations have equal ability,
second population has lower ability, and second population has a higher ability), test
length (25, 50 and 100 items), and difficulty (both forms are same difficulty, second
form is easier and second form is harder) creating a total of (5 × 3 × 3 × 3 =)
135 facets. The data structure is from computer administrated exams for a maths
teacher-training program in a public secondary school in the Netherlands.

Sample size and ability. For sample sizes of 50, 100, 200, 400 and 800 subjects,
item responseswere simulated for both forms. The ability distribution of the reference
population was equal to the mean of the examinees in the maths teacher-trainees
population. By subtracting and then adding 0.4 standard deviation to the average
population ability, we created populations with both lower and higher abilities (see
Table 9.1). This to make sure we created a similar context as it is in the practice.

The exams. Twenty five itemswere randomly sampled from an item pool that was
stratified based on discrimination parameters of the calibrated items. These 25 items
defined the reference exam, for which we set a cut-score of 13.456, comparable with
the average percentage of the cut-scores that experts had set for all maths exams. The
theoretical cut-score on the second form was computed by estimating the expected
score that is equal to the ability level on the reference exam.

Table 9.1 Mean and
standard deviation of different
ability distributions

Population ability

Lower Reference Higher

Mean ability −0.071 0.139 0.349

Standard deviation of ability 0.525 0.525 0.525
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Table 9.2 Exam difficulties
and corresponding cut-points

Exam

Easier Reference Difficult

Mean difficulty −0.071 0.139 0.349

Mean of anchor items 0.274 0.274 0.274

Mean of other items −0.157 0.105 0.368

Standard deviation of
difficulty

0.437 0.406 0.402

Cut-point 16.530 13.456 9.780

Test length and difficulty. To lengthen the test, these 25 items from the reference
exam were doubled for the exam with 50 items and quadrupled to create a form
with 100 items, which kept all other test characteristics constant. Five items from
the 25 were marked as anchor items, anchoring both forms by 20%. The difficulty
of the new form was adjusted by subtracting or adding a constant to the difficulty
parameters of non-anchor items. The reasoning behind this being that the difficulty
of the total exam should be equal to the mean ability of the different populations.
This resulted in both easier and difficult forms (Table 9.2).

General Method. To maintain an equal performance standard across exam forms
with the simulated data, we transferred the cut-score from the reference exam to a
new form with IRT concurrent calibration and circle-arc equating. This procedure of
simulating response data and transferring the cut-score to a new form in each facet
was repeated until we had 1000 successful runs. When the IRT model could not
be estimated in a run, because the entire examinee cohort had simulated correct or
wrong scores, the circle-arc estimators were excluded, and new data was simulated.
Circle-Arc equation. In circle-arc equating, the observed score scales from both
forms are equated by assuming a curve-linear relationship between both forms from
an arc (see an example in Fig. 9.1; Livingston and Kim 2009). This arc represents
an equating function through which the mutually corresponding observed scores on
both forms can be related. An arc is mathematically derived and has three points:
minimum and maximum possible scores and an empirically estimated midpoint.

In Fig. 9.1, this equating function is illustrated for the new and reference forms.
The solid line is the identity line between both forms. In Fig. 9.1, three points are
drawn: the lower dot represents the arbitrary chosen minimum possible score, which
could be the chance score on both forms. The upper point represents the maxi-
mum possible score on both forms. The triangle represents the empirically estimated
midpoint, which in the case of non-equivalent anchor test design (NEAT design) is
derived from chained linear equating (see Livingston and Kim 2009). If there is no
difference between the two forms, then the circle-arc function will be equal to the
identity line. If the curve falls to the left, then the reference form is easier. Finally, if
the curve falls to the right of the identity line, then the new form is easier.
Concurrent calibration andOPLM. In IRT concurrent calibration, exams that have
a common set of items are calibrated jointly (Kolen and Brennan 2004). Then, the
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Fig. 9.1 The circle-arc equating function

items are combined into a test function that relates the expected scores on one exam
to the ability scale. The test function is the sum of the items from that particular
exam. The test function of the second exam is computed in the same manner, which
makes it possible to find the expected scores for both exams using a specific ability
that is related to the performance standard.

In Fig. 9.2, this process is visualized. The dashed line represents the test function
for the reference exam, whilst the solid line represents the new form. In order to find
an equivalent cut-score on the second exam, firstly, an ability score that corresponds
to the cut-score on the reference exam must be found. In the example in Fig. 9.2,
the corresponding ability value equals 0.03. As both forms are calibrated jointly, the
same ability score can be used to find an equivalent expected score on the second
form. In the lower part of Fig. 9.2, the corresponding expected score is equal to 9.98.
From this we can conclude that the second form is more difficult than the reference
form as the equivalent cut-score is lower.

The IRT model in the current article is the one parameter logistic model (OPLM),
in which elegant features of the Rasch and the Two Parameter Logistic (2PL) mod-
els are combined (Verhelst and Glas 1995; Verhelst et al. 1993). The discrimination
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Fig. 9.2 Illustration of IRT concurrent calibration equating to find an equivalent score

parameters (αi) are imputed into the OPLM as a constant (ai). These constants are
supplied through a hypothesis. This means that in the OPLM, the items discrimi-
nate differently, and the difficulty parameters can be estimated by the conditional
maximum likelihood.

9.3 Results

Figures 9.3 and 9.4, present the bias and Root Mean Squared Error (RMSE) for each
of the facets, per equating method.
Bias and variability in estimators. Bias is the most important measure in our case
as when the equating method re-estimates the cut-score and it does not correspond
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to the same ability, this could have major consequences for the examinees. The
corrected bias means that the bias was divided by test length. As there is higher bias
for longer tests, more examinees are affected in shorter tests than in longer tests. For
example, if forms of 25 and 50 items are administrated to 100 students each, there are
relatively more students falling in one score range in shorter exam than for a longer
exam.Which means that one score difference in shorter exam affects relatively more
students than in a longer exam.

Figure 9.3 shows the average corrected bias for each facet in both methods. A
negative bias means that the exam was estimated to be more difficult and a positive
bias means that the exam was estimated to be easier. The results demonstrate that the
IRT estimators are less biased in each facet than the estimators from the circle-arc
method. Therefore, it seems as though the circle-arc method tends to estimate a lower
cut-score for an easier exam and a much higher one for a more difficult exam, even
in contexts where the participants have equal ability. Nevertheless, the IRT method
shows some bias too. The bias in IRT estimators decreases with an increased sample
size within, test length and ability change. With circle-arc equating, no difference in
bias for sample sizes was found, but bias differed across population ability. Circle-arc
estimators have less bias for easier exams in cases where the ability of the second
population is higher. Additionally, the estimators show less bias for more difficult
exams in cases where the population ability is lower.

In general, the estimators of cut-scores in the new forms vary less with IRT
(Fig. 9.4). Only in cases where exams have the same difficulty, circle-arc estimators

Fig. 9.3 Corrected bias in the estimators from circle-arc equating and IRT
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Fig. 9.4 RMSE of the estimators from circle-arc equating and IRT equating

vary less than IRT estimators. The IRT estimators show greater variability for smaller
samples, whereas with circle-arc equating, no variability can be seen for different
sample sizes. The variability increases with the test length for both methods. Further-
more, the estimators from both methods vary more in estimating the cut-score for
difficult exams in contexts where the ability of the examinees is the same or higher.
However, in contexts where the examinees from the second population have a lower
ability, circle-arc equating varies more in estimating the cut-score for easier exams.

9.4 Conclusion and Discussion

The results generally indicate that IRT estimators were less biased and showed less
variability in estimating the cut-score in the new form than the estimators of circle-arc
equating. Only in contexts where the examinees had the same ability and both forms
had the same difficulty showed the circle-arc estimators less bias and variability.
However, in such cases, no equating is needed as both forms are parallel. For both
methods, we saw an increase in bias for longer tests. Only for IRT estimators we
observed a decrease in corrected bias and variability for large samples. Even for
small samples of 50 examinees per form, the IRT estimators were less biased than
the circle-arc estimators were.
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There are two possible reasons for the success of our study in favour of IRT
estimators. Firstly, the stratified random items from the item bank were highly dis-
criminating and difficulty of the items was diverse. Secondly, we used OPLM as our
IRTmodel to calibrate both forms and our focuswas only on estimating the cut-score.
Cut-scores often fall in the middle range of the score scale where the expected test
scores have the smallest standard error.

The use of OPLM to calibrate the exams made it possible to use conditional
maximum likelihood to estimate the parameters. This is an advantage when the
parameters are estimated with a limited number of examinees per form and the
examinees were not a random sample from the population. Their average ability,
therefore, does not represent the population and it would be ambitious to assume the
ability distribution to be normal.

However, some bias was found in the IRT estimators, particularly within small
samples. The bias in the estimators was higher in contexts where the examinees from
the second form were in the higher ability group and took the more difficult exam.
The estimates were higher, meaning that the difficult exam was estimated as easier
than it was supposed to be. This bias might have been caused by the anchor set in
our study, because the anchor set was more difficult than the mean difficulty of the
reference exam. Which is not advised for equating, in fact, the anchor set should be
a miniature version of the exam including its difficulty (Holland and Dorans 2006).
This, however, might indicate an important exam construction rule, which seems to
be more crucial for small samples than for exams with more examinees.

Investigating the impact of anchor set when transferring the performance standard
in small samples, where there is no bias in estimators and the anchor set is a miniature
of the exam, could be extremely relevant. Another suggestion would be to use a fixed
parameter calibration in which the anchor set parameters, or the parameters of the
reference exam items are fixed. Kolen and Brennan (2004; p. 183) briefly addressed
this aspect and implied that fixing the parameters in contexts where the ability of
the populations differs, might lead to biased estimates. This is because the ability
distribution is estimated as a mean of zero and a standard deviation of one. However,
this is only the case when the marginal maximum likelihood is used to estimate the
parameters, this may not be the case when the conditional maximum likelihood is
used, as it is in OPLM.

The bias present in the circle-arc method should not be neglected. Even though,
Dwyer (2016) showed promising results in favour of the circle-arc method, this
method has some weaknesses. Livingston and Kim (2009) present this equating
method as an improvement in the chained linear equating method, as a method
to overcome impossible maximum scores because it follows an arc. However, in
the case of NEAT design, is the empirically estimated midpoint for the circle-arch
method derived from the chained linear equating method. If the new form is difficult
and examinees abilities are low, this arc still results in impossible maximum scores.
The circle-arc method could be improved by adding a second empirical point which
partially restricts the arc. A second weakness of the circle-arc equating method is the
definition of the minimum score. Authors tend to leave the decision for the minimum
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score up to the user. However, the choice of the minimum score affects the length of
the circle’s radius that is then used to compute the arc and the equating function.

Finally, Hambleton and Jones (1993) observed a limitation of the classical test
theory approach; the test scores obtained by classical test theory applications are
dependent on the test and biased when examinees’ abilities differ. Within this arti-
cle, this limitation was empirically demonstrated. Additionally, although Kolen and
Brennan (2004) did not advise using OPLM as an IRT equating model for small sam-
ples, we would urge researchers to consider using OPLM in resetting performance
standards due to our promising results.
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credit to the original author(s) and the source, provide a link to the Creative Commons license and
indicate if changes were made.
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included in the chapter’s Creative Commons license and your intended use is not permitted by
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the copyright holder.
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